WO2014091661A1 - 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 - Google Patents
位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 Download PDFInfo
- Publication number
- WO2014091661A1 WO2014091661A1 PCT/JP2013/006390 JP2013006390W WO2014091661A1 WO 2014091661 A1 WO2014091661 A1 WO 2014091661A1 JP 2013006390 W JP2013006390 W JP 2013006390W WO 2014091661 A1 WO2014091661 A1 WO 2014091661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- ring
- image
- aperture
- contrast microscope
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/14—Condensers affording illumination for phase-contrast observation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
Definitions
- the present technology relates to a phase contrast microscope capable of capturing a phase contrast image of an observation object, a control device for the phase contrast microscope, and a control method for the phase contrast microscope.
- a phase contrast microscope capable of generating a phase contrast image of an observation object includes an aperture ring and a phase ring as a characteristic configuration.
- the aperture ring is a light shielding plate in which a ring-shaped slit is formed, and the phase ring is a transparent plate including a ring-shaped phase film.
- the illumination light (uniform light) emitted from the light source passes through the slit of the aperture ring, is formed into a ring shape, and is condensed on the observation object by the condenser lens (condenser lens).
- the illumination light is divided into direct light traveling straight through the observation object and diffracted light diffracted by the observation object.
- the direct light passes through the phase film of the phase ring and is out of phase and is attenuated. Most of the diffracted light is transmitted through the transparent portion of the phase ring (the portion where the phase film is not formed), so the phase and brightness do not change.
- the direct light and the diffracted light are imaged on the same imaging surface by the imaging lens to generate a phase difference image.
- Patent Document 1 discloses a phase contrast microscope capable of moving either a first phase ring (aperture ring) or a second phase ring.
- the conjugate relationship between the aperture ring and the phase ring may be affected by the observation object set on the phase contrast microscope.
- the liquid level causes a lens effect, so that the conjugate relationship is broken and it is difficult to obtain a good phase difference image.
- an object of the present technology is to provide a phase contrast microscope, a phase contrast microscope control device, and a phase contrast microscope control method capable of eliminating an optical influence on a phase contrast image by an observation object. Is to provide.
- a phase contrast microscope includes a phase ring, an aperture ring, and a condenser lens.
- the aperture ring is movable in a first direction with respect to the phase ring.
- the condenser lens is movable with respect to the phase ring in the first direction independently of the aperture ring.
- the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are determined even when the conjugate relationship between the aperture ring and the phase ring is broken due to the lens effect due to the liquid level of the observation object.
- the phase-contrast microscope can be brought into a state suitable for observation of the phase-contrast image.
- the enlargement magnification is shifted due to the lens effect on the liquid surface, so that a good phase difference image cannot be obtained.
- the opening ring may be further movable in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction.
- the phase contrast microscope includes an imaging unit that captures an adjustment ring image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring, and the aperture ring based on the adjustment image. And a control unit that adjusts the position of the condenser lens with respect to the phase ring.
- the control unit adjusts the position of the aperture ring and the condenser lens with respect to the phase ring based on the adjustment image, the phase contrast microscope is automatically brought into a state suitable for observation of the phase difference image. Is possible.
- the controller may adjust the position of the aperture ring so that the aperture ring image is in focus, and adjust the position of the condenser lens so that the aperture ring image is included in the phase ring image.
- control unit adjusts the position of the aperture ring with respect to the phase ring using the focus of the aperture ring image, and uses the magnitude relationship between the aperture ring image and the phase ring image to control the phase of the condenser lens.
- the position can be adjusted.
- a control device of a phase contrast microscope acquires an adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring, Based on the image for adjustment, the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted.
- a control method of a phase contrast microscope is based on an adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring. The position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted.
- phase contrast microscope As described above, according to the present technology, there are provided a phase contrast microscope, a phase contrast microscope control apparatus, and a phase contrast microscope control method capable of eliminating an optical influence on a phase contrast image by an observation object. It is possible.
- phase contrast microscope It is a mimetic diagram of a phase contrast microscope concerning an embodiment of this art. It is a schematic diagram of the opening ring of the same phase contrast microscope. It is a schematic diagram of the phase ring of the same phase contrast microscope. It is an example of the image for adjustment imaged with the 2nd imaging part of the same phase contrast microscope. It is a schematic diagram which shows adjustment of an aperture ring and a condenser lens of the same phase contrast microscope. It is a flowchart which shows operation
- FIG. 1 is a schematic diagram showing a configuration of a phase contrast microscope 100 according to the present embodiment.
- a phase contrast microscope 100 includes a light source 101, a light source lens 102, a field stop 103, a relay lens 104, an aperture stop 105, an aperture ring 106, a condenser lens 107, a stage 108, an objective lens 109, and a phase ring 110.
- a well plate S containing an observation object (cells in a culture solution, etc.) is placed on the stage 108.
- the direction from the opening ring 106 to the phase ring 110 is the Z direction
- the direction perpendicular to the Z direction is the X direction
- the direction perpendicular to the Z direction and the X direction is the Y direction.
- the Z direction coincides with the optical axis direction of the phase-contrast microscope 100
- the X direction and the Y direction are directions along the stage surface of the stage 108.
- the light source 101 is a light source that generates illumination light applied to the observation object, and an arbitrary light source such as a halogen lamp or a white LED (Light Emitting Diode) can be used.
- an arbitrary light source such as a halogen lamp or a white LED (Light Emitting Diode) can be used.
- the optical path of illumination light emitted from the light source 101 is shown as an optical path L1.
- the light source lens 102 is a lens that condenses the illumination light emitted from the light source 101. Any light source lens 102 can be used, but it is preferable that the illumination light can be uniform light (Kohler illumination light).
- the field stop 103 is disposed at a position conjugate with the observation target, and limits the range in which the illumination light is irradiated onto the observation target.
- the field stop 103 can be, for example, a light shielding plate in which a circular opening is formed.
- the relay lens 104 is a lens that transmits illumination light. Any relay lens 104 can be used.
- the aperture stop 105 is disposed at a position conjugate with the light source 101, and adjusts the amount of illumination light applied to the observation object.
- the aperture stop 105 can be, for example, a light shielding plate in which a circular opening is formed.
- the opening ring 106 shapes the illumination light into a ring shape.
- FIG. 2 is a schematic diagram showing the opening ring 106.
- the opening ring 106 includes a light shielding region 106a and a light transmission region 106b.
- the light shielding region 106a is a region that shields incident light
- the light transmitting region 106b is a region that transmits incident light.
- the aperture ring 106 may be formed by forming a slit in the light shielding member to form a light transmission region 106b and the other region as a light shielding region 106a.
- the opening ring 106 is configured to be movable at least in the Z direction with respect to the phase ring 110. Although details will be described later, it is preferable that the opening ring 106 is configured to be movable in the X direction and the Y direction.
- the opening ring 106 can be moved in each direction by a driving mechanism (not shown), for example, a motor.
- the driving mechanism is connected to and controlled by the control unit 116, that is, the position of the opening ring 106 can be adjusted by the control unit 116. Further, the position of the opening ring 106 can be adjusted manually.
- the condenser lens 107 is a lens that condenses the illumination light on the observation object. Any condenser lens 107 can be used.
- the condenser lens 107 is configured to be movable with respect to the phase ring 110 in the Z direction independently of the aperture ring 106.
- the condenser lens 107 can be moved in the Z direction by a driving mechanism (not shown), for example, a motor.
- the drive mechanism is connected to and controlled by the control unit 116, that is, the position of the condenser lens 107 can be adjusted by the control unit 116. Further, the position of the condenser lens 107 can be adjusted manually.
- Stage 108 supports an observation object (here, well plate S).
- the stage 108 is configured to be movable in the X direction, the Y direction, and the Z direction by a driving mechanism (not shown). Note that at least the central portion of the stage 108 is made of a light-transmitting material.
- the objective lens 109 enlarges the image of the observation object to a predetermined magnification.
- the objective lens 109 can be selected from various magnifications according to a desired magnification.
- the phase ring 110 phase-shifts a part of the incident light.
- the phase ring 110 is generally configured integrally with the objective lens 109, but may be independent of the objective lens 109.
- FIG. 3 is a schematic diagram showing the phase ring 110.
- the phase ring 110 has a phase shift region 110a and a light transmission region 110b.
- the phase shift region 110a is a region that shifts the phase of incident light and attenuates the incident light.
- the light transmission region 110b is a region that transmits the incident light without shifting the phase.
- the phase ring 110 may be formed by forming a phase film on a light transmissive member to form the phase shift region 110a, and the other region as the light transmissive region 110b.
- the first imaging lens 111 forms an image of the observation object on the imaging surface (imaging device) of the first imaging unit 113.
- An arbitrary lens can be used for the first imaging lens 111.
- the mirror 112 is disposed in the optical path between the first imaging lens 111 and the first imaging unit 113 and reflects incident light toward the second imaging lens 114.
- the mirror 112 may be excluded from the optical path when observing the phase difference image.
- the first imaging unit 113 captures a phase difference image of the observation object.
- the first imaging unit 113 can include an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
- the objective lens 109, the phase ring 110, the first imaging lens 111, and the first imaging unit 113 constitute a first imaging optical system.
- the optical path of the first imaging optical system is shown as an optical path L2.
- the observation object and the imaging surface of the first imaging unit 113 form a conjugate relationship, and the first imaging unit 113 captures a phase difference image of the observation object.
- the second imaging lens 114 images the light reflected by the mirror 112 on the imaging surface (imaging device) of the second imaging unit 115. Any second imaging lens 114 can be used.
- the second imaging unit 115 captures an image for adjusting the position of the aperture ring 106 and the condenser lens 107 (hereinafter referred to as an adjustment image).
- the second imaging unit 115 can include an imaging element such as a CCD or a CMOS.
- the second imaging unit 115 supplies the captured adjustment image to the control unit 116.
- an optical system may be provided in place of the second imaging unit 115 so that the user can view an image corresponding to the adjustment image.
- the second imaging optical system is configured by the aperture ring 106, the condenser lens 107, the objective lens 109, the phase ring 110, the first imaging lens 111, the mirror 112, the second imaging lens 114, and the second imaging unit 115.
- the optical path of the second imaging optical system is shown as an optical path L3.
- the imaging surfaces of the aperture ring 106, the phase ring 110, and the second imaging unit 115 form a conjugate relationship, and the second imaging unit 115 generates an image (adjustment image) that includes the image of the aperture ring 106 and the image of the phase ring 110. Imaged.
- the control unit 116 is an information processing unit incorporated in the phase-contrast microscope 100 or an information processing device (such as a PC) independent of the phase-contrast microscope 100, and includes a second imaging unit 115, a drive mechanism for the aperture ring 106, and a condenser lens. 107 are connected to the driving mechanism. Further, the control unit 116 may be connected to a drive mechanism of the stage 108 or the like. The control unit 116 adjusts the position of the aperture ring 106 relative to the phase ring 110 and the position of the condenser lens 107 relative to the phase ring 110 based on the adjustment image supplied from the second imaging unit 115. Details of the control unit will be described later.
- the phase contrast microscope 100 has the above-described configuration.
- the illumination light emitted from the light source 101 is collected by the light source lens 102 and the irradiation range is limited by the field stop 103. Further, the light is transmitted by the relay lens 104 and the amount of light is adjusted by the aperture stop 105. Further, the light is transmitted through the light transmission region 106 b (see FIG. 2) of the opening ring 106, shaped into a ring shape, and irradiated onto the observation object accommodated in the well of the well plate S by the condenser lens 107.
- the illumination light is divided into direct light that travels straight through the observation object and diffraction light that is diffracted by the observation object.
- the direct light passes through the phase shift region 110a (see FIG. 3) of the phase ring 110, is out of phase, and is attenuated. Since most of the diffracted light is transmitted through the light transmission region 110b of the phase ring 110, the phase and brightness do not change.
- the direct light and the diffracted light are imaged on the imaging surface of the first imaging unit 113 by the first imaging lens 111 in the optical path L2, and a phase difference image is generated.
- phase contrast microscope 100 In order to obtain a good phase contrast image, a conjugate relationship between the aperture ring 106 and the phase ring 110 needs to be established. For this reason, it is necessary to adjust the relative positions of the aperture ring 106 and the phase ring 110 before the observation object is observed.
- the optical path L3 is used.
- the image of the aperture ring 106 and the image of the phase ring 110 are imaged on the imaging surface of the second imaging unit 115 by the second imaging lens 114 in the optical path L3, and an adjustment image is generated.
- FIG. 4 is a schematic diagram showing an example of the position adjustment image.
- the adjustment image includes an image of the aperture ring 106 (hereinafter referred to as an aperture ring image) F1 and an image of the phase ring 110 (hereinafter referred to as a phase ring image) F2.
- the position of the aperture ring 106 relative to the phase ring 110 is adjusted so that the aperture ring image F1 is included in the phase ring image F2.
- the illumination light transmitted through the light transmission region 106b of the aperture ring 106 is transmitted through the phase shift region 110a of the phase ring 110, that is, the aperture ring 106 and the phase ring 110 have a phase difference.
- the positional relationship is suitable for image generation.
- the relative position between the aperture ring 106 and the phase ring 110 can be adjusted using the adjustment image.
- the conjugate effect between the aperture ring 106 and the phase ring 110 may be affected by the lens effect caused by the observation object.
- FIG. 5 is a schematic diagram illustrating a partial configuration of the phase-contrast microscope 100 and an adjustment image captured by the second imaging unit 115.
- FIG. 5A shows a case where the observation object includes a solution contained in the dish D.
- the liquid level of the solution is close to a flat surface and does not produce a lens effect. For this reason, the conjugate relationship between the aperture ring 106 and the phase ring 110 is maintained. Therefore, an adjustment image in which the aperture ring image F1 is included in the phase ring image F2 is generated.
- FIG. 5B shows a case where the observation object includes a solution contained in the well W.
- the liquid surface of the solution forms a meniscus shape due to the surface tension, and a lens effect is generated.
- the conjugate relationship between the aperture ring 106 and the phase ring 110 is broken, and the aperture ring image F1 is blurred.
- the aperture ring 106 and the condenser lens 107 are configured to be able to move independently in the Z direction with respect to the phase ring 110. It becomes possible to eliminate the influence of the lens effect of the object.
- FIG. 6 is a flowchart showing the operation of the control unit 116.
- the control unit 116 acquires an adjustment image from the second imaging unit 115 (St101).
- the adjustment image includes the aperture ring image F1 and the phase ring image F2 (see FIG. 5).
- the control unit 116 determines whether or not the aperture ring image F1 is blurred in the adjustment image (St102).
- the control unit 116 can determine whether or not the aperture ring image F1 is blurred by performing image processing such as binarization on the adjustment image.
- the control unit 116 proceeds to the next step.
- the control unit 116 controls the drive mechanism of the aperture ring 106 and moves the aperture ring 106 in the Z direction. (St103).
- the control unit 116 acquires the adjustment image again (St101), determines whether or not the aperture ring image F1 is blurred (St102), and further moves the aperture ring 106 in the Z direction (St103). Thereafter, the control unit 116 repeats these steps (St101 to St103) until the blurring of the aperture ring image F1 is eliminated.
- the control unit 116 obtains an adjustment image from the second imaging unit 115 again (St104), It is determined whether or not the centers (ring centers) of the aperture ring image F1 and the phase ring image F2 coincide (St105). When the centers of these images coincide (St105: Yes), the control unit 116 proceeds to the next step. On the other hand, when the centers of these images do not coincide (St105: No), the control unit 116 controls the driving mechanism of the aperture ring to move the aperture ring 106 in the X direction and the Y direction (St106).
- the control unit 116 acquires the adjustment image again (St104), determines whether or not the centers of the aperture ring image F1 and the phase ring image F2 match (S105), and if not, further opens the aperture.
- the ring 106 is moved (St106). Thereafter, the control unit 116 repeats these steps (St104 to St106) until the centers of the images coincide.
- control unit 116 again obtains an adjustment image from the second imaging unit 115 (St107), It is determined whether or not the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108).
- the diameter of the width center is the distance from the center of each ring to the center of the width of each ring in the adjustment image.
- the control unit 116 proceeds to the next step when the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108: Yes). On the other hand, when the diameters of the width centers do not match (St108: No), the control unit 116 controls the drive mechanism of the condenser lens 107 and moves the condenser lens 107 in the Z direction (St109).
- the control unit 116 obtains the adjustment image again (St107), and determines whether the diameters of the width centers of the aperture ring image F1 and the phase ring image F2 match (St108). Further, the condenser lens 107 is moved. Thereafter, the control unit 116 repeats these steps (St107 to St109) until the diameters at the width centers coincide.
- the control unit 116 determines whether or not the aperture ring image F1 is within the phase ring image F2 in the adjustment image (St110). As shown in FIG. 5D, when the aperture ring image F1 is within the phase ring image F2 (St110: Yes), the control unit 116 ends the position adjustment process. On the other hand, when the aperture ring image F1 does not fall within the phase ring image F2 (St110: No), the control unit 116 returns to Step 101 and repeats the above steps.
- control unit 116 adjusts the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 so as to obtain an adjustment image as shown in FIG. Thereby, it becomes possible to eliminate the influence of the lens effect due to the observation object and maintain the conjugate relationship between the aperture ring 106 and the phase ring 110.
- the position adjustment procedure described above may be performed by the user instead of the control unit 116.
- the user can adjust the positions of the aperture ring 106 and the condenser lens 107 by using a visible optical system instead of the second imaging unit 115.
- FIG. 7 is a schematic diagram showing a part of the configuration of the phase-contrast microscope 100 and the movement distance.
- FIG. 7A shows a state in which the object to be observed includes a solution stored in the dish D, and the lens effect due to the solution is not generated.
- FIG. 7B shows a state in which the object to be observed includes a container accommodated in the well W, and a lens effect is generated by the solution.
- FIG. 7C shows a state in which the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 are adjusted from the state shown in FIG. 7B.
- the radius of curvature of the meniscus on the solution surface is 8 mm
- the focal length of the condenser lens 107 is 45 mm.
- the moving distance in the Z direction of the aperture ring 106 is 81.7 mm
- the moving distance in the Z direction of the condenser lens 107 is 3.7 mm, as shown in FIG.
- the conjugate relationship of the ring 110 is established, and a state suitable for generating a phase difference image is obtained.
- the opening ring 106 moves when the moving distance of the opening ring 106 in the XY direction is 3.8 mm and the moving distance in the Z direction is further 22 mm.
- the phase ring 110 are in a conjugate relationship, which is suitable for generating a phase difference image.
- FIG. 8 is a phase difference image of the observation object imaged by the first imaging unit 113 of the phase contrast microscope 100.
- FIG. 8A is a phase difference image in a state where the conjugate relationship between the aperture ring 106 and the phase ring 110 is broken due to the lens effect on the liquid level (see FIG. 7B).
- FIG. 8B is a phase difference image in a state where the positions of the aperture ring 106 and the condenser lens 107 are adjusted and the conjugate relationship between the aperture ring 106 and the phase ring 110 is maintained (see FIG. 7C).
- the object to be observed was iPS cell-derived human cardiomyocytes fixed in the culture medium, and the optical magnification was 10 times (using C Lab TE200).
- a CMOS Complementary Metal Oxide Semiconductor
- the region where the phase difference is obtained is only the central portion of the image.
- the region where the phase difference is obtained extends over the entire image, and a good phase difference image is obtained. That is, by adjusting the positions of the aperture ring 106 and the condenser lens 107 with respect to the phase ring 110 as in this embodiment, the influence of the lens effect due to the liquid level of the observation object is eliminated, and a good phase difference image is obtained. It can be said that it is possible.
- the present technology is not limited to the above embodiments, and can be changed without departing from the gist of the present technology.
- this technique can also take the following structures.
- phase ring An aperture ring movable in a first direction relative to the phase ring;
- a phase contrast microscope comprising: a condenser lens that is movable in the first direction independently of the aperture ring with respect to the phase ring.
- the aperture ring is further movable in a second direction orthogonal to the first direction and a third direction orthogonal to the first direction and the second direction.
- phase contrast microscope according to (1) or (2) above, An imaging unit that captures an adjustment image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring; A phase contrast microscope further comprising: a position of the aperture ring relative to the phase ring based on the adjustment image; and a control unit that adjusts a position of the condenser lens relative to the phase ring.
- the control unit adjusts the position of the aperture ring so that the aperture ring image is in focus, and adjusts the position of the condenser lens so that the aperture ring image is included in the phase ring image.
- An adjustment image including an aperture ring image that is an image of an aperture ring and a phase ring image that is an image of a phase ring is obtained, and based on the adjustment image, the position of the aperture ring with respect to the phase ring, and the condenser lens
- a control device for a phase-contrast microscope that adjusts the position relative to the phase ring.
- the position of the aperture ring with respect to the phase ring and the position of the condenser lens with respect to the phase ring are adjusted based on an adjustment image including an aperture ring image that is an image of the aperture ring and a phase ring image that is an image of the phase ring. Control method of phase contrast microscope.
- SYMBOLS 100 Phase contrast microscope 101 ... Light source 102 ... Light source lens 103 ... Field stop 104 ... Relay lens 105 ... Aperture stop 106 ... Aperture ring 107 ... Condenser lens 108 ... Stage 109 ... Objective lens 110 ... Phase ring 111 ... First imaging lens DESCRIPTION OF SYMBOLS 112 ... Mirror 113 ... 2nd imaging part 114 ... 2nd imaging lens 115 ... 2nd imaging part 116 ... Control part
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
上記開口リングは、上記位相リングに対して、第1の方向に移動可能である。
上記コンデンサレンズは、上記位相リングに対して、上記開口リングとは独立して上記第1の方向に移動可能である。
上記位相差顕微鏡は、上記開口リングの像である開口リング像と上記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、上記コンデンサレンズの上記位相リングに対する位置を調整する制御部とをさらに具備してもよい。
図1は、本実施形態に係る位相差顕微鏡100の構成示す模式図である。同図に示すように、位相差顕微鏡100は、光源101、光源レンズ102、視野絞り103、リレーレンズ104、開口絞り105、開口リング106、コンデンサレンズ107、ステージ108、対物レンズ109、位相リング110、第1結像レンズ111、ミラー112、第1撮像部113、第2結像レンズ114、第2撮像部115及び制御部116を有する。また、ステージ108には、観察対象物(培養液中の細胞等)を収容したウェルプレートSが載置されている。
上述のように、調整用画像を利用して、開口リング106と位相リング110の相対位置を調整することが可能である。しかしながら、観察対象物によって生じるレンズ効果によって、開口リング106と位相リング110の共役関係が影響を受ける場合がある。
上述した開口リング106及びコンデンサレンズ107の位相リング110に対する位置調整は、制御部116によって自動的になされるものとすることが可能である。図6は、制御部116の動作を示すフローチャートである。
開口リング像F1と位相リング像F2の中心(リング中心)が一致しているか否かを判断する(St105)。これら像の中心が一致している場合(St105:Yes)、制御部116は次のステップに移行する。一方、これらの像の中心が一致していない場合(St105:No)、制御部116は開口リングの駆動機構を制御し、開口リング106をX方向及びY方向に移動させる(St106)。
開口リング像F1と位相リング像F2の幅中心の径が一致しているか否かを判断する(St108)。幅中心の径とは、調整用画像において各リングの中心から各リングの幅の中央までの距離である。
位相差顕微鏡100において、上述のように開口リング106とコンデンサレンズ107の位置調整を行う際、どの程度移動させればよいかを算出した。図7は、位相差顕微鏡100の構成の一部と移動距離を示す模式図である。
位相リングと、
上記位相リングに対して、第1の方向に移動可能な開口リングと、
上記位相リングに対して、上記開口リングとは独立して上記第1の方向に移動可能なコンデンサレンズと
を具備する位相差顕微鏡。
上記(1)に記載の位相差顕微鏡であって、
上記開口リングは、さらに、上記第1の方向に直交する第2の方向と、上記第1の方向及び上記第2の方向に直交する第3の方向に移動可能である
位相差顕微鏡。
上記(1)又は(2)に記載の位相差顕微鏡であって、
上記開口リングの像である開口リング像と上記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、
上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、上記コンデンサレンズの上記位相リングに対する位置を調整する制御部と
をさらに具備する位相差顕微鏡。
上記(1)から(3)のいずれか一つに記載の位相差顕微鏡であって、
上記制御部は、上記開口リング像の焦点が合うように上記開口リングの位置を調整し、上記開口リング像が上記位相リング像に含まれるように上記コンデンサレンズの位置を調整する
位相差顕微鏡。
開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像を取得し、上記調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する
位相差顕微鏡の制御装置。
開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像に基づいて、上記開口リングの上記位相リングに対する位置と、コンデンサレンズの上記位相リングに対する位置とを調整する
位相差顕微鏡の制御方法。
101…光源
102…光源レンズ
103…視野絞り
104…リレーレンズ
105…開口絞り
106…開口リング
107…コンデンサレンズ
108…ステージ
109…対物レンズ
110…位相リング
111…第1結像レンズ
112…ミラー
113…第2撮像部
114…第2結像レンズ
115…第2撮像部
116…制御部
Claims (6)
- 位相リングと、
前記位相リングに対して、第1の方向に移動可能な開口リングと、
前記位相リングに対して、前記開口リングとは独立して前記第1の方向に移動可能なコンデンサレンズと
を具備する位相差顕微鏡。 - 請求項1に記載の位相差顕微鏡であって、
前記開口リングは、さらに、前記第1の方向に直交する第2の方向と、前記第1の方向及び前記第2の方向に直交する第3の方向に移動可能である
位相差顕微鏡。 - 請求項1に記載の位相差顕微鏡であって、
前記開口リングの像である開口リング像と前記位相リングの像である位相リング像を含む調整用画像を撮像する撮像部と、
前記調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、前記コンデンサレンズの前記位相リングに対する位置とを調整する制御部と
をさらに具備する位相差顕微鏡。 - 請求項3に記載の位相差顕微鏡であって、
前記制御部は、前記開口リング像の焦点が合うように前記開口リングの位置を調整し、前記開口リング像が前記位相リング像に含まれるように前記コンデンサレンズの位置を調整する
位相差顕微鏡。 - 開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像を取得し、前記調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、コンデンサレンズの前記位相リングに対する位置とを調整する
位相差顕微鏡の制御装置。 - 開口リングの像である開口リング像と位相リングの像である位相リング像を含む調整用画像に基づいて、前記開口リングの前記位相リングに対する位置と、コンデンサレンズの前記位相リングに対する位置とを調整する
位相差顕微鏡の制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/647,505 US20150309296A1 (en) | 2012-12-14 | 2013-10-29 | Phase contrast microscope, control apparatus for phase contrast microscope, and control method for phase contrast microscope |
JP2014551841A JP6256351B2 (ja) | 2012-12-14 | 2013-10-29 | 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-273366 | 2012-12-14 | ||
JP2012273366 | 2012-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091661A1 true WO2014091661A1 (ja) | 2014-06-19 |
Family
ID=50933972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006390 WO2014091661A1 (ja) | 2012-12-14 | 2013-10-29 | 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150309296A1 (ja) |
JP (1) | JP6256351B2 (ja) |
WO (1) | WO2014091661A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015152648A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
JP2015152650A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
JP2015152647A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
WO2017002451A1 (ja) * | 2015-06-30 | 2017-01-05 | 富士フイルム株式会社 | 位相差顕微鏡および撮像方法 |
JP2017161385A (ja) * | 2016-03-10 | 2017-09-14 | 株式会社Screenホールディングス | 撮像装置における撮像配置決定方法および撮像装置 |
JP2019012250A (ja) * | 2017-06-30 | 2019-01-24 | 富士フイルム株式会社 | 位相差顕微鏡 |
WO2019064984A1 (ja) | 2017-09-28 | 2019-04-04 | 株式会社片岡製作所 | 位相差観察装置および細胞処理装置 |
JP2019066819A (ja) * | 2017-09-28 | 2019-04-25 | 株式会社片岡製作所 | 位相差観察装置および細胞処理装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085929A (ja) * | 1994-06-17 | 1996-01-12 | Olympus Optical Co Ltd | 顕微鏡光学系 |
JP2009122356A (ja) * | 2007-11-14 | 2009-06-04 | Nikon Corp | 位相差顕微鏡 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4883086B2 (ja) * | 2006-07-04 | 2012-02-22 | 株式会社ニコン | 顕微鏡装置 |
US9069175B2 (en) * | 2011-04-08 | 2015-06-30 | Kairos Instruments, Llc | Adaptive phase contrast microscope |
-
2013
- 2013-10-29 US US14/647,505 patent/US20150309296A1/en not_active Abandoned
- 2013-10-29 WO PCT/JP2013/006390 patent/WO2014091661A1/ja active Application Filing
- 2013-10-29 JP JP2014551841A patent/JP6256351B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085929A (ja) * | 1994-06-17 | 1996-01-12 | Olympus Optical Co Ltd | 顕微鏡光学系 |
JP2009122356A (ja) * | 2007-11-14 | 2009-06-04 | Nikon Corp | 位相差顕微鏡 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015152650A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
JP2015152647A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
JP2015152648A (ja) * | 2014-02-12 | 2015-08-24 | 株式会社ニコン | 位相差顕微鏡 |
EP3318913A4 (en) * | 2015-06-30 | 2018-06-27 | FUJIFILM Corporation | Phase difference microscope and imaging method |
WO2017002451A1 (ja) * | 2015-06-30 | 2017-01-05 | 富士フイルム株式会社 | 位相差顕微鏡および撮像方法 |
JP2017015856A (ja) * | 2015-06-30 | 2017-01-19 | 富士フイルム株式会社 | 位相差顕微鏡および撮像方法 |
US10649192B2 (en) | 2015-06-30 | 2020-05-12 | Fujifilm Corporation | Phase-contrast microscope and imaging method |
WO2017154253A1 (ja) * | 2016-03-10 | 2017-09-14 | 株式会社Screenホールディングス | 撮像装置における撮像配置決定方法および撮像装置 |
JP2017161385A (ja) * | 2016-03-10 | 2017-09-14 | 株式会社Screenホールディングス | 撮像装置における撮像配置決定方法および撮像装置 |
JP2019012250A (ja) * | 2017-06-30 | 2019-01-24 | 富士フイルム株式会社 | 位相差顕微鏡 |
WO2019064984A1 (ja) | 2017-09-28 | 2019-04-04 | 株式会社片岡製作所 | 位相差観察装置および細胞処理装置 |
JP2019066819A (ja) * | 2017-09-28 | 2019-04-25 | 株式会社片岡製作所 | 位相差観察装置および細胞処理装置 |
CN111164487A (zh) * | 2017-09-28 | 2020-05-15 | 株式会社片冈制作所 | 相位差观察装置及细胞处理装置 |
CN111164487B (zh) * | 2017-09-28 | 2022-04-15 | 株式会社片冈制作所 | 相位差观察装置及细胞处理装置 |
US11977214B2 (en) | 2017-09-28 | 2024-05-07 | Kataoka Corporation | Phase difference observation apparatus and cell treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP6256351B2 (ja) | 2018-01-10 |
US20150309296A1 (en) | 2015-10-29 |
JPWO2014091661A1 (ja) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6256351B2 (ja) | 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法 | |
CN111868598B (zh) | 用于自动显微聚焦的系统、装置以及方法 | |
TW202045979A (zh) | 自動顯微鏡聚焦系統、裝置及方法 | |
JP6370626B2 (ja) | 照明光学系、照明装置、及び照明光学素子 | |
JP2011118371A (ja) | 顕微鏡 | |
JP2012038927A5 (ja) | ||
JP2021037306A (ja) | 偏光依存フィルタ、同フィルタを用いるシステム、および関連キットおよび方法 | |
JP5655617B2 (ja) | 顕微鏡 | |
JP2007033381A (ja) | 光学式検査装置及びその照明方法 | |
JPWO2009142312A1 (ja) | 顕微鏡装置 | |
EP2253984A1 (en) | Microscope | |
JP2012008361A (ja) | 実体顕微鏡装置 | |
JP4370404B2 (ja) | Dlp式エバネッセンス顕微鏡 | |
US20200145563A1 (en) | Observation apparatus | |
JP5084183B2 (ja) | 顕微鏡用落射照明光学系 | |
JP2010008458A (ja) | 光学式測定装置および投影板に形成されたパターン | |
JP2015004736A (ja) | 透過蛍光顕微鏡 | |
JP2006220953A5 (ja) | ||
JP5278489B2 (ja) | 顕微鏡、顕微鏡の焦点調節制御方法 | |
WO2018207255A1 (ja) | 合焦機能を備えた標本観察装置 | |
JP2009237486A (ja) | ズーム位相差観察装置および位相差観察用照明装置 | |
JP2001042225A (ja) | 落射照明装置 | |
JP2006235089A (ja) | 焦点検出装置 | |
JP2009037153A (ja) | オートフォーカス装置と、これを有する顕微鏡装置 | |
JP2004012613A (ja) | 共焦点顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13861762 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551841 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14647505 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13861762 Country of ref document: EP Kind code of ref document: A1 |