EP2412008A1 - Procédé de fabrication de cellules solaires à émetteur sélectif - Google Patents
Procédé de fabrication de cellules solaires à émetteur sélectifInfo
- Publication number
- EP2412008A1 EP2412008A1 EP10711215A EP10711215A EP2412008A1 EP 2412008 A1 EP2412008 A1 EP 2412008A1 EP 10711215 A EP10711215 A EP 10711215A EP 10711215 A EP10711215 A EP 10711215A EP 2412008 A1 EP2412008 A1 EP 2412008A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- diffusion
- wafer
- doping source
- etching
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000009792 diffusion process Methods 0.000 claims abstract description 37
- 239000002019 doping agent Substances 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 47
- 230000000873 masking effect Effects 0.000 claims description 13
- 239000005360 phosphosilicate glass Substances 0.000 claims description 11
- 238000007650 screen-printing Methods 0.000 claims description 10
- 238000007639 printing Methods 0.000 claims description 7
- 238000007641 inkjet printing Methods 0.000 claims description 6
- 239000012943 hotmelt Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 230000035515 penetration Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 abstract description 21
- 239000010410 layer Substances 0.000 description 28
- 230000004888 barrier function Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910021426 porous silicon Inorganic materials 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 238000003631 wet chemical etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- VRUVRQYVUDCDMT-UHFFFAOYSA-N [Sn].[Ni].[Cu] Chemical compound [Sn].[Ni].[Cu] VRUVRQYVUDCDMT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a process for the production of solar cells with selective emitter.
- One way of producing selective emitter structures is first of all to apply a diffusion mask, to open it at the desired locations, for example by printing an etching paste on certain areas or by laser ablation, in order then to carry out a high degree of diffusion into the volume of the wafer. Then the mask is to be removed and over the entire surface to realize a further diffusion with the aim of forming portions of lower doping.
- a weak diffusion is carried out.
- AU 570 309 it is known first to perform a weak diffusion on the wafers over the entire surface. Subsequently, a very dense silicon nitride layer is applied by means of an LPCVD step, which serves both as a mask and later takes on the function of the anti-reflection layer. Trenches are then cut into the substrate by means of lasers. In these trenches into a strong doping is then made. The trenches in turn are subsequently metallized by nickel-copper-tin plating.
- a method for manufacturing a silicon solar cell with a selective emitter is previously known.
- a planar emitter is produced on a surface of the substrate.
- This step is followed by an etching of the emitter surface in non-covered by the etching barrier second portions.
- metal contacts are produced at the first subareas.
- a porous silicon layer is formed, which is subsequently oxidizable. This oxidized porous silicon layer can subsequently be etched away together with optionally existing phosphorus glass. Using known screen printing and etching techniques, this method is said to be compatible with current industrial manufacturing equipment.
- the relevant idea is to first produce an emitter on at least one surface of a solar cell substrate with a homogeneous doping concentration high enough that it is suitable for contacting in the later screen printing process is.
- first subregions of the already existing emitter surface are protected by an etching barrier.
- the unprotected areas are subject to the Etching step, so that the thickness of the emitter is reduced in the mentioned areas, with the result that in these second partial areas, an emitter is formed with an increased sheet resistance.
- a planar emitter is produced on a surface of a solar cell substrate. Subsequently, a layer of porous silicon is created, which is then selectively subject to etching back.
- any desired methods can be used according to DE 10 2007 062 750 A1. For example, it is possible to form the planar emitter by means of a POCl 3 - Gasphase ⁇ diffus ⁇ on by diffusing phosphorus from a hot gas phase in the surface of the substrate.
- the parameters when generating the flat emitter should be selected so that preferably sets an emitter layer resistance of less than 60 ⁇ / D.
- An etching barrier is applied to the created first subregions of the front surface of the substrate. The etch barrier protects the underlying first portions of the emitter surface from the etchant.
- the emitter surface is etched down so strongly in the etching step in the second subregions until a desired high sheet resistance of, for example, more than 60 ⁇ / D is stiffened in the remaining emitter layer.
- the sheet resistance is checked by measurement in order to be able to cancel the etching process in a targeted manner.
- an additional step takes place with regard to the production of the mentioned porous silicon layer.
- This process step takes place after the deposition of the etching barrier at the second partial regions of the emitter surface of the substrate which are not covered by the etching barrier.
- an etching process which leads to the formation of an at least partially porous silicon layer. This porous Siiizium Mrs is oxidized at a later process step.
- the photovoltaic cell with two or more selectively diffused regions assumes that the selective regions are produced by means of a single diffusion step.
- a screen printing of solid-based dopant pastes is assumed in order to then form the diffusion regions with a first high-temperature heat-curing step.
- a second high-temperature heat treatment step is performed.
- Homogeneous emitters as they are usually used in industrial manufacturing so far, have relatively poor optical and electronic properties. In order to achieve a sufficiently low contact resistance, much more doping is required than is necessary for a sufficient electrical function per se. The too high doping is noticeable as too high emitter saturation current, which has a negative influence on the open clamping voltage and the filling factor. Due to the low charge carrier lifetime in the highly doped emitter, charge carriers generated there can not be separated, which leads to a reduction in the short-circuit current and ultimately results in a reduced efficiency of the solar cell.
- the proposed methods for producing selective emitters avoid the abovementioned disadvantages at least occasionally, but are not suitable for cost-effective industrial implementation for various reasons.
- a mask to open the area to be contacted later is less economical in that more than 80% of the area to be covered with an etching mask, such as an etching varnish, which also leads to high costs.
- the opening with a screen-applied etching paste or by laser ablation on the one hand entails an increased safety expenditure when using aggressive paste materials and on the other hand a strong damage to the surface during treatment by laser ablation.
- the solution according to DE 10 2007 035 068 Al reduces the need for Abdecklack.
- the disadvantage is that the sheet resistance in the low-doped region is produced by back etching.
- the etching processes outlined there are not self-limiting. Inhomogeneities of the etching bath such as temperature, concentration of the etching medium or the degradation products therefore lead to an inhomogeneity of the sheet resistance, which adversely affects the cell efficiency.
- the etching solutions necessary there are extremely aggressive, which makes it difficult to choose a suitable masking varnish.
- the emitter profile produced after etchback still has too high a surface concentration of the dopant, resulting in an undesirably high emitter saturation current.
- the wafers on their front side can have texturing carried out in a manner known per se. Under front side is here to understand the side that is exposed to the solar cell during later use of the solar cell.
- the wafer treated in this way is then provided with a full-surface doping source. During the application of the full-area doping source and subsequently thereto, an easy, first introduction of the dopant is achieved until a first sheet resistance region is reached.
- the doping source is patterned, wherein as a result of the structuring only those areas remain which substantially correspond to the sections to be contacted later on the wafer or by a deliberately predetermined small amount are larger than these contact portions.
- the doping source preferably comprises phosphosilicate glass (PSG).
- PSG phosphosilicate glass
- the first sheet resistance range is after completion of the two diffusions at substantially 100 to 300 ⁇ / D.
- the second layer resistance region for the emitter section below the later contacts is between 30 ⁇ / D and less than 100 ⁇ / D.
- the structuring of the doping source takes place in that etching-resistant masking is applied to the areas to be left, with subsequent execution of the etching step.
- the masking may be formed by screen printing, stencil printing, hot melt screen printing, ink jet printing, dispensing, aerosol printing, hot melt ink jet printing or the like.
- the etching mask is removed.
- the etching process can be carried out wet-chemically or under plasma or plasma-assisted, wherein after the etching step the masking layer and any residues are stripped or ashed by creating an oxygen plasma.
- oxidation of the surface of the wafer is possible in order to bring about a further lowering of the surface concentration as well as an injection of interstitial oxygen atoms into the wafer.
- the figure shows a basic sequence of steps a) to f) with the aim of forming a selective emitter by structuring the doping source to the front side metallization, wherein the processing of the back can be done by any method of the prior art.
- a doping source e.g. Phosphosilicate glass (PSG) applied and slightly diffused (Fig. Ia)).
- PSG Phosphosilicate glass
- Fig. Ia The silicon wafer is here provided with reference numeral 1 and the full-surface applied diffusion source with the reference numeral 2.
- the slightly diffused region is indicated by the reference numeral 5.
- a sheet resistance between 100 and 200 ⁇ / ⁇ is set.
- This can be done in a combined process step of gas phase diffusion, e.g. Phosphoroxyl chloride (POCb) and heat treatment done, for example in a quartz tube furnace.
- gas phase diffusion e.g. Phosphoroxyl chloride (POCb)
- heat treatment done, for example in a quartz tube furnace.
- the doping source eg PSG
- APCVD Atmospheric Plasma Chemical Vapor Deposition
- the applied full-surface diffusion source 2 is structured, so that strip-shaped regions 3 remain, as shown in FIG. Ib) greatly simplified.
- the structuring of the doping source takes place in such a way that the area which is to be electrically later contacted is still covered by the source material, but all other areas are no longer covered.
- the source material may also be left slightly above or below this later contact area.
- the above-mentioned structuring of the doping or diffusion source can be achieved by various methods.
- etch-resistant layer include, but are not limited to, organic, dry-crosslinking paints, waxy organic materials, UV-curing paints, as well as silicon-oxide-nitride films prepared by annealing starting materials of this type.
- the masking areas or sections may be realized by screen printing, stencil printing, hot melt screen printing, ink jet printing, hot melt ink jet printing, dispensing, aerosol printing or the like.
- the diffusion source is removed by etching, wherein here advantageously an etching medium is selected, which etches the diffusion source with a high selectivity with respect to the silicon-based material of the wafer.
- acids with the same property can be used in a wet-chemical etching.
- a plasma step in the sense of dry etching can also be used.
- fluorine ion-based etching processes eg with CF 4 , have a selectivity necessary for the PSG layer removal.
- the masking layer is removed. This can then be done in the same etching plant in which the diffusion source was removed.
- Organic layers can be removed wet-chemically by suitable stripper solutions. Silicon oxide-nitride layers can be etched with phosphoric acid.
- etching pastes in the areas in which the swelling layer is to be removed, or the dry etching by etching masks.
- the surface passivation can be performed more effectively at a lower doping concentration at the surface.
- the diffusion may e.g. by temperature treatment in a quartz tube furnace or in a continuous furnace.
- an additional oxidation of the swelling layer and the Banlsch ⁇ cht-free surface can be done. This allows a further reduction of the surface concentration.
- the oxidation can also accelerate the diffusion.
- Fig. Id shows the situation after the removal of the remaining diffusion sources.
- Fig. Ie symbolically represents an applied antireflection layer 6.
- the preparation of the antireflection layer 6, the implementation of the edge insulation and the production of the metallization contacts 7 can be carried out by different methods known per se.
- care must be taken to ensure that the intended contact areas (heavy doping 4) are maintained.
- the emitter can passivate better. This and the cheaper doping profile reduce the emitter saturation current, which in turn increases the no-load voltage of the solar cell. Finally, the contact resistance of the front side metallization to the emitter can be reduced.
- the method described is characterized by a particular simplicity and manageable process management. Only a small part of the surface of the wafer needs to be masked, so less masking material is needed.
- a variety of readily controllable materials comes into question.
- the etching of e.g. PSG as Dot ⁇ eretti can be carried out with hydrofluoric acid in a very cost-effective manner and easily controlled.
- the mentioned diffusion processes are relatively short and feasible at moderate temperatures. This saves energy and allows the process to be used on a wide range of silicon feedstock and wafers made from it. This also applies to wafers in which an excessively high temperature budget would lead to a reduction in the service life.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Photovoltaic Devices (AREA)
Abstract
L'invention concerne un procédé de fabrication de cellules solaires à émetteur sélectif. Tout d'abord, des tranches (1) sans défaut de sciage sont préparées. Ensuite ont lieu une application de source de dopage (2) sur toute la surface de la tranche et une première diffusion légère du dopant jusqu'à ce qu'un premier domaine de résistance de couche soit atteint. Il intervient ensuite une structuration de la source de dopage appliquée, seules restant sur la tranche à la fin de la structuration les zones (4) qui correspondent sensiblement aux segments de contact à appliquer ultérieurement. On réalise une deuxième diffusion dans le volume de la tranche à partir des zones subsistantes de la source de dopage, jusqu'à ce que l'on atteigne un deuxième domaine de résistance de couche pour l'émetteur sélectif (4) et simultanément une répartition du dopant (5) introduit lors de la première diffusion, l'objectif étant de réduire la concentration de dopant dans la zone proche de la surface qui n'est plus recouverte de la source de dopage, étant précisé que les valeurs de résistance de couche du premier domaine de résistance de couche sont supérieures à celles du deuxième domaine de résistance de couche.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009015367 | 2009-03-27 | ||
DE102009041546A DE102009041546A1 (de) | 2009-03-27 | 2009-09-15 | Verfahren zur Herstellung von Solarzellen mit selektivem Emitter |
PCT/EP2010/053985 WO2010115730A1 (fr) | 2009-03-27 | 2010-03-26 | Procédé de fabrication de cellules solaires à émetteur sélectif |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2412008A1 true EP2412008A1 (fr) | 2012-02-01 |
Family
ID=42733330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10711215A Withdrawn EP2412008A1 (fr) | 2009-03-27 | 2010-03-26 | Procédé de fabrication de cellules solaires à émetteur sélectif |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120167968A1 (fr) |
EP (1) | EP2412008A1 (fr) |
CN (1) | CN102449738B (fr) |
DE (1) | DE102009041546A1 (fr) |
WO (1) | WO2010115730A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8084280B2 (en) | 2009-10-05 | 2011-12-27 | Akrion Systems, Llc | Method of manufacturing a solar cell using a pre-cleaning step that contributes to homogeneous texture morphology |
US20110308614A1 (en) * | 2010-06-16 | 2011-12-22 | E. I. Du Pont De Nemours And Company | Etching composition and its use in a method of making a photovoltaic cell |
FR2964252A1 (fr) * | 2010-09-01 | 2012-03-02 | Commissariat Energie Atomique | Procede de realisation d'une structure a emetteur selectif |
TW201218407A (en) * | 2010-10-22 | 2012-05-01 | Wakom Semiconductor Corp | Method for fabricating a silicon wafer solar cell |
TWI453939B (zh) * | 2010-12-30 | 2014-09-21 | Au Optronics Corp | 太陽能電池及其製作方法 |
DE102011002748A1 (de) * | 2011-01-17 | 2012-07-19 | Robert Bosch Gmbh | Verfahren zur Herstellung einer Silizium-Solarzelle |
KR20120111378A (ko) * | 2011-03-31 | 2012-10-10 | 삼성디스플레이 주식회사 | 태양 전지 및 이의 제조 방법 |
DE102011080202A1 (de) | 2011-08-01 | 2013-02-07 | Gebr. Schmid Gmbh | Vorrichtung und Verfahren zur Herstellung von dünnen Schichten |
NL2010116C2 (en) * | 2013-01-11 | 2014-07-15 | Stichting Energie | Method of providing a boron doped region in a substrate and a solar cell using such a substrate. |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE627302A (fr) * | 1962-01-19 | |||
DE1811277C3 (de) * | 1968-11-27 | 1978-06-08 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Verfahren zum Herstellen von p-dotierten Zonen mit unterschiedlichen Eindringtiefen in einer n-Silicium-Schicht |
AU570309B2 (en) | 1984-03-26 | 1988-03-10 | Unisearch Limited | Buried contact solar cell |
DE19534574C2 (de) * | 1995-09-18 | 1997-12-18 | Fraunhofer Ges Forschung | Dotierverfahren zur Herstellung von Homoübergängen in Halbleitersubstraten |
EP0851511A1 (fr) * | 1996-12-24 | 1998-07-01 | IMEC vzw | Dispositif semi-conducteur avec deux régions diffusées sélectivement |
US6372537B1 (en) * | 2000-03-17 | 2002-04-16 | Taiwan Semiconductor Manufacturing Company | Pinned photodiode structure in a 3T active pixel sensor |
DE102006057328A1 (de) * | 2006-12-05 | 2008-06-12 | Q-Cells Ag | Solarzelle mit Dielektrikumschichtenfolge, länglichen Kontaktregionen und quer dazu verlaufenden Metallkontakten sowie Herstellungsverfahren für diese |
DE102007036921A1 (de) * | 2007-02-28 | 2008-09-04 | Centrotherm Photovoltaics Technology Gmbh | Verfahren zur Herstellung von Siliziumsolarzellen |
DE102007035068A1 (de) | 2007-07-26 | 2009-01-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Fertigen einer Silizium-Solarzelle mit einem selektiven Emitter sowie entsprechende Solarzelle |
DE102007062750A1 (de) | 2007-12-27 | 2009-07-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Fertigen einer Silizium-Solarzelle mit einem rückgeätzten Emitter sowie entsprechende Solarzelle |
US20100108130A1 (en) * | 2008-10-31 | 2010-05-06 | Crystal Solar, Inc. | Thin Interdigitated backside contact solar cell and manufacturing process thereof |
-
2009
- 2009-09-15 DE DE102009041546A patent/DE102009041546A1/de not_active Ceased
-
2010
- 2010-03-26 US US13/259,835 patent/US20120167968A1/en not_active Abandoned
- 2010-03-26 WO PCT/EP2010/053985 patent/WO2010115730A1/fr active Application Filing
- 2010-03-26 EP EP10711215A patent/EP2412008A1/fr not_active Withdrawn
- 2010-03-26 CN CN201080023029.1A patent/CN102449738B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2010115730A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102449738B (zh) | 2015-09-02 |
CN102449738A (zh) | 2012-05-09 |
WO2010115730A1 (fr) | 2010-10-14 |
DE102009041546A1 (de) | 2010-10-14 |
US20120167968A1 (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2412008A1 (fr) | Procédé de fabrication de cellules solaires à émetteur sélectif | |
EP1977442B1 (fr) | Procédé de fabrication d'un composant semi-conducteur avec des zones dopées à des degrés différemment forts | |
DE60221426T2 (de) | SOLARZELLE MIT RÜCKSEITE-KONTAKT und HERSTELLUNGSVERFAHREN dazu | |
DE69731485T2 (de) | Halbleitervorrichtung mit selektiv diffundierten bereichen | |
DE102010035582B4 (de) | Verfahren zum Herstellen einer Solarzelle mit einer texturierten Frontseite sowie entsprechende Solarzelle | |
DE202008017782U1 (de) | Silizium-Solarzelle mit einem rückgeätzten hochdotierten Oberflächenschichtbereich | |
EP2593969B1 (fr) | Procédé de production d'une cellule photovoltaïque | |
DE102009005168A1 (de) | Solarzelle und Verfahren zur Herstellung einer Solarzelle aus einem Siliziumsubstrat | |
DE19744197A1 (de) | Verfahren zur Herstellung einer Solarelektrode, Solarelektrode und Verfahren zur Herstellung einer Halbleitervorrichtung | |
DE112014006427T5 (de) | Herstellungsverfahren für Rückkontakt-Solarzellen | |
DE112014004397T5 (de) | Epitaktische Silizium-Solarzellen mit Feuchtigkeitssperre | |
DE102014103303A1 (de) | Verfahren zum Herstellen von Solarzellen mit simultan rückgeätzten dotierten Bereichen | |
WO2012083944A2 (fr) | Procédé pour produire des cellules solaires en silicium présentant une face avant texturée et une surface arrière lisse | |
DE102007035068A1 (de) | Verfahren zum Fertigen einer Silizium-Solarzelle mit einem selektiven Emitter sowie entsprechende Solarzelle | |
EP2823505B1 (fr) | Procédé de réalisation d'une zone dopée dans une couche de semi-conducteur | |
EP2491577B1 (fr) | Procédé de formation d'un profil de dopant | |
EP2543076A2 (fr) | Procédé de dopage d'un substrat semi-conducteur et cellule photovoltaïque à dopage en deux étapes | |
DE102010024835A1 (de) | Method for fabrication of a back side contact solar cell | |
DE102013112638A1 (de) | Verfahren zur Herstellung rückseitenkontaktierter Solarzellen aus kristallinem Silizium | |
DE102019122637B4 (de) | Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle | |
WO2011116762A2 (fr) | Procédé de fabrication d'une cellule solaire semi-conductrice | |
DE102007051725B4 (de) | Verfahren zur Kontaktierung von Solarzellen | |
DE102015107842B3 (de) | Verfahren zum Herstellen einer Solarzelle mit oxidierten Zwischenbereichen zwischen Poly-Silizium-Kontakten | |
DE102007062750A1 (de) | Verfahren zum Fertigen einer Silizium-Solarzelle mit einem rückgeätzten Emitter sowie entsprechende Solarzelle | |
DE102009057881A1 (de) | Verfahren zur Laserstrukturierung eines transparenten Mediums und Verwendung des Verfahrens bei der Herstellung eines Halbleiterbauelements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
17Q | First examination report despatched |
Effective date: 20150424 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150905 |