WO2014091661A1 - 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 - Google Patents

位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 Download PDF

Info

Publication number
WO2014091661A1
WO2014091661A1 PCT/JP2013/006390 JP2013006390W WO2014091661A1 WO 2014091661 A1 WO2014091661 A1 WO 2014091661A1 JP 2013006390 W JP2013006390 W JP 2013006390W WO 2014091661 A1 WO2014091661 A1 WO 2014091661A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ring
image
aperture
contrast microscope
Prior art date
Application number
PCT/JP2013/006390
Other languages
English (en)
French (fr)
Inventor
堂脇 優
寛和 辰田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/647,505 priority Critical patent/US20150309296A1/en
Priority to JP2014551841A priority patent/JP6256351B2/ja
Publication of WO2014091661A1 publication Critical patent/WO2014091661A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Definitions

  • the present technology relates to a phase contrast microscope capable of capturing a phase contrast image of an observation object, a control device for the phase contrast microscope, and a control method for the phase contrast microscope.
  • a phase contrast microscope capable of generating a phase contrast image of an observation object includes an aperture ring and a phase ring as a characteristic configuration.
  • the aperture ring is a light shielding plate in which a ring-shaped slit is formed, and the phase ring is a transparent plate including a ring-shaped phase film.
  • the illumination light (uniform light) emitted from the light source passes through the slit of the aperture ring, is formed into a ring shape, and is condensed on the observation object by the condenser lens (condenser lens).
  • the illumination light is divided into direct light traveling straight through the observation object and diffracted light diffracted by the observation object.
  • the direct light passes through the phase film of the phase ring and is out of phase and is attenuated. Most of the diffracted light is transmitted through the transparent portion of the phase ring (the portion where the phase film is not formed), so the phase and brightness do not change.
  • the direct light and the diffracted light are imaged on the same imaging surface by the imaging lens to generate a phase difference image.
  • Patent Document 1 discloses a phase contrast microscope capable of moving either a first phase ring (aperture ring) or a second phase ring.
  • the conjugate relationship between the aperture ring and the phase ring may be affected by the observation object set on the phase contrast microscope.
  • the liquid level causes a lens effect, so that the conjugate relationship is broken and it is difficult to obtain a good phase difference image.
  • an object of the present technology is to provide a phase contrast microscope, a phase contrast microscope control device, and a phase contrast microscope control method capable of eliminating an optical influence on a phase contrast image by an observation object. Is to provide.
  • a phase contrast microscope includes a phase ring, an aperture ring, and a condenser lens.
  • the aperture ring is movable in a first direction with respect to the phase ring.
  • the condenser lens is movable with respect to the phase ring in the first direction independently of the aperture ring.
  • the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are determined even when the conjugate relationship between the aperture ring and the phase ring is broken due to the lens effect due to the liquid level of the observation object.
  • the phase-contrast microscope can be brought into a state suitable for observation of the phase-contrast image.
  • the enlargement magnification is shifted due to the lens effect on the liquid surface, so that a good phase difference image cannot be obtained.
  • the opening ring may be further movable in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction.
  • the phase contrast microscope includes an imaging unit that captures an adjustment ring image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring, and the aperture ring based on the adjustment image. And a control unit that adjusts the position of the condenser lens with respect to the phase ring.
  • the control unit adjusts the position of the aperture ring and the condenser lens with respect to the phase ring based on the adjustment image, the phase contrast microscope is automatically brought into a state suitable for observation of the phase difference image. Is possible.
  • the controller may adjust the position of the aperture ring so that the aperture ring image is in focus, and adjust the position of the condenser lens so that the aperture ring image is included in the phase ring image.
  • control unit adjusts the position of the aperture ring with respect to the phase ring using the focus of the aperture ring image, and uses the magnitude relationship between the aperture ring image and the phase ring image to control the phase of the condenser lens.
  • the position can be adjusted.
  • a control device of a phase contrast microscope acquires an adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring, Based on the image for adjustment, the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted.
  • a control method of a phase contrast microscope is based on an adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring. The position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted.
  • phase contrast microscope As described above, according to the present technology, there are provided a phase contrast microscope, a phase contrast microscope control apparatus, and a phase contrast microscope control method capable of eliminating an optical influence on a phase contrast image by an observation object. It is possible.
  • phase contrast microscope It is a mimetic diagram of a phase contrast microscope concerning an embodiment of this art. It is a schematic diagram of the opening ring of the same phase contrast microscope. It is a schematic diagram of the phase ring of the same phase contrast microscope. It is an example of the image for adjustment imaged with the 2nd imaging part of the same phase contrast microscope. It is a schematic diagram which shows adjustment of an aperture ring and a condenser lens of the same phase contrast microscope. It is a flowchart which shows operation
  • FIG. 1 is a schematic diagram showing a configuration of a phase contrast microscope 100 according to the present embodiment.
  • a phase contrast microscope 100 includes a light source 101, a light source lens 102, a field stop 103, a relay lens 104, an aperture stop 105, an aperture ring 106, a condenser lens 107, a stage 108, an objective lens 109, and a phase ring 110.
  • a well plate S containing an observation object (cells in a culture solution, etc.) is placed on the stage 108.
  • the direction from the opening ring 106 to the phase ring 110 is the Z direction
  • the direction perpendicular to the Z direction is the X direction
  • the direction perpendicular to the Z direction and the X direction is the Y direction.
  • the Z direction coincides with the optical axis direction of the phase-contrast microscope 100
  • the X direction and the Y direction are directions along the stage surface of the stage 108.
  • the light source 101 is a light source that generates illumination light applied to the observation object, and an arbitrary light source such as a halogen lamp or a white LED (Light Emitting Diode) can be used.
  • an arbitrary light source such as a halogen lamp or a white LED (Light Emitting Diode) can be used.
  • the optical path of illumination light emitted from the light source 101 is shown as an optical path L1.
  • the light source lens 102 is a lens that condenses the illumination light emitted from the light source 101. Any light source lens 102 can be used, but it is preferable that the illumination light can be uniform light (Kohler illumination light).
  • the field stop 103 is disposed at a position conjugate with the observation target, and limits the range in which the illumination light is irradiated onto the observation target.
  • the field stop 103 can be, for example, a light shielding plate in which a circular opening is formed.
  • the relay lens 104 is a lens that transmits illumination light. Any relay lens 104 can be used.
  • the aperture stop 105 is disposed at a position conjugate with the light source 101, and adjusts the amount of illumination light applied to the observation object.
  • the aperture stop 105 can be, for example, a light shielding plate in which a circular opening is formed.
  • the opening ring 106 shapes the illumination light into a ring shape.
  • FIG. 2 is a schematic diagram showing the opening ring 106.
  • the opening ring 106 includes a light shielding region 106a and a light transmission region 106b.
  • the light shielding region 106a is a region that shields incident light
  • the light transmitting region 106b is a region that transmits incident light.
  • the aperture ring 106 may be formed by forming a slit in the light shielding member to form a light transmission region 106b and the other region as a light shielding region 106a.
  • the opening ring 106 is configured to be movable at least in the Z direction with respect to the phase ring 110. Although details will be described later, it is preferable that the opening ring 106 is configured to be movable in the X direction and the Y direction.
  • the opening ring 106 can be moved in each direction by a driving mechanism (not shown), for example, a motor.
  • the driving mechanism is connected to and controlled by the control unit 116, that is, the position of the opening ring 106 can be adjusted by the control unit 116. Further, the position of the opening ring 106 can be adjusted manually.
  • the condenser lens 107 is a lens that condenses the illumination light on the observation object. Any condenser lens 107 can be used.
  • the condenser lens 107 is configured to be movable with respect to the phase ring 110 in the Z direction independently of the aperture ring 106.
  • the condenser lens 107 can be moved in the Z direction by a driving mechanism (not shown), for example, a motor.
  • the drive mechanism is connected to and controlled by the control unit 116, that is, the position of the condenser lens 107 can be adjusted by the control unit 116. Further, the position of the condenser lens 107 can be adjusted manually.
  • Stage 108 supports an observation object (here, well plate S).
  • the stage 108 is configured to be movable in the X direction, the Y direction, and the Z direction by a driving mechanism (not shown). Note that at least the central portion of the stage 108 is made of a light-transmitting material.
  • the objective lens 109 enlarges the image of the observation object to a predetermined magnification.
  • the objective lens 109 can be selected from various magnifications according to a desired magnification.
  • the phase ring 110 phase-shifts a part of the incident light.
  • the phase ring 110 is generally configured integrally with the objective lens 109, but may be independent of the objective lens 109.
  • FIG. 3 is a schematic diagram showing the phase ring 110.
  • the phase ring 110 has a phase shift region 110a and a light transmission region 110b.
  • the phase shift region 110a is a region that shifts the phase of incident light and attenuates the incident light.
  • the light transmission region 110b is a region that transmits the incident light without shifting the phase.
  • the phase ring 110 may be formed by forming a phase film on a light transmissive member to form the phase shift region 110a, and the other region as the light transmissive region 110b.
  • the first imaging lens 111 forms an image of the observation object on the imaging surface (imaging device) of the first imaging unit 113.
  • An arbitrary lens can be used for the first imaging lens 111.
  • the mirror 112 is disposed in the optical path between the first imaging lens 111 and the first imaging unit 113 and reflects incident light toward the second imaging lens 114.
  • the mirror 112 may be excluded from the optical path when observing the phase difference image.
  • the first imaging unit 113 captures a phase difference image of the observation object.
  • the first imaging unit 113 can include an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the objective lens 109, the phase ring 110, the first imaging lens 111, and the first imaging unit 113 constitute a first imaging optical system.
  • the optical path of the first imaging optical system is shown as an optical path L2.
  • the observation object and the imaging surface of the first imaging unit 113 form a conjugate relationship, and the first imaging unit 113 captures a phase difference image of the observation object.
  • the second imaging lens 114 images the light reflected by the mirror 112 on the imaging surface (imaging device) of the second imaging unit 115. Any second imaging lens 114 can be used.
  • the second imaging unit 115 captures an image for adjusting the position of the aperture ring 106 and the condenser lens 107 (hereinafter referred to as an adjustment image).
  • the second imaging unit 115 can include an imaging element such as a CCD or a CMOS.
  • the second imaging unit 115 supplies the captured adjustment image to the control unit 116.
  • an optical system may be provided in place of the second imaging unit 115 so that the user can view an image corresponding to the adjustment image.
  • the second imaging optical system is configured by the aperture ring 106, the condenser lens 107, the objective lens 109, the phase ring 110, the first imaging lens 111, the mirror 112, the second imaging lens 114, and the second imaging unit 115.
  • the optical path of the second imaging optical system is shown as an optical path L3.
  • the imaging surfaces of the aperture ring 106, the phase ring 110, and the second imaging unit 115 form a conjugate relationship, and the second imaging unit 115 generates an image (adjustment image) that includes the image of the aperture ring 106 and the image of the phase ring 110. Imaged.
  • the control unit 116 is an information processing unit incorporated in the phase-contrast microscope 100 or an information processing device (such as a PC) independent of the phase-contrast microscope 100, and includes a second imaging unit 115, a drive mechanism for the aperture ring 106, and a condenser lens. 107 are connected to the driving mechanism. Further, the control unit 116 may be connected to a drive mechanism of the stage 108 or the like. The control unit 116 adjusts the position of the aperture ring 106 relative to the phase ring 110 and the position of the condenser lens 107 relative to the phase ring 110 based on the adjustment image supplied from the second imaging unit 115. Details of the control unit will be described later.
  • the phase contrast microscope 100 has the above-described configuration.
  • the illumination light emitted from the light source 101 is collected by the light source lens 102 and the irradiation range is limited by the field stop 103. Further, the light is transmitted by the relay lens 104 and the amount of light is adjusted by the aperture stop 105. Further, the light is transmitted through the light transmission region 106 b (see FIG. 2) of the opening ring 106, shaped into a ring shape, and irradiated onto the observation object accommodated in the well of the well plate S by the condenser lens 107.
  • the illumination light is divided into direct light that travels straight through the observation object and diffraction light that is diffracted by the observation object.
  • the direct light passes through the phase shift region 110a (see FIG. 3) of the phase ring 110, is out of phase, and is attenuated. Since most of the diffracted light is transmitted through the light transmission region 110b of the phase ring 110, the phase and brightness do not change.
  • the direct light and the diffracted light are imaged on the imaging surface of the first imaging unit 113 by the first imaging lens 111 in the optical path L2, and a phase difference image is generated.
  • phase contrast microscope 100 In order to obtain a good phase contrast image, a conjugate relationship between the aperture ring 106 and the phase ring 110 needs to be established. For this reason, it is necessary to adjust the relative positions of the aperture ring 106 and the phase ring 110 before the observation object is observed.
  • the optical path L3 is used.
  • the image of the aperture ring 106 and the image of the phase ring 110 are imaged on the imaging surface of the second imaging unit 115 by the second imaging lens 114 in the optical path L3, and an adjustment image is generated.
  • FIG. 4 is a schematic diagram showing an example of the position adjustment image.
  • the adjustment image includes an image of the aperture ring 106 (hereinafter referred to as an aperture ring image) F1 and an image of the phase ring 110 (hereinafter referred to as a phase ring image) F2.
  • the position of the aperture ring 106 relative to the phase ring 110 is adjusted so that the aperture ring image F1 is included in the phase ring image F2.
  • the illumination light transmitted through the light transmission region 106b of the aperture ring 106 is transmitted through the phase shift region 110a of the phase ring 110, that is, the aperture ring 106 and the phase ring 110 have a phase difference.
  • the positional relationship is suitable for image generation.
  • the relative position between the aperture ring 106 and the phase ring 110 can be adjusted using the adjustment image.
  • the conjugate effect between the aperture ring 106 and the phase ring 110 may be affected by the lens effect caused by the observation object.
  • FIG. 5 is a schematic diagram illustrating a partial configuration of the phase-contrast microscope 100 and an adjustment image captured by the second imaging unit 115.
  • FIG. 5A shows a case where the observation object includes a solution contained in the dish D.
  • the liquid level of the solution is close to a flat surface and does not produce a lens effect. For this reason, the conjugate relationship between the aperture ring 106 and the phase ring 110 is maintained. Therefore, an adjustment image in which the aperture ring image F1 is included in the phase ring image F2 is generated.
  • FIG. 5B shows a case where the observation object includes a solution contained in the well W.
  • the liquid surface of the solution forms a meniscus shape due to the surface tension, and a lens effect is generated.
  • the conjugate relationship between the aperture ring 106 and the phase ring 110 is broken, and the aperture ring image F1 is blurred.
  • the aperture ring 106 and the condenser lens 107 are configured to be able to move independently in the Z direction with respect to the phase ring 110. It becomes possible to eliminate the influence of the lens effect of the object.
  • FIG. 6 is a flowchart showing the operation of the control unit 116.
  • the control unit 116 acquires an adjustment image from the second imaging unit 115 (St101).
  • the adjustment image includes the aperture ring image F1 and the phase ring image F2 (see FIG. 5).
  • the control unit 116 determines whether or not the aperture ring image F1 is blurred in the adjustment image (St102).
  • the control unit 116 can determine whether or not the aperture ring image F1 is blurred by performing image processing such as binarization on the adjustment image.
  • the control unit 116 proceeds to the next step.
  • the control unit 116 controls the drive mechanism of the aperture ring 106 and moves the aperture ring 106 in the Z direction. (St103).
  • the control unit 116 acquires the adjustment image again (St101), determines whether or not the aperture ring image F1 is blurred (St102), and further moves the aperture ring 106 in the Z direction (St103). Thereafter, the control unit 116 repeats these steps (St101 to St103) until the blurring of the aperture ring image F1 is eliminated.
  • the control unit 116 obtains an adjustment image from the second imaging unit 115 again (St104), It is determined whether or not the centers (ring centers) of the aperture ring image F1 and the phase ring image F2 coincide (St105). When the centers of these images coincide (St105: Yes), the control unit 116 proceeds to the next step. On the other hand, when the centers of these images do not coincide (St105: No), the control unit 116 controls the driving mechanism of the aperture ring to move the aperture ring 106 in the X direction and the Y direction (St106).
  • the control unit 116 acquires the adjustment image again (St104), determines whether or not the centers of the aperture ring image F1 and the phase ring image F2 match (S105), and if not, further opens the aperture.
  • the ring 106 is moved (St106). Thereafter, the control unit 116 repeats these steps (St104 to St106) until the centers of the images coincide.
  • control unit 116 again obtains an adjustment image from the second imaging unit 115 (St107), It is determined whether or not the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108).
  • the diameter of the width center is the distance from the center of each ring to the center of the width of each ring in the adjustment image.
  • the control unit 116 proceeds to the next step when the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108: Yes). On the other hand, when the diameters of the width centers do not match (St108: No), the control unit 116 controls the drive mechanism of the condenser lens 107 and moves the condenser lens 107 in the Z direction (St109).
  • the control unit 116 obtains the adjustment image again (St107), and determines whether the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108). Further, the condenser lens 107 is moved. Thereafter, the control unit 116 repeats these steps (St107 to St109) until the diameters at the width centers coincide.
  • the control unit 116 determines whether or not the aperture ring image F1 is within the phase ring image F2 in the adjustment image (St110). As shown in FIG. 5D, when the aperture ring image F1 is within the phase ring image F2 (St110: Yes), the control unit 116 ends the position adjustment process. On the other hand, when the aperture ring image F1 does not fall within the phase ring image F2 (St110: No), the control unit 116 returns to Step 101 and repeats the above steps.
  • control unit 116 adjusts the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 so as to obtain an adjustment image as shown in FIG. Thereby, it becomes possible to eliminate the influence of the lens effect due to the observation object and maintain the conjugate relationship between the aperture ring 106 and the phase ring 110.
  • the position adjustment procedure described above may be performed by the user instead of the control unit 116.
  • the user can adjust the positions of the aperture ring 106 and the condenser lens 107 by using a visible optical system instead of the second imaging unit 115.
  • FIG. 7 is a schematic diagram showing a part of the configuration of the phase-contrast microscope 100 and the movement distance.
  • FIG. 7A shows a state in which the object to be observed includes a solution stored in the dish D, and the lens effect due to the solution is not generated.
  • FIG. 7B shows a state in which the object to be observed includes a container accommodated in the well W, and a lens effect is generated by the solution.
  • FIG. 7C shows a state in which the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 are adjusted from the state shown in FIG. 7B.
  • the radius of curvature of the meniscus on the solution surface is 8 mm
  • the focal length of the condenser lens 107 is 45 mm.
  • the moving distance in the Z direction of the aperture ring 106 is 81.7 mm
  • the moving distance in the Z direction of the condenser lens 107 is 3.7 mm, as shown in FIG.
  • the conjugate relationship of the ring 110 is established, and a state suitable for generating a phase difference image is obtained.
  • the opening ring 106 moves when the moving distance of the opening ring 106 in the XY direction is 3.8 mm and the moving distance in the Z direction is further 22 mm.
  • the phase ring 110 are in a conjugate relationship, which is suitable for generating a phase difference image.
  • FIG. 8 is a phase difference image of the observation object imaged by the first imaging unit 113 of the phase contrast microscope 100.
  • FIG. 8A is a phase difference image in a state where the conjugate relationship between the aperture ring 106 and the phase ring 110 is broken due to the lens effect on the liquid level (see FIG. 7B).
  • FIG. 8B is a phase difference image in a state where the positions of the aperture ring 106 and the condenser lens 107 are adjusted and the conjugate relationship between the aperture ring 106 and the phase ring 110 is maintained (see FIG. 7C).
  • the object to be observed was iPS cell-derived human cardiomyocytes fixed in the culture medium, and the optical magnification was 10 times (using C Lab TE200).
  • a CMOS Complementary Metal Oxide Semiconductor
  • the region where the phase difference is obtained is only the central portion of the image.
  • the region where the phase difference is obtained extends over the entire image, and a good phase difference image is obtained. That is, by adjusting the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 as in this embodiment, the influence of the lens effect due to the liquid level of the observation object is eliminated, and a good phase difference image is obtained. It can be said that it is possible.
  • the present technology is not limited to the above embodiments, and can be changed without departing from the gist of the present technology.
  • this technique can also take the following structures.
  • phase ring An aperture ring movable in a first direction relative to the phase ring;
  • a phase contrast microscope comprising: a condenser lens that is movable in the first direction independently of the aperture ring with respect to the phase ring.
  • the aperture ring is further movable in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction.
  • phase contrast microscope according to (1) or (2) above, An imaging unit that captures an adjustment image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring; A phase contrast microscope further comprising: a position of the aperture ring relative to the phase ring based on the adjustment image; and a control unit that adjusts a position of the condenser lens relative to the phase ring.
  • the control unit adjusts the position of the aperture ring so that the aperture ring image is in focus, and adjusts the position of the condenser lens so that the aperture ring image is included in the phase ring image.
  • An adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring is obtained, and based on the adjustment image, the position of the aperture ring with respect to the phase ring, and the condenser lens
  • a control device for a phase-contrast microscope that adjusts the position relative to the phase ring.
  • the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted based on an adjustment image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring. Control method of phase contrast microscope.
  • SYMBOLS 100 Phase contrast microscope 101 ... Light source 102 ... Light source lens 103 ... Field stop 104 ... Relay lens 105 ... Aperture stop 106 ... Aperture ring 107 ... Condenser lens 108 ... Stage 109 ... Objective lens 110 ... Phase ring 111 ... First imaging lens DESCRIPTION OF SYMBOLS 112 ... Mirror 113 ... 2nd imaging part 114 ... 2nd imaging lens 115 ... 2nd imaging part 116 ... Control part

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 観察対象物による位相差像への光学的影響を解消することが可能な位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法を提供する。 本技術に係る位相差顕微鏡(100)は、位相リング(110)と、開口リング(106)と、コンデンサレンズ(107)とを具備する。開口リング(106)は、位相リング(110)に対して、第1の方向(Z方向)に移動可能である。コンデンサレンズ(107)は、位相リング(110)に対して、開口リング(106)とは独立して第1の方向(Z方向)に移動可能である。

Description

位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法
 本技術は、観察対象物の位相差像を撮像することが可能な位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法に関する。
 観察対象物の位相差像を生成することが可能な位相差顕微鏡は、特徴的な構成として開口リングと位相リングを備える。開口リングは、リング状のスリットが形成された遮光板であり、位相リングは、リング状の位相膜を備える透明板である。
 光源から照射された照明光(均一光)は開口リングのスリットを通過してリング状に成形され、コンデンサレンズ(集光レンズ)によって観察対象物に集光される。ここで、照明光は、観察対象物を直進した直接光と、観察対象物によって回折を受けた回折光に分けられる。
 直接光は、位相リングの位相膜を透過して位相がずれ、かつ減光される。回折光は、大部分が位相リングの透明部分(位相膜が形成されていない部分)を透過するため、位相と明るさは変化しない。直接光と回折光は、結像レンズによって同一の結像面に結像され、位相差像を生成する。
 このような位相差顕微鏡の構成により、良好な位相差像を得るためには、開口リングと位相リングの共役関係が成立している必要がある。このため、観察対象物の観察前に、観察倍率において開口リングと位相リングの位置合わせが実行される。例えば、特許文献1には、第1の位相リング(開口リング)と第2の位相リングの何れか一方を移動させることが可能な位相差顕微鏡が開示されている。
特開2009-122356号公報
 しかしながら、位相差顕微鏡にセットされた観察対象物によって、開口リングと位相リングの共役関係が影響を受ける場合がある。例えば、観察対象物に液体が含まれている場合、液面がレンズ効果を生じることによって上記共役関係が崩れ、良好な位相差像を得ることは困難となる。
 以上のような事情に鑑み、本技術の目的は、観察対象物による位相差像への光学的影響を解消することが可能な位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法を提供することにある。
 上記目的を達成するため、本技術の一形態に係る位相差顕微鏡は、位相リングと、開口リングと、コンデンサレンズとを具備する。
 上記開口リングは、上記位相リングに対して、第1の方向に移動可能である。
 上記コンデンサレンズは、上記位相リングに対して、上記開口リングとは独立して上記第1の方向に移動可能である。
 この構成によれば、観察対象物の液面によるレンズ効果によって開口リングと位相リングの共役関係が崩れた場合であっても、位相リングに対する開口リングの位置と、位相リングに対するコンデンサレンズの位置を独立して調整することにより、拡大倍率を維持しつつ共役関係を成立させることが可能となり、即ち位相差顕微鏡を位相差像の観察に適した状態にすることが可能となる。これに対し、開口リングの位相リングに対する位置のみを調整した場合、液面のレンズ効果によって拡大倍率がずれるため、良好な位相差像を得ることができない。
 上記開口リングは、さらに、上記第1の方向に直交する第2の方向と、上記第1の方向及び上記第2の方向に直交する第3の方向に移動可能であってもよい。
 この構成によれば、第2の方向及び第3の方向における、開口リングと位相リングの位置合わせを行うことが可能である。観察対象物の液面によるレンズ効果によって、開口リングと位相リングの光学的な中心がずれる場合があるが、上記構成によればこのようなずれを解消することが可能となる。

 上記位相差顕微鏡は、上記開口リングの像である開口リング像と上記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、上記コンデンサレンズの上記位相リングに対する位置を調整する制御部とをさらに具備してもよい。
 この構成によれば、制御部が、調整用画像に基づいて開口リングとコンデンサレンズの位相リングに対する位置を調整するため、位相差顕微鏡を自動的に位相差像の観察に適した状態にすることが可能となる。
 上記制御部は、上記開口リング像の焦点が合うように上記開口リングの位置を調整し、上記開口リング像が上記位相リング像に含まれるように上記コンデンサレンズの位置を調整してもよい。
 この構成によれば、制御部は、開口リング像の焦点を利用して開口リングの位相リングに対する位置を調整し、開口リング像と位相リング像の大小関係を利用してコンデンサレンズの位相リングに対する位置を調整することが可能となる。
 上記目的を達成するため、本技術の一形態に係る位相差顕微鏡の制御装置は、開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像を取得し、上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する。
 上記目的を達成するため、本技術の一形態に係る位相差顕微鏡の制御方法は、開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する。
 以上のように、本技術によれば、観察対象物による位相差像への光学的影響を解消することが可能な位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法を提供することが可能である。
本技術の実施形態に係る位相差顕微鏡の模式図である。 同位相差顕微鏡の開口リングの模式図である。 同位相差顕微鏡の位相リングの模式図である。 同位相差顕微鏡の第2撮像部によって撮像される調整用画像の例である。 同位相差顕微鏡の、開口リングとコンデンサレンズの調整を示す模式図である。 同位相差顕微鏡の制御部の動作を示すフローチャートである。 同位相差顕微鏡の、開口リングのコンデンサレンズの移動量の例である。 同位相差顕微鏡の、第1撮像部によって撮像される位相差像の例である。
 本技術の実施形態に係る位相差顕微鏡について説明する。
 [位相差顕微鏡の構成]
 図1は、本実施形態に係る位相差顕微鏡100の構成示す模式図である。同図に示すように、位相差顕微鏡100は、光源101、光源レンズ102、視野絞り103、リレーレンズ104、開口絞り105、開口リング106、コンデンサレンズ107、ステージ108、対物レンズ109、位相リング110、第1結像レンズ111、ミラー112、第1撮像部113、第2結像レンズ114、第2撮像部115及び制御部116を有する。また、ステージ108には、観察対象物(培養液中の細胞等)を収容したウェルプレートSが載置されている。
 以降の説明おいて、開口リング106から位相リング110に対する方向をZ方向とし、Z方向に垂直な方向をX方向、Z方向及びX方向に垂直な方向をY方向とする。Z方向は、位相差顕微鏡100の光軸方向に一致し、X方向及びY方向は、ステージ108のステージ面に沿った方向である。
 光源101は、観察対象物に照射される照明光を生成する光源であり、ハロゲンランプや白色LED(Light Emitting Diode)等、任意の光源を利用することができる。図1において、光源101から照射された照明光の光路を光路L1として示す。
 光源レンズ102は、光源101から照射された照明光を集光するレンズである。光源レンズ102は任意のものを利用することができるが、照明光を均一光(ケーラー照明光)にすることが可能なものが好適である。
 視野絞り103は、観察対象物と共役となる位置に配置され、照明光が観察対象物に照射される範囲を制限する。視野絞り103は例えば、円形の開口が形成された遮光板であるものとすることができる。
 リレーレンズ104は、照明光を伝達するレンズである。リレーレンズ104は任意のものを利用することができる。
 開口絞り105は、光源101と共役となる位置に配置され、観察対象物に照射される照明光の光量を調整する。開口絞り105は例えば、円形の開口が形成された遮光板であるものとすることができる。
 開口リング106は、照明光をリング状に成形する。図2は、開口リング106を示す模式図である。同図に示すように、開口リング106は、遮光領域106aと光透過領域106bを有する。遮光領域106aは入射光を遮蔽する領域であり、光透過領域106bは入射光を透過する領域である。開口リング106は、遮光性部材にスリットを形成して光透過領域106bとし、それ以外の領域を遮光領域106aとしたものとすることができる。
 ここで、開口リング106は、位相リング110に対して、少なくともZ方向に移動可能に構成されている。また、詳細は後述するが、開口リング106はX方向及びY方向にも移動可能に構成されているものが好適である。
 さらに、開口リング106は、図示しない駆動機構、例えばモータによって各方向に移動されるものとすることができる。駆動機構は制御部116に接続されて制御され、即ち開口リング106の位置は制御部116によって調整されるものとすることができる。また、開口リング106は、手動によってその位置を調整されるものとすることも可能である。
 コンデンサレンズ107は、照明光を観察対象物に集光するレンズである。コンデンサレンズ107は任意のものを利用することができる。ここで、コンデンサレンズ107は位相リング110に対して、開口リング106とは独立してZ方向に移動可能に構成されている。
 さらに、コンデンサレンズ107は、図示しない駆動機構、例えばモータによってZ方向に移動されるものとすることができる。駆動機構は制御部116に接続されて制御され、即ちコンデンサレンズ107の位置は制御部116によって調整されるものとすることができる。また、コンデンサレンズ107は、手動によってその位置を調整されるものとすることも可能である。
 ステージ108は、観察対象物(ここではウェルプレートS)を支持する。ステージ108は、図示しない駆動機構によって、X方向、Y方向及びZ方向に移動可能に構成されている。なおステージ108の少なくとも中心部分は、光透過性を有する材料からなる。
 対物レンズ109は、観察対象物の像を所定倍率に拡大する。対物レンズ109は、各種拡大倍率のものから所望の拡大倍率に応じて選択することが可能である。
 位相リング110は、入射光の一部を位相シフトさせる。図1に示すように、位相リング110は対物レンズ109に一体的に構成されているものが一般的であるが、対物レンズ109と独立していてもよい。図3は、位相リング110を示す模式図である。同図に示すように、位相リング110は、位相シフト領域110aと光透過領域110bを有する。位相シフト領域110aは、入射光の位相をシフトさせると共に、入射光を減光する領域である。光透過領域110bは、入射光の位相をシフトさせることなく透過させる領域である。位相リング110は、光透過性部材に位相膜を成膜して位相シフト領域110aとし、それ以外の領域を光透過領域110bとしたものとすることができる。
 第1結像レンズ111は、観察対象物の像を第1撮像部113の撮像面(撮像素子)に結像させる。第1結像レンズ111は、任意のものを利用することができる。
 ミラー112は、第1結像レンズ111と第1撮像部113の間の光路に配置され、入射光を第2結像レンズ114向けて反射する。ミラー112は、位相差像の観察の際には光路から除外されるものとすることも可能である。
 第1撮像部113は、観察対象物の位相差像を撮像する。具体的には第1撮像部113は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を備えるものとすることができる。
 対物レンズ109、位相リング110、第1結像レンズ111及び第1撮像部113によって第1撮像光学系が構成される。図1において、第1撮像光学系の光路を光路L2として示す。観察対象物と第1撮像部113の撮像面は共役関係を構成し、第1撮像部113によって観察対象物の位相差像が撮像される。
 第2結像レンズ114は、ミラー112によって反射された光を第2撮像部115の撮像面(撮像素子)に結像させる。第2結像レンズ114は、任意のものを利用することができる。
 第2撮像部115は、開口リング106とコンデンサレンズ107の位置調整用の画像(以下、調整用画像)を撮像する。具体的には第2撮像部115は、CCDやCMOS等の撮像素子を備えるものとすることができる。第2撮像部115は、撮像した調整用画像を制御部116に供給する。なお、第2撮像部115の替わりに光学系が設けられ、ユーザが上記調整用画像に相当する像を目視できるように構成されていてもよい。
 開口リング106、コンデンサレンズ107、対物レンズ109、位相リング110、第1結像レンズ111、ミラー112、第2結像レンズ114及び第2撮像部115によって第2撮像光学系が構成される。図1において、第2撮像光学系の光路を光路L3として示す。開口リング106、位相リング110及び第2撮像部115の撮像面は共役関係を構成し、第2撮像部115によって、開口リング106の像と位相リング110の像を含む画像(調整用画像)が撮像される。
 制御部116は、位相差顕微鏡100に組み込まれた情報処理ユニット又は位相差顕微鏡100とは独立した情報処理装置(PC等)であり、第2撮像部115、開口リング106の駆動機構及びコンデンサレンズ107の駆動機構にそれぞれ接続されている。また、制御部116は、ステージ108の駆動機構等にも接続されていてもよい。制御部116は、第2撮像部115から供給された調整用画像に基づいて、開口リング106の位相リング110に対する位置と、コンデンサレンズ107の位相リング110に対する位置を調整する。制御部の詳細については後述する。
 位相差顕微鏡100は以上のような構成を有する。光源101から照射された照明光は、光源レンズ102によって集光され、視野絞り103によって照射範囲が制限される。さらに、リレーレンズ104によって伝達され、開口絞り105によって光量が調節される。さらに、開口リング106の光透過領域106b(図2参照)を透過してリング状に成形され、コンデンサレンズ107によってウェルプレートSのウェルに収容された観察対象物に照射される。
 ここで、照明光は、観察対象物を直進した直接光と、観察対象物によって回折を受け回折光に分けられる。直接光は、位相リング110の位相シフト領域110a(図3参照)を透過して位相がずれ、かつ減光される。回折光は、大部分が位相リング110の光透過領域110bを透過するため、位相と明るさは変化しない。直接光と回折光は光路L2において、第1結像レンズ111によって第1撮像部113の撮像面に結像され、位相差像が生成される。
 このような位相差顕微鏡100の構成により、良好な位相差像を得るためには、開口リング106と位相リング110の共役関係が成立している必要がある。このため、観察対象物の観察前に、開口リング106と位相リング110の相対位置の調整が必要となる。
 この位置調整においては、光路L3が利用される。開口リング106の像と位相リング110の像は光路L3において、第2結像レンズ114によって第2撮像部115の撮像面に結像され、調整用画像が生成される。
 図4は、位置調整用画像の例を示す模式図である。同図に示すように調整用画像には、開口リング106の像(以下、開口リング像)F1と位相リング110の像(以下、位相リング像)F2が含まれる。ここで、図4に示すように、開口リング像F1が位相リング像F2に含まれるように、開口リング106の位相リング110に対する位置が調整される。調整用画像がこのようになると、開口リング106の光透過領域106bを透過した照明光が、位相リング110の位相シフト領域110aを透過しており、即ち開口リング106と位相リング110が、位相差像の生成に適した位置関係となっている。
 [液面によるレンズ効果について]
 上述のように、調整用画像を利用して、開口リング106と位相リング110の相対位置を調整することが可能である。しかしながら、観察対象物によって生じるレンズ効果によって、開口リング106と位相リング110の共役関係が影響を受ける場合がある。
 図5は、位相差顕微鏡100の一部の構成と、第2撮像部115によって撮像される調整用画像を示す模式図である。
 図5(a)は、観察対象物が、ディッシュDに収容された溶液を含む場合を示している。この場合、溶液の液面は平面に近く、レンズ効果を生じない。このため、開口リング106と位相リング110の共役関係は維持される。したがって、開口リング像F1が位相リング像F2に含まれた調整用画像が生成される。
 図5(b)は、観察対象物が、ウェルWに収容された溶液を含む場合を示している。この場合、表面張力によって溶液の液面がメニスカス形状を形成し、レンズ効果を生じる。このため、このレンズ効果によって、開口リング106と位相リング110の共役関係が崩れ、開口リング像F1にボケが生じる。
 図5(c)に示すように、開口リング106をZ方向に移動させると、開口リング像F1のボケが解消される。しかしながら、拡大倍率がずれたままなので、開口リング像F1が位相リング像F2の中に収まらない。
 ここで、図5(d)に示すように、開口リング106に加え、コンデンサレンズ107をZ方向に移動させることにより、拡大倍率を保ちつつ共役関係を維持することが可能となる。これにより、開口リング像F1が位相リング像F2に含まれた調整用画像が生成される。即ち、液体のレンズ効果による影響を解消することが可能となる。
 このように、本実施形態に係る位相差顕微鏡100においては、開口リング106とコンデンサレンズ107が、位相リング110に対して独立にZ方向に移動することが可能に構成されていることにより、観察対象物のレンズ効果による影響を解消することが可能となる。
 [制御部による位置調整]
 上述した開口リング106及びコンデンサレンズ107の位相リング110に対する位置調整は、制御部116によって自動的になされるものとすることが可能である。図6は、制御部116の動作を示すフローチャートである。
 最初に、制御部116は、第2撮像部115から調整用画像を取得する(St101)。上述のように調整用画像には、開口リング像F1と位相リング像F2が含まれている(図5参照)。
 制御部116は、調整用画像において開口リング像F1がボケているか否かを判断する(St102)。制御部116は、調整用画像に2値化等の画像処理を施すことによって、開口リング像F1がボケているか否かを判断することが可能である。
 調整用画像において、開口リング像F1がボケていない場合(St102:Yes)、制御部116は次のステップに移行する。一方、図5(b)に示すように、開口リング像F1がボケている場合(St102:No)、制御部116は、開口リング106の駆動機構を制御し、開口リング106をZ方向に移動させる(St103)。
 制御部116は再び調整用画像を取得して(St101)、開口リング像F1がボケているか否かの判断を行い(St102)、ボケていればさらに開口リング106をZ方向に移動させる(St103)。以降、制御部116は、開口リング像F1のボケが解消されるまでこれらのステップ(St101~103)を繰返す。
 続いて、制御部116は、再び第2撮像部115から調整用画像を取得し(St104)、
開口リング像F1と位相リング像F2の中心(リング中心)が一致しているか否かを判断する(St105)。これら像の中心が一致している場合(St105:Yes)、制御部116は次のステップに移行する。一方、これらの像の中心が一致していない場合(St105:No)、制御部116は開口リングの駆動機構を制御し、開口リング106をX方向及びY方向に移動させる(St106)。
 制御部116は再び調整用画像を取得して(St104)、開口リング像F1と位相リング像F2の中心が一致しているか否かの判断を行い(S105)、一致していなけらばさらに開口リング106を移動させる(St106)。以降、制御部116は、像の中心が一致するまでこれらのステップ(St104~106)を繰返す。
 続いて、制御部116は、再び第2撮像部115から調整用画像を取得し(St107)、
開口リング像F1と位相リング像F2の幅中心の径が一致しているか否かを判断する(St108)。幅中心の径とは、調整用画像において各リングの中心から各リングの幅の中央までの距離である。
 制御部116は、開口リング像F1と位相リング像F2の幅中心の径が一致している場合(St108:Yes)、次のステップに移行する。一方これらの幅中心の径が一致していない場合(St108:No)、制御部116はコンデンサレンズ107の駆動機構を制御し、コンデンサレンズ107をZ方向に移動させる(St109)。
 制御部116は再び調整用画像を取得して(St107)、開口リング像F1と位相リング像F2の幅中心の径が一致しているか否かの判断を行い(St108)、一致していなければさらにコンデンサレンズ107を移動させる。以降、制御部116は、幅中心の径が一致するまでこれらのステップ(St107~109)を繰返す。
 続いて、制御部116は、調整用画像において、開口リング像F1が位相リング像F2内に収まっているか否かを判断する(St110)。図5(d)に示すように開口リング像F1が位相リング像F2内に収まっている場合(St110:Yes)、制御部116は位置調整プロセスを終了する。一方、開口リング像F1が位相リング像F2内に収まっていない場合(St110:No)、制御部116はステップ101に戻り、上記各ステップを繰返す。
 以上のようにして制御部116は、図5(d)に示すような調整用画像が得られるように位相リング110に対する開口リング106及びコンデンサレンズ107の位置を調整する。これにより、観察対象物によるレンズ効果の影響を解消して開口リング106と位相リング110の共役関係を維持することが可能となる。
 なお、上述した位置調整の手順は、制御部116ではなく、ユーザが実施してもよい。即ち、第2撮像部115に替えて目視可能な光学系を利用し、ユーザが開口リング106及びコンデンサレンズ107の位置を調整するものとすることも可能である。
 [実施例]
 位相差顕微鏡100において、上述のように開口リング106とコンデンサレンズ107の位置調整を行う際、どの程度移動させればよいかを算出した。図7は、位相差顕微鏡100の構成の一部と移動距離を示す模式図である。
 図7(a)は、観察対象物がディッシュDに収容された溶液を含み、溶液によるレンズ効果が生じていない状態を示す。図7(b)は、観察対象物がウェルWに収容された容器を含み、溶液によるレンズ効果が生じている状態を示す。図7(c)は、図7(b)に示す状態から、開口リング106及びコンデンサレンズ107の位相リング110に対する位置が調整された状態を示す。
 溶液(絶対屈折率n=1.33)の中心厚が3mm、溶液表面のメニスカスの曲率半径が8mm、コンデンサレンズ107の焦点距離が45mmであるとする。この場合、図7(c)に示すように、開口リング106のZ方向の移動距離が81.7mm、コンデンサレンズ107のZ方向の移動距離が3.7mmであるときに、開口リング106と位相リング110の共役関係が成立し、位相差像の生成に適した状態となる。
 また、ウェルWがXY方向に2mm移動し、即ちメニスカスが2mm偏心した場合、開口リング106のXY方向の移動距離が3.8mm、Z方向の移動距離がさらに22mmであるときに、開口リング106と位相リング110の共役関係が成立し、位相差像の生成に適した状態となる。
 また、図8は、位相差顕微鏡100の第1撮像部113によって撮像された観察対象物の位相差像である。図8(a)は、液面のレンズ効果によって開口リング106と位相リング110の共役関係が崩れている状態(図7(b)参照)の位相差像である。図8(b)は、開口リング106とコンデンサレンズ107の位置が調整され、開口リング106と位相リング110の共役関係が維持されている状態(図7(c)参照)の位相差像である。なお、観察対象物は、培養液中に固定されたiPS細胞由来のヒト心筋細胞であり、光学倍率は10倍(CラボTE200を使用)とした。第1撮像部113には、画素数2048×2048のCMOS(Complementary Metal Oxide Semiconductor)カメラを利用した。
 図8(a)に示すように、共役関係が崩れている状態においては、位相差が得られている領域が画像の中央部分のみとなっている。一方、図8(b)に示すように、共役関係が成立している状態においては、位相差が得られている領域が画像全体に及び、良好な位相差像が得られている。即ち、本実施形態のように、開口リング106とコンデンサレンズ107の位相リング110に対する位置を調整することにより、観察対象物の液面によるレンズ効果の影響を解消し、良好な位相差像を得ることが可能であるといえる。
 本技術は、上記各実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において変更することが可能である。
 なお、本技術は以下のような構成も採ることができる。
 (1)
 位相リングと、
 上記位相リングに対して、第1の方向に移動可能な開口リングと、
 上記位相リングに対して、上記開口リングとは独立して上記第1の方向に移動可能なコンデンサレンズと
 を具備する位相差顕微鏡。
 (2)
 上記(1)に記載の位相差顕微鏡であって、
 上記開口リングは、さらに、上記第1の方向に直交する第2の方向と、上記第1の方向及び上記第2の方向に直交する第3の方向に移動可能である
 位相差顕微鏡。
 (3)
 上記(1)又は(2)に記載の位相差顕微鏡であって、
 上記開口リングの像である開口リング像と上記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、
 上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、上記コンデンサレンズの上記位相リングに対する位置を調整する制御部と
 をさらに具備する位相差顕微鏡。
 (4)
 上記(1)から(3)のいずれか一つに記載の位相差顕微鏡であって、
 上記制御部は、上記開口リング像の焦点が合うように上記開口リングの位置を調整し、上記開口リング像が上記位相リング像に含まれるように上記コンデンサレンズの位置を調整する
 位相差顕微鏡。
 (5)
 開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像を取得し、上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する
 位相差顕微鏡の制御装置。
 (6)
 開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する
 位相差顕微鏡の制御方法。
 100…位相差顕微鏡
 101…光源
 102…光源レンズ
 103…視野絞り
 104…リレーレンズ
 105…開口絞り
 106…開口リング
 107…コンデンサレンズ
 108…ステージ
 109…対物レンズ
 110…位相リング
 111…第1結像レンズ
 112…ミラー
 113…第2撮像部
 114…第2結像レンズ
 115…第2撮像部
 116…制御部

Claims (6)

  1.  位相リングと、
     前記位相リングに対して、第1の方向に移動可能な開口リングと、
     前記位相リングに対して、前記開口リングとは独立して前記第1の方向に移動可能なコンデンサレンズと
     を具備する位相差顕微鏡。
  2.  請求項1に記載の位相差顕微鏡であって、
     前記開口リングは、さらに、前記第1の方向に直交する第2の方向と、前記第1の方向及び前記第2の方向に直交する第3の方向に移動可能である
     位相差顕微鏡。
  3.  請求項1に記載の位相差顕微鏡であって、
     前記開口リングの像である開口リング像と前記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、
     前記調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、前記コンデンサレンズの前記位相リングに対する位置とを調整する制御部と
     をさらに具備する位相差顕微鏡。
  4.  請求項3に記載の位相差顕微鏡であって、
     前記制御部は、前記開口リング像の焦点が合うように前記開口リングの位置を調整し、前記開口リング像が前記位相リング像に含まれるように前記コンデンサレンズの位置を調整する
     位相差顕微鏡。
  5.  開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像を取得し、前記調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、コンデンサレンズの前記位相リングに対する位置とを調整する
     位相差顕微鏡の制御装置。
  6.  開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、コンデンサレンズの前記位相リングに対する位置とを調整する
     位相差顕微鏡の制御方法。
PCT/JP2013/006390 2012-12-14 2013-10-29 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 WO2014091661A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/647,505 US20150309296A1 (en) 2012-12-14 2013-10-29 Phase contrast microscope, control apparatus for phase contrast microscope, and control method for phase contrast microscope
JP2014551841A JP6256351B2 (ja) 2012-12-14 2013-10-29 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-273366 2012-12-14
JP2012273366 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091661A1 true WO2014091661A1 (ja) 2014-06-19

Family

ID=50933972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006390 WO2014091661A1 (ja) 2012-12-14 2013-10-29 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法

Country Status (3)

Country Link
US (1) US20150309296A1 (ja)
JP (1) JP6256351B2 (ja)
WO (1) WO2014091661A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152648A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
JP2015152650A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
JP2015152647A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
WO2017002451A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 位相差顕微鏡および撮像方法
JP2017161385A (ja) * 2016-03-10 2017-09-14 株式会社Screenホールディングス 撮像装置における撮像配置決定方法および撮像装置
JP2019012250A (ja) * 2017-06-30 2019-01-24 富士フイルム株式会社 位相差顕微鏡
WO2019064984A1 (ja) 2017-09-28 2019-04-04 株式会社片岡製作所 位相差観察装置および細胞処理装置
JP2019066819A (ja) * 2017-09-28 2019-04-25 株式会社片岡製作所 位相差観察装置および細胞処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085929A (ja) * 1994-06-17 1996-01-12 Olympus Optical Co Ltd 顕微鏡光学系
JP2009122356A (ja) * 2007-11-14 2009-06-04 Nikon Corp 位相差顕微鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883086B2 (ja) * 2006-07-04 2012-02-22 株式会社ニコン 顕微鏡装置
US9069175B2 (en) * 2011-04-08 2015-06-30 Kairos Instruments, Llc Adaptive phase contrast microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085929A (ja) * 1994-06-17 1996-01-12 Olympus Optical Co Ltd 顕微鏡光学系
JP2009122356A (ja) * 2007-11-14 2009-06-04 Nikon Corp 位相差顕微鏡

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152650A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
JP2015152647A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
JP2015152648A (ja) * 2014-02-12 2015-08-24 株式会社ニコン 位相差顕微鏡
EP3318913A4 (en) * 2015-06-30 2018-06-27 FUJIFILM Corporation Phase difference microscope and imaging method
WO2017002451A1 (ja) * 2015-06-30 2017-01-05 富士フイルム株式会社 位相差顕微鏡および撮像方法
JP2017015856A (ja) * 2015-06-30 2017-01-19 富士フイルム株式会社 位相差顕微鏡および撮像方法
US10649192B2 (en) 2015-06-30 2020-05-12 Fujifilm Corporation Phase-contrast microscope and imaging method
WO2017154253A1 (ja) * 2016-03-10 2017-09-14 株式会社Screenホールディングス 撮像装置における撮像配置決定方法および撮像装置
JP2017161385A (ja) * 2016-03-10 2017-09-14 株式会社Screenホールディングス 撮像装置における撮像配置決定方法および撮像装置
JP2019012250A (ja) * 2017-06-30 2019-01-24 富士フイルム株式会社 位相差顕微鏡
WO2019064984A1 (ja) 2017-09-28 2019-04-04 株式会社片岡製作所 位相差観察装置および細胞処理装置
JP2019066819A (ja) * 2017-09-28 2019-04-25 株式会社片岡製作所 位相差観察装置および細胞処理装置
CN111164487A (zh) * 2017-09-28 2020-05-15 株式会社片冈制作所 相位差观察装置及细胞处理装置
CN111164487B (zh) * 2017-09-28 2022-04-15 株式会社片冈制作所 相位差观察装置及细胞处理装置
US11977214B2 (en) 2017-09-28 2024-05-07 Kataoka Corporation Phase difference observation apparatus and cell treatment apparatus

Also Published As

Publication number Publication date
JP6256351B2 (ja) 2018-01-10
US20150309296A1 (en) 2015-10-29
JPWO2014091661A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6256351B2 (ja) 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法
CN111868598B (zh) 用于自动显微聚焦的系统、装置以及方法
TW202045979A (zh) 自動顯微鏡聚焦系統、裝置及方法
JP6370626B2 (ja) 照明光学系、照明装置、及び照明光学素子
JP2011118371A (ja) 顕微鏡
JP2012038927A5 (ja)
JP2021037306A (ja) 偏光依存フィルタ、同フィルタを用いるシステム、および関連キットおよび方法
JP5655617B2 (ja) 顕微鏡
JP2007033381A (ja) 光学式検査装置及びその照明方法
JPWO2009142312A1 (ja) 顕微鏡装置
EP2253984A1 (en) Microscope
JP2012008361A (ja) 実体顕微鏡装置
JP4370404B2 (ja) Dlp式エバネッセンス顕微鏡
US20200145563A1 (en) Observation apparatus
JP5084183B2 (ja) 顕微鏡用落射照明光学系
JP2010008458A (ja) 光学式測定装置および投影板に形成されたパターン
JP2015004736A (ja) 透過蛍光顕微鏡
JP2006220953A5 (ja)
JP5278489B2 (ja) 顕微鏡、顕微鏡の焦点調節制御方法
WO2018207255A1 (ja) 合焦機能を備えた標本観察装置
JP2009237486A (ja) ズーム位相差観察装置および位相差観察用照明装置
JP2001042225A (ja) 落射照明装置
JP2006235089A (ja) 焦点検出装置
JP2009037153A (ja) オートフォーカス装置と、これを有する顕微鏡装置
JP2004012613A (ja) 共焦点顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551841

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861762

Country of ref document: EP

Kind code of ref document: A1