WO2014096443A1 - Procédé de dopage de substrats semi-conducteurs ainsi que substrat semi-conducteur dopé - Google Patents

Procédé de dopage de substrats semi-conducteurs ainsi que substrat semi-conducteur dopé Download PDF

Info

Publication number
WO2014096443A1
WO2014096443A1 PCT/EP2013/077879 EP2013077879W WO2014096443A1 WO 2014096443 A1 WO2014096443 A1 WO 2014096443A1 EP 2013077879 W EP2013077879 W EP 2013077879W WO 2014096443 A1 WO2014096443 A1 WO 2014096443A1
Authority
WO
WIPO (PCT)
Prior art keywords
dopant
semiconductor substrate
atmosphere
boron
steps
Prior art date
Application number
PCT/EP2013/077879
Other languages
German (de)
English (en)
Inventor
Philip ROTHHARDT
Andreas Wolf
Daniel Biro
Udo Belledin
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2014096443A1 publication Critical patent/WO2014096443A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • borosilicide layer or boron-rich-layer (BRL).
  • BBL boron-rich-layer
  • the BRL can determine the charge carrier lifetime in the volume of the (Kessler, T. Ohrdes, B. Wolpensinger, R. Bock, and N.-P. Härder, "Characterization and Implications Often Are Boron Layer Resulting from Open Tube Liquid BBR 3 Diffusion Processes," presented at Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, 2009).
  • a method for doping semiconductor substrates in which a) a semiconductor substrate with boron as dopant-containing
  • the present invention therefore makes use of the approach of initially at least partially allowing the formation of a borosilicide layer in the process, ie in particular of avoiding the formation of an oxide at the interface between the wafer and the doping source.
  • This allows a more homogeneous doping since high concentrations of boron in the gas phase or a solid or liquid source can be used.
  • the composition of this layer is modified later in the process by the addition of water vapor, so that the layer can then be removed easily wet-chemically and does not adversely affect the volume life.
  • the advantage of using a water vapor-containing atmosphere instead of pure dry oxidation, ie when using gaseous oxygen, is the order of magnitude higher growth rate of an oxide layer in wet processes.
  • the surface depletion of the boron doping can be reduced because both the oxidation temperature and the oxidation time can be reduced.
  • step a) in a at least one dopant-containing oxidizing atmosphere at a temperature of 300 to 1050 ° C, preferably 700 to 1000 ° C for a period of 1 to 180 min, a deposition of the dopant-containing oxide layer on the Semiconductor substrate is done.
  • an embossing position of a dopant-containing layer can take place.
  • PECVD plasma-enhanced chemical vapor deposition
  • APCVD atmospheric-pressure chemical vapor deposition
  • printing of a dopant-containing paste or ink are particularly suitable for this purpose. These allow a homogeneous dopant deposition at low cost.
  • At least one of the steps a), b) or c) is further preferred for at least one of the steps a), b) or c) to use a tube furnace or a continuous furnace.
  • step a) the gas atmosphere contains proportions of nitrogen or oxygen or mixtures thereof.
  • the dopant is preferably added in the form of BBr 3 , BCI 3 , B 2 CI 4 or B 2 H 6 of the process atmosphere.
  • a preferred embodiment provides that in step a) the concentration of boron in the oxide layer and oxygen in the atmosphere are chosen so that a borosilicide layer is at least partially formed. In contrast to a boron-rich oxide layer, the borosilicide layer can not be removed without residue using hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • the water vapor is generated by means of an evaporator, a bubbler or pyrolytic.
  • the steam can be passed into the process pipe both without and with carrier gas, for example argon, oxygen or nitrogen. It is particularly preferred to use purified steam.
  • carrier gas for example argon, oxygen or nitrogen.
  • purified steam This can be realized, for example, by means of the membrane method described in US 2009/0145847 A1.
  • the supply of water vapor is preferably carried out after the occupancy phase, in particular within the 60 minutes before Pro2essende.
  • the goal is to oxidize at as low a temperature as possible in order to reduce or completely avoid the impoverishment of boron doping.
  • the maximum process temperature is reached during the occupancy time or during driving. Towards the end of the process, the temperature is then reduced. Since the wet oil preferably takes place at low temperatures, it should preferably be used at the end of the process.
  • the invention likewise provides a doped semiconductor substrate which can be produced by the method described above.
  • Semiconductor substrate preferably has a standard deviation of the sheet resistance over the wafer, measured at 40 neatly evenly distributed over the wafer points, below 3% of the absolute sheet resistance.
  • the 5-layer resistance is in the range of 50 to 100 OHM / sq.
  • Fig. L shows a schematic representation of the flow of the
  • FIG. 2 shows connection variants of an evaporator (steamer) to a tube furnace according to the present invention in plan view (FIG. 2a) and side view (Fig. 2b).
  • Printing process are deposited. In the present case, only a one-sided deposition is shown, but also a two-sided deposition of the oxide layer 2 is possible.
  • Fig. Lb the wafer is shown before the wet post-oxidation. This has a borosilicide layer 3 is formed between the wafer 1 and the oxide layer 2.
  • Fig. Lc the wafer 1 is shown after the wet in-situ post-oxidation. Between the wafer 1 and the oxide layer 2 is now the oxidized boron-rich layer 4 (BRL). This can be easily removed by wet chemical following the diffusion.
  • BBL oxidized boron-rich layer 4
  • FIG. 2 shows a preferred connection possibility of an evaporator to a tube furnace for the diffusion of BBr 3 in plan view (FIG. 2 a) and in the side view (FIG. 2 b).
  • connection 12 serves to introduce temperature sensors, the process gases are discharged via the connection 13 and the connection 14 allows the introduction of process gases.
  • the connection of a steamer can be realized, for example, via a T-piece to port 3. Alternatively, if available, an unoccupied connection can be used to introduce the steam.
  • Silicon wafers eg with a diameter of about 4 inches and a textured surface, were placed in a tube furnace. After heating to a temperature between 800 and 950 ° C various process gases, such as N 2 , 0 2 and BBr 3 fed to a drill-containing oxide layer, the so-called.
  • various process gases such as N 2 , 0 2 and BBr 3 fed to a drill-containing oxide layer, the so-called.
  • Borosilicate glass (BSG) to be deposited on the wafer (see Fig. 1).
  • BSG Borosilicate glass
  • boron diffuses into the silicon wafer. Boron concentration in the ESR and oxygen concentration are In the atmosphere, a borosilicide layer is formed on the surface of the wafer (see Fig. 2).
  • the wafers were treated under nitrogen and steam atmosphere at 950 ° C for 30 minutes. During the whole process 25sl / min water vapor was introduced (see Fig. 3). After the experiment, the wafers were immersed for 5 minutes in a 20% HF concentration bath. After the wet-chemical etching step, the wafer surface was wetted with water. Since the wafer surface was hydrophilic after removal from the bath, it could be clearly demonstrated that there was no more borosilicide layer on the surface. The procedure was analogous to MA Kessler, T.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé de dopage de substrats semi-conducteurs, selon lequel un substrat semi-conducteur est pourvu d'une couche contenant une impureté de dopage, cette dernière est enfoncée dans le substrat semi-conducteur par un traitement thermique et ensuite une oxydation humide a lieu dans une atmosphère contenant de la vapeur d'eau.
PCT/EP2013/077879 2012-12-21 2013-12-23 Procédé de dopage de substrats semi-conducteurs ainsi que substrat semi-conducteur dopé WO2014096443A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012025429.6 2012-12-21
DE102012025429.6A DE102012025429A1 (de) 2012-12-21 2012-12-21 Verfahren zur Dotierung von Halbleitersubstraten sowie dotiertes Halbleitersubstrat

Publications (1)

Publication Number Publication Date
WO2014096443A1 true WO2014096443A1 (fr) 2014-06-26

Family

ID=49883109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077879 WO2014096443A1 (fr) 2012-12-21 2013-12-23 Procédé de dopage de substrats semi-conducteurs ainsi que substrat semi-conducteur dopé

Country Status (2)

Country Link
DE (1) DE102012025429A1 (fr)
WO (1) WO2014096443A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690693A (zh) * 2015-06-09 2018-02-13 国际太阳能研究中心康斯坦茨协会 掺杂硅晶片的方法
CN114068758A (zh) * 2020-07-30 2022-02-18 一道新能源科技(衢州)有限公司 一种硼扩散处理控制方法、装置和炉管

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064606A (zh) * 2022-06-16 2022-09-16 湖南红太阳光电科技有限公司 一种用于提高多晶硅层钝化效果的水汽退火设备及水汽退火工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199270A (en) * 1981-06-02 1982-12-07 Semiconductor Energy Lab Co Ltd Photoelectric converter
US20090145847A1 (en) * 2005-09-13 2009-06-11 Rasirc Method of producing high purity steam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676231A (en) * 1970-02-20 1972-07-11 Ibm Method for producing high performance semiconductor device
US3806382A (en) 1972-04-06 1974-04-23 Ibm Vapor-solid impurity diffusion process
US7638161B2 (en) * 2001-07-20 2009-12-29 Applied Materials, Inc. Method and apparatus for controlling dopant concentration during BPSG film deposition to reduce nitride consumption

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199270A (en) * 1981-06-02 1982-12-07 Semiconductor Energy Lab Co Ltd Photoelectric converter
US20090145847A1 (en) * 2005-09-13 2009-06-11 Rasirc Method of producing high purity steam

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AURIAC N ET AL: "HIGH EFFICIENCY BIFACIAL SOLAR CELL DEVELOPPED ON MONOCRISTALLINE SI AND TRANSFERED TO MULTICRISTALLINE SI", ENERGY PROCEDIA, vol. 8, 17 April 2011 (2011-04-17) - 20 April 2011 (2011-04-20), pages 427 - 434, XP028263103, ISSN: 1876-6102, [retrieved on 20110812], DOI: 10.1016/J.EGYPRO.2011.06.161 *
BURTESCU S ET AL: "The low cost multicrystalline silicon solar cells", MATERIALS SCIENCE AND ENGINEERING B, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 165, no. 3, 15 December 2009 (2009-12-15), pages 190 - 193, XP026777574, ISSN: 0921-5107, [retrieved on 20090831], DOI: 10.1016/J.MSEB.2009.08.009 *
CHUNLAN ZHOU ET AL: "Paper;Preparation of p+-layers using water vapour as oxidant in BBr3 diffusion for silicon solar cells;Preparation of p+-layers using water vapour as oxidant in BBr3 diffusion for silicon solar cells", JOURNAL OF PHYSICS D: APPLIED PHYSICS, INSTITUTE OF PHYSICS PUBLISHING LTD, GB, vol. 46, no. 28, 25 June 2013 (2013-06-25), pages 285102, XP020247603, ISSN: 0022-3727, DOI: 10.1088/0022-3727/46/28/285102 *
ENIKO BANDY ET AL: "Comparison of anisotropic etching and laser technologies applied in manufacturing of semitransparent monocrystalline solar cells", DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS (DTIP), 2012 SYMPOSIUM ON, IEEE, 25 April 2012 (2012-04-25), pages 32 - 36, XP032199424, ISBN: 978-1-4673-0785-7 *
LIBAL J ET AL: "N-type multicrystalline silicon solar cells with BBr3-Diffused front junction", CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALIST CONFERENCE (IEEE CAT. NO. 05CH37608) IEEE PISCATAWAY, NJ, USA, IEEE, 3 January 2005 (2005-01-03), pages 1209 - 1212, XP010824110, ISBN: 978-0-7803-8707-2, DOI: 10.1109/PVSC.2005.1488356 *
R. F. LEVER ET AL: "Water Vapor as an Oxidant in BBr<inf>3</inf> Open-tube Silicon Diffusion Systems", IBM JOURNAL OF RESEARCH AND DEVELOPMENT, vol. 18, no. 1, 1 January 1974 (1974-01-01), pages 40 - 46, XP055111697, ISSN: 0018-8646, DOI: 10.1147/rd.181.0040 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690693A (zh) * 2015-06-09 2018-02-13 国际太阳能研究中心康斯坦茨协会 掺杂硅晶片的方法
CN107690693B (zh) * 2015-06-09 2022-01-07 国际太阳能研究中心康斯坦茨协会 掺杂硅晶片的方法
CN114068758A (zh) * 2020-07-30 2022-02-18 一道新能源科技(衢州)有限公司 一种硼扩散处理控制方法、装置和炉管
CN114068758B (zh) * 2020-07-30 2024-05-31 一道新能源科技股份有限公司 一种硼扩散处理控制方法、装置和炉管

Also Published As

Publication number Publication date
DE102012025429A1 (de) 2014-06-26

Similar Documents

Publication Publication Date Title
EP2817829B1 (fr) Procédé de fabrication d&#39;une cellule solaire
EP2335275B1 (fr) Procédé de traitement chimique d un substrat
EP2338179B1 (fr) Procédé de traitement de substrats et dispositif de traitement pour mettre en oeuvre le procédé
EP2064750A2 (fr) Procédé de dopage et d&#39;oxydation simultanés de substrats semi-conducteurs et son utilisation
DE102009005168A1 (de) Solarzelle und Verfahren zur Herstellung einer Solarzelle aus einem Siliziumsubstrat
WO1999049521A1 (fr) Procede permettant de doper d&#39;un seul cote un dispositif a semi-conducteur
WO2016107661A1 (fr) Dopage laser de semi-conducteurs
DE112012002092T5 (de) Verfahren zur Herstellung von Wafern für Solarzellen, Verfahren zur Herstellung von Solarzellen und Verfahren zur Herstellung von Solarzellenmodulen
WO2014096443A1 (fr) Procédé de dopage de substrats semi-conducteurs ainsi que substrat semi-conducteur dopé
EP2412008A1 (fr) Procédé de fabrication de cellules solaires à émetteur sélectif
WO2015117991A1 (fr) Couche protectrice pour nacelles pecvd en graphite
DE102012107372B4 (de) Alkalischer Ätzprozess und Vorrichtung zur Durchführung des Verfahrens
WO2008043827A2 (fr) Procédé de passivation de cellules solaires
DE69906475T2 (de) In situ wachstum von oxid und silizium schichten
DE102016100938A1 (de) Steuern des Reflow-Verhaltens von BPSG-Filmen und hiermit hergestellte Vorrichtungen
WO2019081752A1 (fr) Procédé de gravure à sec en 2 étapes pour la texturation de disques de silicium cristallin
EP2211378B1 (fr) Procédé d&#39;amélioration de la longévité de dispositifs de transport
DE2148120C3 (de) Verfahren zum Niederschlagen von Glasfilmen
DE102013211746A1 (de) Verfahren zur Herstellung einer Solarzelle
EP1176644A1 (fr) Méthode d&#39;activation de cellules solaires en CdTe à couches minces
WO2023094327A1 (fr) Procédé et banc humide pour le traitement en ligne de substrats de cellules solaires
EP1415332A2 (fr) Procede et dispositif de production de minces couches epitaxiales
DE102022104191A1 (de) Verfahren und nassbank zur in-line-prozessierung von solarzellensubstraten
WO2023274784A1 (fr) Procédé de fabrication d&#39;une matière de départ pour une cellule solaire au silicium ayant des contacts passivés
DE1521834B2 (de) Verfahren zur herstellung geschichteter halbleiter kristall elemente durch aetzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13814157

Country of ref document: EP

Kind code of ref document: A1