WO2014094749A1 - Radnabe-wälzlager-einheit mit einem signalgeber an einem erhöhten bereich eines innenrings innerhalb einer dichtkappe mit einer ausbuchtung zur befestigung eines sensors - Google Patents

Radnabe-wälzlager-einheit mit einem signalgeber an einem erhöhten bereich eines innenrings innerhalb einer dichtkappe mit einer ausbuchtung zur befestigung eines sensors Download PDF

Info

Publication number
WO2014094749A1
WO2014094749A1 PCT/DE2013/200256 DE2013200256W WO2014094749A1 WO 2014094749 A1 WO2014094749 A1 WO 2014094749A1 DE 2013200256 W DE2013200256 W DE 2013200256W WO 2014094749 A1 WO2014094749 A1 WO 2014094749A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
bearing unit
sensor
wheel bearing
bulge
Prior art date
Application number
PCT/DE2013/200256
Other languages
English (en)
French (fr)
Inventor
Andreas Kaiser
Roland Langer
Ralf Heiss
Christian Mock
Jonas Lang
Frank Eichelmann
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US14/652,570 priority Critical patent/US20150343841A1/en
Priority to CN201380067269.5A priority patent/CN104937297A/zh
Priority to KR1020157019448A priority patent/KR20150099578A/ko
Publication of WO2014094749A1 publication Critical patent/WO2014094749A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0073Hubs characterised by sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2380/00Bearings
    • B60B2380/10Type
    • B60B2380/12Ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2380/00Bearings
    • B60B2380/70Arrangements
    • B60B2380/73Double track
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the invention relates to a wheel bearing unit with a rotatable together with a hub inner ring, wherein the inner ring is secured by a Wälznietbundes on the wheel hub to bias a row of rolling against an outer ring, wherein an adjacent to the Wälznietbund, increased region of the inner ring radially over an outer WälzSystemterrorism of the inner ring is increased.
  • Roll-riveted wheel bearing units have been used for passenger cars in the past in a wide variety. Especially with non-driven wheel bearing units has been passed by default for use in conjunction with vehicle-side lids, which can take over a large part of the axial-side sealing function. Especially in connection with sensed wheel bearing units that can detect or measure wheel speeds, for example, these lid closures are advantageous because an opening of the lid or a sensor recess, which would have to be sealed, at a speed measurement through the lid is not required. Lids with employed sensors consist at least in the sensor area of a magnetically permeable material, which is why stainless steel lid are often used.
  • the wheel bearing units mentioned also have the problem due to the Wälznietvorgangs that the Wälznieten the inner ring is disadvantageously expanded or cracks can arise in the same.
  • so-called radially increased inner rings have been produced, whose additional material in the form of rolling bearing steel contributes to the fact that the inner ring has increased resistance to stretching.
  • the increased in this way inner ring takes up more space, which is normally required for the sensor arrangement of the speed detection.
  • a wheel bearing unit which has a radially increased inner ring, which is particularly resistant to deformation during rolling riveting and at the same time is covered on the vehicle side by a fitting inside the outer ring lid.
  • the cover represents the only vehicle-side seal.
  • the sensor can not simply be integrated in the lid, because the lid must not be opened easily to replace the sensor. A sensor integration in the lid would have to be additionally sealed.
  • the invention has for its object to provide a wheel bearing unit whose vehicle-mounted seal and sensor arrangement have no functional disadvantages, but at the same time the best possible construction with respect to the installation space to the day.
  • the deformation-resistant design of the inner ring should be equally guaranteed.
  • the object is achieved with a wheel bearing unit of the type mentioned above in that axially on the vehicle side a signal generator is arranged flat, wherein the movement of the signal transmitter is provided in the axial direction through a lid and the lid axially opposite to the signal generator a bulge for receiving having a sensor.
  • the raised area can take different forms, wherein in the radial direction the inner ring thickness is substantially increased in comparison to the thickness in the region of the rolling body track.
  • the maximum outer diameter of the inner ring, which is located in the raised area, can thereby radially exceed the middle circle of the rolling element row located on the inner ring.
  • the center pitch circle of a row of rolling elements is defined by the centers of the Rolling element series arranged rolling elements defined that form a circle in its entirety, which runs through the centers of the rolling elements.
  • the difference between the smallest outer radius of the inner ring and the largest outer radius of the inner ring may be a difference that substantially corresponds to the diameter of the rolling elements.
  • the raised portion of the inner ring together with the radially outer surface arranged on the outer surface form a sealing gap or at least be radially tapered such that a lubricant retention function is ensured.
  • the difference of the largest outer radius with the smallest inner radius of the inner ring substantially corresponds to the width of the inner ring.
  • the center radius of the inner ring can be laid radially outward so that a very good stability behavior during rolling riveting arises.
  • the signal generator can be, for example, an encoder or a pole wheel with different magnetizations.
  • the poles may be formed by magnets or alternatively from a subsequently magnetizable material.
  • the cover is made of a material which makes the movement of the magnetic fields through the lid detectable. For this purpose, the cover must absorb as little or no magnetic energy and should therefore not be magnetizable.
  • the lid is made of a plastic or a non-magnetizable metal.
  • the bulge is arranged opposite to the signal generator, wherein this bulge can also partially take over a holding function within the outer ring, but is mainly provided for receiving the sensor. Accordingly, the bulge can be formed. It is advantageous that the sensor can indeed be mounted outside of the sealed space, but is still in a protected position in which it can not be easily moved or damaged.
  • the outer ring can be used to protect the sensor advantageous by the axial length of the outer ring is adjusted accordingly.
  • an extension in the millimeter range, between 2 - 6 mm lead to an optimum coverage to protect the sensor.
  • a very good compromise between axial width and optimum protection is an extension of the outer ring on the axially vehicle side oriented surface of the inner ring of 4 mm addition.
  • the bulge can be formed such that the sensor can be brought as close as possible to the signal generator.
  • the signal generator forms the smallest possible gap with an annular part of the bulge.
  • the cover is fixed to the outer ring and covers the wheel hub axially on the vehicle side.
  • the mounting options on the outer ring can advantageously vary, wherein the cover can be arranged in a press fit on the outside of the outer ring, or alternatively rests on the inner side of the outer ring or there has an annular mounting area. If it is an axially elongated outer ring which projects beyond the end face of the inner ring by 2, 4 or even 6 mm, then a lid can advantageously be mounted on the inside, in order to close with a recessed recess, which can be designed, for example, as a groove be arranged the end face of the inner ring. Proximity is defined by the fact that the distance from the signal transmitter to the sensor is sufficiently selected for the particular type of detection selected in order to guarantee transmission reliability.
  • the bulge is arranged substantially radially inside the outer ring.
  • a special protection for the sensor which, if the derecognition is performed as a groove, even in the circumferential direction can be arranged at different locations.
  • the sensor can be designed optimally in terms of its size in coordination with the radial overlap by the outer ring. In other words, the smaller the sensor can be designed, the less bearing steel has to be used for the axial extension of the outer ring.
  • the bulge is annular, but may also only partially annular, whereby a mounting area in the circumferential direction is determinable for the sensor.
  • the bulge can only take into account the extension of the sensor in order to simplify the insertion of the sensor, wherein the bulge takes into account the outer dimensions of the sensor and images these in a counter-shape.
  • the bulge for attachment of the sensor is formed.
  • the bulge not only assumes the optimal placement function and protection function, but can also fix the sensor in the circumferential direction and / or axial direction.
  • the attachment can be based on a snap mechanism or based on a screw or clamping of the sensor in the bulge.
  • a retaining ring for holding the sensor in the recess can be fastened in an annular bulge.
  • a retaining ring can be provided specifically for the attachment function, which also supports, for example, a de-installation and re-attachment of the sensor in the bulge.
  • the retaining ring can rest for example in a press fit in the bulge, so that the retaining ring contributes together with the sensor during assembly of the wheel bearing unit for automation advantageous.
  • the retaining ring can namely be pressed together with the sensor in one operation in the bulge, and this can be done even before the attachment of the lid on the outer ring.
  • the sealing gap between the outer ring and the inner ring be beneficial at the elevated area when it comes to keeping lubricant in the vicinity of the rolling elements.
  • the seal can certainly contribute to a holding element, which further reduces the radial sealing gap and is actually intended to hold the signal generator.
  • the signal transmitter is glued to the raised portion of the inner ring, pressed or positively connected thereto.
  • the signal generator can be applied flat to the raised area, with which the signal generator extends in the axial or radial direction parallel to the mounting surface of the raised area. It may well be that the signal generator is again placed on a retaining plate, which is arranged between the signal generator and the mounting surface of the raised portion. In any case, this construction is a special stability of the signal transmitter to own, because this rests flat against the very stable inner ring and is very resistant to unwanted position changes.
  • a bond is particularly suitable for motion detection in the axial direction, because the axial end face of the inner ring is predestined for this purpose.
  • a pressing-on is more advantageous in the case of a substantially cylindrical signal transmitter, just as in the case of a signal transmitter whose retaining element or carrier has a cylindrical fastening region.
  • a positive connection may be advantageous, which may be caused for example by pins or an ejected groove.
  • the lid is substantially surrounded by the outer ring. In this way, not only the sensor, but also the lid is protectable and does not need to be protected or at least less by its own material thickness, but instead may be made thinner or lighter.
  • FIG. 1 shows a first wheel bearing unit with an elevated inner ring and a first inner lid
  • Figure 2 shows a second wheel bearing unit with elevated inner ring and with a second inner lid.
  • Figure 1 shows a double-row angular contact ball bearing unit, whose rows of rolling elements 2 are biased on the outer ring 3 by the inner ring 2 was brought axially into position on the Wälznietbund 17 and biased.
  • the inner ring 2 has at its elevated region on an encoder readable in the axial direction 5, which acts as a signal generator in this embodiment.
  • the encoder 5 is mounted on a holding plate 6 by a magnetizable powder was embedded in an elastomer.
  • the elastomer comprises the entire retaining plate 6, whereby a static seal to the inner ring 2 is established on both sides.
  • lubricant remains in the rolling space, preferably in the vicinity of the cage. 4 Due to the increased range of the Wälznietbund 17 of the wheel bearing unit can be formed significantly less problematic, which also faster riveting is guaranteed.
  • the released forces are absorbed by the inner ring 2 outstanding.
  • the inner ring 2 can now serve as a stable support for the retaining plate 6, as well as for the encoder 5.
  • the signal from the encoder 5 can be detected axially at a relatively large radius, so that a high number of alternating north and south poles can be used and improves the precision of the speed detection for an anti-lock braking system.
  • the disk-shaped portion 12 of the bulge 15 can be brought axially very close to the encoder 5, whereby a good signal strength can be ensured.
  • the annular portion 13 of the lid 8, in combination with the annular portions 12, 14, forms a substantially square or rectangular cross-sectional area of the annular recess 15. This cross-sectional area allows the simple arrangement of sensors that are readily axially into the bulge 15 and radially inward of the outer ring 3 can be inserted.
  • Retaining ring 10 is designed to secure a sensor within bulge 15 by using auxiliary devices 9 for attachment support. This can be done for example by a snapping or jamming.
  • the raised area of the inner ring 2 can essentially be regarded as the vehicle-side rim of the inner ring, the outer diameter of which is significantly increased in the direction of the outer ring 3.
  • the outer diameter of the vehicle-side board, which is regarded as the largest outer diameter of the inner ring 2, is radially approximately at the height of the rolling contact between the row of rolling elements 1 and the outer ring. 3
  • the bulge 15 can also be designed as a tongue groove, wherein the suspension is ensured in the radial direction relative to the outer ring 3. In this way, an excellent sealing effect of the lid 8 can be brought about.
  • Figure 2 shows a further wheel bearing unit in section along the axis of rotation R, wherein the cover 29 in the region of Wälznietbundes 17 has a conical portion 26, which may be advantageous if the attachment function does not have to be ensured within the bulge 25, but not shown Sensor is fastened in the wheel carrier or in another component outside the wheel bearing unit.
  • the invention relates to a roller-riveted wheel bearing unit whose inner ring 2 has a radially elevated area in order to eliminate manufacturing problems in rolling riveting.
  • a wheel bearing unit as optimal as possible sensor arrangement, as required for example for speed detectors are proposed without disadvantages in the speed detection, the seal and the strength optimization of the inner ring 2 must accept.
  • an axially short design which also implies a protected sensor in a lid 8.
  • the sensor can be attached in a bulge 15, which can be arranged partially or completely radially within the outer ring 3.

Abstract

Es wird eine wälzgenietete Radlagereinheit vorgeschlagen, deren Innenring (2) einen radial erhöhten Bereich aufweist, um Herstellungsproblematiken beim Wälznieten auszuräumen. Für eine derartige Radlagereinheit soll eine möglichst optimale Sensoranordnung, wie man sie beispielsweise für Drehzahldetektionen benötigt, vorgeschlagen werden, ohne Nachteile bei der Drehzahldetektion, der Abdichtung und der Festigkeitsoptimierung des Innenrings (2) hinnehmen zu müssen. Ein Signalgeber (5) ist axial fahrzeugseitig am erhöhten Bereich des Innenrings (2) flächig angeordnet. Ein Deckel (8) deckt die Radnabe (18) axial fahrzeugseitig ab. Die Erfassung der Bewegung des Signalgebers (5) erfolgt in axialer Richtung durch den Deckel (8) hindurch. Zur Aufnahme eines Sensors weist der Deckel (8) axial gegenüberliegend zum Signalgeber (5) eine Ausbuchtung (15) auf, die teilweise oder komplett radial innerhalb des Außenrings (3) angeordnet werden kann. Es konnte somit eine axial kurze Bauweise gefunden werden, die zudem einen geschützten Sensor in dem Deckel (8) impliziert.

Description

Titel
RADNABE-WÄLZLAGER-EINHEIT MIT EINEM SIGNALGEBER AN EINEM
ERHÖHTEN BEREICH EINES INNENRINGS INNERHALB EINER DICHTKAPPE MIT EINER AUSBUCHTUNG ZUR BEFESTIGUNG EINES SENSORS
Beschreibung
Die Erfindung betrifft eine Radlagereinheit mit einem zusammen mit einer Radnabe drehbaren Innenring, wobei der Innenring mittels eines Wälznietbundes auf der Radnabe befestigt ist, um eine Wälzkörperreihe gegenüber einem Außenring vorzuspannen, wobei ein an den Wälznietbund grenzender, erhöhter Bereich des Innenrings radial über eine äußere Wälzkörperlaufbahn des Innenrings erhöht ist.
Stand der Technik
Wälzgenietete Radlagereinheiten sind für Personenkraftwagen in der Vergangenheit in einer großen Vielfalt eingesetzt worden. Gerade bei nicht getriebenen Radlagereinheiten ist man standardmäßig zur Verwendung in Verbindung mit fahrzeugseitigen Deckeln übergegangen, die einen großen Teil der axialseitigen Dichtfunktion übernehmen können. Gerade in Verbindung mit sensierten Radlagereinheiten, die beispielsweise Raddrehzahlen erkennen bzw. messen können, sind diese Deckelverschlüsse von Vorteil, weil eine Öffnung des Deckels bzw. eine Sensorausnehmung, die abgedichtet werden müsste, bei einer Drehzahlmessung durch den Deckel hindurch nicht erforderlich ist. Deckel mit angestellten Sensoren bestehen zumindest im Sensorbereich aus einem magnetisch durchlässigem Material, weshalb oftmals Edelstahldeckel verwendet werden.
Die genannten Radlagereinheiten haben ferner aufgrund des Wälznietvorgangs das Problem, dass beim Wälznieten der Innenring nachteiligerweise aufgeweitet wird bzw. Risse in demselben entstehen können. Um der Aufweitung des Innenrings beim Wälznieten entgegenzuwirken, hat man sogenannte radial erhöhte Innenringe hervorgebracht, deren zusätzliches Material in Form von Wälzlagerstahl dazu beiträgt, dass der Innenring eine erhöhte Dehnungsstabilität aufweist. Nachteiligerweise nimmt der auf diese Weise erhöhte Innenring mehr Bauraum ein, der normalerweise für die Sensoranordnung der Drehzahlerfassung benötigt wird.
Aus DE 1 1 2009 002 688 T5 ist eine Radlagereinheit bekannt, die einen radial erhöhten Innenring aufweist, der beim Wälznieten besonders verformungsresistent ist und gleichzeitig fahrzeugseitig durch einen innen am Außenring anliegenden Deckel abgedeckt wird. Der Deckel stellt dabei die einzige fahrzeugseitige Dichtung dar.
Der Sensor ist auch nicht schlicht in den Deckel integrierbar, weil zum Austausch des Sensors der Deckel nicht ohne Weiteres geöffnet werden darf. Eine Sensorintegration in den Deckel müsste zusätzlich abgedichtet werden.
Zusammenfassung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine Radlagereinheit anzugeben, deren fahrzeugseitige Abdichtung und Sensoranordnung keine funktionellen Nachteile aufweisen, aber gleichzeitig eine möglichst optimale Bauweise hinsichtlich des Bauraumes an den Tag legt. Die verformungsresistente Auslegung des Innenrings soll dabei gleichermaßen gewährleistet sein.
Die Aufgabe wird bei einer Radlagereinheit der eingangs genannten Art dadurch gelöst, dass axial fahrzeugseitig am erhöhten Bereich ein Signalgeber flächig angeordnet ist, wobei die Bewegung des Signalgebers in axialer Richtung durch einen Deckel hindurch vorgesehen ist und der Deckel axial gegenüberliegend zum Signalgeber eine Ausbuchtung zur Aufnahme eines Sensors aufweist.
Der erhöhte Bereich kann unterschiedliche Formen annehmen, wobei in radialer Richtung die Innenringdicke substanziell im Vergleich zur Dicke im Bereich der Wälzkörperlaufbahn vergrößert ist. Der maximale Außendurchmesser des Innenrings, der sich im erhöhten Bereich befindet, kann dabei den Mittenteilkreis der auf dem Innenring angesiedelten Wälzkörperreihe radial übertreffen. Der Mittenteilkreis einer Wälzkörperreihe wird durch die Mittelpunkte der in der Wälzkörperreihe angeordneten Wälzkörper definiert, die in ihrer Gesamtheit einen Kreis bilden, der durch die Mittelpunkte der Wälzkörper verläuft.
Alternativ kann der Unterschied zwischen dem kleinsten Außenradius des Innenrings und dem größten Außenradius des Innenrings eine Differenz bestehen, die im Wesentlichen dem Durchmesser der Wälzkörper entspricht. Vorteilhafterweise kann der erhöhte Bereich des Innenrings zusammen mit der radial gegenüber am Außenring angeordneten Fläche einen Dichtspalt bilden oder zumindest radial derart verjüngt sein, dass eine Schmiermittelrückhaltefunktion gewährleistet wird.
Idealerweise entspricht die Differenz des größten Außenradius mit dem kleinsten Innenradius des Innenrings im Wesentlichen der Breite des Innenrings. Auf diese Weise kann der Mittenradius des Innenrings derart radial nach außen verlegt werden, sodass ein sehr gutes Stabilitätsverhalten beim Wälznieten entsteht.
Bei dem Signalgeber kann es sich beispielsweise um einen Encoder oder Polrad mit verschiedenen Magnetisierungen handeln. Die Pole können von Magneten gebildet sein oder alternativ aus einem nachträglich magnetisierbarem Material. Wichtig ist in diesem Zusammenhang, dass der Deckel aus einem Material besteht, welches die Bewegung der Magnetfelder auch durch den Deckel hindurch detektierbar macht. Dazu darf der Deckel möglichst wenig oder keine magnetische Energie aufnehmen und sollte deshalb nicht magnetisierbar sein. Idealerweise besteht der Deckel aus einem Kunststoff oder einem nicht magnetisierbaren Metall.
Die Ausbuchtung ist gegenüberliegend zum Signalgeber angeordnet, wobei diese Ausbuchtung auch teilweise eine Haltefunktion innerhalb des Außenrings übernehmen kann, aber hauptsächlich zur Aufnahme des Sensors vorgesehen ist. Dementsprechend kann die Ausbuchtung ausgebildet werden. Daran ist vorteilhaft, dass der Sensor zwar außerhalb des abgedichteten Raums angebracht werden kann, sich aber dennoch in einer geschützten Position befindet, in welcher er nicht ohne Weiteres verschoben oder beschädigt werden kann. Insbesondere ist nunmehr der Außenring dazu einsetzbar, den Sensor vorteilhaft zu schützen, indem die axiale Länge des Außenrings entsprechend angepasst wird. Bei klassischen Kraftfahrzeuganwendungen kann eine Verlängerung im Millimeterbereich, zwischen 2 - 6 mm, zu einer optimalen Überdeckung zum Schutz des Sensors führen. Ein sehr guter Kompromiss zwischen axialer Baubreite und optimalem Schutz stellt eine Verlängerung des Außenrings über die axial fahrzeugseitig orientierte Fläche des Innenrings von 4 mm hinaus dar.
Darüber hinaus kann die Ausbuchtung derart ausgebildet werden, dass der Sensor möglichst nahe an den Signalgeber herangeführt werden kann. Mit anderen Worten, der Signalgeber bildet einen möglichst kleinen Spalt mit einem ringförmigen Teil der Ausbuchtung aus.
Vorteilhafterweise ist der Deckel am Außenring fest und deckt die Radnabe axial fahrzeugseitig ab. Die Befestigungsmöglichkeiten am Außenring können vorteilhafterweise variieren, wobei der Deckel in einem Presssitz außenseitig am Außenring angeordnet sein kann, oder alternativ innenseitig am Außenring anliegt bzw. dort einen ringförmigen Befestigungsbereich aufweist. Handelt es sich um einen axial verlängerten Außenring, der über die Stirnfläche des Innenrings um 2, 4 oder sogar 6 mm hinausragt, so kann ein Deckel vorteilhafterweise innenliegend montiert werden, um mit einer vertieften Ausbuchtung, die beispielsweise als Nut ausgeführt sein kann, nahe an der Stirnseite des Innenrings angeordnet sein. Die Nähe ist dadurch definiert, dass der Abstand vom Signalgeber zum Sensor für die jeweils gewählte Detektionsart ausreichend gewählt ist, um eine Übertragungssicherheit zu garantieren.
Vorteilhafterweise ist die Ausbuchtung im Wesentlichen radial innerhalb des Außenrings angeordnet. Auf diese Weise entsteht ein besonderer Schutz für den Sensor, der, wenn die Ausbuchung als Nut ausgeführt ist, auch noch in Umfangsrichtung an unterschiedlichen Stellen angeordnet werden kann. Hierbei kann der Sensor in Abstimmung mit dem radialen Überlapp durch den Außenring hinsichtlich seiner Größe optimal ausgelegt werden. Mit anderen Worten, je kleiner der Sensor ausgelegt werden kann, desto weniger Wälzlagerstahl muss für die axiale Verlängerung des Außenrings eingesetzt werden.
Vorteilhafterweise ist die Ausbuchtung ringförmig, kann aber auch nur abschnittsweise ringförmig sein, womit ein Befestigungsbereich in Umfangsrichtung für den Sensor festlegbar ist. Auf diese Weise kann dem Verwender vorgeschrieben werden, an welcher Stelle die Anbringung des Sensors zu erfolgen hat. Insbesondere kann die Ausbuchtung lediglich die Ausdehnung des Sensors berücksichtigen, um die Einführung des Sensors zu vereinfachen, wobei die Ausbuchtung den Außenmaßen des Sensors Rechnung trägt und diese in einer Gegenform abbildet.
Bei einer vorteilhaften Ausführungsform ist die Ausbuchtung zur Befestigung des Sensors ausgebildet. Somit übernimmt die Ausbuchtung nicht nur die optimale Anordnungsfunktion und Schutzfunktion, sondern kann auch den Sensor in Umfangsrichtung und/oder axialer Richtung festsetzen. Hierzu können eine Reihe unterschiedlicher Maßnahmen eingesetzt werden, wobei die Befestigung auf einem Schnappmechanismus beruhen kann oder auf einer Verschraubung bzw. Klemmung des Sensors in der Ausbuchtung basieren kann.
Vorteilhafterweise ist bei einer ringförmigen Ausbuchtung ein Haltering zur Haltung des Sensors in der Ausnehmung befestigbar. Auf diese Weise kann ein Haltering speziell für die Befestigungsfunktion vorgesehen werden, die beispielsweise auch eine Deinstallation und Wiederbefestigung des Sensors in der Ausbuchtung unterstützt. Der Haltering kann beispielsweise in einem Presssitz in der Ausbuchtung anliegen, sodass der Haltering zusammen mit dem Sensor bei der Montage der Radlagereinheit zur Automatisierung vorteilhaft beiträgt. Der Haltering kann nämlich zusammen mit dem Sensor in einem Arbeitsgang in die Ausbuchtung gepresst werden, wobei dies sogar vor der Befestigung des Deckels am Außenring geschehen kann. Alternativ kann es von Vorteil sein, den Sensor erst nachträglich, bei der Installation der Radlagereinheit im Fahrzeug, in Position zu bringen. In diesem Fall ist es vorteilhaft, den Haltering zuerst auf den Deckel aufzupressen, anschließend den Deckel auf die Radlagereinheit aufzusetzen und den Sensor bei der Installation der Radlagereinheit beispielsweise in den Haltering einschnappen zu lassen.
Bei einer vorteilhaften Ausführungsform bildet der erhöhte Bereich des Innenrings zusammen mit dem Außenring einen Dichtspalt, in welchem ggf. ein Halteelement des Signalgebers anordenbar ist. Obwohl die Hauptdichtfunktion vom Deckel übernommen wird, kann der Dichtspalt zwischen dem Außenring und dem Innenring am erhöhten Bereich vorteilhaft sein, wenn es darum geht, Schmiermittel in der Nähe der Wälzkörper zu halten. Zur Dichtung kann dabei durchaus auch ein Halteelement beitragen, welches den Dichtspalt weiter radial verkleinert und eigentlich zur Haltung des Signalgebers vorgesehen ist.
Vorteilhafterweise ist der Signalgeber auf den erhöhten Bereich des Innenrings geklebt, aufgepresst oder formschlüssig mit diesem verbunden. Bevorzugt kann der Signalgeber flächig auf den erhöhten Bereich aufgebracht werden, womit der Signalgeber in axialer oder radialer Richtung parallel zur Befestigungsfläche des erhöhten Bereichs verläuft. Dabei kann es durchaus sein, dass der Signalgeber nochmals auf einem Halteblech aufgesetzt ist, welches zwischen dem Signalgeber und der Befestigungsfläche des erhöhten Bereichs angeordnet ist. Jedenfalls ist dieser Konstruktion eine besondere Stabilität des Signalgebers zu eigen, weil dieser flächig an dem sehr stabilen Innenring anliegt und gegenüber ungewollten Positionsänderungen sehr resistent ist.
Eine Klebung bietet sich besonders bei einer Bewegungsdetektion in axialer Richtung an, weil die axiale Stirnseite des Innenrings hierfür prädestiniert ist. Eine Aufpressung hingegen ist bei einem im Wesentlichen zylindrischen Signalgeber vorteilhafter, genau wie bei einem Signalgeber, dessen Halteelement oder Träger einen zylindrischen Befestigungsbereich aufweist. Auch ein Formschluss kann von Vorteil sein, der beispielsweise durch Stifte oder eine ausgespritzte Nut hervorgerufen werden kann.
Bei einer vorteilhaften Ausführungsform wird der Deckel vom Außenring im Wesentlichen umfasst. Auf diese Weise ist nicht nur der Sensor, sondern auch der Deckel schützbar und muss nicht oder zumindest weniger durch die eigene Materialdicke geschützt werden, sondern kann stattdessen dünner bzw. leichter ausgelegt sein.
Weitere vorteilhafte Ausbildungen und bevorzugte Weiterbildungen der Erfindung sind der Figurenbeschreibung und/oder den Unteransprüchen zu entnehmen. Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.
Kurze Beschreibung der Figuren
Es zeigen:
Figur 1 eine erste Radlagereinheit mit erhöhtem Innenring und einem ersten innenliegendem Deckel, und
Figur 2 eine zweite Radlagereinheit mit erhöhtem Innenring und mit einem zweiten innenliegenden Deckel.
Detaillierte Beschreibung der Figuren
Figur 1 zeigt eine zweireihige Schrägkugellagereinheit, deren Wälzkörperreihen 2 über den Außenring 3 vorgespannt sind, indem der Innenring 2 über den Wälznietbund 17 axial in Position gebracht und vorgespannt wurde.
Der Innenring 2 weist an seinem erhöhten Bereich einen in axialer Richtung auslesbaren Encoder 5 auf, der in diesem Ausführungsbeispiel als Signalgeber fungiert. Der Encoder 5 ist auf einem Halteblech 6 aufgebracht, indem ein magnetisierbares Pulver in einem Elastomer eingelassen wurde. Vorteilhafterweise umfasst das Elastomer das gesamte Halteblech 6, womit beidseitig eine statische Dichtung zum Innenring 2 etabliert wird.
Der erhöhte Bereich des Innenrings 2 bildet zusammen mit dem Außenring 3 einen Dichtspalt aus, in welchem das mit Elastomer überzogene Halteblech 6 angeordnet ist. Auf diese Weise verbleibt Schmiermittel im Wälzraum, vorzugsweise in der Nachbarschaft des Käfigs 4. Aufgrund des erhöhten Bereiches kann der Wälznietbund 17 der Radlagereinheit deutlich unproblematischer geformt werden, womit auch eine schnellere Vernietung gewährleistet wird. Dabei werden die frei werdenden Kräfte vom Innenring 2 hervorragend aufgenommen. Der Innenring 2 kann nunmehr als stabiler Träger für das Halteblech 6, als auch für den Encoder 5 dienen.
Daran ist weiter vorteilhaft, dass das Signal vom Encoder 5 bei einem relativ großen Radius axial detektiert werden kann, womit eine hohe Anzahl von sich abwechselnden Nord- und Südpolen einsetzbar ist und die Präzision der Drehzahldetektion für ein Antiblockiersystem verbessert.
Des Weiteren ist es vorteilhaft für die Abdichtung durch den Deckel 8, dass eine federnde Abdichtung durch den Falz 1 1 gewährleistet ist, der weiter dadurch unterstützt wird, dass die Ausbuchtung 15 sich radial innenseitig an den Außenring 3 anschmiegt.
Das scheibenförmige Teilstück 12 der Ausbuchtung 15 kann axial sehr nahe an den Encoder 5 herangeführt werden, womit eine gute Signalstärke gewährleistet werden kann. Der ringförmige Abschnitt 13 des Deckels 8 bildet in Kombination mit den ringförmigen Teilstücken 12,14 eine im Wesentlichen quadratische oder rechteckige Schnittfläche der ringförmig ausgebildeten Ausbuchtung 15. Diese Querschnittsfläche erlaubt die einfache Anordnung von Sensoren, die ohne Weiteres axial in die Ausbuchtung 15 und radial innerhalb des Außenrings 3 einführbar sind.
Der Haltering 10 ist dazu vorgesehen, einen Sensor innerhalb der Ausbuchtung 15 zu befestigen, indem Hilfsvorrichtungen 9 zur Befestigungsunterstützung verwendet werden. Dies kann beispielsweise durch eine Verschnappung oder Verklemmung geschehen.
Der erhöhte Bereich des Innenrings 2 kann im Wesentlichen als der fahrzeugseitige Bord des Innenrings angesehen werden, dessen Außendurchmesser in Richtung des Außenrings 3 deutlich erhöht ist. Der Außendurchmesser des fahrzeugseitigen Bordes, welcher als größter Außendurchmesser des Innenrings 2 angesehen wird, liegt radial etwa auf der Höhe des Wälzkontaktes zwischen der Wälzkörperreihe 1 und dem Außenring 3.
Vorteilhafterweise kann die Ausbuchtung 15 ebenfalls als Federnut ausgeführt werden, wobei die Federung in radialer Richtung gegenüber dem Außenring 3 gewährleistet wird. Auf diese Weise kann eine hervorragende Dichtwirkung des Deckels 8 herbeigeführt werden.
Figur 2 zeigt eine weitere Radlagereinheit im Schnitt entlang der Rotationsachse R, wobei der Deckel 29 im Bereich des Wälznietbundes 17 ein konisches Teilstück 26 aufweist, welches dann vorteilhaft sein kann, wenn die Befestigungsfunktion nicht innerhalb der Ausbuchtung 25 gewährleistet werden muss, sondern der nicht gezeigte Sensor im Radträger oder in einem anderen Bauteil außerhalb der Radlagereinheit festgemacht ist.
Zusammenfassend betrifft die Erfindung eine wälzgenietete Radlagereinheit, deren Innenring 2 einen radial erhöhten Bereich aufweist, um Herstellungsproblematiken beim Wälznieten auszuräumen. Für eine derartige Radlagereinheit soll eine möglichst optimale Sensoranordnung, wie man sie beispielsweise für Drehzahldetektionen benötigt, vorgeschlagen werden ohne Nachteile bei der Drehzahldetektion, der Abdichtung und der Festigkeitsoptimierung des Innenrings 2 hinnehmen zu müssen. Es konnte eine axial kurze Bauweise gefunden werden, die zudem einen geschützten Sensor in einem Deckel 8 impliziert. Der Sensor ist in einer Ausbuchtung 15 anbringbar, die teilweise oder komplett radial innerhalb des Außenrings 3 angeordnet werden kann.
Bezugszeichenliste Wälzkörperreihe
Innenring
Außenring
Käfig
Signalgeber, Encoder
Halteblech, Halteelement
Dichtring
Deckel
Befestigungsvorrichtung
Haltering
Falz, axiale Federung
ringförmiger Teilabschnitt
zylindrischer Teilabschnitt
zylindrischer Teilabschnitt
Ausbuchtung
konischer Teilabschnitt
Wälznietbund
Radnabe
Radflansch
Encoder, Signalgeber
Außenring
Ausbuchtung
konischer Teilabschnitt
Radnabe
Deckel
Rotationsachse

Claims

Patentansprüche
1 . Radlagereinheit mit einem zusammen mit einer Radnabe (18, 28) drehbaren Innenring (2), wobei der Innenring (2) mittels eines Wälznietbundes (17) auf der Radnabe (18, 28) befestigt ist, um eine Wälzkörperreihe (1 ) gegenüber einem Außenring (3) vorzuspannen, wobei ein an den Wälznietbund (17) grenzender, erhöhter Bereich des Innenrings (2) radial über eine äußere Wälzkörperlaufbahn des Innenrings (2) erhöht ist, dadurch gekennzeichnet, dass axial fahrzeugseitig am erhöhten Bereich ein Signalgeber (5, 21 ) flächig angeordnet ist, wobei die Bewegung des Signalgebers (5, 21 ) in axialer Richtung durch einen Deckel (8, 29) hindurch detektiert wird und der Deckel (8, 29) axial gegenüberliegend zum Signalgeber (5, 21 ) eine Ausbuchtung (15, 25) zur Aufnahme eines Sensors aufweist.
2. Radlagereinheit nach Anspruch 1 , wobei der Deckel (8, 29) am Außenring (3, 23) fest ist und die Radnabe (18, 28) axial fahrzeugseitig abdeckt.
3. Radlagereinheit nach Anspruch 2, wobei die Ausbuchtung (15, 25) im Wesentlichen radial innerhalb des Außenrings (3, 23) angeordnet ist.
4. Radlagereinheit nach Anspruch 2 oder Anspruch 3, wobei die Ausbuchtung (15, 25) ringförmig ausgebildet ist.
5. Radlagereinheit nach Anspruch 2 oder Anspruch 3, wobei die Ausbuchtung (15, 25) abschnittsweise ringförmig ist.
6. Radlagereinheit nach einem der vorhergehenden Ansprüche, wobei die Ausbuchtung (15, 25) zur Befestigung des Sensors vorgesehen ist.
7. Radlagereinheit nach Anspruch 4, wobei ein Haltering (9) zur Haltung des Sensors in der Ausnehmung (15) befestigt ist.
8. Radlagereinheit nach einem der vorgehenden Ansprüche, wobei der erhöhte Bereich des Innenrings (2) zusammen mit dem Außenring (3, 23) einen Dichtspalt bildet, in welchem ggf. ein Halteelement (6) des Signalgebers (5) angeordnet ist.
9. Radlagereinheit nach einem der vorhergehenden Ansprüche, wobei der Signalgeber (5, 21 ) auf den erhöhten Bereich geklebt, gepresst oder formschlüssig mit diesem verbunden ist.
10. Radlagereinheit nach einem der vorhergehenden Ansprüche, wobei der Deckel (8, 29) vom Außenring (3, 23) im Wesentlichen radial umfasst wird.
PCT/DE2013/200256 2012-12-20 2013-10-28 Radnabe-wälzlager-einheit mit einem signalgeber an einem erhöhten bereich eines innenrings innerhalb einer dichtkappe mit einer ausbuchtung zur befestigung eines sensors WO2014094749A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/652,570 US20150343841A1 (en) 2012-12-20 2013-10-28 Wheel hub rolling bearing unit with a signal emitter on a higher area of an inner ring within a sealing cap having a protrusion for securing a sensor
CN201380067269.5A CN104937297A (zh) 2012-12-20 2013-10-28 具有在带有用于固定传感器的凸起部的密封罩的内部的内圈的凸出区域上的信号发生器的轮毂滚动轴承单元
KR1020157019448A KR20150099578A (ko) 2012-12-20 2013-10-28 센서의 고정을 위한 돌출부를 갖는 씰링 캡 내의 내부 링의 상승 영역 상에 신호 발생기를 갖는 휠 허브-롤링 베어링 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012223881.6A DE102012223881A1 (de) 2012-12-20 2012-12-20 Sensierte Radlagereinheit
DE102012223881.6 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014094749A1 true WO2014094749A1 (de) 2014-06-26

Family

ID=49639686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/200256 WO2014094749A1 (de) 2012-12-20 2013-10-28 Radnabe-wälzlager-einheit mit einem signalgeber an einem erhöhten bereich eines innenrings innerhalb einer dichtkappe mit einer ausbuchtung zur befestigung eines sensors

Country Status (5)

Country Link
US (1) US20150343841A1 (de)
KR (1) KR20150099578A (de)
CN (1) CN104937297A (de)
DE (1) DE102012223881A1 (de)
WO (1) WO2014094749A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504184A (zh) * 2017-09-27 2017-12-22 常熟长城轴承有限公司 一种加强结构设计的密封件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050674A (ja) 2014-08-28 2016-04-11 中西金属工業株式会社 保護カバー、及び保護カバーを備えた軸受装置
ITUB20154007A1 (it) 2015-09-29 2017-03-29 Skf Ab Dispositivo di tenuta per un gruppo cuscinetto-mozzo.
CN108422193A (zh) * 2018-05-22 2018-08-21 东莞市宣友机械有限公司 轴承自动组装机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195063A (ja) * 2004-01-05 2005-07-21 Nsk Ltd エンコーダ付転がり軸受ユニット
DE102005015260A1 (de) * 2005-04-04 2006-10-05 Robert Bosch Gmbh Vorrichtung zur Messung von Drehbewegungen eines Radlagers
JP2007303522A (ja) * 2006-05-10 2007-11-22 Jtekt Corp ハブユニット
DE102006033931A1 (de) * 2006-07-21 2008-01-24 Robert Bosch Gmbh Vorrichtung zur Messung von Drehbewegungen eines Radlagers
JP2008019912A (ja) * 2006-07-11 2008-01-31 Ntn Corp 車輪用軸受装置
DE102007050256A1 (de) * 2007-10-20 2009-04-23 Schaeffler Kg Encoderelement zur Anzeige einer Stellung oder Bewegung eines Lagerbestandteils
DE102008006605A1 (de) * 2008-01-30 2009-08-27 Ford Global Technologies, LLC, Dearborn Lagerkappe
US20120013329A1 (en) * 2009-03-27 2012-01-19 Sumitomo Wiring Systems, Ltd. Rotation sensor device for wheel
US20120189234A1 (en) * 2009-10-05 2012-07-26 Ntn Corporation Wheel Bearing Apparatus Incorporated With A Rotational Speed Detecting Apparatus
DE112009002688T5 (de) 2008-11-06 2012-09-13 Ntn Corporation Radlagervorrichtung für ein Fahrzeug

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678933A (en) * 1995-01-20 1997-10-21 Nsk Ltd. Speed sensing rolling bearing unit
US5814984A (en) * 1995-08-22 1998-09-29 Nsk Ltd. Roller bearing unit having an improved structure for retaining and sealing a cover thereon
DE10056175A1 (de) * 1999-11-17 2001-06-13 Ntn Toyo Bearing Co Ltd Wheel Bearing and Sealing Davice Therefor
EP1612563A3 (de) * 2001-09-11 2009-12-09 JTEKT Corporation Magnetring zur Erzeugung von Impulsen
JPWO2004035326A1 (ja) * 2002-10-18 2006-02-09 日本精工株式会社 車輪用軸受ユニットとその製造方法
JP4315819B2 (ja) * 2004-01-06 2009-08-19 Ntn株式会社 駆動車輪用軸受装置
JP2006151275A (ja) * 2004-11-30 2006-06-15 Nsk Ltd ハブユニット
JP4033201B2 (ja) * 2005-04-13 2008-01-16 日本精工株式会社 回転速度検出装置付転がり軸受ユニット
JP2008180617A (ja) * 2007-01-25 2008-08-07 Ntn Corp 回転速度検出装置付き車輪用軸受装置
DE102008009283B4 (de) * 2008-02-15 2021-07-29 Schaeffler Technologies AG & Co. KG Radlagervorrichtung für ein Kraftfahrzeug
DE112009002661B4 (de) * 2008-10-29 2022-08-25 Ntn Corporation Radlagervorrichtung mit eingegliederter Radgeschwindigkeitserkennungsvorrichtung
JP5169886B2 (ja) * 2009-02-03 2013-03-27 日本精工株式会社 回転速度検出装置付転がり軸受ユニット
JP5334699B2 (ja) * 2009-06-18 2013-11-06 Ntn株式会社 回転速度検出装置付き車輪用軸受装置
JP2011058523A (ja) * 2009-09-08 2011-03-24 Nsk Ltd 転がり軸受ユニット
CN102575715B (zh) * 2009-09-17 2015-04-29 Ntn株式会社 结合有转速检测装置的车轮用轴承装置
JP5528278B2 (ja) * 2010-09-22 2014-06-25 Ntn株式会社 車輪用軸受装置
JP5327369B2 (ja) * 2012-08-09 2013-10-30 日本精工株式会社 回転速度検出装置付従動輪用転がり軸受ユニット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195063A (ja) * 2004-01-05 2005-07-21 Nsk Ltd エンコーダ付転がり軸受ユニット
DE102005015260A1 (de) * 2005-04-04 2006-10-05 Robert Bosch Gmbh Vorrichtung zur Messung von Drehbewegungen eines Radlagers
JP2007303522A (ja) * 2006-05-10 2007-11-22 Jtekt Corp ハブユニット
JP2008019912A (ja) * 2006-07-11 2008-01-31 Ntn Corp 車輪用軸受装置
DE102006033931A1 (de) * 2006-07-21 2008-01-24 Robert Bosch Gmbh Vorrichtung zur Messung von Drehbewegungen eines Radlagers
DE102007050256A1 (de) * 2007-10-20 2009-04-23 Schaeffler Kg Encoderelement zur Anzeige einer Stellung oder Bewegung eines Lagerbestandteils
DE102008006605A1 (de) * 2008-01-30 2009-08-27 Ford Global Technologies, LLC, Dearborn Lagerkappe
DE112009002688T5 (de) 2008-11-06 2012-09-13 Ntn Corporation Radlagervorrichtung für ein Fahrzeug
US20120013329A1 (en) * 2009-03-27 2012-01-19 Sumitomo Wiring Systems, Ltd. Rotation sensor device for wheel
US20120189234A1 (en) * 2009-10-05 2012-07-26 Ntn Corporation Wheel Bearing Apparatus Incorporated With A Rotational Speed Detecting Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504184A (zh) * 2017-09-27 2017-12-22 常熟长城轴承有限公司 一种加强结构设计的密封件

Also Published As

Publication number Publication date
US20150343841A1 (en) 2015-12-03
CN104937297A (zh) 2015-09-23
KR20150099578A (ko) 2015-08-31
DE102012223881A1 (de) 2014-06-26

Similar Documents

Publication Publication Date Title
DE102010064672B3 (de) Dichtungsanordnung zur Abdichtung eines Radlagers
DE19900283A1 (de) Wälzlagereinheit mit Kodiereinrichtung
DE102009059842A1 (de) Schleuderring mit Fangrinne
WO2013135448A1 (de) Radlager mit einer sensoraufnahme
DE102008033045A1 (de) Magnetischer Codierer
DE112008002994T5 (de) Dichtungsvorrichtung für Lageranordnung und Radstützlageranordnung mit dieser
WO2014094749A1 (de) Radnabe-wälzlager-einheit mit einem signalgeber an einem erhöhten bereich eines innenrings innerhalb einer dichtkappe mit einer ausbuchtung zur befestigung eines sensors
WO2015169297A1 (de) Radlagereinheit
DE102020208969A1 (de) Dichtungsvorrichtung für eine Radnabenanordnung
DE202017106535U1 (de) Wälzlagereinheit zur Radlagerung
EP2553474B1 (de) Radlageranordung mit sensoranschlag
WO2005021989A1 (de) Dichtungsanordnung
DE102013215620A1 (de) Sensoranordnung und Radlager
DE102013215621A1 (de) Sensoranordnung eines Radlagers
DE10338960B4 (de) Dichtungsanordnung mit Encoder und Magnetisierungskopf für den Encoder
DE102009035110A1 (de) Dichtungsanordnung für eine Radlagerung eines Kraftfahrzeuges
DE102011004422A1 (de) Radlagereinheit mit Schutzkappe
WO2017101908A2 (de) Vorrichtung zum erfassen der drehzahl einer radsatzwelle für schienenfahrzeuge
DE102011012942A1 (de) Spritzabschirmung für Bremseckenanordnung
DE102013202251B4 (de) Radlagereinheit mit Innenring als Signalgeber
DE102020100291B4 (de) Radlagervorrichtung und Fahrzeug mit einer Radlagervorrichtung
DE102009023041A1 (de) Sensoranordnungen mit Spaltdichtung
WO2016124179A1 (de) Radlagereinheit
DE102017110116A1 (de) Radlager
DE102022107234B3 (de) Dichtungsanordnung für Radlager und Radlager mit Dichtungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13795151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652570

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157019448

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13795151

Country of ref document: EP

Kind code of ref document: A1