WO2014096617A1 - Procede de caracterisation d'une piece en materiau composite - Google Patents

Procede de caracterisation d'une piece en materiau composite Download PDF

Info

Publication number
WO2014096617A1
WO2014096617A1 PCT/FR2013/052985 FR2013052985W WO2014096617A1 WO 2014096617 A1 WO2014096617 A1 WO 2014096617A1 FR 2013052985 W FR2013052985 W FR 2013052985W WO 2014096617 A1 WO2014096617 A1 WO 2014096617A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
composite material
ultrasonic wave
measured
transmitted
Prior art date
Application number
PCT/FR2013/052985
Other languages
English (en)
French (fr)
Inventor
Jean-Yves François Roger Chatellier
Nicolas BROUSSAIS-COLELLA
Jérémy DUVAL
Jérémy Nicolas MARQUIS
Anne Meyer
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to BR112015014246-0A priority Critical patent/BR112015014246B1/pt
Priority to US14/652,593 priority patent/US10024822B2/en
Priority to EP13821862.3A priority patent/EP2932255B1/fr
Priority to RU2015129071A priority patent/RU2642503C2/ru
Priority to CN201380066149.3A priority patent/CN104870994B/zh
Priority to JP2015547114A priority patent/JP6542125B2/ja
Priority to CA2894588A priority patent/CA2894588C/fr
Publication of WO2014096617A1 publication Critical patent/WO2014096617A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Definitions

  • the invention is in the field of characterization processes of composite material parts for the mechanical industry, in particular the aeronautical industry.
  • the invention relates to a method for characterizing a composite material part, comprising a step of determining a characteristic of a longitudinal ultrasonic wave performing a path in the part, characterized in that the travel time is measured. of a wave transmitted by the room.
  • the travel time of the transmitted wave is measured by observing the birth of the wave.
  • the propagation velocity of the longitudinal ultrasonic wave traveling in the room is determined.
  • the amplitude of the transmitted wave is furthermore measured in order to determine the attenuation, overall or linear, experienced by the longitudinal ultrasound wave traveling in the room.
  • the propagation time of an ultrasonic wave transmitted in the absence of the workpiece is measured and the ultrasonic wave propagation times reflected by a first face of the workpiece and a second face of the workpiece, respectively, to determine the dimension of the part which is traversed by the longitudinal ultrasonic wave making a course in the room.
  • the dimension of the part that will be traversed by the transmitted wave is precisely measured, whereas such a dimension is rather variable on composite material parts, and that is therefore useful to have an exact value for the given piece, for the precise course of the ultrasonic wave used.
  • the method is in particular implemented for a piece of woven composite material 3D.
  • FIG. 1 represents a preliminary operation in the context of the implementation of a method according to the invention.
  • Figure 2 shows the three steps of a thickness measurement phase, implemented in the invention.
  • FIGS 3 to 5 show the signals recorded in the three steps of Figure 2.
  • FIG. 6 shows the step of observing a transmitted wave during a method according to the invention.
  • FIG. 7 shows the signal measured during the step of FIG. 6.
  • Figures 8 to 10 show signals obtained in the steps of Figures 2 and 6 for a wedge of composite material.
  • two planar ultrasonic sensors operating in transmission mode are aligned. This alignment constitutes a preliminary step E0. These sensors are separated by a liquid, such as water. Transducer 10 operates in transmit mode, and sensor 20 in receive mode. The signal received by the sensor 20 passes through a maximum after successive adjustments of the axes Oy and Oz, as well as angles ⁇ and ⁇ .
  • the thickness of the material of the part to be studied, referenced 30, is measured. The measurement must be accurate to the nearest micrometer.
  • a first step El consists of measuring the travel time of the wave transmitted by the water between the two transducers 10 and 20, in the absence of the part.
  • a second step is to measure the travel time of the wave reflected by the first surface, denoted 31, of the part 30, the transducer 10 operating as a transmitter / receiver and facing the surface 31.
  • a third step is to measure the time of travel of the wave reflected by the second surface, denoted 32, of the part 30, the transducer 20 operating in turn as a transmitter / receiver and facing the surface 32.
  • the travel time is measured each time by observing the birth of the signal, and not an arch of the signal. This allows the operator to ignore any phenomenon related to a possible phase shift of the signal. Indeed, in the presence of multiple reflections, phase shifts appear. This is also the case when after reflection, the signal is reversed. The shape of the arches of the signal is modified, and it is difficult to obtain a precise value for the travel time. That is why it is proposed to measure it by observing only the birth of the signal.
  • X 2 (t x1 + X2 + X3 - t X3 - t x1 ).
  • V ea u # XI being the distance between the transducer 10 and the surface 31
  • X2 the thickness of the workpiece at the point of impact of the beam
  • X3 being the distance between the transducer 20 and the surface 32
  • tXl + X2 + X3, tX1 and tX3 being the travel times measured in steps E1, E2 and E3, respectively.
  • FIGS. 3 to 5 show the plots visualized during steps E1, E2 and E3, respectively, with water at 22 ° C., a 5 MHz frequency wave
  • the travel time of the wave is measured on the basis of the birth of the wave, referenced respectively 100, 110 and 120.
  • X2 (TXL + X2 + X3-tx3-TXL) .Veau
  • step E4 is shown during which the wave transmitted by the part 30 is observed.
  • the transducer 10 operates in transmitter mode, while the transducer 20 operates in receiver mode
  • the incident wave is referenced 40 in the figure, the wave propagating in the room 30 is referenced 41 and the transmitted wave is referenced 42.
  • FIG. 7 shows the signal observed for the titanium shim (TA6V) of thickness 76, 20 m, always with a wave at 5 MHZ during step E4.
  • the travel time of the wave is measured on the basis of the birth of the wave, referenced 130.
  • This value is checked with a conventional measure of propagation speed to validate the method.
  • FIGS. 8 to 10 show the scans obtained for the steps E2, E3 and E4, for a stepped composite shim 47.09 mm thick, with a transducer emitting at 1 MHz.
  • the travel time of the wave is measured on the basis of the birth of the wave, referenced respectively
  • V CO mposite 2 879.4 m / s.
  • Y 2 A max e ⁇ l ⁇ xl + x ⁇ e ⁇ 2X2 t 12 t 21r
  • a 2 is the attenuation of the wave in the material
  • t i2 is the coefficient of transmision in amplitude of the water to the material
  • t 2i is the coefficient of transmision in amplitude of the material with the water.
  • a first example of implementation relates to the shim composite material thickness of 47.09 mm, with a wave at 2.25 MHz.
  • V 2 2,946.75 m / s
  • V water 1,486.54 m / s
  • a second example of implementation relates to the shim composite material thickness 47.09 mm, with a wave at 1 MHz.
  • V 2 2,879.39 m / s

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
PCT/FR2013/052985 2012-12-17 2013-12-06 Procede de caracterisation d'une piece en materiau composite WO2014096617A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112015014246-0A BR112015014246B1 (pt) 2012-12-17 2013-12-06 método para caracterização de uma peça feita de material de compósito
US14/652,593 US10024822B2 (en) 2012-12-17 2013-12-06 Method for characterising a part made of a composite material
EP13821862.3A EP2932255B1 (fr) 2012-12-17 2013-12-06 Procede de caracterisation d'une piece en materiau composite
RU2015129071A RU2642503C2 (ru) 2012-12-17 2013-12-06 Способ характеризации детали, изготовленной из композитного материала
CN201380066149.3A CN104870994B (zh) 2012-12-17 2013-12-06 用于表征由复合材料制成的零件的方法
JP2015547114A JP6542125B2 (ja) 2012-12-17 2013-12-06 複合材料で作られた部品を特性評価する方法
CA2894588A CA2894588C (fr) 2012-12-17 2013-12-06 Procede de caracterisation d'une piece en materiau composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262155 2012-12-17
FR1262155A FR2999714B1 (fr) 2012-12-17 2012-12-17 Procede de caracterisation d'une piece en materiau composite

Publications (1)

Publication Number Publication Date
WO2014096617A1 true WO2014096617A1 (fr) 2014-06-26

Family

ID=48083238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052985 WO2014096617A1 (fr) 2012-12-17 2013-12-06 Procede de caracterisation d'une piece en materiau composite

Country Status (9)

Country Link
US (1) US10024822B2 (ru)
EP (1) EP2932255B1 (ru)
JP (1) JP6542125B2 (ru)
CN (1) CN104870994B (ru)
BR (1) BR112015014246B1 (ru)
CA (1) CA2894588C (ru)
FR (1) FR2999714B1 (ru)
RU (1) RU2642503C2 (ru)
WO (1) WO2014096617A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896664B (zh) * 2018-06-06 2020-06-09 浙江大学 一种聚合物中声速与衰减系数一体化检测方法
US11359918B2 (en) * 2020-07-24 2022-06-14 Olympus Scientific Solutions Americas Corp. Ultrasonic testing with single shot processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181421A (en) * 1988-01-22 1993-01-26 Board Of Regents Of The University Of Oklahoma Automatic monitoring of composite prepregs
US5408882A (en) * 1991-06-24 1995-04-25 General Electric Company Ultrasonic device and method for non-destructive evaluation of polymer composites
US5824908A (en) * 1994-12-12 1998-10-20 Queen's University At Kingston Non-contact characterization and inspection of materials using wideband air coupled ultrasound
US20090277269A1 (en) * 2008-05-06 2009-11-12 The Boeing Company Pulse echo/through transmission ultrasonic testing
FR2959817A1 (fr) * 2010-05-10 2011-11-11 Snecma Procede de controle par ultrasons d'une piece composite.

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930404A (en) * 1973-06-21 1976-01-06 Exxon Nuclear Company Inc. Inside diameter, outside diameter and wall tube gage
BE840456A (fr) * 1975-04-22 1976-10-07 Dispositif de mesure precise des dimensions d'un objet par ultra-sons
DE2902017A1 (de) * 1979-01-19 1980-07-24 Krautkraemer Gmbh Verfahren zur kompensation von temperatureinfluessen auf die schallgeschwindigkeit in einer ankoppelfluessigkeit fuer die ultraschallpruefung
US4404853A (en) * 1981-03-12 1983-09-20 Livingston Waylon A Method and apparatus for ultrasonic testing of tubular goods
US4515545A (en) * 1981-07-09 1985-05-07 Applied Polymer Technology, Inc. Control system for processing composite material
SE425996B (sv) * 1981-12-22 1982-11-29 Salomonsson Goeran Sett och anordning for alstring av korta ultraljudsekopulser
JPS60163643A (ja) * 1984-02-07 1985-08-26 テルモ株式会社 超音波測定装置
JPH03503312A (ja) 1988-01-22 1991-07-25 ザ、ボード、オブ、リージェンツ、オブ、ザ、ユニバーシティー、オブ、オクラホマ 組成材料のパラメータを非破壊的に決定するための方式
US5009103A (en) * 1988-02-01 1991-04-23 Tokyo Keiki Co., Ltd. Ultrasonic thickness measuring method and apparatus
FR2646239B1 (fr) * 1989-04-24 1991-08-16 Dassault Avions Procede et dispositif acoustique de localisation de defauts du materiau constituant une piece et emetteur acoustique utilisable dans ce dispositif
FR2654508B1 (fr) * 1989-11-14 1992-02-21 Aerospatiale Ste Nat Indle Dispositif et sonde pour mesurer la variation de distance separant les deux faces d'une couche de matiere au moyen d'ultrasons.
US5072388A (en) * 1990-01-31 1991-12-10 Union Oil Company Of California Lined casing inspection method
US5170367A (en) * 1990-04-25 1992-12-08 The Expert System Technologies, Inc. Nondestructive determination of phase fractions of composite materials
US5201225A (en) * 1990-09-24 1993-04-13 Toyo Kanetsu K.K. Instrument for measuring thickness of coated plate and method thereof
US5156636A (en) * 1990-11-26 1992-10-20 Combustion Engineering, Inc. Ultrasonic method and apparatus for measuring outside diameter and wall thickness of a tube and having temperature compensation
JPH05172793A (ja) * 1991-12-18 1993-07-09 Hitachi Ltd 音響特性値測定装置
JP3052532B2 (ja) 1992-01-21 2000-06-12 株式会社島津製作所 超音波透過検査装置
JPH0749944B2 (ja) 1992-07-10 1995-05-31 工業技術院長 材料の厚さ及び音速の同時測定法
DE4233958C2 (de) 1992-10-08 1996-10-17 Geotron Elektronik Rolf Kromph Verfahren zur Gefüge-Zustandsermittlung von Gestein
US5448915A (en) * 1993-09-02 1995-09-12 Hughes Aircraft Company Method for improving the accuracy of ultrasonic thickness measurements by calibrating for surface finish
JP3468573B2 (ja) * 1994-03-22 2003-11-17 積水化学工業株式会社 樹脂モルタル複合管の欠陥検査装置
US5596508A (en) * 1994-12-07 1997-01-21 Krautkramer-Branson, Inc. High resolution measurement of a thickness using ultrasound
US5661241A (en) * 1995-09-11 1997-08-26 The Babcock & Wilcox Company Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
FR2806801B1 (fr) * 2000-03-23 2002-05-03 Snecma Procede d'evaluation de resilience d'un assemblage soude et appareil d'analyse correspondant mesurant des vitesses d'ondes ultrasonores superficielles
US6534964B1 (en) * 2000-09-22 2003-03-18 International Business Machines Corporation Apparatus and method for determining stiffness properties of an anisotropic electronic substrate using scanning acoustic microscopy
US6883376B2 (en) * 2001-01-23 2005-04-26 Wright State University Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
US6634233B2 (en) * 2001-01-23 2003-10-21 Wright State University Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
DE50305421D1 (de) * 2003-06-23 2006-11-30 Zumbach Electronic Ag Vorrichtung und Verfahren zur Kalibrierung und Ultraschallvermessung von zylindrischen Prüfmustern
FR2866119B1 (fr) * 2004-02-05 2006-09-15 Snecma Moteurs Procede de mesure de l'adherence d'un revetement sur un substrat
RU2280251C1 (ru) 2004-11-23 2006-07-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" Способ контроля состава двухфазных композитов
US7426865B2 (en) 2005-11-22 2008-09-23 General Electric Company Method for ultrasonic elastic modulus calculation and imaging
US8161818B2 (en) * 2008-10-29 2012-04-24 Airbus Operations Gmbh Device for detecting a flaw in a component
US8857269B2 (en) * 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
FR2972802B1 (fr) * 2011-03-16 2013-09-20 Snecma Installation de controle non destructif, par ultrasons en immersion, de pieces
JP5755993B2 (ja) * 2011-10-21 2015-07-29 理想科学工業株式会社 超音波センサ
FR2984505B1 (fr) * 2011-12-19 2014-01-31 Snecma Methode de mesure de proprietes elastiques par ultrasons.
FR2993361B1 (fr) * 2012-07-10 2014-08-01 Snecma Procede de caracterisation d'un objet comprenant au moins localement un plan de symetrie
CN102788738A (zh) * 2012-09-03 2012-11-21 北京理工大学 多相流体密度和浓度超声阵列检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181421A (en) * 1988-01-22 1993-01-26 Board Of Regents Of The University Of Oklahoma Automatic monitoring of composite prepregs
US5408882A (en) * 1991-06-24 1995-04-25 General Electric Company Ultrasonic device and method for non-destructive evaluation of polymer composites
US5824908A (en) * 1994-12-12 1998-10-20 Queen's University At Kingston Non-contact characterization and inspection of materials using wideband air coupled ultrasound
US20090277269A1 (en) * 2008-05-06 2009-11-12 The Boeing Company Pulse echo/through transmission ultrasonic testing
FR2959817A1 (fr) * 2010-05-10 2011-11-11 Snecma Procede de controle par ultrasons d'une piece composite.

Also Published As

Publication number Publication date
RU2015129071A (ru) 2017-01-25
CN104870994A (zh) 2015-08-26
FR2999714A1 (fr) 2014-06-20
BR112015014246B1 (pt) 2021-02-23
CN104870994B (zh) 2019-02-12
RU2642503C2 (ru) 2018-01-25
EP2932255A1 (fr) 2015-10-21
EP2932255B1 (fr) 2019-06-26
CA2894588C (fr) 2020-11-10
BR112015014246A2 (pt) 2017-07-11
CA2894588A1 (fr) 2014-06-26
JP2016503881A (ja) 2016-02-08
JP6542125B2 (ja) 2019-07-10
US10024822B2 (en) 2018-07-17
FR2999714B1 (fr) 2016-01-15
US20150330949A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US20160274062A1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
CA2857170C (fr) Methode de mesure de proprietes elastiques par ultrasons
EP2932255B1 (fr) Procede de caracterisation d'une piece en materiau composite
Deán et al. Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves
Goñi et al. On the validity and improvement of the ultrasonic pulse-echo immersion technique to measure real attenuation
Verma et al. Surface breaking crack sizing method using pulse-echo Rayleigh waves
US20230054431A1 (en) Sound detection device
Lucklum Phononic crystal sensor
JP4329773B2 (ja) フッ素樹脂製被検査物の超音波検査方法
Djerir et al. Experimental Investigation of the parameters Influencing the surface defect detection by using the critically refracted longitudinal waves
JP3895865B2 (ja) レーザー超音波法による塑性歪み比を測定する方法及び装置
Ma et al. Stress measurement of aero-engine thin-walled catheter based on ultrasonic guided wave
JP2007309850A5 (ru)
WO2018135242A1 (ja) 検査方法
JP3493941B2 (ja) 超音波探触子
Kwak et al. Detection of small-flaw in carbon brake disc (CC) using air-coupled ultrasonic C-scan technique
SU1647379A1 (ru) Способ определени коэффициента затухани ультразвуковых колебаний в материале
Yi et al. Nondestructive evaluation of adhesively bonded joints using ultrasonic technique
Krishnaswamy Ultrasonic characterization of the mechanical properties of thin films and coatings
Jiang et al. Multiple reflection wave detection method based on inversion of multilayer material transfer function
Dorogov et al. Ultrasonic control of aircraft products and structures manufactured of polymer materials
JPH06300550A (ja) 層状材料の超音波による層厚さ測定法
JP3799993B2 (ja) フッ素樹脂製被検査物検査用の超音波探触子,超音波検査装置、及び超音波検査方法
Norose et al. High-performance nondestructive inspection method for high-attenuation billet: Ultrasonic computerized tomography using time-of-flight
JP2004333366A (ja) 超音波回折法によるセラミックス膜厚測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13821862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013821862

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2894588

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015547114

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015129071

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015014246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150616