TWI453939B - 太陽能電池及其製作方法 - Google Patents

太陽能電池及其製作方法 Download PDF

Info

Publication number
TWI453939B
TWI453939B TW099147033A TW99147033A TWI453939B TW I453939 B TWI453939 B TW I453939B TW 099147033 A TW099147033 A TW 099147033A TW 99147033 A TW99147033 A TW 99147033A TW I453939 B TWI453939 B TW I453939B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
doped
doped semiconductor
region
layer
Prior art date
Application number
TW099147033A
Other languages
English (en)
Other versions
TW201227994A (en
Inventor
Yen Cheng Hu
Hsin Feng Li
Zhen Cheng Wu
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW099147033A priority Critical patent/TWI453939B/zh
Priority to CN2011100585011A priority patent/CN102157578B/zh
Priority to US13/101,996 priority patent/US8835753B2/en
Priority to EP11165675.7A priority patent/EP2472592B1/en
Publication of TW201227994A publication Critical patent/TW201227994A/zh
Application granted granted Critical
Publication of TWI453939B publication Critical patent/TWI453939B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池及其製作方法
本發明係關於一種太陽能電池及其製作方法,尤指一種具有高光電轉換效率及對於短波長可見光具備高吸收率之太陽能電池及其製作方法。
現今人類使用的能源主要來自於石油資源,但由於地球石油資源有限,因此近年來對於替代能源的需求與日俱增,而在各式替代能源中又以太陽能最具發展潛力。
然而習知太陽能電池受限於對於短波長可見光的吸收率不佳、介面缺陷(interface trap density,Dit)過多與接觸電阻過大的因素,而使得光電轉換效率無法進一步提升,嚴重影響了太陽能電池的發展。
本發明之目的之一在於提供一種太陽能電池及其製作方法,已提升太陽能電池的光電轉換效率。
本發明之一較佳實施例提供一種太陽能電池,包括一半導體基底、一第一摻雜半導體層、一絕緣層、一第二摻雜半導體層以及一第一電極層。半導體基底具有一第一表面與一第二表面,且半導體基底具有一第一摻雜型式。第一摻雜半導體層係設置於半導體基底之第一表面,其中第一摻雜半導體層包含至少一摻雜接觸區,第一摻雜半導體層與摻雜接觸區具有一與第一摻雜型式相反之第二摻雜型式,且摻雜接觸區的一摻雜濃度實質上高於第一雜半導體層的一摻雜濃度。絕緣層係設置於第一摻雜半導體層上,其中絕緣層具有至少一開口,暴露出摻雜接觸區。第二摻雜半導體層係設置於絕緣層與摻雜接觸區上,其中第二摻雜半導體層具有第二摻雜型式,第二摻雜半導體層之一摻雜濃度實質上介於摻雜接觸區之摻雜濃度與第一摻雜半導體層之摻雜濃度之間。第一電極層係設置於第二摻雜半導體層上,且第一電極層係對應於摻雜接觸區。
本發明之另一較佳實施例提供一種製作太陽能電池之方法,包括下列步驟。提供一具有一第一摻雜型式之半導體基底。於半導體基底之一第一表面形成一第一摻雜半導體層,且第一摻雜半導體層具有一與第一摻雜型式相反之第二摻雜型式。於第一摻雜半導體層上形成一絕緣層,且絕緣層具有至少一開口部分暴露出第一摻雜半導體層。於絕緣層及絕緣層之開口暴露出之第一摻雜半導體層上形成一第二摻雜半導體層,其中第二摻雜半導體層具有第二摻雜型式,且第二摻雜半導體層之一摻雜濃度高於第一摻雜半導體層之一摻雜濃度。進行一退火製程,將第二摻雜半導體層之摻質向下擴散以於絕緣層之開口暴露出之第一摻雜半導體層內形成至少一摻雜接觸區,其中摻雜接觸區具有第二摻雜型式,摻雜接觸區之一摻雜濃度實質上高於第一摻雜半導體層之一摻雜濃度以及摻雜接觸區之摻雜濃度實質上高於第二摻雜半導體層之摻雜濃度。於第二摻雜半導體層上形成一對應於摻雜接觸區之第一電極層。
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。
請參考第1圖。第1圖繪示了本發明之第一較佳實施例之太陽能電池的示意圖。如第1圖所示,本實施例之太陽能電池10包括一半導體基底12、一第一摻雜半導體層14、一絕緣層16、一第二摻雜半導體層18,以及一第一電極層20。半導體基底12具有一第一表面121與一第二表面122,且半導體基底12具有一第一摻雜型式。半導體基底12可為一結晶矽基底,例如一單晶矽基底或一多晶矽基底,但不以此為限。第一摻雜半導體層14係設置於半導體基底12之第一表面121,且第一摻雜半導體層14包含至少一摻雜接觸區22。第一摻雜半導體層14與摻雜接觸區22係與半導體基底12具有相同的結晶型態,換言之之其材料亦為結晶矽,例如單晶矽或多晶矽。第一摻雜半導體層14與摻雜接觸區22具有一與第一摻雜型式相反之第二摻雜型式,藉此半導體基底12與第一摻雜半導體層14可形成一PN接面而產生空乏區。摻雜接觸區22的摻雜濃度實質上高於第一雜半導體層14的摻雜濃度。在本實施例中,第一摻雜型式可為例如P型摻雜型式,而第二摻雜型式可為N型摻雜型式,但不以此為限。例如第一摻雜型式亦可為例如N型摻雜型式,而第二摻雜型式可為P型摻雜型式。絕緣層16係設置於第一摻雜半導體層14上,且絕緣層16具有至少一開口16A暴露出摻雜接觸區22。絕緣層16具有保護作用,可抑制位於絕緣層16下方的第一摻雜半導體層14與半導體基底12之間產生缺陷,進而減少電子-電洞對的復合。絕緣層16可為單層或多層結構,且其材料可選擇性地包括至少一種材料,例如:無機材料(例如:一氮化矽層、氧化矽、氮氧化矽、金屬氧化物、或其它合適的材料)、有機材料(例如:聚亞醯胺類(polyimide;PI)、聚丙烯酸脂類(Poly-methacrylate;PMA)、光阻類、聚烯醇類(polyvinylalcohol;PVA)、聚維酮(polyvinylpyrrolidone;PVP)、聚烯苯類(poly(vinyl phenol);PVPh)、其它合適的材料、或上述之共聚合物)。本實施例之絕緣層16較佳地是選用無機材料為例,但不限於此。第二摻雜半導體層18係設置於絕緣層16與摻雜接觸區22上,其中第二摻雜半導體層18具有第二摻雜型式,且第二摻雜半導體層18之摻雜濃度實質上介於摻雜接觸區22之摻雜濃度與第一摻雜半導體層14之摻雜濃度之間。
在本實施例中,第二摻雜半導體層18包括一第一區域181與一第二區域182,其中第一區域181對應於摻雜接觸區22,第二區域182對應於絕緣層16,且第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18具有不同之晶粒尺寸,但兩者之晶格型態可實質上相同或不同。舉例而言,第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18可同為非晶矽、奈米晶矽或微晶矽,但具有不同的晶粒尺寸。舉例而言,第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18可具有實質上相同的晶格型能,例如非晶矽,但第一區域181內之第二摻雜半導體層18的晶粒尺寸會實質上大於第二區域182內之第二摻雜半導體層18之晶粒尺寸;或第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18可實質上同為奈米晶矽,但第一區域181內之第二摻雜半導體層18的晶粒尺寸會實質上大於第二區域182內之第二摻雜半導體層18之晶粒尺寸;或第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18可實質上同為微晶矽,但第一區域181內之第二摻雜半導體層18的晶粒尺寸會實質上大於第二區域182內之第二摻雜半導體層18之晶粒尺寸。另外,第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18可具有不同之晶格型態,但第一區域181內之第二摻雜半導體層18之晶粒尺寸係實質上大於第二區域182內之第二摻雜半導體層18。舉例而言,第一區域181內之第二摻雜半導體層18可為奈米晶矽,而第二區域182內之第二摻雜半導體層18可為非晶矽;或第一區域181內之第二摻雜半導體層18可為微晶矽,而第二區域182內之第二摻雜半導體層18可為非晶矽或奈米晶矽。由於摻雜接觸區22之摻雜濃度實質上高於第一摻雜半導體層14之摻雜濃度與第二摻雜半導體層18之摻雜濃度,因此具有較低的電阻而可降低第一摻雜半導體層14與第二摻雜半導體層18之間的接觸電阻(contact resistance)。此外,由於第一區域181內之第二摻雜半導體層18之晶粒尺寸實質上大於第二區域182內之第二摻雜半導體層18之晶粒尺寸,因此第一區域181內之第二摻雜半導體層18亦具有較佳的載子傳導效果。藉此,摻雜接觸區22與第一區域181內之第二摻雜半導體層18可作為選擇射極(selective emitter),增加太陽能電池10的光電轉換效率。
第二摻雜半導體層18對於波長大體上介於400奈米至700奈米之可見光的吸收率大體上介於20%至100%之間。換言之,第二摻雜半導體層18對於短波長可見光具有高吸收率與低反射率,因此可增加太陽能電池10的電流密度。第一電極層20係設置於第二摻雜半導體層18上,且第一電極層20係對應於摻雜接觸區22。第一電極層20的材料可為各式導電性佳的導電材料,例如銀、金、銅、鋁、鈦、鉭、鉬、其它合適材料、或上述之合金。
另外,太陽能電池10可另包括一第二電極層24,設置於半導體基底12之第二表面122。此外,第二電極層24與半導體基底12之間可選擇地設置有背面表面電場(back side field,BSF)結構26。第二電極層24可為各式導電性佳的導電材料,例如鋁、銀、金、銅、鉭、鉬、其它合適材料、或上述之合金。背面表面電場結構26可為單層或多層結構,且其材料可為金屬矽化物、金屬氧化物、其它合適的材料、或上述之組合。本實施例之背面表面電場結構26較佳地是選用金屬矽化物,但不限於此。再者,太陽能電池10另包括一保護層28設置於第二摻雜半導體層18與第一電極層20之間。保護層28可為單層結構或多層結構,其材料可包括絕緣材料、透明導電材料、抗反射材料、或上述之組合。在本實施例中,保護層28係為一透明導電層,其材料可為例如氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁、氧化鋁鋅(AZO),但不以此為限。此外,保護層28亦可具有抗反射作用,藉此增加入光量。再者,為了要進一步增加入光量,太陽能電池10之各膜層可具有粗糙化(textured)表面,以進一步增加入光量。
本發明之太陽能電池並不以上述實施例為限。下文將依序介紹本發明之其它較佳實施例之太陽能電池及其製作方法,且為了便於比較各實施例之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施例之相異處進行說明,而不再對重覆部分進行贅述。
請參考第2圖。第2圖繪示了本發明之第二較佳實施例之太陽能電池的示意圖。如第2圖所示,不同於第一較佳實施例,在本實施例中,太陽能電池40之保護層28係為一絕緣層,且保護層28包括至少一開口28A,暴露出第一電極層20。保護層28可為單層或多層結構,且其材料可選擇性地包括至少一種材料,例如:無機材料(例如:氮化矽、氧化矽、氮氧化矽、金屬氧化物、或其它合適的材料)、有機材料(例如:聚亞醯胺類(polyimide;PI)、聚丙烯酸脂類(Poly-methacrylate;PMA)、光阻類、聚烯醇類(polyvinylalcohol;PVA)、聚維酮(polyvinylpyrrolidone;PVP)、聚烯苯類(poly(vinyl phenol);PVPh)、其它合適的材料、或上述之共聚合物)。本實施例之保護層28較佳地是選用無機材料為例,但不限於此。此外,保護層28亦可具有抗反射作用,藉此增加入光量。
請參考第3圖。第3圖繪示了本發明之第三較佳實施例之太陽能電池的示意圖。如第3圖所示,不同於第一與第二較佳實施例,在本實施例中,太陽能電池50未設置有保護層28,且第一電極層20係直接設置於第二摻雜半導體層18上,而第二摻雜半導體層18的其它區域具為外露。
請參考第4圖至第8圖。第4圖至第8圖繪示了本發明之一較佳實施例之製作太陽能電池之方法示意圖。如第4圖所示,首先,提供一半導體基底12,其中半導體基底12具有一第一摻雜型式。半導體基底12可為一結晶矽基底,例如一單晶矽基底,但不以此為限。接著,於半導體基底12之第一表面121形成一第一摻雜半導體層14,其中第一摻雜半導體層14具有一與第一摻雜型式相反之第二摻雜型式。第一摻雜半導體層14之材料可包括微晶矽或非晶矽,但不以此為限。在本實施例中,第一摻雜型式可為P型摻雜型式,而第二摻雜型式可為N型摻雜型式,但不以此為限。例如第一摻雜型式亦可為N型摻雜型式,而第二摻雜型式可為P型摻雜型式。在本實施例中,第一摻雜半導體層14可藉由一擴散製程並通入例如三氯氧磷(POCl3 )加以形成,但不以此為限。上述擴散製程之製程溫度較佳係實質上介於800℃至900℃之間,例如約850℃,但不以此為限。
如第5圖所示,隨後於第一摻雜半導體層14上形成一絕緣層16,且絕緣層16具有至少一開口16A部分暴露出第一摻雜半導體層14。絕緣層16可選用上述實施例所述的結構與材料。絕緣層16可利用電漿輔助化學氣相沉積製程加以形成,而絕緣層16之開口16A可利用各式圖案化製程例如蝕刻製程或雷射製程加以形成,但不以此為限。絕緣層16也可利用網版印刷或噴墨塗佈製程加以形成。
如第6圖所示,接著於絕緣層16及絕緣層16之開口16A暴露出之第一摻雜半導體層14上形成一第二摻雜半導體層18。第二摻雜半導體層18具有第二摻雜型式,且第二摻雜半導體層18之摻雜濃度高於第一摻雜半導體層14之摻雜濃度。第二摻雜半導體層18之材料可包括非晶矽或奈米晶矽,且第二摻雜半導體層18對於波長大體上介於400奈米至700奈米之可見光的吸收率大體上介於20%至100%之間。
如第7圖所示,隨後進行一退火製程,將第二摻雜半導體層18之摻質向下擴散以於絕緣層16之開口16A暴露出之第一摻雜半導體層14內形成至少一摻雜接觸區22。在本實施例之退火製程,較佳地,係選用一低溫退火製程,其製程溫度約介於400℃至850℃之間,低於用以形成第一摻雜半導體層14之擴散製程的製程溫度,因此不會對已形成之第一摻雜半導體層14造成影響。第二摻雜半導體層18對於波長大體上介於400奈米至700奈米之可見光的吸收率大體上介於20%至100%之間。換言之,第二摻雜半導體層18對於短波長可見光具有高吸收率與低反射率,因此可增加太陽能電池10的電流密度。此外,在本實施例中,第二摻雜半導體層18亦作為摻雜接觸區22的摻雜來源層,因此不需額外利用其它的摻雜來源層來形成摻雜接觸區22,而可節省製程步驟,並可避免對位問題。再者,由於第二摻雜半導體層18含有氫,因此對於其下方的摻雜接觸區22與半導體基底12亦具有保護作用,可抑制位於第二摻雜半導體層18下方的摻雜接觸區22與半導體基底12之間產生缺陷。另外,絕緣層16之開口16A可用來定義摻雜接觸區22的位置,而除此之外,絕緣層16亦具有保護作用,可抑制位於絕緣層16下方的第一摻雜半導體層14與半導體基底12之間產生缺陷,進而減少電子-電洞對的復合。摻雜接觸區22具有第二摻雜型式,且摻雜接觸區22之摻雜濃度實質上高於第一摻雜半導體層14之摻雜濃度以及實質上高於第二摻雜半導體層18之摻雜濃度,因此可作為選擇射極,而可降低第一摻雜半導體層14與第二摻雜半導體層18之間的接觸電阻,藉此增加光電轉換效率。另外值得說明的是,絕緣層16與第二摻雜半導體層18的材料並不相同,因此在退火製程中,由於第一摻雜半導體層14與第二摻雜半導體層18之間熱傳效果與第一摻雜半導體層14與絕緣層16之間的熱傳效果不同,因此在退火製程後第二摻雜半導體層18會形成一第一區域181與一第二區域182,其中第一區域181對應於摻雜接觸區22,第二區域182對應於絕緣層16,且第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18具有不同之晶粒尺寸,但兩者之晶格型態可實質上相同或不同。第一區域181內之第二摻雜半導體層18與第二區域182內之第二摻雜半導體層18之晶粒尺寸或晶格型態的關係,請參考前述實施例所述。
如第8圖所示,接著於第二摻雜半導體層18上形成一保護層28,以及形成一對應於摻雜接觸區22之第一電極層20。此外,於半導體基底12之第二表面122形成一第二電極層24,並可選擇性地於半導體基底12與第二電極層24之間形成背面表面電場結構26。第一電極層20可選用上述實施例所述的結構與材料。第二電極層24可選用上述實施例所述的結構與材料。背面表面電場結構26可選用上述實施例所述的結構與材料。在本實施例中,保護層28係為一透明導電層,其可選用上述實施例所述的材料例如氧化銦錫(ITO),藉此所製作出之太陽能電池的結構即可本發明之第一較佳實施例所述之太陽能電池10。值得說明的是,若欲製作本發明之第二較佳實施例所述之太陽能電池40(如第2圖所示),則可使用絕緣材料作為保護層28,並於保護層28中至少一開口28A(請查閱第二實施例),以暴露出第一電極層20。另外,若欲製作本發明之第三較佳實施例所述之太陽能電池50(如第3圖所示),則可省略形成保護層28的步驟(請查閱第三實施例)。
請再參考第9圖。第9圖繪示了太陽光之頻譜以及結晶矽與非晶矽之吸收率與波長之關係圖。如第9圖所示,曲線A顯示了太陽光所發射出之波長介於400奈米至700奈米的短波長可見光的放射照度(irradiance)係高於波長大於700奈米的長波長不可見光的放射照度,然而曲線B顯示了結晶矽對於波長介於400奈米至700奈米的短波長可見光的吸收率明顯偏低,而曲線C顯示了非晶矽對於波長介於400奈米至700奈米的短波長可見光的吸收率係介於20%至100%之間,明顯地高於結晶矽。因此本發明使用非晶矽作為第二摻雜半導體層18為較佳選擇,可增加對於波長介於400奈米至700奈米的短波長可見光的吸收率,而可增加太陽能電池的光利用率。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
10...太陽能電池
12...半導體基底
121...第一表面
122...第二表面
14...第一摻雜半導體層
16...絕緣層
16A...開口
18...第二摻雜半導體層
181...第一區域
182...第二區域
20...第一電極層
22...摻雜接觸區
24...第二電極層
26...背面表面電場結構
28...保護層
28A...開口
40...太陽能電池
50...太陽能電池
第1圖繪示了本發明之第一較佳實施例之太陽能電池的示意圖。
第2圖繪示了本發明之第二較佳實施例之太陽能電池的示意圖。
第3圖繪示了本發明之第三較佳實施例之太陽能電池的示意圖。
第4圖至第8圖繪示了本發明之一較佳實施例之製作太陽能電池之方法示意圖。
第9圖繪示了太陽光之頻譜以及結晶矽與非晶矽之吸收率與波長之關係圖。
10...太陽能電池
12...半導體基底
121...第一表面
122...第二表面
14...第一摻雜半導體層
16...絕緣層
16A...開口
18...第二摻雜半導體層
181...第一區域
182...第二區域
20...第一電極層
22...摻雜接觸區
24...第二電極層
26...背面表面電場結構
28...保護層

Claims (19)

  1. 一種太陽能電池,包括:一半導體基底,具有一第一表面與一第二表面,其中該半導體基底具有一第一摻雜型式;一第一摻雜半導體層,設置於該半導體基底之該第一表面,其中該第一摻雜半導體層包含至少一摻雜接觸區,該第一摻雜半導體層與該摻雜接觸區具有一與該第一摻雜型式相反之第二摻雜型式,且該摻雜接觸區的一摻雜濃度實質上高於該第一雜半導體層的一摻雜濃度;一絕緣層,設置於該第一摻雜半導體層上,其中該絕緣層具有至少一開口,暴露出該摻雜接觸區;一第二摻雜半導體層,設置於該絕緣層與該摻雜接觸區上,其中該第二摻雜半導體層具有該第二摻雜型式,該第二摻雜半導體層之一摻雜濃度實質上介於該摻雜接觸區之該摻雜濃度與該第一摻雜半導體層之該摻雜濃度之間;以及一第一電極層,設置於該第二摻雜半導體層上,且該第一電極層係對應於該摻雜接觸區。
  2. 如請求項1所述之太陽能電池,其中該第一摻雜半導體層之材料與該摻雜接觸區之材料包括結晶矽。
  3. 如請求項1所述之太陽能電池,其中該第二摻雜半導體層包括一第一區域與一第二區域,該第一區域對應於該第一摻雜半導體層 之該摻雜接觸區,該第二區域對應於該絕緣層,且該第一區域內之該第二摻雜半導體層與該第二區域內之該第二摻雜半導體層具有不同之晶粒尺寸(grain size)。
  4. 如請求項1所述之太陽能電池,其中該第二摻雜半導體層包括一第一區域與一第二區域,該第一區域對應於該第一摻雜半導體層之該摻雜接觸區,該第二區域對應於該絕緣層,且該第一區域內之該第二摻雜半導體層與該第二區域內之該第二摻雜半導體層具有不同之晶格型態。
  5. 如請求項1所述之太陽能電池,其中該第二摻雜半導體層對於波長實質上介於400奈米至700奈米之可見光的吸收率實質上介於20%至100%之間。
  6. 如請求項1所述之太陽能電池,另包括一保護層,設置於該第二摻雜半導體層與該第一電極層之間。
  7. 如請求項6所述之太陽能電池,其中該保護層具有至少一開口暴露出該第一電極層。
  8. 如請求項1所述之太陽能電池,另包括一第二電極層,設置於該半導體基底之該第二表面。
  9. 如請求項1所述之太陽能電池,其中該第一摻雜半導體層更包括一摻雜非接觸區,設置於絕緣層下,其中該摻雜非接觸區之摻雜濃度不為零,且該摻雜非接觸區具有該第二摻雜型式。
  10. 如請求項1所述之太陽能電池,其中該半導體基底與該第一摻雜半導體層具有一接觸面,且該第二摻雜半導體層靠近該第一電極層並遠離該接觸面。
  11. 一種製作太陽能電池之方法,包括:提供一半導體基底,其中該半導體基底具有一第一摻雜型式;於該半導體基底之一第一表面形成一第一摻雜半導體層,其中該第一摻雜半導體層具有一與該第一摻雜型式相反之第二摻雜型式;於該第一摻雜半導體層上形成一絕緣層,且該絕緣層具有至少一開口,部分暴露出該第一摻雜半導體層;於該絕緣層及該絕緣層之該開口暴露出之該第一摻雜半導體層上形成一第二摻雜半導體層,其中該第二摻雜半導體層具有該第二摻雜型式,且該第二摻雜半導體層之一摻雜濃度高於該第一摻雜半導體層之一摻雜濃度;進行一退火製程,將該第二摻雜半導體層之摻質向下擴散以於該絕緣層之該開口暴露出之該第一摻雜半導體層內形成至少一摻雜接觸區,其中該摻雜接觸區具有該第二摻雜型式,該摻雜接觸區之一摻雜濃度實質上高於該第一摻雜半導體層 之一摻雜濃度以及該摻雜接觸區之該摻雜濃度實質上高於該第二摻雜半導體層之該摻雜濃度;以及於該第二摻雜半導體層上形成一對應於該摻雜接觸區之第一電極層。
  12. 如請求項11所述之製作太陽能電池之方法,其中該第一摻雜半導體層之材料與該摻雜接觸區之材料包括結晶矽。
  13. 如請求項11所述之製作太陽能電池之方法,其中於進行該退火製程之前,該第二摻雜半導體層之材料包括非晶矽。
  14. 如請求項13所述之製作太陽能電池之方法,其中於進行該退火製程之後,該第二摻雜半導體層形成一第一區域與一第二區域,該第一區域對應於該第一摻雜半導體層之該摻雜接觸區,該第二區域對應於該絕緣層,且該第一區域內之該第二摻雜半導體層與該第二區域內之該第二摻雜半導體層具有不同之晶粒尺寸(grain size)。
  15. 如請求項13所述之製作太陽能電池之方法,其中於進行該退火製程之後,該第二摻雜半導體層形成一第一區域與一第二區域,該第一區域對應於該第一摻雜半導體層之該摻雜接觸區,該第二區域對應於該絕緣層,且該第一區域內之該第二摻雜半導體層與該第二區域內之該第二摻雜半導體層具有不同之晶格型態。
  16. 如請求項11所述之製作太陽能電池之方法,其中該第二摻雜半導體層對於波長實質上介於400奈米至700奈米之可見光的吸收率實質上介於20%至100%之間。
  17. 如請求項11所述之製作太陽能電池之方法,另包括於該第二摻雜半導體層及該第一電極之間形成一保護層。
  18. 如請求項17所述之製作太陽能電池之方法,其中該保護層具有至少一開口暴露出該第一電極層。
  19. 如請求項11所述之製作太陽能電池之方法,另包括於該半導體基底之一第二表面形成一第二電極層。
TW099147033A 2010-12-30 2010-12-30 太陽能電池及其製作方法 TWI453939B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW099147033A TWI453939B (zh) 2010-12-30 2010-12-30 太陽能電池及其製作方法
CN2011100585011A CN102157578B (zh) 2010-12-30 2011-03-01 太阳能电池及其制作方法
US13/101,996 US8835753B2 (en) 2010-12-30 2011-05-05 Solar cell and method of fabricating the same
EP11165675.7A EP2472592B1 (en) 2010-12-30 2011-05-11 Solar cell and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099147033A TWI453939B (zh) 2010-12-30 2010-12-30 太陽能電池及其製作方法

Publications (2)

Publication Number Publication Date
TW201227994A TW201227994A (en) 2012-07-01
TWI453939B true TWI453939B (zh) 2014-09-21

Family

ID=44438908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099147033A TWI453939B (zh) 2010-12-30 2010-12-30 太陽能電池及其製作方法

Country Status (4)

Country Link
US (1) US8835753B2 (zh)
EP (1) EP2472592B1 (zh)
CN (1) CN102157578B (zh)
TW (1) TWI453939B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112068B2 (en) 2012-10-05 2015-08-18 International Business Machines Corporation Laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation
US9472702B1 (en) * 2012-11-19 2016-10-18 Sandia Corporation Photovoltaic cell with nano-patterned substrate
KR20150089592A (ko) * 2014-01-28 2015-08-05 현대중공업 주식회사 태양전지의 도핑 및 전극 형성방법과 그 태양전지
WO2015191520A1 (en) * 2014-06-09 2015-12-17 Natcore Technology, Inc. Emitter diffusion conditions for black silicon
US9466754B2 (en) * 2014-07-30 2016-10-11 Sunpower Corporation Grain growth for solar cells
US9859451B2 (en) 2015-06-26 2018-01-02 International Business Machines Corporation Thin film photovoltaic cell with back contacts
KR102600379B1 (ko) * 2015-12-21 2023-11-10 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지와 그 제조 방법
KR102526398B1 (ko) * 2016-01-12 2023-04-27 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 및 이의 제조 방법
CN111952417A (zh) 2020-08-24 2020-11-17 晶科绿能(上海)管理有限公司 一种太阳能电池及其制备方法
CN117153914A (zh) 2022-06-30 2023-12-01 浙江晶科能源有限公司 光伏电池及其制造方法、光伏组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090183772A1 (en) * 2008-01-16 2009-07-23 Snu R&Db Foundation Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
US20090301549A1 (en) * 2006-10-09 2009-12-10 Soltaix, Inc. Solar module structures and assembly methods for three-dimensional thin-film solar cells
US20100126569A1 (en) * 2008-11-26 2010-05-27 Samsung Electronics Co., Ltd. Solar cell and method of fabricating the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217539A (en) 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5242858A (en) 1990-09-07 1993-09-07 Canon Kabushiki Kaisha Process for preparing semiconductor device by use of a flattening agent and diffusion
AUPP437598A0 (en) * 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
JP2004193350A (ja) * 2002-12-11 2004-07-08 Sharp Corp 太陽電池セルおよびその製造方法
FR2880989B1 (fr) * 2005-01-20 2007-03-09 Commissariat Energie Atomique Dispositif semi-conducteur a heterojonctions et a structure inter-digitee
US7737357B2 (en) 2006-05-04 2010-06-15 Sunpower Corporation Solar cell having doped semiconductor heterojunction contacts
DE102007011403A1 (de) * 2007-03-08 2008-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Frontseitig serienverschaltetes Solarmodul
JP5285880B2 (ja) * 2007-08-31 2013-09-11 シャープ株式会社 光電変換素子、光電変換素子接続体および光電変換モジュール
TW200945596A (en) * 2008-04-16 2009-11-01 Mosel Vitelic Inc A method for making a solar cell with a selective emitter
TWI368999B (en) 2008-07-15 2012-07-21 Mosel Vitelic Inc Method for manufacturing solar cell
US8088675B2 (en) * 2008-09-19 2012-01-03 Applied Materials, Inc. Methods of making an emitter having a desired dopant profile
CN101728453B (zh) * 2008-10-28 2011-10-05 昱晶能源科技股份有限公司 具有差异性掺杂的太阳能电池的制造方法
AU2010229103A1 (en) * 2009-03-26 2011-11-03 Bp Corporation North America Inc. Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
DE102009041546A1 (de) * 2009-03-27 2010-10-14 Bosch Solar Energy Ag Verfahren zur Herstellung von Solarzellen mit selektivem Emitter
WO2010151478A1 (en) * 2009-06-22 2010-12-29 International Business Machines Corporation Method of making a semiconductor optical detector structure
KR101225978B1 (ko) * 2009-06-25 2013-01-24 엘지전자 주식회사 태양전지 및 그 제조방법
CN101764179A (zh) * 2009-12-31 2010-06-30 中山大学 一种选择性前表面场n型太阳电池的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301549A1 (en) * 2006-10-09 2009-12-10 Soltaix, Inc. Solar module structures and assembly methods for three-dimensional thin-film solar cells
US20090183772A1 (en) * 2008-01-16 2009-07-23 Snu R&Db Foundation Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
US20100126569A1 (en) * 2008-11-26 2010-05-27 Samsung Electronics Co., Ltd. Solar cell and method of fabricating the same

Also Published As

Publication number Publication date
TW201227994A (en) 2012-07-01
EP2472592B1 (en) 2021-07-07
EP2472592A3 (en) 2017-08-23
CN102157578B (zh) 2012-11-21
CN102157578A (zh) 2011-08-17
US8835753B2 (en) 2014-09-16
US20120167966A1 (en) 2012-07-05
EP2472592A2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI453939B (zh) 太陽能電池及其製作方法
US10535791B2 (en) 2-terminal metal halide semiconductor/C-silicon multijunction solar cell with tunnel junction
US9583653B2 (en) Solar cell and fabrication method thereof
US8603851B2 (en) Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions
US20180374977A1 (en) Hybrid tandem solar cell
US20160111565A1 (en) Back contact solar cell and fabrication method thereof
JP2018011082A (ja) 高効率太陽電池構造体および製造方法
TWI450401B (zh) 太陽能電池及其製造方法
US9082902B2 (en) Solar cell
KR101878397B1 (ko) 태양전지 및 그 제조 방법
TWI424582B (zh) 太陽能電池的製造方法
KR102132740B1 (ko) 태양 전지 및 이의 제조 방법
CN114256361A (zh) 一种太阳能电池、光伏组件
KR101651485B1 (ko) 태양전지 및 그 제조방법
KR20170143074A (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR20180018895A (ko) 양면 수광형 실리콘 태양전지
KR102405082B1 (ko) 저온 소성 도전성 페이스트를 이용한 태양전지의 전극 제조 방법
JP5645734B2 (ja) 太陽電池素子
KR101643871B1 (ko) 태양전지 및 그 제조방법
KR101223021B1 (ko) 태양전지의 제조방법 및 태양전지
KR101076545B1 (ko) 실리콘 이종접합 태양전지 및 그 제조 방법
TWI455329B (zh) 太陽能電池及其製作方法
TWI481060B (zh) 太陽能電池的製作方法
TWI581447B (zh) 異質接面太陽能電池結構及其製作方法
TWI667797B (zh) 太陽能電池