WO2014092146A1 - 掘削用分散液及びそれを用いた地下資源の採掘方法 - Google Patents

掘削用分散液及びそれを用いた地下資源の採掘方法 Download PDF

Info

Publication number
WO2014092146A1
WO2014092146A1 PCT/JP2013/083305 JP2013083305W WO2014092146A1 WO 2014092146 A1 WO2014092146 A1 WO 2014092146A1 JP 2013083305 W JP2013083305 W JP 2013083305W WO 2014092146 A1 WO2014092146 A1 WO 2014092146A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
hydrolyzable
hydrolyzable resin
excavation
dispersion
Prior art date
Application number
PCT/JP2013/083305
Other languages
English (en)
French (fr)
Inventor
成志 吉川
傳喜 片山
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013160063A external-priority patent/JP6221475B2/ja
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to CA2892496A priority Critical patent/CA2892496C/en
Priority to EP13862865.6A priority patent/EP2933306B1/en
Priority to AU2013358061A priority patent/AU2013358061B2/en
Priority to CN201380065362.2A priority patent/CN104854215B/zh
Priority to RU2015128009A priority patent/RU2627060C2/ru
Priority to US14/649,947 priority patent/US10040983B2/en
Priority to PL13862865T priority patent/PL2933306T3/pl
Publication of WO2014092146A1 publication Critical patent/WO2014092146A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/08Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting, e.g. eliminating, the deposition of paraffins or like substances
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the present invention relates to a dispersion for excavation used when collecting underground resources such as oil and natural gas by a well drilling method such as a hydraulic fracturing method, a rotary drilling method, and a riserless drilling method.
  • a well is formed by drilling with a drill while circulating mud water, and a finishing fluid is blended with a water loss prevention agent.
  • a filter called mud wall is used on the wall of the well.
  • a cake is formed. This cake keeps the well wall stable and prevents collapse, and reduces friction with the fluid flowing through the well.
  • the hydraulic fracturing method pressurizes the fluid filling the well at high pressure, thereby generating a crack (fracture) in the vicinity of the well, improving the permeability (fluidity of fluid flow) in the vicinity of the well, It expands the effective cross section of resources such as oil and gas into the well, and increases the productivity of the well.
  • the water-dissipation inhibitor to be blended in the above-mentioned finishing fluid calcium carbonate and various types of salt granules are mainly used.
  • the fluid used in the hydraulic fracturing method is also called a fracturing fluid.
  • viscous fluid such as gel-like gasoline was used, but recently it has been produced from a shale layer that exists in a relatively shallow place.
  • an aqueous dispersion in which a polymer is dissolved or dispersed in water has been used in consideration of the influence on the environment.
  • Polylactic acid is known as such a polymer (see Patent Document 1).
  • polylactic acid is a substance exhibiting hydrolyzability and biodegradability, and even if it remains in the ground, it does not adversely affect the environment because it is degraded by moisture and enzymes in the ground.
  • water used as a dispersion medium has little influence on the environment as compared with gasoline.
  • the polylactic acid penetrates into the vicinity of the well, but this polylactic acid is hydrolyzed and loses its resin form.
  • a space that is, a crack
  • polylactic acid also functions as a water loss prevention agent and suppresses excessive penetration of water used as a dispersion medium into the ground, thus minimizing environmental changes to the formation. Have. Moreover, since it decomposes in the ground, no acid treatment is required.
  • lactic acid which is a degradation product of polylactic acid, is a kind of organic acid. After polylactic acid is decomposed, lactic acid is released, and it also has a function of promoting porosity of the shale layer by acid erosion of the shale layer. .
  • polylactic acid hydrolyzes relatively quickly at high temperatures, but the temperature decreases and the hydrolysis rate is slow. Therefore, when applied to the collection of shale gas etc. produced from places with low underground temperatures. , Its efficiency is poor and improvement is required.
  • polyglycolic acid instead of polylactic acid (see Patent Document 2).
  • Polyglycolic acid is also known as a biodegradable resin, and is more hydrolyzable than polylactic acid.
  • the hydrolysis rate at a temperature of about 80 ° C. is considerably faster than polylactic acid.
  • polyglycolic acid has a problem that it is considerably more expensive than polylactic acid, which is a fatal defect in the hydraulic fracturing method in which a large amount of fracturing fluid is used. Also, sufficiently satisfactory decomposability cannot be obtained under specific temperature conditions.
  • an object of the present invention is to provide a high-hydrolyzable and inexpensive hydrolyzable resin material dispersed in an aqueous medium, and a fracturing used in a finishing fluid or a hydraulic fracturing method when drilling a well.
  • a drilling dispersion useful as a fluid.
  • a dispersion for excavation characterized in that a hydrolyzable resin material containing a hardly hydrolyzable hydrolyzable resin and an esterolysis-promoting hydrolyzable resin is dispersed in an aqueous medium. Liquid is provided.
  • the hydrolyzable resin material in the method of mining underground resources from a well formed by excavation, is hydrolyzed in water at 40 ° C. or higher by injecting the dispersion liquid for excavation into the well.
  • a mining method is provided that includes performing the steps.
  • the ester decomposition-promoting hydrolyzable resin is acid-releasing.
  • the acid released is glycolic acid and / or oxalic acid
  • the acid-releasing hydrolyzable resin is a polyoxalate
  • the hardly hydrolyzable hydrolyzable resin is polylactic acid
  • Containing 30 parts by weight or more of an esterolysis-promoting hydrolyzable resin with respect to 100 parts by weight of the hardly hydrolyzable hydrolyzable resin (6)
  • an enzyme is blended, (7) the enzyme is at least one selected from protease, lipase and cutinase; Is preferred.
  • the hydrolyzable resin material dispersed in the aqueous medium is mainly composed of an inexpensive hardly hydrolyzable hydrolyzable resin typified by polylactic acid. Compared with the prior art using acid, the cost advantage is great.
  • the hydrolysis of the hardly hydrolyzable hydrolyzable resin is carried out because the hydrolyzable resin that is not easily hydrolyzed and the hydrolyzable resin (for example, polyoxalate) that promotes ester decomposition are used in combination.
  • the hydrolysis rate at a low temperature of 80 ° C. or lower is remarkably increased. That is, hydrolysis of polylactic acid or the like is promoted by the acid or alkali released from the ester decomposition-promoting hydrolyzable resin as a catalyst.
  • the hydrolyzable resin before filling the well or pressurizing. Since the hydrolysis of the water proceeds, it cannot be put to practical use.
  • the temperature of the underground layer where the underground resources exist greatly affects the mining conditions.
  • the hydrolyzable resin has a water loss of about 40% (or more) within 4 days in a temperature range of 45 ° C. to 200 ° C.
  • Decomposition performance is demanded, and at present, many resources are collected from the strata that exist in shallow places like the shale layer.
  • the stratum temperature is 40 to 80 degrees Celsius, In many cases, the sample is collected from a place of 40 ° C to 60 ° C.
  • the liquid sufficiently satisfies the hydrolysis performance as described above.
  • the liquid is particularly preferably used as a finishing fluid used for drilling a well or a fracturing fluid used for a hydraulic fracturing method.
  • the excavation dispersion of the present invention containing an enzyme exhibits high hydrolyzability even in a low temperature region of 50 ° C. or less (ie, below the enzyme deactivation temperature), particularly 40 to 50 ° C., and can be used for mining from shallow formations. It is advantageous.
  • a filter cake of solid content such as calcium carbonate formed on the wall surface of the well is made of the hydrolyzable resin material. Since it can be made to decompose with the acid produced
  • the hydrolyzable resin material (solid content) itself in this dispersion also has a function as a water loss preventing agent, the water drainage from the well (ground) is formed by the filter cake formed by this solid content. Infiltration of water into the inside can be prevented, and the cake hydrolyzes after a predetermined period of time, so that it can be recovered without any particular acid treatment.
  • the hydrolyzable resin material penetrates into the vicinity of the well when the well is filled and pressurized. Even when the underground temperature is low, the hydrolyzable resin material hydrolyzes in a short time, so that a space (crack) with a pillar structure can be generated in the portion where the resin material has penetrated, for example, shale gas Etc. can increase the production efficiency of drilling. In addition, since the acid generated by hydrolysis of the hydrolyzable split resin material dissolves minerals such as shale, the generation of cracks can be promoted.
  • the hydrolyzable resin material in this dispersion can also function as a sealant that blocks the flow path in the well, but since it hydrolyzes later, problems such as clogging due to sedimentation of the sealant Can be avoided and the production efficiency can be increased.
  • a gelling agent such as chitosan that dissolves at a low pH
  • gelation is caused in the well by the acid generated by hydrolysis of the hydrolyzable resin material. This makes it possible to effectively infiltrate the liquid near the well by press-fitting the fluid, and at the same time to decompose the gel (lower viscosity) by the acid generated by further hydrolysis. And the subsequent recovery of the fracturing fluid can be effectively performed.
  • FIG. 1 The figure which shows the molecular weight distribution of the sample after the hydrolysis test in Experimental example 14.
  • FIG. 1 The figure which shows the molecular weight distribution of the sample after the hydrolysis test in Experimental example 14.
  • the dispersion for excavation according to the present invention is a dispersion in which a hydrolyzable resin material is dispersed in an aqueous medium, and a water-absorbing polymer or an enzyme can be added to the dispersion if necessary.
  • Known additives blended for well drilling and hydraulic fracturing are blended as appropriate.
  • the hydrolyzable resin material used includes a hardly hydrolyzable hydrolyzable resin and an ester decomposition-promoting hydrolyzable resin.
  • a hardly hydrolyzable hydrolyzable resin is the main component of this resin material.
  • the hardly hydrolyzable hydrolyzable resin is the main component of this resin material.
  • a 1 mg / 1 ml aqueous dispersion is prepared with a sample obtained by freeze-pulverizing and pulverizing the hydrolyzable resin.
  • the residual solution has a TOC (total organic carbon content) of 5 ppm or less.
  • TOC total organic carbon content
  • a water-soluble polymer (for example, solubility in water at 20 ° C. of 50 g / 100 g or more) is too high to penetrate into the ground, for example, has a large impact on the environment, and is suitable as a compounding agent used for a fracturing fluid. Absent.
  • Such hardly hydrolyzable hydrolyzable resins include polylactic acid, polyhydroxyalkanoate, polycaprolactone, polybutylene succinate, polybutylene succinate adipate, polybutylene terephthalate adipate, cellulose acetate, thermoplastic Starch and the like can be exemplified, and these can be used in the form of a copolymer or a blend, but polylactic acid is particularly optimal from the viewpoint of cost.
  • the polylactic acid may be either 100% poly-L-lactic acid or 100% poly-D-lactic acid, or may be a melt blend of poly-L-lactic acid and poly-D-lactic acid. It may be a random copolymer or block copolymer of lactic acid and D-lactic acid.
  • the hydrolyzable resin described above is a copolymer obtained by copolymerizing various aliphatic polyhydric alcohols, aliphatic polybasic acids, hydroxycarboxylic acids, lactones, etc., as long as the properties of the hydrolyzable resin are not impaired. It can also be used in the form of a coalescence.
  • polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, and polyethylene glycol.
  • polybasic acid examples include succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, and terephthalic acid.
  • Carboxylic acid diesters may be used.
  • the hydroxycarboxylic acid examples include glycolic acid, hydroxypropionic acid, hydroxyvaleric acid, hydroxycaproic acid, and mandelic acid.
  • lactone examples include caprolactone, butyrolactone, valerolactone, poropiolactone, undecalactone, glycolide, and mandelide.
  • plasticizers heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments, fillers, fillers, and the like are added as necessary.
  • Additives such as agents, mold release agents, antistatic agents, fragrances, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended.
  • the above-mentioned hardly hydrolyzable hydrolyzable resin should have an appropriate molecular weight in terms of function as a sealing material when used as a fracturing fluid and penetrability into the ground.
  • the weight average molecular weight should be in the range of 5,000 to 1,000,000, especially 10,000 to 500,000.
  • ester decomposition-promoting hydrolyzable resin The above-mentioned hydrolyzable resin, such as polylactic acid, is hardly hydrolyzable, and requires a very long time for its decomposition at a temperature of 100 ° C. or lower, particularly at a low temperature of 80 ° C. or lower. For this reason, in the present invention, an ester decomposition-promoting hydrolyzable resin described below is blended.
  • ester decomposition-promoting hydrolyzable resin (hereinafter sometimes simply referred to as “ester-decomposable resin”) does not exhibit ester degradation by itself, but functions as a catalyst for ester decomposition when mixed with moisture. It releases acid or alkali.
  • the ester-decomposable resin has a TOC value measured by the above-described method higher than 5 ppm, and is clearly different from the hardly hydrolyzable resin.
  • Such an ester-decomposable resin is usually uniformly dispersed inside the above-mentioned hardly hydrolyzable hydrolyzable resin, and the hydrolyzable resin is hydrolyzed by an acid or alkali released from the ester-decomposable resin.
  • those having a weight average molecular weight of about 1,000 to 200,000 are used.
  • an alkali-releasing resin an alkali metal salt of acrylic acid such as sodium acrylate or sodium alginate can be used.
  • an acid releasing agent is preferably used.
  • the pH (25 ° C.) in an aqueous solution or aqueous dispersion having a concentration of 0.005 g / ml is 4 or less, particularly 3 or less
  • Polymers that readily hydrolyze to release acid when mixed with water are preferably used.
  • the acid to be released include oxalic acid and glycolic acid.
  • the polymer include polyoxalate and polyglycolic acid. These may be copolymers, used alone or in combination of two or more.
  • the component forming the copolymer examples include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol; Acids, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and other dicarboxylic acids and their diesters; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropion Hydroxycarboxylic acids such as acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide
  • ester-decomposable resins known plasticizers, heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments, fillers, fillers, if necessary.
  • additives such as mold release agents, antistatic agents, perfumes, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended.
  • polyoxalate a polymer obtained by polymerizing oxalic acid as at least one monomer in a homopolymer, copolymer, or blend is referred to as polyoxalate.
  • polyoxalate and polyglycolic acid are easily hydrolyzable hydrolysable resins and rapidly hydrolyze, so that the non-hydrolyzable resin is excellent in hydrolysis promoting ability.
  • polyoxalates particularly polyethylene oxalate, show remarkably high hydrolysis promoting ability compared to polyglycolic acid, and hydrolyze hardly hydrolyzable resins such as polylactic acid even at a temperature of 80 ° C. or lower. It can be remarkably accelerated, and is considerably cheaper than polyglycolic acid, and the merit of cost is extremely large.
  • ester-decomposable resin described above varies depending on the type, but in general, 1 part by weight or more per 100 parts by weight of the hardly hydrolyzable hydrolyzable resin is preferable in terms of promoting hydrolysis. In particular, from the viewpoint of hydrolysis promotion and cost, it is preferably used in an amount of 30 to 300 parts by weight, particularly 30 to 200 parts by weight. If the amount of the ester decomposing resin is too small, it becomes difficult to sufficiently promote the decomposition of the hardly hydrolyzable hydrolyzable resin. For example, it takes a considerable time for the hydrolysis at a temperature of about 80 ° C. Become.
  • hydrolyzable resin material a biodegradable resin material containing the above-mentioned hardly hydrolyzable hydrolyzable resin (hardly hydrolyzable resin) and an ester decomposition promoting hydrolyzable resin (ester degradable resin) is known per se.
  • a biodegradable resin material containing the above-mentioned hardly hydrolyzable hydrolyzable resin (hardly hydrolyzable resin) and an ester decomposition promoting hydrolyzable resin (ester degradable resin) is known per se.
  • pellets, granules, crushed material obtained by breaking the film, fibers, capsules and the like are formed and dispersed in water. That is, by causing a hardly hydrolyzable resin typified by polylactic acid and an ester decomposable resin to be in close contact with each other in a dispersion liquid, an acid etc. released from the ester decomposable resin causes a hardly hydrolyzable resin. It is possible to promote hydrolysis.
  • the form is limited to the above-described example.
  • a core-sheath fiber having a non-hydrolyzable resin as a sheath and an ester-decomposable resin as a core is a preferred form. That is, by adopting such a form of the shell core structure, hydrolysis proceeds rapidly when water penetrates into the core portion, and the handleability as a fracturing fluid is enhanced.
  • such a hydrolyzable resin material is usually present in an aqueous dispersion in an amount of 0.01 to 20% by weight, particularly 0.01 to 10% by weight. It is suitable for carrying out crushing smoothly.
  • a water-absorbing polymer such as polyvinyl alcohol or CMC can be blended.
  • a water-soluble polymer hydrolysis before hydraulic crushing can be suppressed, and handling as a fracturing fluid can be improved.
  • the amount used is usually 50 parts by weight or less, especially 1 to 100 parts by weight per 100 parts by weight of the hardly hydrolyzable resin. A range of 10 parts by weight is preferred.
  • an enzyme can be blended in addition to the above-described hydrolyzable resin material, and the enzyme can ensure high degradability at a low temperature of 50 ° C. or lower.
  • the mass retention rate when maintained at a temperature of 45 ° C. for 96 hours (4 days) is much higher than 50%.
  • the excavation dispersion liquid of the present invention in which an enzyme is blended is extremely useful as a fracturing fluid for excavation at an underground temperature of 50 ° C. or lower.
  • an appropriate one is used according to the type of the enzyme-decomposable resin to be used, and particularly when a hydrolyzable resin such as polylactic acid, polyoxalate, polyglycolic acid or the like is used.
  • a hydrolyzable resin such as polylactic acid, polyoxalate, polyglycolic acid or the like
  • protease, cellulase, cutinase, lipase, esterase, chitinase, xylase, PHB depolymerase and the like are preferable, and in particular, at least one of protease, cutinase and lipase is most preferable.
  • These enzymes may be immobilized or not.
  • protease K manufactured by Wako Pure Chemical Industries, Ltd. is used in the form of an aqueous solution.
  • microorganisms may be put in and the extracellular enzyme may be used, and the culture medium component and nutrient component which the microorganism requires may be added.
  • the above-mentioned enzyme varies depending on the kind thereof, but is usually used at a rate of 10 to 200, particularly 25 to 100 parts by weight per 100 parts by weight of the above-mentioned hydrolyzable resin material (ie, enzyme-decomposable resin material). .
  • blended with a well drilling method or a hydraulic crushing method can be mix
  • a surfactant for dispersing the hydrolyzable resin material can be blended, and furthermore, an appropriate amount of acid or acid can be added to appropriately promote the hydrolysis of the hydrolyzable resin material. Alkali can be added in advance.
  • a buffer solution can also be blended in order to suppress the pH change accompanying the progress of hydrolysis of the hydrolyzable resin material and always ensure stable hydrolyzability.
  • buffers include glycine-HCl buffer, phosphate buffer, Tris-HCl buffer, acetate buffer, citrate buffer, citrate-phosphate buffer, borate buffer, tartrate buffer, Examples include glycine-sodium hydroxide buffer, carbonate-bicarbonate buffer, Bistris buffer, Good's buffer (MES, ADA, PIPES, MOPS, HEPES, CHES), and Britton-Robinson buffer.
  • a solid neutralizing agent may be used in place of the buffer solution, and water may be used as the solvent. Examples thereof include calcium carbonate, chitosan, and deprotonated ion exchange resin. This can be done by adding a neutralizing agent to the reaction solution. Moreover, you may add organic solvents, such as ethanol, as needed.
  • Any additive may be added in such an amount that the hydrolyzable resin material is dispersed in the aqueous dispersion in the amount described above and does not impair the function of the hydrolyzable resin.
  • the above-described dispersion for excavation of the present invention is extremely useful as a finishing fluid used for excavating a well, a fracturing fluid used for mining underground resources by a hydraulic fracturing method, and the like. Hereinafter, these uses will be described.
  • the solid content (that is, the hydrolyzable resin material) in the dispersion functions as a water loss preventing agent, and the solid cake is Although it will form on the wall surface of a well, this cake hydrolyzes and disintegrates after a predetermined time. Therefore, there is an advantage that the acid treatment for recovering the cake is not required.
  • this drilling dispersion may contain a water-blocking agent such as calcium carbonate to increase the water-blocking prevention property by increasing the cake strength, etc. Even in the case, since the acid generated by hydrolysis of the hydrolyzable resin material dissolves the anti-water loss agent such as calcium carbonate, the merit that the subsequent acid treatment is unnecessary is not impaired.
  • the amount of the anti-water loss agent is about 10 to 150 parts by weight per 100 parts by weight of the hydrolyzable resin material. is there.
  • the excavation dispersion liquid in which the above-mentioned hydrolyzable resin material is dispersed is pressed into the basement, and the hydrolyzable resin in the dispersion liquid is hydrolyzed at a temperature of 40 ° C. or higher. Therefore, for example, the target underground resource can be excavated by hydraulic fracturing using as a fracturing fluid.
  • a well is formed by excavating the formation where the target underground resource exists to form a pit, and then excavating in the horizontal direction to form a horizontal hole. Fracturing is performed by filling the well formed in this way with the above-described drilling dispersion liquid containing proppant and pressurizing the well. That is, by this pressurization, the hydrolyzable resin material and the proppant penetrate into the vicinity of the horizontal hole, and the hydrolyzable resin material is hydrolyzed and disappears to form a pillar structure. After the remaining dispersion is sucked, recovery of underground resources such as gas and oil is started.
  • the hydrolyzable resin material When the excavation dispersion liquid of the present invention is hydraulically crushed using a fracturing fluid, the hydrolyzable resin material is rapidly decomposed even at a temperature of about 80 ° C., so that it can be efficiently performed in a short time. .
  • fracturing fluid Other than fracturing fluid, it is also used as a plug or breakdown material.
  • it when excavating with a drill while recirculating muddy water, it can be used as a water loss adjusting agent in the finishing fluid, so that an acid treatment in a subsequent step is not necessary. In addition, there is no clogging and production trouble does not occur. Even if the resin penetrates a wider area than necessary and remains without being hydrolyzed, the resin is biodegradable and has no risk of adversely affecting the environment.
  • this drilling dispersion when used as a fracturing fluid, the hydrolyzable resin material hydrolyzes in a short time, so that a pillar-structured space (crack) is generated in the portion where the resin material has permeated.
  • the acid generated by hydrolysis dissolves minerals such as shale and promotes the formation of cracks. As a result, the production efficiency of excavation of shale gas or the like can be increased.
  • the hydrolyzable resin material in this dispersion can also function as a sealant that blocks the flow path in the well, but since it hydrolyzes after that, problems such as clogging due to sedimentation of the sealant Can be avoided and the production efficiency can be increased.
  • the dispersion liquid can be mixed with a gelling agent such as chitosan that dissolves at a low pH to increase the viscosity of the fluid by gelation in the well. That is, the pH is lowered by the acid due to hydrolysis of the hydrolyzable material, and the gelling agent is dissolved in the dispersion, resulting in gelation and thickening. Therefore, it is possible to effectively infiltrate the liquid into the vicinity of the well by the press-fitting of the fluid, and also to efficiently transfer the proppant (support material). Furthermore, since the above gel increases the acid amount due to subsequent hydrolysis and rapidly degrades (lower viscosity) due to further pH reduction, the fracturing fluid can also be collected effectively and productivity can be improved. Can be increased.
  • a gelling agent such as chitosan that dissolves at a low pH to increase the viscosity of the fluid by gelation in the well. That is, the pH is lowered by the acid due to hydrolysis of the hydrolyzable material, and the
  • the above-described excavation dispersion is press-fitted into the underground well in a form in which the hydrolyzable resin material and other materials are dispersed in water, but it is also possible to add an enzyme later. It is.
  • an aqueous solution of the enzyme can be supplied later after a liquid in which components other than the enzyme are dispersed in water is injected into the well.
  • the water used as the dispersion medium is heated to the temperature in the ground depending on the position of the well, it may be mixed with various materials at room temperature. If it does, it may be mixed with other dispersion components at 50 ° C. or less at which the enzyme is not inactivated.
  • the invention is illustrated by the following examples.
  • the various measurements performed in the experimental examples are based on the following methods.
  • the taken-out polymer was granulated with a crusher, and crystallized by vacuum drying at 110 ° C. for 4 hours.
  • the obtained polymer had a weight average molecular weight of 70,000, a melting point of 180 ° C., and a glass transition temperature of 35 ° C.
  • ⁇ Ester-decomposed resin-containing PLA pellet production of hydrolyzable resin material> PEOx is dry blended with polylactic acid (PLA: Natureworks 4032D) and melt-mixed at 200 ° C using a twin screw extruder (Technobel ULT Nano05-20AG) to produce master pellets, which are then hydrolyzed. A sample of a functional resin material was used.
  • hydrolyzability was evaluated using distilled water, a guar gum aqueous solution (a guar gum 0.7 wt% aqueous solution), and an alkali aqueous solution (a 1 wt% sodium hydroxide aqueous solution).
  • Example 14 As hydrolyzable resin materials, pellets of polylactic acid (PLA) and pellets of mixed resin (PEOx 40% PLA) with a content of polyethylene oxalate (PEOx) per PLA of 40% by weight were prepared. Each of these hydrolyzable resin material pellets was vacuum-dried at 120 ° C. for 3 hours for crystallization. 14 mg of the above pellets and 10 ml of distilled water were added to a 25 ml vial. The vial was placed in a 70 ° C. oven and stored in a stationary state. After 4 days, the pellets were collected, and after drying, the weight was measured and the decomposition rate was calculated. The results are shown in Table 2 below.
  • the temperature of the column oven was 40 ° C., chloroform was used as the eluent, and the flow rate was 0.5 ml / min.
  • the sample injection volume was 20 ⁇ l.
  • the standard used was chloroform dissolved in chloroform.
  • PLA did not collapse, but PEOx 40% PLA easily collapsed due to porosity and molecular weight reduction by hydrolysis. From this, it can be seen that PEOx-containing PLA effectively functions as a sealing material, and after it has been sealed in the well, it hydrolyzes with time and easily collapses due to the pressure in the well. The collapsed PEOx-containing PLA decomposition residue is easily recovered along with the well water.
  • hydrolyzable resin materials pellets of polylactic acid (PLA), pellets of mixed resin (PEOx 5% PLA) with a content of polyethylene oxalate (PEOx) per PLA of 5% by weight, and a content of PEOx of 40% by weight And a mixed resin (PEOx40% PLA) pellet.
  • PPA polylactic acid
  • PEOx 5% PLA pellets of mixed resin
  • PEOx40% PLA mixed resin
  • Each of these hydrolyzable resin material pellets was vacuum-dried at 120 ° C. for 3 hours for crystallization.
  • 250 mg of calcium carbonate and 50 ⁇ l of water were added and allowed to stand at 120 ° C. for 3 hours. Thereafter, 10 ml of water was added and the solution was collected after 3 hours, and the amounts of calcium lactate and oxalic acid were measured by HPLC.
  • Table 4 results are shown in Table 4.
  • the amount of calcium lactate produced from PEOx-containing PLA is 20 times or more compared to PLA. From this, it can be seen that PEOx-containing PLA has a high dissolution rate of minerals containing calcium components such as shale, and is highly applicable as so-called acid fracture. By the way, in the above results, oxalic acid is hardly eluted. For this reason, possibility that it newly precipitated as calcium oxalate is considered. Thus, an elution amount of oxalic acid was measured by combining an experimental system excluding calcium carbonate.
  • the PLA crystallized powder containing 5% PEOx had 20 times the dissolution amount of lactic acid (20 times degradation rate) compared to PLA, that is, mixed with calcium carbonate. It can be seen that the excavation dispersion of the present invention can be suitably used as a finishing fluid because it is excellent in suitability for an easily self-degradable filter cake (that is, characteristics as a water escape inhibitor).
  • Example 17 In exactly the same manner as in Experimental Example 14, a crystallization pellet of PLA and a crystallization pellet of PEOx 40% PLA were prepared. To a 25 ml vial, 5 ml of water, 0.2 g of chitosan (gelling agent) and 1 g of the above crystallization pellets were added, and placed in an oven at 70 ° C. and stored still. The change in fluidity with time was observed. The results are shown in Table 7, where the liquid that gelled and lost its fluidity was indicated by ⁇ , the liquid that exhibited fluidity but a viscosity higher than water was indicated by ⁇ , and the liquid equivalent to water was indicated by x.
  • Table 7 The results are shown in Table 7, where the liquid that gelled and lost its fluidity was indicated by ⁇ , the liquid that exhibited fluidity but a viscosity higher than water was indicated by ⁇ , and the liquid equivalent to water was indicated by x.
  • PLA does not exhibit hydrolyzability at 70 ° C, so lactic acid is not released. As a result, gelation does not occur because the pH of the solution does not decrease and chitosan does not dissolve.
  • PLA containing 40% PEOx hydrolyzes at 70 ° C., releasing oxalic acid, lowering the pH and dissolving chitosan into a gel. Furthermore, it has been found that when the amount of oxalic acid is large, the fluidity of the solution increases again after gelation.By increasing the PEOx content or increasing the amount of PEOx-containing PLA, A fracturing fluid can be obtained that can gel in the region and eliminates the need for a gel breaker.
  • the hydrolyzability confirmation test in these experimental examples was performed by the following method. Hydrolyzability evaluation; In a 25 ml vial, 15 mg of the master pellet prepared later was added to 10 ml of the dispersion medium together with a predetermined amount of enzyme, and stored at a temperature of 45 ° C. After 3 hours, 96 hours (4 days) and 168 hours (7 days), the pellets were taken out, dried in a vacuum dryer at 60 ° C. for 4 hours, the weight was measured, and the weight retention was measured. The weight retention was calculated by the following formula.
  • Weight retention 100 ⁇ ⁇ (initial weight ⁇ weight after decomposition) ⁇ 100 / initial weight ⁇ Evaluation is when the weight retention after 3 hours, after 96 hours and after 168 hours is 80% or more, 50% or less, 20% or less, ⁇ , 70% or more but less than 80%, more than 50% or less than 60%, 20 When it is over 30% and less than 30%, X is less than those.
  • Preparation of hydrolyzable resin samples Polylactic acid (PLA), polybutylene succinate (PBS: Mitsubishi Chemical Corporation GS Pla AZ91), polybutylene succinate adipate (PBSA: Mitsubishi Chemical Corporation GS Pla AD92) or dry blend of these with PEOx (weight ratio 95) : 5) was melt-mixed at 200 ° C. using a twin screw extruder (ULT Nano05-20AG manufactured by Technobel) to produce a master pellet, which was used as a sample of the hydrolyzable resin material.
  • PEOx weight ratio 95

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明の掘削用分散液は、難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む加水分解性樹脂材料が水性媒体中に分散していることを特徴とする。この掘削用分散液は、高い加水分解性を示し、さらには安価な加水分解性樹脂材料が使用され、水圧破砕法、ロータリー式掘削法、ライザーレス掘削法等の坑井掘削法により採取する際に使用される掘削用分散液として好適に使用される。

Description

掘削用分散液及びそれを用いた地下資源の採掘方法
 本発明は、石油、天然ガスなどの地下資源を、水圧破砕法、ロータリー式掘削法、ライザーレス掘削法等の坑井掘削法により採取する際に使用される掘削用分散液に関する。
 地下資源の採取のために、水圧破砕法、ロータリー式掘削法、ライザーレス掘削法等の坑井掘削法が現在広く採用されている。
 ロータリー式掘削法では、泥水を還流しながらドリルにより掘削して坑井が形成され、仕上げ流体として、逸水防止剤が配合されているものが用いられ、坑井の壁面に泥壁と呼ばれるフィルターケーキが形成される。このケーキにより、坑壁を安定的に保って崩壊を防いだり、坑井を流れる流体との摩擦軽減がなされる。
 また水圧破砕法は、坑井内を満たした流体を高圧で加圧することにより、坑井近傍に亀裂(フラクチュア)を生成せしめ、坑井近傍の浸透率(流体の流れ易さ)を改善し、坑井へのオイルやガスなどの資源の有効な流入断面を拡大し、坑井の生産性を拡大するというものである。
 ところで、前述した仕上げ流体に配合される逸水防止剤としては、炭酸カルシウムや各種塩類の顆粒が主に用いられているが、このような逸水防止剤の使用は、これを取り除く際に酸処理を必要とすることや、資源を採掘しようとする地層に根詰まりして生産障害をもたらすという問題がある。
 また水圧破砕法で用いられる流体は、フラクチュアリング流体とも呼ばれ、古くはジェル状のガソリンのような粘性流体が使用されていたが、最近では、比較的浅いところに存在する頁岩層から産出するシェールガスなどの開発に伴い、環境に対する影響を考慮し、水にポリマーを溶解乃至分散させた水性分散液が使用されるようになってきた。このようなポリマーとしては、ポリ乳酸が知られている(特許文献1参照)。
 即ち、ポリ乳酸は加水分解性と生分解性を示す物質であり、地中に残存したとしても、地中の水分や酵素により分解するため環境に対して悪影響を与えることがない。また、分散媒として用いられている水も、ガソリンなどと比較すれば、環境に対する影響はほとんどないといってよい。
 また、このようなポリ乳酸の水分分散液を坑井中に満たし、これを加圧したとき、ポリ乳酸が坑井近傍に浸透していくが、このポリ乳酸は加水分解して樹脂の形態を失っていくこととなり、このポリ乳酸が浸透していた部分に空間(即ち、亀裂)が生成し、従って、坑井への資源の流入空間を増大することが可能となるわけである。
 さらに、ポリ乳酸は、逸水防止剤としても機能し、分散媒として使用されている水の地中への過度の浸透を抑制するため、地層に与える環境変化を最小限に抑制するという利点を有する。また、地中で分解するため酸処理も不要となる。
 加えるに、ポリ乳酸の分解物である乳酸は有機酸の一種であり、ポリ乳酸が分解後、乳酸が放出され、シェール層を酸浸食することで、シェール層の多孔化を促進する機能もある。
 しかしながら、ポリ乳酸は、高い温度では比較的早く加水分解するものの、温度が低くなるとともに加水分解速度は遅く、従って、地中温度の低い箇所から産出するシェールガスなどの採取に適用する場合には、その効率が悪く、改善が求められている。
 一方、ポリ乳酸に代えて、ポリグリコール酸を使用することが提案されている(特許文献2参照)。
 ポリグリコール酸も生分解性樹脂として知られており、しかも、ポリ乳酸に比して加水分解性が高く、例えば80℃程度の温度での加水分解速度がポリ乳酸に比してかなり速く、ポリ乳酸の代替えとして効果的である。
 しかしながら、ポリグリコール酸は、ポリ乳酸に比してかなり高コストであるという問題があり、これは、多量のフラクチュアリング流体が使用される水圧破砕法では致命的な欠点となっている。また、特定の温度条件下では、十分満足する分解性が得られない。
USP7,833,950 WO2012-050187
 従って、本発明の課題は、高い加水分解性を示し且つ安価な加水分解性樹脂材料が水性媒体に分散されており、坑井の掘削に際しての仕上げ流体や水圧破砕法に使用されるフラクチュアリング流体として有用な掘削用分散液を提供することにある。
 本発明によれば、難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む加水分解性樹脂材料が水性媒体中に分散していることを特徴とする掘削用分散液が提供される。
 本発明によれば、さらに、掘削により形成された坑井から地下資源を採掘する方法において、前記掘削用分散液を坑井に圧入し40℃以上の水中で加水分解性樹脂材料の加水分解を行う工程を含む採掘方法が提供される。
 本発明の掘削用分散液においては、
(1)エステル分解促進性の加水分解性樹脂が酸放出性のものであること、
(2)放出される酸がグリコール酸およびまたはシュウ酸であること、
(3)前記酸放出性の加水分解性樹脂が、ポリオキサレートであること、
(4)前記難加水分解性の加水分解性樹脂がポリ乳酸であること、
(5)前記難加水分解性の加水分解性樹脂100重量部に対して、エステル分解促進性の加水分解性樹脂を30重量部以上含有していること、
(6)さらに酵素が配合されていること、
(7)前記酵素が、プロテアーゼ、リパーゼ及びクチナーゼから選択される少なくとも1種であること、
が好ましい。
 本発明の掘削用分散液においては、水性媒体に分散されている加水分解性樹脂材料が、ポリ乳酸に代表される安価な難加水分解性の加水分解性樹脂を主成分としているため、ポリグリコール酸を用いた先行技術と比較して、コスト的なメリットが大きい。
 しかも、本発明では、難加水分解性の加水分解性樹脂にエステル分解促進性の加水分解性樹脂(例えばポリオキサレート)が併用されているため、難加水分解性の加水分解性樹脂の加水分解性が著しく改善され、例えば、80℃以下の低温での加水分解速度が著しく高められている。即ち、エステル分解促進性の加水分解性樹脂から放出される酸やアルカリが触媒となって、ポリ乳酸等の加水分解が促進されるわけである。この場合、エステル分解促進性の加水分解性樹脂の代わりに、酸やアルカリを直接添加しておくことも考えられるが、この場合には、坑井に充満させ或いは加圧する前に加水分解性樹脂の加水分解が進行してしまうため、実用に供することができない。
 地下資源を採掘する場合、地下資源が存在する地下層の温度は、採掘条件等に大きな影響を与える。加水分解性樹脂を水に分散した採掘用分散液において、加水分解性樹脂には、45℃以上200℃以下の温度域で4日以内に40%程度(或いはそれ以上)の重量減少を示す加水分解性能が求められており、特に現在では、シェール層のように地中の浅い場所に存在している地層からの資源の採取が多く行われ、例えば地層温度が40℃~80℃、さらには、40℃~60℃の場所からの採取も行われることが多い。
 上述した難加水分解性の加水分解性樹脂(例えばポリ乳酸)とエステル分解促進性の加水分解性樹脂(例えばポリオキサレート)とを組み合わせて加水分解性樹脂材料として用いた本発明の掘削用分散液は、上記のような加水分解性能を十分に満足するものであり、例えば坑井の掘削に際して使用される仕上げ用流体や、水圧破砕法に用いるフラクチュアリング流体として特に好適に使用される。
 さらに、酵素を含む本発明の掘削用分散液は、50℃以下(すなわち、酵素の失活温度以下)、特に40~50℃の低温領域でも高い加水分解性を示し、浅い地層からの採掘に有利である。
 即ち、本発明の掘削用分散液を仕上げ流体として用いた場合には、坑井の壁面に形成される炭酸カルシウムなどの固形分(逸水防止剤)のフィルターケーキを、加水分解性樹脂材料の加水分解によって生成した酸によって分解させることができるため、その後の酸処理が不要となり、速やかに逸水防止剤を回収することができる。また、この分散液中の加水分解性樹脂材料(固形分)自体が逸水防止剤としての機能をも有するため、この固形分によって形成されたフィルターケーキにより坑井からの水の逸水(地中への水の浸透)を防止することができ、所定期間経過後は、このケーキは加水分解するため、やはり格別の酸処理を行うことなく、回収することができる。
 また、この掘削用分散液をフラクチュアリング流体として用いた場合には、この分散液を坑井に充満させて加圧したとき、坑井の近傍に加水分解性樹脂材料が浸透していくが、地中温度が低い場合にも、この加水分解性樹脂材料が短時間で加水分解するため、この樹脂材料が浸透した部分にピラー構造の空間(亀裂)を生成させることができ、例えばシェールガス等の掘削の生産効率を高めることができる。しかも、加水分解性分性樹脂材料の加水分解により生成した酸が、頁岩などの鉱物を溶解するため、亀裂の生成を促進させることができる。
 さらに、この分散液中の加水分解性樹脂材料は、坑井中の流路を遮断する目止剤としても機能させ得るが、その後に加水分解するため、目止剤の沈降による目詰まりなどの問題も回避でき、生産効率を高めることができる。
 さらにまた、この分散液に低pH下で溶解するキトサンなどのゲル化剤を配合することにより、上記加水分解性樹脂材料の加水分解により生成する酸によって、坑井中でゲル化を生じせしめて流体の高粘性化を図り、これにより、流体の圧入による液の坑井近傍への浸透を効果的に行うことができると同時に、さらなる加水分解により生成する酸によりゲルの分解(低粘性化)を行うことができ、その後のフラクチュアリング流体の回収も効果的に行うことができる。
実験例14における加水分解試験後の試料の分子量分布を示す図。
 本発明の掘削用分散液は、加水分解性樹脂材料が水性媒体に分散された分散液であり、これには、必要に応じて吸水性ポリマーや酵素を配合することができるし、さらに、坑井掘削や水圧破砕を実施するために配合される公知の添加剤が適宜配合される。
<加水分解性樹脂材料>
 本発明において、用いる加水分解性樹脂材料は、難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む。
1.難加水分解性の加水分解性樹脂;
 難加水分解性の加水分解性樹脂は、この樹脂材料の主成分となるものであり、例えば、加水分解性樹脂を凍結粉砕し粉体化した試料で、1mg/1ml濃度の水分散液を作製し、45℃で一週間インキュベート後、残液のTOC(総有機炭素量)が5ppm以下であるものを意味する。さらに水溶性のポリマーは含まない。水溶性のポリマー(例えば、20℃の水に対する溶解度が50g/100g以上)は、地中への浸透性が高すぎ、例えば環境に与える影響が大きく、フラクチュアリング流体に用いる配合剤としては適さない。
 上記のような難加水分解性の加水分解性樹脂の例としては、ポリ乳酸、ポリヒドロキシアルカノエート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンテレフタレートアジペート、酢酸セルロース、熱可塑性澱粉などを例示することができ、これらは共重合体やブレンド物の形で使用することもできるが、特にコストの点からポリ乳酸が最適である。
 ポリ乳酸は、100%ポリ-L-乳酸或いは100%ポリ-D-乳酸の何れであってもよいし、ポリ-L-乳酸とポリ-D-乳酸の溶融ブレンド物でもよく、また、L-乳酸とD-乳酸とのランダム共重合体やブロック共重合体であってもよい。
 さらに、上記の加水分解性樹脂は、その加水分解性樹脂の特性が損なわれない限り、各種の脂肪族多価アルコール、脂肪族多塩基酸、ヒドロキシカルボン酸、ラクトンなどが共重合された共重合体の形態で使用することもできる。
 このような多価アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ポリエチレングリコールなどを例示することができる。
 多塩基酸としては、コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキサンジカルボン酸、テレフタル酸を例示することができる。カルボン酸ジエステルを用いてもよい。
 ヒドロキシカルボン酸としては、グルコール酸、ヒドロキシプロピオン酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸を挙げることができる。
 ラクトンとしては、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトン、グリコリド、マンデライドなどを挙げることができる。
 また、このような難加水分解性樹脂には、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤が配合されていてもよい。
 また、上述した難加水分解の加水分解性樹脂は、フラクチュアリング流体として用いたときの目止材としての機能及び地中への浸透性の点で適宜の分子量を有しているべきであり、一般に、重量平均分子量が5,000乃至1,000,000、特に10,000乃至500,000の範囲にあるのがよい。
2.エステル分解促進性の加水分解性樹脂;
 上述した加水分解性樹脂、例えばポリ乳酸は難加水分解性であり、100℃以下の温度、特に80℃以下の低温では、その分解に著しく長期間を要する。このため、本発明では、以下に述べるエステル分解促進性の加水分解性樹脂が配合される。
 このエステル分解促進性の加水分解性樹脂(以下、単に「エステル分解性樹脂」と略すことがある)は、それ単独ではエステル分解能を示さないが、水分と混合したときにエステル分解の触媒として機能する酸或いはアルカリを放出するものである。
 尚、当該エステル分解性樹脂は、前述した方法で測定したTOC値は5ppmよりも高く、難加水分解性樹脂とは明確に異なっている。
 このようなエステル分解性樹脂は、通常、上記の難加水分解性の加水分解性樹脂の内部に均一に分散され、このエステル分解性樹脂から放出される酸或いはアルカリによっての加水分解性樹脂の加水分解を迅速に促進するために、例えば、その重量平均分子量が1000乃至200000程度のものが使用される。
 また、かかるエステル分解性樹脂において、アルカリ放出性のものとしては、アクリル酸ソーダ等のアクリル酸のアルカリ金属塩やアルギン酸ソーダ等を用いることができるが、アルカリ放出による環境への悪影響が大きいため、特に酸放出性のものが好適に使用される。
 酸放出性のエステル分解性樹脂から放出される酸としては、特に、0.005g/ml濃度の水溶液乃至水分散液でのpH(25℃)が4以下、特に3以下を示すものであり、水と混合したときに容易に加水分解して酸を放出するポリマーが好適に使用される。放出される酸としては、シュウ酸やグリコール酸が挙げられる。
 上記ポリマーとして、例えば、ポリオキサレート、ポリグリコール酸などが挙げられる。これらはコポリマー、単独での使用、2種以上を組み合わせての使用でもよい。
 コポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸やそのジエステル;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 また、このようなエステル分解性樹脂にも、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤が配合されていてもよい。
 なお、本明細書では、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとする。
 特に、上記のポリオキサレートやポリグルコール酸は易加水分解性の加水分解性樹脂であり、速やかに加水分解するため、難加水分解性樹脂の加水分解促進能に優れている。これらの中でも、ポリオキサレート、特にポリエチレンオキサレートは、ポリグリコール酸に比しても著しく高い加水分解促進能を示し、80℃以下の温度でもポリ乳酸等の難加水分解性樹脂の加水分解を著しく促進させることができ、しかもポリグリコール酸に比してもかなり安価であり、コストのメリットも極めて大きい。
 また、上述したエステル分解性樹脂は、その種類によっても異なるが、一般に、前記難加水分解性の加水分解性樹脂100重量部当り1重量部以上配合されることが、加水分解促進の点で好ましく、特に加水分解促進性とコストの観点から、30乃至300重量部の量、特に30乃至200重量部の量で使用することが好ましい。エステル分解樹脂の使用量が少なすぎると、難加水分解性の加水分解性樹脂の分解を十分に促進させることが困難となり、例えば80℃程度での温度では、加水分解にかなりの時間を要するようになってしまう。また必要以上に多量に使用すると、コストの点で不満足となってしまうばかりか、加水分解速度が速すぎてフラクチュアリング流体や逸水調整剤としての取り扱いに難を生じるおそれがある。
3.加水分解性樹脂材料の形態;
 本発明において、上述した難加水分解性の加水分解性樹脂(難加水分解性樹脂)とエステル分解促進性の加水分解性樹脂(エステル分解性樹脂)とを含む生分解樹脂材料は、それ自体公知の成形手段により、ペレット、粒状物、フィルムを破断して得られる破砕物、繊維或いはカプセル等の形態に成形され、水に分散される。
 即ち、ポリ乳酸に代表される難加水分解性樹脂とエステル分解性樹脂とを密接した状態で分散液中に存在せしめることにより、エステル分解性樹脂から放出される酸等により、難加水分解性樹脂の加水分解を促進させることができるわけである。
 また、本発明においては、難加水分解性樹脂とエステル分解性樹脂とを密接した状態で存在しており且つ適度な大きさを有している限り、その形態は、前述した例に限定されるものではないが、特に好ましくは、難加水分解性樹脂をシェルとし、エステル分解性樹脂をコアとするシェルコア構造を有していることが好ましい。例えば、上記の繊維では、難加水分解性樹脂を鞘、エステル分解性樹脂を芯とする芯鞘繊維が好ましい形態である。即ち、このようなシェルコア構造の形態を採用することにより、水がコアの部分に浸透した段階で急速に加水分解が進行することとなり、フラクチュアリング流体としての取り扱い性が高められることとなる。
 本発明において、このような加水分解性樹脂材料は、通常、水性分散液中に0.01乃至20重量%、特に0.01乃至10重量%の量で存在せしめるのが、坑井掘削や水圧破砕をスムーズに実施するうえで好適である。
<吸水性ポリマー>
 また、本発明においては、上述した難加水分解性樹脂とエステル分解性樹脂に加え、吸水性のポリマー、例えば、ポリビニルアルコールやCMCなどを配合しておくこともできる。このような水溶性ポリマーの配合により、水圧破砕を実施する前の加水分解を抑制し、フラクチュアリング流体としての取り扱い性を高めることができる。
 ただし、吸水性ポリマーの使用が多すぎると、エステル分解性樹脂の機能が損なわれるおそれがあるので、通常、その使用量は、難加水分解性樹脂100重量部当り50重量部以下、特に1乃至10重量部の範囲が好ましい。
<酵素>
 本発明の掘削用分散液においては、上述した加水分解性樹脂材料に加えて酵素を配合することができ、かかる酵素により50℃以下の低温で高い分解性を確保することができる。例えば、酵素が配合されておらず、ポリ乳酸が水に分散されている液では、45℃の温度に96時間(4日)保持した時の質量保持率は50%をはるかに上回る。一方、酵素を配合した場合には、45℃の温度での保持時間が3時間で80%以上であり、適度な安定性を有しており、坑井に充満させ或いは加圧する前に樹脂の分解が進行してしまうという不都合は有効に回避できると同時に、保持時間が96時間(4日間)での質量保持率は50%以下、及び168時間(7日間)での質量保持率は20%以下に調整することができ、極めて高い加水分解性を示す。
 このことから理解されるように、酵素が配合されている本発明の掘削用分散液は、地中温度が50℃以下の温度での掘削にフラクチュアリング流体として極めて有用である。
 このような酵素としては、用いる酵素分解性樹脂の種類に応じて適宜のものが使用されるが、特に、ポリ乳酸、ポリオキサレート、ポリグリコール酸などの加水分解性樹脂が使用されている場合には、プロテアーゼ、セルラーゼ、クチナーゼ、リパーゼ、エステラーゼ、キチナーゼ、キシラーゼ、PHBデポリメラーゼ等が好ましく、特に、プロテアーゼ、クチナーゼ及びリパーゼの少なくとも1種が最も好ましい。
 これらの酵素は固定化していても固定化していなくてもよい。例えば和光純薬工業株式会社製のプロテアーゼKなどが水溶液の形で使用される。また微生物を入れ、その菌体外酵素を用いてもよく、その微生物が必要とする培地成分や栄養成分が添加されていてもよい。
 上述した酵素は、その種類によっても異なるが、通常、前述した加水分解性樹脂材料(すなわち、酵素分解性樹脂材料)100重量部当り10~200、特に25~100重量部の割合で使用される。
<その他の添加剤>
 本発明において、上述した加水分解性樹脂材料が分散された水分散液には、坑井掘削法や水圧破砕法で配合される公知の添加剤を配合することができる。
 例えば、水圧破砕法の場合、増粘剤としてグアガムやキトサンなどの水溶性多糖類(ゲル化剤)、砂(支持剤)を含むプロパントとして配合しておくことにより、水圧破砕で生成した亀裂が閉塞しないように保持しておくことができる。
 また、加水分解性樹脂材料を分散させるための界面活性剤を配合しておくこともできるし、さらには、加水分解性樹脂材料の加水分解を適度に促進させるために、適度の量の酸やアルカリを添加しておくこともできる。
 さらに、加水分解性樹脂材料の加水分解の進行に伴うpH変化を抑制し、常に安定した加水分解性を確保するために、緩衝液を配合することもできる。このような緩衝液としてはグリシン-塩酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、クエン酸-リン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、グリシン-水酸化ナトリウム緩衝液、炭酸-重炭酸緩衝液、ビストリス緩衝液、Good‘s緩衝液(MES、ADA、PIPES、MOPS、HEPES、CHES)、Britton-Robinson緩衝液などが挙げられる。また、緩衝液の代わりに固体の中和剤を使用し、溶媒に水を用いてもよく、例えば炭酸カルシウム、キトサン、脱プロトンイオン交換樹脂などが挙げられる。反応液中に中和剤を加えておくことにより行うことができる。また必要に応じて、エタノールなどの有機溶媒を添加してもよい。
 何れの添加剤も、加水分解性樹脂材料が前述した量で水分散液中に分散されており且つ加水分解性樹脂の機能を損なわない程度の量で配合されていればよい。
 上述した本発明の掘削用分散液は、坑井の掘削に際して用いる仕上げ流体や、水圧破砕法により地下資源を採掘する際に使用されるフラクチュアリング流体等として極めて有用である。
 以下、これらの用途について説明する。
<仕上げ流体>
 ロータリー式掘削法等により坑井を掘削した際には、坑井の崩壊などを防止するために、この坑井に仕上げ流体を充満させておく必要がある。このような仕上げ流体には、炭酸カルシウムや各種塩類の顆粒などが逸水防止剤として配合されている。即ち、この仕上げ流体を坑井中に圧入することにより、坑井の壁面に逸水防止剤のフィルターケーキを生成させ、このケーキにより坑井からの仕上げ流体の逸水(坑井付近への流体の浸透)を防止するわけである。しかるに、このような逸水防止剤(フィルターケーキ)は、資源の採掘に際しては、目詰まりによる生産性の低下を回避するため、これを回収しておく必要があり、このために酸処理を行う必要がある。
 本発明の掘削用分散液を仕上げ用流体として使用する場合には、この分散液中の固形分(即ち、加水分解性樹脂材料)が逸水防止剤として機能し、この固形分のケーキが坑井の壁面に生成することとなるが、このケーキは、所定時間経過後は加水分解して崩壊する。従って、このケーキを回収するための酸処理が不要となるというメリットがある。勿論、この掘削用分散液に炭酸カルシウムなどの逸水防止剤を配合し、ケーキ強度の増大などにより逸水防止性を高め、さらには坑井の崩壊防止機能を高めることもでき、このような場合においても、加水分解性樹脂材料の加水分解によって生成する酸が、炭酸カルシウムなどの逸水防止剤を溶解するため、その後の酸処理が不要であるというメリットは損なわれない。
 尚、本発明の掘削用分散液に炭酸カルシウムなどの逸水防止剤を配合する場合、該逸水防止剤の量は、加水分解性樹脂材料100重量部当り10~150重量部程度が適量である。
<水圧破砕による掘削>
 本発明においては、上述した加水分解性樹脂材料が分散されている掘削用分散液は、これを地下に圧入し、40℃以上の温度で該分散液中の加水分解性樹脂を加水分解することができるため、例えばフラクチュアリング流体として用いての水圧破砕により、目的とする地下資源の掘削を行うことができる。
 具体的には、目的とする地下資源が存在する地層まで掘削を行って竪穴を形成し、次いで水平方向に掘削を行って水平穴を形成することにより坑井を形成する。
 このようにして形成された坑井に、上述したプロパントを含む掘削用分散液を充満させ、加圧することによりフラクチュアリングを行う。即ち、この加圧により、水平穴の近傍に加水分解性樹脂材料とプロパントが浸透していき、該加水分解性樹脂材料が加水分解して消滅し、ピラー構造を形成することとなる。残存する分散液を吸引後、ガスやオイルなどの地下資源の回収が開始される。
 本発明の掘削用分散液をフラクチュアリング流体を用いて水圧破砕を行った場合には、加水分解性樹脂材料が80℃程度の温度でも速やかに分解するため短時間で効率よく行うことができる。フラクチュアリング流体以外として、プラグやブレークダウン材としても利用される。
 また、泥水を還流しながらドリルにより掘削する場合には、仕上げ流体中の逸水調整剤として用いることができ後工程の酸処理が不要となる。また目詰まりもなく生産障害が生じない。
 仮に樹脂が必要以上に広範囲の領域に浸透し且つ加水分解せずに残存したとしても、係る樹脂は生分解性であり、環境に悪影響を与えるおそれはない。
 また、この掘削用分散液をフラクチュアリング流体として用いた場合には、加水分解性樹脂材料が短時間で加水分解するため、この樹脂材料が浸透した部分にピラー構造の空間(亀裂)を生成させるばかりか、加水分解により生成した酸が、頁岩などの鉱物を溶解して亀裂の生成を促進する。この結果、シェールガス等の掘削の生産効率を高めることができる。
 さらに、この分散液中の加水分解性樹脂材料は、坑井中の流路を遮断する目止剤としても機能させ得るが、その後に加水分解するため、目止剤の沈降による目詰まりなどの問題も回避でき、生産効率を高めることができる。
 尚、この分散液には、低pH下で溶解するキトサンなどのゲル化剤を配合し、坑井中でゲル化による流体の高粘性化を図ることができる。即ち加水分解性材料の加水分解により酸によってpHが低下し、ゲル化剤が分散液中に溶解し、この結果、ゲル化が生じ増粘することとなる。従って、流体の圧入による液の坑井近傍への浸透を効果的に行い、さらにはプロパント(支持材)の移送も効率よく行うことができる。
 さらに、上記のゲルは、その後の加水分解により酸量が増え、さらなるpH低下によって速やかに分解(低粘性化)するため、フラクチュアリング流体の回収も効果的に行うことができ、生産性を高めることができる。
 尚、本発明において、上述した掘削用分散液は、加水分解性樹脂材料及びその他の材料が水に分散された形で地中の坑井に圧入されるが、酵素を後添加することも可能である。例えば、酵素以外の成分が水に分散した液を坑井に圧入した後、酵素の水溶液を後から供給することもできる。
 さらに、分散媒として使用される水は、坑井の位置に応じて地中の温度に加熱されるため、室温で各種の材料と混合されていてもよいが、予め40℃以上(酵素を配合する場合は、酵素が失活しない50℃以下)で、他の分散成分と混合されていてもよい。
 本発明を次の例で説明する。
 尚、実験例で行った各種測定は、以下の方法による。
<融点、ガラス転移温度の測定>
装置:セイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)
試料調整:試料量5~10mg
測定条件:窒素雰囲気下、10℃/minの昇温速度で0℃~250℃の範囲で測定。
<分子量の測定>
装置:ゲル浸透クロマトグラフGPC
検出器:示差屈折率検出器RI(Waters製RI-2414型、感度512)
カラム:昭和電工製Shodex HFIP-LG(1本)、HFIP-806M(2本)
溶媒:ヘキサフルオロイソプロパノール(5mM トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約1.5mgに溶媒5mLを加え、室温で緩やかに攪拌した(試料濃度約0.03%)。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した(秤量から繰り返し2回行った)。全ての試料について、調製開始から約1時間以内に測定を行った。
<ポリエチレンオキサレート(以下「PEOx」と略す)の合成>
 マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた1Lのセパラブルフラスコに,
   シュウ酸ジメチル 472g(4mol)
   エチレングリコール 297g(4.8mol)
   テトラブチルチタネート 0.42g
を入れ、窒素気流下フラスコ内温度を120℃からメタノールを留去しながら180℃まで加熱し7時間反応させた。最終的に270mlのメタノールを留去した。
 その後、内温170℃~190℃に段階的に昇温し、0.1kPa~0.2kPaの減圧度で7時間反応後、粘度が上がり取り出した。
 取り出したポリマーをクラッシャーで造粒し、110℃で4時間真空乾燥処理し結晶化させた。
 得られたポリマーは重量平均分子量70000、融点180℃、ガラス転移温度35℃であった。
<エステル分解樹脂含有PLAペレット(加水分解性樹脂材料の作製>
 ポリ乳酸(PLA:Natureworks社製4032D)にPEOxをドライブレンドし、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて200℃で溶融混合し、マスターペレットを作製し、これを加水分解性樹脂材料の試料とした。
<加水分解試験>
 25mlのバイアル瓶に、上記で作製されたペレット一粒を、分散媒10mlに加え、各温度で静置保管した。4日後にペレットを取りだし、60℃の真空乾燥機で4時間乾燥させ、重量を測定し、分解率を測定した。分解率は下記式で算出した。
  分解率=(初期重量-分解後重量)×100/初期重量
 分解率が40%以下を×、40%を越えたものを○と判定した。
 尚、分散媒としては、蒸留水、グアガム水溶液(グアガム0.7wt%水溶液)及びアルカリ水溶液(1wt%の水酸化ナトリウム水溶液)を用いて、加水分解性の評価を行った。
<実験例1~13、比較例1~5>
 加水分解性樹脂材料のペレットとして、ポリ乳酸(PLA)当りのポリエチレンオキサレート(PEOx)の含有率(重量%)が表1示すものを作製し、表1に示す温度(分解温度)の分散液に該ペレットを分散させ、その加水分解性を評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<実験例14>
 加水分解性樹脂材料として、ポリ乳酸(PLA)のペレットと、PLA当りのポリエチレンオキサレート(PEOx)の含有率が40重量%の混合樹脂(PEOx40%PLA)のペレットとを用意した。
 これらの加水分解性樹脂材料のペレットをそれぞれ、120℃で3時間真空乾燥し結晶化させた。
 25mlのバイアル瓶に上記ペレット14mg、蒸留水10mlを加えた。そのバイアル瓶を70℃のオーブンに入れ静置状態で保管した。4日後にペレットを回収し、乾燥後重量を測定し分解率を計算した。その結果は、以下の表2のとおりである。
Figure JPOXMLDOC01-appb-T000002
 さらに、上記の加水分解試験前後の各ペレットの分子量(Mw)を測定した。その結果は、表3に示した。
 また、加水分解試験前と加水分解試験後(4日後)のペレットについてのGPC測定にて分子量分布を図1に示した。サンプル調整はクロロホルムを溶媒として濃度3mg/mlとし、フィルターろ過したものを用いた。
 クロロホルム溶媒を用いたGPC測定;
 GPCには、東ソー株式会社製HLC-8120を用い、カラムとしてTSKgel SuperHM-H×2及びガードカラムとしてTSKguard column SuperH-Hを用いた。カラムオーブンの温度を40℃とし、溶離液としてクロロホルムを用い、流速を0.5ml/minとした。また、サンプル注入量は20μlとした。スタンダードはクロロホルムにポリスチレンを溶解させたものを用いた。
Figure JPOXMLDOC01-appb-T000003
 さらに、加水易分解試験後の各ペレットを指圧したところ、PLAは崩壊しなかったが、PEOx40%PLAは、加水分解による多孔化及び分子量低下により容易に崩壊した。
 このことから、PEOx含有PLAは、目止材として効果的に機能し、これで坑井内を目止めした後、時間とともに加水分解し、坑井内の圧力で容易に崩壊することが判る。
 崩壊したPEOx含有PLA分解残物は坑井内の水とともに容易に回収される。
<実験例15>
 加水分解性樹脂材料として、ポリ乳酸(PLA)のペレット、PLA当りのポリエチレンオキサレート(PEOx)の含有率が5重量%の混合樹脂(PEOx5%PLA)のペレット及びPEOxの含有率が40重量%の混合樹脂(PEOx40%PLA)のペレットとを用意した。
 これらの加水分解性樹脂材料のペレットをそれぞれ、120℃で3時間真空乾燥し結晶化させた。
 25mlのバイアル瓶に、上記の結晶化ペレット450mg、炭酸カルシウム250mg、水50μlを加え、120℃、3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCで乳酸カルシウム、シュウ酸量を測定した。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 上記の結果から理解されるように、PEOx含有PLAからの乳酸カルシウムの生成量はPLAと比較して20倍以上である。このことから、PEOx含有PLAは、頁岩等のカルシウム成分を含む鉱物の溶解速度が速く、所謂酸フラクチュアリング(acid fracture)として適用性が高いことが判る。
 ところで、上記の結果では、シュウ酸がほとんど溶出していない。このため、シュウ酸カルシウムとして新たに析出した可能性が考えられる。そこで、炭酸カルシウムを除いた実験系を組みシュウ酸の溶出量を測定した。
 25mlのバイアル瓶に、前述した結晶化ペレット450mg、水50μlを加え、120℃3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCでシュウ酸量を測定した。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 上記の結果から、PEOx5%含有PLAでもシュウ酸の溶出が認められた。つまり、炭酸カルシウムを混合した系では、PEOx40%含有PLAでは、その大部分がシュウ酸カルシウムとして析出していることを示している。このことから、Acid fractureとしての性能は、PEOx配合量が40%未満が好ましいことが判る。
<実験例16>
 PLAペレットとPEOx5%含有PLAペレットとを、それぞれ、120℃で3時間真空乾燥し結晶化させ、凍結粉砕にて結晶化粉末サンプルを作製した。
 25mlのバイアル瓶に、上記の結晶化粉末450mg、水50μlを加え、120℃3時間静置した。その後、水10mlを加え3時間後に液を採取し、HPLCで乳酸量を測定した。その結果を、表6に示した。
Figure JPOXMLDOC01-appb-T000006
 上記の結果から理解されるように、PEOx5%含有PLAの結晶化粉末では、PLAと比較し、乳酸の溶出量が20倍(分解速度が20倍)であった、つまり炭酸カルシウムと混合して用いることで、易自己分解性のフィルターケーキへの適性(即ち、逸水防止剤としての特性)に優れ、本発明の掘削分散液は仕上げ流体として好適に使用し得ることが判る。
<実験例17>
 実験例14と全く同様にして、PLAの結晶化ペレットと、PEOx40%PLAの結晶化ペレットとを用意した。
 25mlのバイアル瓶に水5ml、キトサン(ゲル化剤)0.2g、上記の結晶化ペレット1gを加え、70℃のオーブンに入れ静置保管した。経時による流動性の変化を観察した。
 ゲル化し流動性を失った液を○、流動性を示すが粘度が水より高い液を△、水と同等な液を×として、その結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 PLAは70℃では加水分解性を示さないため、乳酸が放出されない。その結果、液のpHが低下せずキトサンが溶解しないのでゲル化が生じない。
 一方でPEOx40%含有PLAは70℃で加水分解し、シュウ酸を放出するためpHが低下し、キトサンが溶解しゲル化する。
 さらにシュウ酸の量が多いと、一度ゲル化した後、溶液の流動性が再び増加することが分かっており、PEOxの含有量を増加させるかPEOx含有PLAの投入量を増加せることで、低温域でゲル化可能で、かつゲルブレーカーが不要となるフラクチャリング流体も得られる。
<酵素による加水分解性の確認>
 以下の実験は、酵素の配合により、加水分解性樹脂材料の加水分解性がどの程度向上するかを確認するために行った実験例である。
 これらの実験例での加水分解性確認試験は、以下の方法で行った。
加水分解性評価;
 25mlのバイアル瓶に、後述にて作製されたマスターペレット15mgを、所定量の酵素と共に、分散媒10mlに加え、45℃の温度で静置保管した。3時間後、96時間後(4日後)及び168時間後(7日後)にペレットを取りだし、60℃の真空乾燥機で4時間乾燥させ、重量を測定し、重量保持率を測定した。重量保持率は下記式で算出した。
  重量保持率=100-{(初期重量-分解後重量)×100/初期重量}
 評価は3時間後、96時間後、168時間後の重量保持率がそれぞれ80%以上、50%以下、20%以下の時○、70%以上80%未満、50%を超える60%以下、20%を超える30%以下の時△、それらに満たないものをXとしている。
加水分解性樹脂試料の作成;
 ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS:三菱化学株式会社 GS Pla AZ91)、ポリブチレンサクシネートアジペート(PBSA:三菱化学株式会社GS Pla AD92)或いはそれらとPEOxとのドライブレンド(重量比95:5)を、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて200℃で溶融混合し、マスターペレットを作製し、加水分解性樹脂材料の試料とした。
<実験例18~34>
 得られた加水分解性樹脂材料の試料を分散媒に加えて加水分解性の評価を行った。表中の記載は、下記のとおりである。加水分解性評価結果を表8に示す。
分散媒:
 CHES:100mM CHES緩衝液,pH10.5 10ml
 リン酸:100mM リン酸緩衝液,pH7.0 10ml
 アルカリ:0.1wt% 水酸化ナトリウム水溶液 10ml
増粘剤:
 グアガム:グアガム 70mg
酵素:
 Savinase:Savinase 16.0L(Novozymes社製) 35μl
 リパーゼCS2:Cryptococcus sp. S-2由来リパーゼCS2(独立行政法人酒類総合研究所製) 48μl
Figure JPOXMLDOC01-appb-T000008

Claims (14)

  1.  難加水分解性の加水分解性樹脂とエステル分解促進性の加水分解性樹脂とを含む加水分解性樹脂材料が水性媒体中に分散していることを特徴とする掘削用分散液。
  2.  エステル分解促進性の加水分解性樹脂が酸放出性のものである請求項1に記載の掘削用分散液。
  3.  放出される酸がグリコール酸およびまたはシュウ酸である請求項2に記載の掘削用分散液。
  4.  前記酸放出性の加水分解性樹脂が、ポリオキサレートである請求項1に記載の掘削用分散液。
  5.  前記難加水分解性の加水分解性樹脂がポリ乳酸である請求項1に記載の掘削用分散液。
  6.  前記難加水分解性の加水分解性樹脂100重量部に対して、エステル分解促進性の加水分解性樹脂を30重量部以上含有している請求項1に記載の掘削用分散液。
  7.  さらに酵素が配合されている請求項1に記載の掘削用分散液。
  8.  前記酵素が、プロテアーゼ、リパーゼ及びクチナーゼから選択される少なくとも1種である請求項7に記載の掘削用分散液。
  9.  掘削により形成された坑井から地下資源を採掘する方法において、請求項1に記載の掘削用分散液を坑井に圧入し40℃以上の水中で加水分解性樹脂材料の加水分解を行う工程を含む採掘方法。
  10.  前記掘削用分散液が酵素を含み、前記加水分解を40~50℃の水中で行う請求項9に記載の採掘方法。
  11.  前記掘削用分散液の坑井内への圧入により、坑井の壁面に該分散液に含まれる固形分のフィルターケーキを形成させ、前記加水分解性樹脂材料の加水分解により放出された酸によって該フィルターケーキを分解する請求項9に記載の採掘方法。
  12.  前記加水分解性樹脂材料の加水分解によって発生した酸により、坑井周囲の鉱物を溶解せしめ、前記坑井周囲に亀裂を発生する請求項9に記載の採掘方法。
  13.  前記加水分解性樹脂材料により、前記坑井の目止めを行う請求項9に記載の採掘方法。
  14.  前記掘削用分散液にゲル化剤を配合しておき、前記前記加水分解性樹脂材料の加水分解により放出された酸によって坑井内にゲルを生成させ、さらに該ゲルを分解する請求項9に記載の採掘方法。
PCT/JP2013/083305 2012-12-12 2013-12-12 掘削用分散液及びそれを用いた地下資源の採掘方法 WO2014092146A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2892496A CA2892496C (en) 2012-12-12 2013-12-12 Dispersion solution for drilling and method of extracting underground resources using the dispersion solution
EP13862865.6A EP2933306B1 (en) 2012-12-12 2013-12-12 Use of fluid dispersion for drilling, and mining method for underground resources using said fluid
AU2013358061A AU2013358061B2 (en) 2012-12-12 2013-12-12 Dispersion Solution for Drilling and Method of Extracting Underground Resources Using the Dispersion Solution
CN201380065362.2A CN104854215B (zh) 2012-12-12 2013-12-12 挖掘用分散液和使用分散液采掘地下资源的方法
RU2015128009A RU2627060C2 (ru) 2012-12-12 2013-12-12 Дисперсионная жидкость для бурения и способ добычи полезных ископаемых с помощью дисперсионной жидкости
US14/649,947 US10040983B2 (en) 2012-12-12 2013-12-12 Dispersion solution for drilling and method of extracting underground resources using the dispersion solution
PL13862865T PL2933306T3 (pl) 2012-12-12 2013-12-12 Zastosowanie ciekłej dyspersji w wiertnictwie i sposób górniczej eksploatacji zasobów podziemnych z wykorzystaniem takiej cieczy

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-271083 2012-12-12
JP2012271083 2012-12-12
JP2013028031 2013-02-15
JP2013-028031 2013-02-15
JP2013-160063 2013-08-01
JP2013160063A JP6221475B2 (ja) 2012-12-12 2013-08-01 掘削用分散液、及び、それを用いた掘削方法

Publications (1)

Publication Number Publication Date
WO2014092146A1 true WO2014092146A1 (ja) 2014-06-19

Family

ID=53365529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083305 WO2014092146A1 (ja) 2012-12-12 2013-12-12 掘削用分散液及びそれを用いた地下資源の採掘方法

Country Status (8)

Country Link
US (1) US10040983B2 (ja)
EP (1) EP2933306B1 (ja)
CN (1) CN104854215B (ja)
AU (1) AU2013358061B2 (ja)
CA (1) CA2892496C (ja)
PL (1) PL2933306T3 (ja)
RU (1) RU2627060C2 (ja)
WO (1) WO2014092146A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137057A1 (ja) * 2014-03-11 2015-09-17 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
WO2015182622A1 (ja) * 2014-05-26 2015-12-03 東洋製罐グループホールディングス株式会社 エステル樹脂の分解方法
CN107108865A (zh) * 2014-12-15 2017-08-29 东洋制罐集团控股株式会社 聚草酸酯共聚物
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681170C1 (ru) 2015-02-12 2019-03-04 Тойо Сейкан Груп Холдингз, Лтд. Способ добычи полезных ископаемых с использованием гидролизующихся частиц
CN107545513B (zh) * 2016-06-29 2021-07-16 中国石油化工股份有限公司 一种压裂过程中的非均匀同步破胶方法
CN108387685B (zh) * 2018-01-09 2019-03-29 中国石油大学(华东) 深水浅部弱胶结地层钻井液稳定井壁作用评价的方法和装置
JP7415333B2 (ja) * 2019-05-16 2024-01-17 東洋製罐グループホールディングス株式会社 加水分解性樹脂の有機溶媒分散体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055903A1 (ja) * 2008-11-13 2010-05-20 東洋製罐株式会社 生分解性樹脂組成物
US7833950B2 (en) 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
WO2012050187A1 (ja) 2010-10-14 2012-04-19 株式会社クレハ 石油掘削補助用分散液
WO2012121294A1 (ja) * 2011-03-08 2012-09-13 株式会社クレハ 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法
WO2013161754A1 (ja) * 2012-04-27 2013-10-31 株式会社クレハ 坑井処理流体用ポリグリコール酸樹脂短繊維
WO2013161755A1 (ja) * 2012-04-27 2013-10-31 株式会社クレハ ポリグリコール酸樹脂短繊維及び坑井処理流体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286781A (ja) 1989-04-28 1990-11-26 Dainippon Ink & Chem Inc 逸泥防止剤、その製造方法及び逸泥防止工法
GB9411269D0 (en) 1994-06-06 1994-07-27 Archaeus Tech Group Delayed acid for gel breaking
US7219731B2 (en) 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
EA008140B1 (ru) 2002-10-28 2007-04-27 Шлюмбергер Текнолоджи Б.В. Саморазрушающаяся фильтрационная корка
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
EP1505097A1 (en) 2003-07-29 2005-02-09 Ube Industries, Ltd. Polyoxalate resin and shaped articles and resin compositions comprising same
JP2005097590A (ja) 2003-08-28 2005-04-14 Ube Ind Ltd ポリオキサレート組成物及びそれから得られる成形物
GB2412391A (en) 2004-03-27 2005-09-28 Cleansorb Ltd Process for disruption of filter cakes
US7350572B2 (en) 2004-09-01 2008-04-01 Schlumberger Technology Corporation Methods for controlling fluid loss
KR101118895B1 (ko) 2006-09-26 2012-03-19 도요 세이칸 가부시키가이샤 이분해성 수지조성물 및 그것을 이용한 생분해성 용기
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US8220548B2 (en) * 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US8119574B2 (en) * 2007-07-25 2012-02-21 Schlumberger Technology Corporation High solids content slurries and methods
PL2247642T3 (pl) 2008-02-13 2014-01-31 Jotun As Kompozycja przeciwporostowa
US7981845B2 (en) * 2008-08-29 2011-07-19 Schlumberger Technology Corporation Partially neutralized polyhydroxy acids for well treatments
CN102264912B (zh) * 2008-10-27 2016-01-06 东洋制罐株式会社 降解生物降解性树脂而生成低聚物和/或单体的方法
JP5445756B2 (ja) 2008-11-12 2014-03-19 東洋製罐株式会社 易分解性樹脂組成物の分解方法
JP5651932B2 (ja) 2009-06-26 2015-01-14 東洋製罐株式会社 生分解性樹脂組成物
JP5582445B2 (ja) 2008-11-13 2014-09-03 東洋製罐株式会社 ポリオキサレート及びそれを含む生分解性樹脂組成物
US8016040B2 (en) * 2008-11-26 2011-09-13 Schlumberger Technology Corporation Fluid loss control
JP5829393B2 (ja) 2010-10-05 2015-12-09 東洋製罐株式会社 生分解性樹脂組成物
US20120329683A1 (en) 2011-06-23 2012-12-27 Nicolas Droger Degradable fiber systems for well treatments and their use
US8965339B2 (en) 2012-03-22 2015-02-24 Verizon Patent And Licensing Inc. Automatic oscillating BIP session for SIM self-reactivation
US9676995B2 (en) 2012-06-29 2017-06-13 Baker Hughes Incorporated Fracturing fluids and methods for treating hydrocarbon-bearing formations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833950B2 (en) 2005-06-20 2010-11-16 Schlumberger Technology Corporation Degradable fiber systems for stimulation
WO2010055903A1 (ja) * 2008-11-13 2010-05-20 東洋製罐株式会社 生分解性樹脂組成物
WO2012050187A1 (ja) 2010-10-14 2012-04-19 株式会社クレハ 石油掘削補助用分散液
WO2012121294A1 (ja) * 2011-03-08 2012-09-13 株式会社クレハ 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法
WO2013161754A1 (ja) * 2012-04-27 2013-10-31 株式会社クレハ 坑井処理流体用ポリグリコール酸樹脂短繊維
WO2013161755A1 (ja) * 2012-04-27 2013-10-31 株式会社クレハ ポリグリコール酸樹脂短繊維及び坑井処理流体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933306A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137057A1 (ja) * 2014-03-11 2015-09-17 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
WO2015182622A1 (ja) * 2014-05-26 2015-12-03 東洋製罐グループホールディングス株式会社 エステル樹脂の分解方法
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
CN107108865A (zh) * 2014-12-15 2017-08-29 东洋制罐集团控股株式会社 聚草酸酯共聚物
CN107108865B (zh) * 2014-12-15 2019-07-26 东洋制罐集团控股株式会社 聚草酸酯共聚物

Also Published As

Publication number Publication date
EP2933306A4 (en) 2016-08-31
EP2933306B1 (en) 2019-10-02
AU2013358061B2 (en) 2016-03-31
EP2933306A1 (en) 2015-10-21
CA2892496C (en) 2018-05-29
RU2015128009A (ru) 2017-01-18
US20150299553A1 (en) 2015-10-22
CN104854215A (zh) 2015-08-19
AU2013358061A1 (en) 2015-06-18
CN104854215B (zh) 2018-03-13
PL2933306T3 (pl) 2020-03-31
US10040983B2 (en) 2018-08-07
CA2892496A1 (en) 2014-06-19
RU2627060C2 (ru) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2014092146A1 (ja) 掘削用分散液及びそれを用いた地下資源の採掘方法
JP6221475B2 (ja) 掘削用分散液、及び、それを用いた掘削方法
JP6183039B2 (ja) 掘削用分散液及びこれを用いた採掘方法
GB2448840A (en) Drilling fluid having a bridging agent and solid hydrolysable solid polymers
CN107208474A (zh) 使用水解性颗粒的地下资源的开采方法
US9926425B2 (en) Method for degrading biodegradable resin
CN104619773B (zh) 水性分散液及压裂操作用添加剂
JP2016147971A (ja) 加水分解性粒子
JP6343924B2 (ja) 掘削用分散液及び該分散液を用いた掘削方法
WO2015182622A1 (ja) エステル樹脂の分解方法
JP6233566B2 (ja) 生分解性樹脂の分解方法
JP6330993B2 (ja) 生分解性樹脂の分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2892496

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013862865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14649947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013358061

Country of ref document: AU

Date of ref document: 20131212

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015128009

Country of ref document: RU

Kind code of ref document: A