WO2014095451A1 - Kühlmittelkreislauf - Google Patents

Kühlmittelkreislauf Download PDF

Info

Publication number
WO2014095451A1
WO2014095451A1 PCT/EP2013/075929 EP2013075929W WO2014095451A1 WO 2014095451 A1 WO2014095451 A1 WO 2014095451A1 EP 2013075929 W EP2013075929 W EP 2013075929W WO 2014095451 A1 WO2014095451 A1 WO 2014095451A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
sensor
concentration
monitoring
circuit
Prior art date
Application number
PCT/EP2013/075929
Other languages
English (en)
French (fr)
Inventor
Stephan Heinrich
Denny SCHÄDLICH
Andreas Wildgen
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to EP13802939.2A priority Critical patent/EP2932064B1/de
Priority to US14/652,671 priority patent/US9850804B2/en
Priority to CN201380065760.4A priority patent/CN104870772A/zh
Publication of WO2014095451A1 publication Critical patent/WO2014095451A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/80Concentration anti-freeze

Definitions

  • the invention relates to a coolant circuit for a
  • Internal combustion engine having a coolant pump, at least one coolant line, a radiator and a coolant cavity in the internal combustion engine, wherein the coolant pump, the coolant ⁇ line , the radiator and the coolant cavity are filled with a coolant.
  • the invention is characterized in that at least one sensor for monitoring the coolant concentration is permanently and permanently arranged in and / or on the coolant circuit. This has the advantage that even outside of workshop visits the vehicle too low a concentration of the frost ⁇ protection agent can be reliably detected in the coolant. Too high a concentration of antifreeze can be detected with the coolant circuit according to the invention.
  • the sensor for monitoring the coolant concentration is an ultrasonic sensor.
  • Ultrasonic sensors are long-lasting and cost-effective components with which the concentration of antifreeze in the coolant can be reliably detected.
  • the coolant circuit additionally has an expansion vessel.
  • the sensor for monitoring the coolant concentration may be arranged in or on the expansion vessel.
  • the expansion tank is usually a readily accessible component that easily allows the inclusion of a sensor for monitoring the coolant concentration.
  • the sensor for monitoring the coolant concentration may be arranged in or on the expansion vessel.
  • Coolant concentration arranged in or on the coolant cavity.
  • Thedeffenkavtician is located in the focal ⁇ combustion engine itself, with which the sensor for monitoring the coolant concentration can protect the internal combustion engine particularly effect form freezing.
  • the sensor for monitoring the coolant concentration is arranged in or on the coolant pump and / or arranged in or on the coolant line, an effective monitoring of the proportion of antifreeze in the coolant can also take place and thus the coolant concentration can be determined reliably. This also applies if the sensor for monitoring the coolant concentration is arranged in or on the radiator.
  • the sensor for monitoring the coolant concentration transmits its measurement results to an electronic control unit. If the electronic control unit is is additionally connected to an ambient temperature sensor, it can be determined with certainty whether the ambient temperature has fallen so far that there is a danger to the cooling circuit and / or the internal combustion engine.
  • the electronic control unit determines based on the measurement results of the sensor for monitoring the coolant ⁇ concentration a minimum operating temperature for the coolant and this minimum operating temperature ver similar ⁇ for the coolant with the measurement result of the ambient temperature sensor. As a result, a freezing of the coolant in the coolant circuit can be reliably detected.
  • an electronic alarm signal he witnesses ⁇ when the measurement result of the ambient temperature sensor falls below the minimum operating temperature of the coolant.
  • This electronic warning signal can, for example, be displayed to the driver in the form of an error message and / or be used so that the internal combustion engine can not be started or shut down.
  • the most likely case namely the freezing of the parked engine, can be reliably detected.
  • FIG. 1 shows an internal combustion engine with four cylinders
  • FIG. 2 shows a concentration sensor.
  • the coolant ⁇ circuit 2 for the internal combustion engine comprises a coolant ⁇ pump 3, at least one coolant conduit 4, a radiator 7 and cooling cavities 13 in the internal combustion engine 1.
  • the coolant By the cooling cavities 13 in the internal combustion engine 1, the coolant, the heat from the hot can 5 Take up internal combustion engine 1 and transport away.
  • the hot coolant is transported from the coolant pump 3 through the coolant line 4 to the cooler 7, where the coolant 5 is usually cooled by past cold air flowing past ⁇ and then again the internal combustion engine 1 is supplied.
  • Internal combustion engine 1 in motor vehicles usually consists of water, to which some substances that reduce corrosion are added.
  • This water has the property of freezing at temperatures of less than 0 ° C, which can lead to serious damage to the internal combustion engine 1 or the coolant circuit 2. Therefore, the aqueous coolant 5 is usually added substances that lower the freezing point of the solution well below 0 ° C.
  • the concentration of the substances that reduce the freezing point of the coolant 5 is too low, thereby freezing the internal combustion engine 1 or the coolant circuit ⁇ run 2 is possible.
  • a sensor 8 for monitoring the concentration of coolant is fixed and permanent. This sensor 8 for monitoring the coolant concentration may for example be an ultrasonic sensor.
  • an expansion vessel 6 can be arranged in the coolant circuit 2. This expansion vessel 6 can compensate for the thermal expansion of the coolant 5 in the cooling ⁇ medium circuit 2.
  • the sensor 8 for monitoring the coolant concentration may, for. B. in or on the coolant cavity 13 of the internal combustion engine 1 may be arranged. In combination with this or as an independent solution, the sensor 8 for monitoring the coolant concentration may be arranged on or in the coolant pump 3. In addition, the sensor 8 may be arranged to monitor the coolant concentration in or on the coolant line 4 and / or in or on the cooler 7.
  • the sensor 8 for monitoring the refrigerant concentration transmits the detected concentration of the cooling agent solution 5 9, to an electronic control device, this electronic STEU ⁇ er réelle 9 can detect information about the refrigerant concentration, the temperature below which the cooling means comprises means would freeze. 5 This temperature can be compared with an outside temperature, which is transmitted from an ambient temperature sensor 14 to the electronic control unit 9. Once the electronic control unit detects that the external temperature falls below the glass transition temperature of the coolant 5, the electronic control device a warning signal can he witnesses ⁇ and / or to ensure by electronic means, that the sub-cooled and / or frozen internal combustion engine is not started.
  • Fig. 2 shows a concentration sensor 8, which is designed as an ultrasonic sensor.
  • the sensor element 17 is excited by a frequency generator 10, which is integrated in the electronic control unit 9 to vibrate. However, the sensor element 17 can also by an electrical circuit 9 to
  • Vibrations are excited, wherein the electrical circuit 9 is part of the concentration sensor 8 itself. These vibrations have frequencies in the ultrasonic range, whereby an ultrasonic wave 11 is emitted and through the coolant ⁇ medium 5 to a reflector 12 runs. At the reflector 12, the ultrasonic wave 11 is reflected and thrown back to the sensor element 17.
  • the sensor element 17 now acts as a receiver for the ultrasonic wave 11, the transit time of the ultrasonic wave 11 from the sensor element 17 via the reflector 12 back to the sensor element 17 is characteristic of the concentration of the freezing point lowering additives in the coolant.
  • the sensor 8 shown here for monitoring the coolant concentration deliver a corresponding signal to the concentration of the coolant to the electronic control unit 9, whereby the electronic control unit 9 can then calculate the temperature from which the coolant 5 would freeze.
  • the coolant circuit 2 presented here for an internal combustion engine 1 with at least one sensor 8 for monitoring the coolant concentration can contribute to avoiding costly damage to the internal combustion engine 1 and thus to conserve resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft einen Kühlmittelkreislauf für eine Brennkraftmaschine mit einer Kühlmittelpumpe, mindestens einer Kühlmittelleitung, einem Kühler und einer Kühlmittelkavität in der Brennkraftmaschine, wobei die Kühlmittelpumpe, die Kühlmittelleitung, der Kühler und die Kühlmittelkavität mit einem Kühlmittel gefüllt sind. Um einen Kühlmittelkreislauf für eine Brennkraftmaschine zu schaffen, der die Brennkraftmaschine dauerhaft vor Beschädigungen durch den unsachgemäßen Einsatz von Kühlmitteln schützt, ist in und/oder an dem Kühlmittelkreislauf zumindest ein Sensor zur Überwachung der Kühlmittelkonzentration fest und dauerhaft angeordnet.

Description

Beschreibung
Kühlmittelkreislauf Die Erfindung betrifft einen Kühlmittelkreislauf für eine
Brennkraftmaschine mit einer Kühlmittelpumpe, mindestens einer Kühlmittelleitung, einem Kühler und einer Kühlmittelkavität in der Brennkraftmaschine, wobei die Kühlmittelpumpe, die Kühl¬ mittelleitung, der Kühler und die Kühlmittelkavität mit einem Kühlmittel gefüllt sind.
Die Überwachung der Zusammensetzung des Kühlmittels erfolgt bei Kraftfahrzeugen in der Regel nur im Rahmen von Werkstattaufenthalten und somit oft unregelmäßig. Zudem erfolgt die Messung der Konzentration des Frostschutzmittels im Kühlmittel nicht bei jedem Werkstattaufenthalt des Fahrzeuges. Somit ist es möglich, dass sich der Anteil des Forstschutzmittels im Kühlmittel unbemerkt derart verringert, dass das Kühlmittel im Kühlmit¬ telkreislauf bei einer Umgebungstemperatur von weniger als 0° C einfriert. Dies kann zu erheblichen Schäden an der Brennkraftmaschine eines Kraftfahrzeuges führen. Es kann jedoch auch eine zu hohe Konzentration des Frostschutzmittels nachteilig für den Kühlmittelkreislauf sein und zu Schäden an diesem führen. Eine Aufgabe, die der Erfindung zugrunde liegt, ist es einen Kühlmittelkreislauf zu schaffen, der die Brennkraftmaschine dauerhaft vor Beschädigungen durch den unsachgemäßen Einsatz von Kühlmitteln schützt. Diese Aufgabe wird durch die Merkmale des unabhängigen Pa¬ tentanspruchs gelöst. Vorteilhafte Weiterbildungen der Er¬ findung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich dadurch aus, dass in und/oder an dem Kühlmittelkreislauf zumindest ein Sensor zur Überwachung der Kühlmittelkonzentration fest und dauerhaft angeordnet ist. Dies hat den Vorteil, dass auch außerhalb von Werkstattaufenthalten des Fahrzeuges eine zu niedrige Konzentration des Frost¬ schutzmittels im Kühlmittel sicher erkannt werden kann. Auch eine zu hohe Konzentration des Frostschutzmittels kann mit dem erfindungsgemäßen Kühlmittelkreislauf erkannt werden.
Bei einer Ausgestaltung ist der Sensor zur Überwachung der Kühlmittelkonzentration ein Ultraschallsensor. Ultraschallsensoren sind langlebige und kostengünstige Bauteile, mit deren Hilfe die Konzentration des Frostschutzmittels im Kühlmittel sicher erkannt werden kann.
Bei einer Weiterbildung der Erfindung weist der Kühlmittelkreislauf zusätzlich ein Ausdehnungsgefäß auf. Der Sensor zur Überwachung der Kühlmittelkonzentration kann in oder an dem Ausdehnungsgefäß angeordnet sein. Das Ausdehnungsgefäß ist in der Regel ein gut zugängliches Bauteil, das die Aufnahme eines Sensors zur Überwachung der Kühlmittelkonzentration problemlos ermöglicht . Bei einer Weiterbildung ist der Sensor zur Überwachung der
Kühlmittelkonzentration in oder an der Kühlmittelkavität angeordnet. Die Kühlmittelkavität befindet sich in der Brenn¬ kraftmaschine selber, womit der Sensor zur Überwachung der Kühlmittelkonzentration die Brennkraftmaschine besonders ef- fektiv vor dem Einfrieren schützen kann.
Wenn der Sensor zur Überwachung der Kühlmittelkonzentration in oder an der Kühlmittelpumpe angeordnet und/oder in oder an der Kühlmittelleitung angeordnet ist, kann ebenfalls eine effektive Überwachung des Anteils des Frostschutzmittels im Kühlmittel erfolgen und somit die Kühlmittelkonzentration sicher festgestellt werden. Dies gilt auch, wenn der Sensor zur Überwachung der Kühlmittelkonzentration in oder an dem Kühler angeordnet ist . Bei einer Weiterbildung überträgt der Sensor zur Überwachung der Kühlmittelkonzentration seine Messergebnisse an ein elektronisches Steuergerät. Wenn das elektronisches Steuergerät zu- sätzlich mit einem Umgebungstemperatursensor verbunden ist, kann sicher festgestellt werden, ob die Umgebungstemperatur so weit gesunken ist, dass eine Gefahr für den Kühlkreislauf und/oder die Brennkraftmaschine besteht oder bestand.
Es ist vorteilhaft, wenn das elektronische Steuergerät anhand der Messergebnisse des Sensors zur Überwachung der Kühlmittel¬ konzentration eine minimale Einsatztemperatur für das Kühlmittel bestimmt und diese minimale Einsatztemperatur für das Kühlmittel mit dem Messergebniss des Umgebungstemperatursensors ver¬ gleicht. Hierdurch kann ein Einfrieren des Kühlmittels im Kühlmittelkreislauf sicher erkannt werden.
Zur Vermeidung weiterer Schäden an der Brennkraftmaschine nach dem Eifrieren des Kühlmittels ist es vorteilhaft, wenn das elektronisches Steuergerät ein elektronisches Warnsignal er¬ zeugt, wenn das Messergebniss des Umgebungstemperatursensors die minimale Einsatztemperatur des Kühlmittels unterschreitet. Dieses elektronische Warnsignal kann zum Beispiel dem Fahr- zeugführer in Form einer Fehlermeldung angezeigt werden und/oder dazu verwendet werden, dass sich die Brennkraftmaschine nicht starten lässt oder stillgelegt wird.
Wenn die Überwachung der Kühlmittelkonzentration und die Be- Stimmung der minimalen Einsatztemperatur des Kühlmittels, sowie der Vergleich mit dem Messergebniss des Umgebungstemperatursensors auch nach dem Stillstand der Brennkraftmaschine erfolgt, kann der wahrscheinlichste Fall, nämlich das Einfrieren der abgestellten Brennkraftmaschine, sicher erkannt werden.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der Zeichnungen erläutert.
Es zeigen:
Figur 1 eine Brennkraftmaschine mit vier Zylindern, Figur 2 einen Konzentrationssensor .
Elemente gleicher Konstruktion und/oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt eine Brennkraftmaschine 1 mit vier Zylindern und einem an der Brennkraftmaschine 1 angeordneten Abgaskrümmer 15. Um im Betrieb der Brennkraftmaschine 1 eine Überhitzung der Brennkraftmaschine 1 zu verhindern, ist an der Brennkraftma- schine 1 ein Kühlmittelkreislauf 2 ausgebildet. Der Kühlmittel¬ kreislauf 2 für die Brennkraftmaschine umfasst eine Kühlmittel¬ pumpe 3, mindestens eine Kühlmittelleitung 4, einen Kühler 7 und Kühlkavitäten 13 in der Brennkraftmaschine 1. Durch die Kühl- kavitäten 13 in der Brennkraftmaschine 1 kann das Kühlmittel 5 die Wärme aus der heißen Brennkraftmaschine 1 aufnehmen und abtransportieren. Dazu wird das heiße Kühlmittel von der Kühlmittelpumpe 3 durch die Kühlmittelleitung 4 hin zum Kühler 7 transportiert, wo das Kühlmittel 5 in der Regel von vorbei¬ strömender kalter Luft abgekühlt wird und danach erneut der Brennkraftmaschine 1 zugeführt wird. Das Kühlmittel 5 einer
Brennkraftmaschine 1 in Kraftfahrzeugen besteht in der Regel aus Wasser, dem einige korrossionsmindernde Substanzen zugesetzt sind. Dieses Wasser hat die Eigenschaft, bei Temperaturen von weniger als 0 °C einzufrieren, was zu schwerwiegenden Schäden an der Brennkraftmaschine 1 oder dem Kühlmittelkreislauf 2 führen kann. Daher sind dem wässrigen Kühlmittel 5 in der Regel Substanzen beigemengt, die dem Gefrierpunkt der Lösung weit unter 0 °C absenken. Im Verlauf eines Fahrzeuglebens kann es jedoch dazu kommen, dass die Konzentration der Substanzen, die den Gefrier- punkt des Kühlmittels 5 herabsetzen, zu gering wird, womit ein Einfrieren der Brennkraftmaschine 1 oder des Kühlmittelkreis¬ laufes 2 möglich wird. Um dies zu verhindern, ist im Kühlmittel¬ kreislauf 2 ein Sensor 8 zur Überwachung der Kühlmittelkonzentration fest und dauerhaft angeordnet. Dieser Sensor 8 zur Überwachung der Kühlmittelkonzentration kann beispielsweise ein Ultraschallsensor sein. Weiterhin kann im Kühlmittelkreislauf 2 ein Ausdehnungsgefäß 6 angeordnet sein. Dieses Ausdehnungsgefäß 6 kann die thermische Ausdehnung des Kühlmittels 5 im Kühl¬ mittelkreislauf 2 kompensieren. Der Sensor 8 zur Überwachung der Kühlmittelkonzentration kann z. B. in oder an der Kühlmittel- kavität 13 der Brennkraftmaschine 1 angeordnet sein. In Kom- bination dazu oder als eigenständige Lösung kann der Sensor 8 zur Überwachung der Kühlmittelkonzentration an oder in der Kühlmittelpumpe 3 angeordnet sein. Darüber hinaus kann der Sensor 8 zur Überwachung der Kühlmittelkonzentration in oder an der Kühlmittelleitung 4 und/oder in oder an dem Kühler 7 angeordnet sein. Der Sensor 8 zur Überwachung der Kühlmittelkonzentration übermittelt die erfasste Konzentration der Kühlmittellösung 5 an ein elektronisches Steuergerät 9. Dieses elektronische Steu¬ ergerät 9 kann eine Information über die Kühlmittelkonzentration die Temperatur ermitteln, unterhalb derer das Kühlmittelmittel 5 einfrieren würde. Diese Temperatur kann mit einer Außentemperatur verglichen werden, die von einem Umgebungstemperatursensor 14 an das elektronische Steuergerät 9 übermittelt wird. Sobald das elektronische Steuergerät erkennt, dass die Außentemperatur unter die Einfriertemperatur des Kühlmittels 5 fällt, kann das elektronische Steuergerät ein Warnsignal er¬ zeugen und/oder auf elektronischem Wege sicherstellen, dass die unterkühlte und/oder eingefrorene Brennkraftmaschine nicht gestartet wird. Fig. 2 zeigt einen Konzentrationssensor 8, der als Ultraschallsensor ausgebildet ist. Das Sensorelement 17 wird von einem Frequenzgenerator 10, der im elektronischen Steuergerät 9 integriert ist, zu Schwingungen angeregt. Das Sensorelement 17 kann jedoch auch durch eine elektrische Schaltung 9 zu
Schwingungen angeregt werden, wobei die elektrische Schaltung 9 ein Bestandteil des Konzentrationssensors 8 selber ist. Diese Schwingungen besitzen Frequenzen im Ultraschallbereich, womit eine Ultraschallwelle 11 ausgesendet wird und durch das Kühl¬ mittel 5 zu einem Reflektor 12 läuft. An dem Reflektor 12 wird die Ultraschallwelle 11 reflektiert und zum Sensorelement 17 zurück geworfen. Das Sensorelement 17 fungiert nun als Empfänger für die Ultraschallwelle 11, wobei die Laufzeit der Ultraschall- welle 11 vom Sensorelement 17 über den Reflektor 12 zurück zum Sensorelement 17 charakteristisch für die Konzentration der Gefrierpunkt absenkenden Zusätze im Kühlmittel ist. Damit kann der hier gezeigte Sensor 8 zur Überwachung der Kühlmittel- konzentration ein entsprechendes Signal zur Konzentration des Kühlmittels an das elektronische Steuergerät 9 abgeben, womit das elektronische Steuergerät 9 dann die Temperatur errechnen kann, ab der das Kühlmittel 5 einfrieren würde. Der hier vorgestellte Kühlmittelkreislauf 2 für eine Brennkraftmaschine 1 mit zu- mindest einem Sensor 8 zur Überwachung der Kühlmittelkonzentration kann dazu beitragen, teure Schäden an der Brennkraftmaschine 1 zu vermeiden und somit Ressourcen zu schonen.

Claims

Kühlmittelkreislauf (2) für eine Brennkraftmaschine (1) mit einer Kühlmittelpumpe (3), mindestens einer Kühlmittel¬ leitung (4), einem Kühler (7) und einer Kühlmittelkavität (13) in der Brennkraftmaschine (1), wobei die Kühlmit¬ telpumpe (3), die Kühlmittelleitung (4), der Kühler (7) und die Kühlmittelkavität (13) mit einem Kühlmittel (5) gefüllt sind, d a d u r c h g e k e n n z e i c h n e t , dass in und/oder an dem Kühlmittelkreislauf (2) zumindest ein Sensor (8) zur Überwachung der Kühlmittelkonzentration fest und dauerhaft angeordnet ist.
Kühlmittelkreislauf (2) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration ein Ultraschallsensor ist.
Kühlmittelkreislauf (2) nach Anspruch 1 oder 2, d a ¬ d u r c h g e k e n n z e i c h n e t , dass der Kühl¬ mittelkreislauf (2) zusätzlich ein Ausdehnungsgefäß (6) aufweist .
Kühlmittelkreislauf (2) nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration in oder an dem Ausdehnungsgefäß (6) angeordnet ist.
Kühlmittelkreislauf (2) nach einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration in oder an der Kühlmittelkavität (13) angeordnet ist.
Kühlmittelkreislauf (2) nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration in oder an der Kühlmittelpumpe (3) angeordnet ist. Kühlmittelkreislauf (2) nach einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration in oder an der Kühlmittelleitung (4) angeordnet ist.
Kühlmittelkreislauf (2) nach einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration in oder an dem Kühler (7) angeordnet ist.
Kühlmittelkreislauf (2) nach einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (8) zur Überwachung der Kühlmittelkonzentration seine Messergebnisse an ein elektronisches Steuergerät (9) überträgt .
Kühlmittelkreislauf (2) nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass das elektronisches Steuergerät (9) zusätzlich mit einem Umgebungstempera¬ tursensor (14) verbunden ist.
Kühlmittelkreislauf (2) nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass das elektronische Steuergerät (9) anhand der Messergebnisse des Sensors (8) zur Überwachung der Kühlmittelkonzentration eine minimale Einsatztemperatur für das Kühlmittel (5) bestimmt und diese minimale Einsatztemperatur für das Kühlmittel (5) mit dem Messergebniss des Umgebungstemperatursensors (14) ver¬ gleicht .
Kühlmittelkreislauf (2) nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass das elektronisches Steuergerät (9) ein elektronische Warnsignal erzeugt, wenn das Messergebniss des Umgebungstemperatursensors (14) die minimale Einsatztemperatur des Kühlmittels (5) unter¬ schreite . Kühlmittelkreislauf (2) nach Anspruch 11 oder 12, d a d u r c h g e k e n n z e i c h n e t , dass die Überwachung der Kühlmittelkonzentration und die Bestimmung der minimalen Eisatztemperatur des Kühlmittel sowie der Vergleich mit dem Messergebniss des Umgebungstemperatursensors (14) auch nach dem Stillstand der Brennkraftma¬ schine erfolgt.
PCT/EP2013/075929 2012-12-17 2013-12-09 Kühlmittelkreislauf WO2014095451A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13802939.2A EP2932064B1 (de) 2012-12-17 2013-12-09 Kühlmittelkreislauf
US14/652,671 US9850804B2 (en) 2012-12-17 2013-12-09 Coolant circuit
CN201380065760.4A CN104870772A (zh) 2012-12-17 2013-12-09 冷却剂循环回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012223454.3A DE102012223454A1 (de) 2012-12-17 2012-12-17 Kühlmittelkreislauf
DE102012223454.3 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014095451A1 true WO2014095451A1 (de) 2014-06-26

Family

ID=49759282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075929 WO2014095451A1 (de) 2012-12-17 2013-12-09 Kühlmittelkreislauf

Country Status (5)

Country Link
US (1) US9850804B2 (de)
EP (1) EP2932064B1 (de)
CN (1) CN104870772A (de)
DE (1) DE102012223454A1 (de)
WO (1) WO2014095451A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129399B2 (en) * 2016-08-16 2021-09-28 Messer Industries Usa, Inc. In-line cryogenic method and system for cooling liquid products
DE102016124652B3 (de) * 2016-12-16 2018-02-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Ermittlung einer Kühlmittelkonzentration
CN110259568A (zh) * 2019-06-28 2019-09-20 潍柴动力股份有限公司 一种发动机冷却液检测方法及发动机冷却系统
EP3783275A1 (de) * 2019-08-21 2021-02-24 Grundfos Holding A/S Pumpensystem

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227938A (en) * 1975-08-28 1977-03-02 Nippon Soken Inc Antifreezer sensor device
JPS5716217A (en) * 1980-07-03 1982-01-27 Nissan Motor Co Ltd Cooling device for engine
JPS57171019A (en) * 1981-04-11 1982-10-21 Mazda Motor Corp Controlling device of water pump of engine
JPH10259730A (ja) * 1997-03-18 1998-09-29 Kubota Corp エンジンの強制循環式水冷装置
JP2007247506A (ja) * 2006-03-15 2007-09-27 Toyota Motor Corp 内燃機関冷却系の不凍液濃度推定装置
DE102010027946A1 (de) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Überwachungssysten für einen Kühlmittelkreislauf
WO2012140748A1 (ja) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 車両の診断装置および車両の診断方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503814A (en) * 1983-05-12 1985-03-12 Nissan Diesel Motor Company, Limited System for preventing cavitation in water-cooled internal combustion engine
US4905508A (en) * 1989-03-09 1990-03-06 Thomas A. Ramona Radiator hose hydrometer
GB2360838B (en) * 2000-03-31 2004-04-07 Rover Group Cooling system expansion tank
JP3851881B2 (ja) * 2003-02-20 2006-11-29 本田技研工業株式会社 内燃機関の冷却水の温度センサの故障を診断する装置
KR100612964B1 (ko) * 2004-04-08 2006-08-14 현대자동차주식회사 차량의 서모스탯 모니터링 장치 및 방법
US7367291B2 (en) * 2004-07-23 2008-05-06 General Electric Co. Locomotive apparatus
JP2007023933A (ja) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp 内燃機関の制御装置
US20090311772A1 (en) * 2008-04-25 2009-12-17 E-Fuel Corporation Micro refinery for ethanol production
JP2010071080A (ja) * 2008-09-16 2010-04-02 Denso Corp 車両用冷却システムの異常診断装置
WO2011006467A1 (de) * 2009-07-13 2011-01-20 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zum verhindern des inbewegungssetzens eines kraftfahrzeugs
EP2441935A4 (de) * 2009-09-08 2012-09-19 Toyota Motor Co Ltd Kühlsystem für ein fahrzeug
JP5201418B2 (ja) * 2009-11-10 2013-06-05 アイシン精機株式会社 内燃機関冷却システム及び内燃機関冷却システムにおける故障判定方法
US8346422B2 (en) * 2010-05-24 2013-01-01 Ford Global Technologies, Llc Hybrid electric vehicle thermal management system
JP2012086735A (ja) * 2010-10-21 2012-05-10 Toyota Motor Corp ハイブリッド車両の制御装置
JP5952841B2 (ja) * 2012-01-25 2016-07-13 日立建機株式会社 油圧ショベル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227938A (en) * 1975-08-28 1977-03-02 Nippon Soken Inc Antifreezer sensor device
JPS5716217A (en) * 1980-07-03 1982-01-27 Nissan Motor Co Ltd Cooling device for engine
JPS57171019A (en) * 1981-04-11 1982-10-21 Mazda Motor Corp Controlling device of water pump of engine
JPH10259730A (ja) * 1997-03-18 1998-09-29 Kubota Corp エンジンの強制循環式水冷装置
JP2007247506A (ja) * 2006-03-15 2007-09-27 Toyota Motor Corp 内燃機関冷却系の不凍液濃度推定装置
DE102010027946A1 (de) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Überwachungssysten für einen Kühlmittelkreislauf
WO2012140748A1 (ja) * 2011-04-13 2012-10-18 トヨタ自動車株式会社 車両の診断装置および車両の診断方法

Also Published As

Publication number Publication date
EP2932064B1 (de) 2019-09-04
CN104870772A (zh) 2015-08-26
US20150369116A1 (en) 2015-12-24
EP2932064A1 (de) 2015-10-21
DE102012223454A1 (de) 2014-06-18
US9850804B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
DE102008032130B4 (de) Verfahren und Vorrichtung zur Diagnose einer Kühlmittelpumpe für eine Brennkraftmaschine
DE102013100604B4 (de) Verbrennungsmotorkühlsystem, elektronisches Thermostatsteuersystem und Steuerverfahren für diese
EP2932064B1 (de) Kühlmittelkreislauf
DE112009002572T5 (de) System und Verfahren zum Erwärmen eines Reduktionsmittels in einem Reduktionsmittelverteilungssystem
DE102013211700B3 (de) Fahrzeugheizsystem sowie Verfahren zum Heizen des Innenraums eines Fahrzeugs mit einem Fahrzeugheizsystem
DE102016117949B4 (de) Diagnosevorrichtung
DE202017007617U1 (de) Wärmemanagementsystem eines Verbrennungsmotors
DE102012000095B4 (de) Verfahren zum überwachen eines kraftmaschinenkühlmittelsystems eines fahrzeugs
DE102013211308B4 (de) System, Verfahren und nichtflüchtiges computerlesbares Speichermedium zur Verwendung bei der Berücksichtigung einer Wirkung eines Fernfahrt-Zyklus auf die Restlebensdauer von Motoröl, das in einem Fahrzeug verwendet wird, unter Verwendung eines Fernfahrt-Abschlagwertes
EP1622784B1 (de) Fehlererkennungssytem zur erkennung eines fehlerhaften temperatursensors in kraftfahrzeugen
DE112016003715T5 (de) Virtueller reduktionsmittelfüllstandssensor
DE102018111694A1 (de) Harnstoffwasserschmelzprüfapparat und Harnstoffwasserschmelzprüfsystem
DE102013016961A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere für einen Kraftwagen, sowie Verbrennungskraftmaschine
DE102009054400A1 (de) Auswerteeinrichtung, System und Verfahren zum Überprüfen einer Einrichtung eines Kraftfahrzeugs
EP1900937A2 (de) Verfahren zum Verfolgen von Fehlfunktionen im Betrieb von Automobilen
DE102016121997A1 (de) Verfahren und Vorrichtung zur Bewertung des Zustandes einer Fahrzeugkühlflüssigkeit
DE102017000313A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
EP3293380B1 (de) Kühlkreislauf enthaltender verbrennungsmotor und diesen verbrenungsmotor enhaltenden landfahrezeug
DE102004059685B4 (de) Verfahren und Vorrichtung zum Überprüfen von Temperaturwerten eines Temperatursensors einer Brennkraftmaschine
DE102021132753A1 (de) Verfahren und vorrichtung zur verfolgung eines lebensdauerzyklus eines turboladers
DE102017204426A1 (de) Elektronische Steuerungseinheit
DE102010004903A1 (de) Hybridfahrzeug
DE102010010626A1 (de) Überwachungsvorrichtung für eine Maschine
DE10123106A1 (de) Verfahren zum Überwachen eines Kühlflüssigkeitskreislaufs einer Brennkraftmaschine
DE102016009757A1 (de) Vorrichtung und Verfahren zur Bestimmung einer Umgebungstemperatur eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13802939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013802939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14652671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE