WO2014090128A1 - 一种青蒿素环糊精缀合物及其制备方法 - Google Patents

一种青蒿素环糊精缀合物及其制备方法 Download PDF

Info

Publication number
WO2014090128A1
WO2014090128A1 PCT/CN2013/088939 CN2013088939W WO2014090128A1 WO 2014090128 A1 WO2014090128 A1 WO 2014090128A1 CN 2013088939 W CN2013088939 W CN 2013088939W WO 2014090128 A1 WO2014090128 A1 WO 2014090128A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
artemisinin
conjugate
arteannuin
amine
Prior art date
Application number
PCT/CN2013/088939
Other languages
English (en)
French (fr)
Inventor
杨波
陈云建
杨兆祥
朱泽
肖丹
赵榆林
廖霞俐
Original Assignee
昆明制药集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明制药集团股份有限公司 filed Critical 昆明制药集团股份有限公司
Priority to EP13863004.1A priority Critical patent/EP2933270B1/en
Priority to JP2015546831A priority patent/JP6453761B2/ja
Publication of WO2014090128A1 publication Critical patent/WO2014090128A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes

Definitions

  • Artemisinin cyclodextrin conjugate and preparation method thereof TECHNICAL FIELD
  • the present invention relates to the field of drug synthesis, and in particular to an artemisinin cyclodextrin conjugate and a preparation method thereof.
  • artemisinin has the ability to selectively kill cancer cells, and has minimal effect on normal cells. Artemisinin has a different mechanism of action than traditional tumor chemotherapy drugs, which can reverse the multidrug resistance of tumor cells. There is no cross-resistance to artesunate in leukemia cell lines resistant to doxorubicin, vincristine, methotrexate or hydroxyurea.
  • Artemisinin has been used clinically as an anti-malarial drug for many years, and its safety has been confirmed in the application of tens of millions of clinical cases. Its anti-tumor effect is being further studied, which may be related to the reaction of artemisinin with Fe 2+ to produce a large number of free radicals and alkylation, and is also closely related to the induction of tumor cell apoptosis.
  • the iron concentration of cancer cells is much higher than that of normal cells.
  • the peroxy bridge in the artemisinin structure is catalyzed by iron to generate free radicals, and the cells are killed by the free radical route.
  • artemisinin can induce apoptosis in mouse leukemia cancer cells and human liver cancer, but the specific mechanism of stimulation (drug action on target) and effect (apoptosis) is not clear enough. Studies have also suggested that artemisinin has a certain effect on tumor angiogenic factors, and artesunate has broad-spectrum anticancer activity. In vitro studies have shown that artemisinin drugs can inhibit the proliferation of leukemia cells by acting on leukemia P388 cells cultured in vitro. Some artemisinic acid and artemisinic acid compounds have selective inhibitory effects on various tumor cells in vitro. Artemisinin sodium for human cervical cancer
  • HeLa cells showed killing effect and had a killing effect on human poorly differentiated squamous epithelial nasopharyngeal carcinoma cells (HeLa, SU E-1 and CNE2), and significantly inhibited the growth of hepatoma cell line BEL-7402.
  • the growth of human liver cancer has a significant inhibitory effect.
  • Artesunate has the effect of inducing apoptosis of U937 cells, and has a killing effect on human colon cancer cells HCT-8, human erythroleukemia K562 and human breast cancer MCF-7 cell lines.
  • artemisininin drugs can also inhibit the growth of human ovarian cancer HO-8910 transplanted tumor, transgenic mouse prostate adenocarcinoma and other tumors.
  • artemisinin compounds have poor water solubility and low bioavailability, and cannot be transported to cancer cells. In human and animal models, artemisinin compounds are eliminated faster and cannot form therapeutic doses on cancer cells. .
  • Cyclodextrins are semi-natural macromolecular compounds obtained by catalytic degradation of starch by cyclodextrin glucosyltransferase. Cyclodextrins are hardly hydrolyzed and have only a small amount of absorption through the stomach and small intestines of the human body. However, cyclodextrin can be fermented by the organism inside the colon and degraded into monosaccharides or disaccharides, which can be absorbed by the large intestine.
  • an artemisinin compound can be bonded to a cyclodextrin compound to form a conjugate, and the artemisinin cyclodextrin conjugate can overcome the inherent disadvantages of artemisinin compounds. Increase the efficacy and reduce side effects.
  • an object of the present invention is to provide a targeted artemisinin cyclodextrin conjugation An artemisinin-amino-modified cyclodextrin conjugate.
  • the present invention adopts the following technical solutions:
  • An artemisininin cyclodextrin conjugate wherein an artemisinin compound and an amine modified cyclodextrin are linked by an amide bond of a carboxyl group of an artemisinin compound with an amine group of an amine modified cyclodextrin .
  • conjugate refers to a new molecular entity formed by the covalent bond between two or more molecules.
  • the artemisinin cyclodextrin conjugate refers to a compound formed by an artemisinin compound and a cyclodextrin compound (amine-modified cyclodextrin) linked by an amide bond; more specifically And means a compound formed by an artemisinin compound which forms an amide bond with an amine group of a cyclodextrin modified with an amine group.
  • the artemisinin-based compound is an artemisinin compound which is formed by substituting c 12 which constitutes an artemisinin molecule with a carboxylic acid-containing compound.
  • the synthesis of artemisinin compounds can be carried out in accordance with the prior art in the prior art.
  • Cyclodextrin (CD) is a generic term for a series of cyclic oligosaccharides produced by amylose in a cyclodextrin glucosyltransferase produced by Bacillus, which has been studied more and has important practicalities. What is meant is a molecule containing 6, 7, or 8 glucose units, called ⁇ -, ⁇ -, and ⁇ -cyclodextrin, respectively.
  • each D(+)-glucopyranose constituting the cyclodextrin molecule is a chair conformation, and each glucose unit is 1 , 4- Glycosidic bonds combine to form a ring. Since the glycosidic bond connecting the glucose unit cannot be freely rotated, the cyclodextrin is a cylindrical three-dimensional ring structure with open ends and a large end at one end and a hollow end. In the hollow structure, the inside of the cavity is formed by the shielding effect of the CH bond.
  • the amino group-modified cyclodextrin is a compound formed by substituting an amino group for a hydroxyl group of D(+)-glucopyranose C 2 , C 3 and/or C 6 constituting a cyclodextrin molecule.
  • the synthesis of the amine-modified cyclodextrin can be carried out in accordance with the prior literature.
  • the cyclodextrin can be first reacted with a sulfonylating reagent to form a sulfonated cyclodextrin [RC Petter, JS Salek, CT Sikorski, G. Kumaravel, and F.-T. Lin: J. Am. Chem. Soc.
  • cyclodextrin can undergo cross-acylation at the 2, 3, and/or 6 positions of D(+)-glucopyranose.
  • Commonly used sulfonylating agents are phenylphosphoryl chloride and p-nonyl benzene acyl chloride. Then, under the nucleophilic attack of the aminating agent, the sulfonyl group on the acylated cyclized cyclodextrin is removed and replaced with an amine group to form an amine-modified cyclodextrin [B ⁇ . May, SD Kean, CJ Easton, and SF Lincoln: J. Chem. Soc, Perkin Trans. 13157-3160 (1997)].
  • the amination reagent may be various kinds of organic reagents containing an amine group, including ammonia, decylamine, ethylamine, propylamine, butylamine, ethylenediamine, ethanolamine, acetamide and diethylenetriamine.
  • R 2 and R 3 are -OH or -RNH 2 and at least one of R 2 and R 3 is -RNH 2 ;
  • R is (CH 2 ) X , NH(CH 2 ) X , NH(CH 2 ) X NH (CH 2 ) X , CO(CH 2 ) x or
  • At least 1 means that at least one D(+)-glucopyranose in the amine-modified cyclodextrin molecule is modified by an amine group, wherein m is 5, 6 or 7; and m is 0 means the amine
  • the base-modified cyclodextrin constituting the cyclodextrin molecule is modified by an amine group for each D(+)-glucopyranose.
  • At least one of Ri, R 2 and R 3 in formula I is -RNH 2 means that the amine-modified cyclodextrin is at least monoamine-modified by an amine-modified D(+)-glucopyranose molecule, which may It occurs at the 2, 3 or 6 position, and may also be a diamine modification or both R 2 and R 3 may be modified.
  • R in the amine-RNH 2 of the modified cyclodextrin is (CH 2 ) X , NH(CH 2 ) X , NH(CH 2 ) X NH(CH 2 ) X , CO ( CH 2 ) x or 0(CH 2 ) x represents that the amine group of the modified cyclodextrin may be an organic amine group such as ammonia, decylamine, ethylamine, ethylenediamine, ethanolamine, acetamide or diethylenetriamine, wherein X An integer of 0 or more is preferably 0 to 10, more preferably 0, 1, 2, 3 or 4.
  • R is (CH 2) X, NH ( CH 2) X, NH (CH 2) X NH (CH 2) X, CO (CH2) x or 0 (CH 2) x,
  • the amine modified cyclodextrin is selected from mono-[6-(ethylenediamino)-6-deoxy]- ⁇ -cyclodextrin, mono-[2-(ethylenediamine) -6-deoxy]- ⁇ -cyclodextrin, mono-[3-(decylamino)-6-deoxy]- ⁇ -cyclodextrin and mono-[6-(ethanolamino)-6-deoxy]- ⁇ fine.
  • the artemisinin-based compound is an artemisinin compound which is formed by substituting c 12 which constitutes an artemisinin molecule with a carboxylic acid-containing compound.
  • artemisinin compounds can be carried out in accordance with the prior art in the prior art.
  • Dihydroartemisinin can react with carboxyl-containing compounds to form artemisinin compounds [PM 0, Neill, et al: J. Med. Chem. 44, 58 - 68 (2001)]
  • dihydroartemisinin can be in C
  • An etherification or esterification reaction occurs on the hydroxyl group of 12 .
  • the etherification or esterification agent may be various compounds containing a hydroxyl group organic group, and the reaction formula is as follows:
  • the amine-modified cyclodextrin has a structure represented by Formula II,
  • R 4 is (CH 2 ) y , CO(CH 2 ) y , C 6 H 6 (CH 2 ) y or COC 6 H 6 (CH 2 ) y , y is an integer greater than or equal to 0, and CO is a carbonyl group, C 6 H 6 is a benzene ring.
  • the etherification and esterification reagents are succinic acid, succinic anhydride, terephthalic acid, p-hydroxybenzoic acid, p-hydroxybenzoic acid ester, p-benzoic acid, para-benzene Tannic acid.
  • the artemisinin compound is artesunate, a compound in which a phenoxy group is attached to artemisinin C-12, and a compound in which an alkoxy group is attached to artemisinin C-12.
  • Another object of the present invention is to provide a process for the preparation of the artemisinin cyclodextrin conjugate of the present invention.
  • a preparation method of the artemisinin cyclodextrin conjugate of the present invention comprises: reacting a carboxyl group of an artemisinin compound with an amine group modified cyclodextrin in a strong polar organic solvent under the action of a condensing agent; The amidation reaction of the amine group produces an artemisinin cyclodextrin conjugate.
  • the condensing agent usable in the preparation method of the present invention includes various condensing agents used in the amidation reaction in the pharmaceutical synthesis, and includes a carbodiimide-based condensing agent and a cerium salt-based condensing agent, wherein the carbodiimide-based condensing agent is It is widely used in the preparation of amides for drug synthesis.
  • the condensing agent in the production method of the present invention is preferably a carbodiimide-based condensing agent.
  • DCC dicyclohexylcarbodiimide
  • DIC diisopropylcarbodiimide
  • EDCI 1-(3-diamine) Propyl)-3-ethylcarbodiimide
  • DCC-HOBt azole complex condensing agent
  • the weight ratio of the amine-modified cyclodextrin to the dicyclohexylcarbodiimide is from 1:0.04 to 10, more preferably from 1:0.4 to 5.
  • the weight ratio of the amine-modified cyclodextrin to the 1-hydroxybenzotriazole is from 1: 0.03 to 7.5, more preferably from 1:0.3 to 3.
  • a dehydrating agent may be used in the amidation reaction of the present invention to absorb water molecules produced by the condensation reaction, to prevent hydrolysis of the condensation product, and to increase the efficiency of the condensation reaction.
  • the dehydrating agent includes calcium oxide, phosphorus pentoxide, molecular sieves and the like.
  • the amine-modified cyclodextrin is soluble in water and a strong polar organic solvent, while the artemisinin compound, dicyclohexylcarbodiimide and 1-hydroxybenzotriazole are insoluble in water, and the carboxyl group and the amine are
  • the amidation of the base is a dehydration condensation reaction, and water as a solvent is disadvantageous to the amidation reaction. Therefore, the preparation method of the present invention uses a strong polar organic solvent as a solvent.
  • the strongly polar organic solvent is hydrazine, hydrazine-dimercaptoamide, hydrazine, hydrazine-diethylamide or dimethyl sulfoxide.
  • the amidation reaction in the preparation method of the present invention comprises reacting an amine-modified cyclodextrin with an excess of artemisinin compound at - 10 to 10 ° C for 6 to 24 hours to form a carboxyl group activation reaction.
  • the intermediate is then reacted at 15 to 40 ° C for 6 to 24 hours to cause amidation of the carboxyl group of artesunate with the cyclodextrin amine group to form an artemisinin cyclodextrin conjugate.
  • the preparation method of the present invention further comprises the step of activating the surface hydroxyl group of the amine-modified cyclodextrin before the amidation reaction, comprising reacting the amine-modified cyclodextrin with a condensing agent at -10 to 10 ° C. ⁇ 5h.
  • the preparation method of the present invention further comprises the step of purifying the artemisinin cyclodextrin conjugate.
  • the purification step according to the present invention may comprise drying the reaction solution obtained by the amidation reaction, collecting the solid residue, dissolving in water, and then filtering The impurities were removed by organic solvent precipitation to obtain a pure artemisinin cyclodextrin conjugate. Wherein the filtration impurity removal is removal of unreacted artesunate, dicyclohexylcarbodiimide and 1-hydroxybenzotriazole.
  • the principle of the artemisinin cyclodextrin conjugate prepared by the organic solvent precipitation method is that the organic solvent can lower the dielectric constant of the solution and reduce the polarity of the solvent, thereby weakening the solvent molecule and artemisinin.
  • the organic solvent is acetone, decyl alcohol, ethanol, isopropanol, chloroform or tetrahydrofuran.
  • the organic solvent precipitation method in the present invention is affected by the concentration of the solution.
  • the artemisinin cyclodextrin conjugate precipitates insufficiently, the recovery rate is low, and it is necessary to use a larger proportion of the organic solvent for precipitation; the high concentration solution can save the organic solvent.
  • the preparation method of the present invention may further comprise a concentration step to reduce the moisture of the solution, increase the concentration of the solution, and sufficiently precipitate the artemisinin cyclodextrin conjugate in an organic solvent.
  • the preparation method of the present invention further comprises the step of refining the artemisinin cyclodextrin conjugate.
  • the purification is organic solvent extraction or chromatography.
  • the organic solvent is selected from the group consisting of acetone, diethyl ether, chloroform and tetrahydrofuran.
  • the invention determines the structure of an artemisinin cyclodextrin conjugate by nuclear magnetic resonance and high resolution mass spectrometry.
  • 1 H NMR chart of artemisinin cyclodextrin conjugate showed that 3 ⁇ 4, H 12 , H 13 , H 14 and artemisinin compounds appeared at 0.3 to 3.0 ppm and 5.0 to 7.1 ppm under D 2 0 conditions.
  • H 15 characteristic peak while cyclodextrin has no characteristic absorption, and artesunate is almost insoluble in water, which may preliminarily indicate that artesunate reacts with cyclodextrin.
  • the artemisinin cyclodextrin conjugate of the present invention uses cyclodextrin as a carrier and artemisinin
  • the complex molecule is linked to the cyclodextrin by its own carboxyl group forming an amide bond with any amine group of the amine-modified cyclodextrin.
  • the artemisinin cyclodextrin conjugate of the present invention contains more hydrophilic active groups, and has better biocompatibility than artemisinin and dihydrogen blue. Artemisin has better water solubility.
  • the artemisinin cyclodextrin conjugate of the present invention has a solubility in water of 25 to 98 mg/mL at 25 ° C, while artemisinin and dihydroartemisinin are hardly soluble in water.
  • the artemisinin cyclodextrin conjugate of the present invention has anti-cancer targeting properties, especially for colorectal cancer cell targets.
  • the artemisinin cyclodextrin conjugate has only a small amount of absorption through the stomach and small intestine of the human body, can only be decomposed and released in the colonic tract, and then absorbed by the large intestine, and has a colorectal release characteristic.
  • the artemisinin cyclodextrin conjugate of the present invention has anti-cancer targeting properties, especially for colorectal cancer cells, and can effectively enter a patient. Prefer aggregation in target cancer cells, selectively induce death of human rectal cancer cells, improve drug efficacy, and reduce toxic side effects.
  • a cell suspension of human rectal cancer cells HCT116, Lovo, SW480 and HT29 180 ⁇ l was added to a 96-well culture plate at 5% C0 2 , 37 . C. Pre-culture for 24 h under saturated humidity conditions. After replacing 150 ⁇ l of the medium, 20 ⁇ l of medium containing different concentrations of molecular assemblies was added, and the medium without the sample was used as a negative control to contain different concentrations of camptothecin. The medium of oxaliplatin and fluorouracil was used as a positive control and culture was continued for 48 hours.
  • the OD value was measured by the MTT method, and the growth inhibition rate was determined, and the inhibitory effects of the compounds at high, medium, and low concentrations on the proliferation of tumor cells were observed. All of the above experiments were performed in parallel three times. The results show the results of in vitro experiments with artemisinin cyclodextrin conjugates on human rectal cancer cells (as shown in Table 1). Table 1 IC 5 of some artemisinin compounds in several rectal cancer cells. Value ( ⁇ ) (HCT1 16, Lovo, SW480 and HT 90 Cells) IC 50 ( ⁇ ) Compound MW
  • cyclodextrin can be decomposed into open-chain maltodextrin, maltose and glucose in the colonic tract, and then absorbed by the large intestine, it can be used as a carrier for colorectal target, and the drug can be directly delivered to the rectum to enhance absorption in the colon.
  • the preparation method of the artemisinin cyclodextrin conjugate of the invention has the advantages of easy operation, mild reaction conditions, and can be used for the preparation of the artemisinin cyclodextrin conjugate.
  • DRAWINGS Figure 1 shows a nuclear magnetic resonance spectrum (iHNMR) chart of ⁇ -cyclodextrin; Figure 2 shows mono-[2-(ethylenediamine)-6-deoxy]- ⁇ -cyclodextrin-cyan prepared in Example 1.
  • the nuclear magnetic resonance spectrum (HNMR) of the artesunate conjugate showed 3 ⁇ 4, H 12 , H 13 , Hi 4 and H 15 characteristic peaks of artesunate at 7-8 ppm, and the cyclodextrin has no characteristics at this point.
  • Figure 3 shows the nuclear magnetic resonance spectrum of the mono-[2-(ethylenediamine)-6-deoxy]- ⁇ -cyclodextrin-artesunate conjugate prepared in Example 1 ( 13 CNMR )
  • the characteristic unsaturated carbon skeleton absorption peak of artesunate appeared at 10 ⁇ 50ppm, and the amide bond unsaturated carbonyl absorption peak appeared at 170 ⁇ 190ppm;
  • Figure 4 shows a high resolution mass spectrum of the mono-[2-(ethylenediamine)-6-deoxy]- ⁇ -cyclodextrin-artesunate conjugate prepared in Example 1 [HSMS(TOF-ESI) ].
  • Embodiments of the invention disclose artemisinin cyclodextrin conjugates and methods for their preparation. Those skilled in the art can learn from the contents of this paper and appropriately improve the process parameters. It is to be understood that all such alternatives and modifications are obvious to those skilled in the art and are considered to be included in the present invention.
  • the products and methods of the present invention have been described in terms of preferred embodiments, and it is obvious that those skilled in the art can make modifications and/or combinations and combinations of the products and methods described herein to achieve the The technique of the present invention is applied.
  • Example 1
  • reaction liquid was evaporated to dryness under reduced pressure at 60 ° C, and the residue was dissolved in water, filtered, and the filtrate was concentrated, and the mixture was concentrated to 100 mL of chloroform, and the mixture was filtered, and the precipitate was collected and dried under vacuum at 50 ° C for 24 h to obtain mono-[6- (Ethylene) Amino)-6-deoxy]- ⁇ -cyclodextrin-artesunate conjugate in a yield of 65%. Solubility is 68mg/mL
  • the mono-[3-(diethylenetriamine)-6-deoxy]- ⁇ -cyclodextrin 2 mmol was dissolved in anhydrous dimethyl sulfoxide ( 50 mL) and cooled to about -5 °C.
  • DCC dicyclohexylcarbodiimide
  • HOBT 1-hydroxybenzotriazole
  • the mono-[6-(triethylenetetramine)-6-deoxy]- ⁇ -cyclodextrin was dissolved in anhydrous hydrazine, hydrazine-dimercaptoamide (50 mL), and cooled to about 0 °C.
  • 1.2 g of dicyclohexylcarbodiimide (DCC) was added, and after stirring for 24 hours in an ice bath, 3.77 g (6 mmol) of a phenoxy group-attached compound of artemisinin C-12 was added, and the reaction solution was stirred at 10 ° C. Stir at 24 ° C for 24 h.
  • the mono-[3-(diethylenetriamine)-6-deoxy]- ⁇ -cyclodextrin 2 mmol was dissolved in anhydrous dimethyl sulfoxide ( 50 mL) and cooled to about -5 °C.
  • DCC dicyclohexylcarbodiimide
  • HOBT 1-hydroxybenzotriazole
  • reaction solution was evaporated to dryness under reduced pressure at 60 ° C, and the residue was dissolved in water, filtered, filtrate concentrated, water For eluent column chromatography, the chromatographic solution was collected, concentrated, and dried under vacuum at 50 ° C for 24 h to obtain mono-[6-(triethylenetetramine)-6-deoxy]- ⁇ -cyclodextrin and blue.
  • the solubility was 98 mg/mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明涉及药物合成领域,公开了一种青蒿素环糊精缀合物及其制备方法。本发明所述青蒿素环糊精缀合物以环糊精为载体,青蒿素类化合物分子通过自身的羧基与胺基修饰的环糊精的胺基形成酰胺键而连接。与青蒿素和双氢青蒿素相比,本发明所述青蒿素环糊精缀合物具有更多亲水活性基团,生物相溶性好,具有更好的水溶性,生物利用度高。另一方面,本发明所述青蒿素环糊精缀合物具有抗癌靶向特性,尤其针对结直肠癌细胞,可以有效地进入患者体内。在目标癌细胞处优先聚集,选择性诱导人体直肠癌细胞死亡,提高药效,减小毒副作用。本发明所述青蒿素环糊精缀合物的制备方法,操作简单,原料易得,反应条件温和,可用于青蒿素环糊精缀合物的大量制备。

Description

一种青蒿素环糊精缀合物及其制备方法 技术械 本发明涉及药物合成领域,具体的说是涉及一种青蒿素环糊精缀 合物及其制备方法。
背景技术
20世纪 70年代, 从中草药青蒿 (Artemisia annua L.)中分离出来 的一种内含过氧化基团的倍半萜内酯类的新一代抗疟药青蒿素 (sesquiterpene 1,2,4-trioxane (a sesquiterpene lactone endope roxide), Artemisinin, AMS ) , 其为一种针对氯 p奎有抗药性的疟原虫 ( Plasmodium falciparum ) 的有效抗疾药物。 青蒿素类化合物, 如蒿 曱醚 (artemether)、 二氩青蒿素 (dihydroartemisinin) , 蒿乙醚 (arteether) 及青蒿琥酯 (artesunate)对氯喹抗药品系、 氯喹敏感品系的疟原虫以及 脑内疟疾都有效。 由世界卫生组织推荐, 对于疟疾感染人群, 快速和 可靠的青蒿素组合治疗方案 (ACT)在疟疾泛滥的大多数国家也被广泛 接受。 近年来,研究发现青蒿素类化合物显示了较好地杀死癌细胞的效 果。青蒿素具有选择性杀死癌细胞的能力,并且对正常细胞影响极小, 青蒿素与传统肿瘤化疗药物的作用机制不同,它可以逆转肿瘤细胞的 多药耐药。 与多柔比星、 长春新碱、 曱氨蝶吟或羟基脲存在抗药性的 白血病细胞系对青蒿琥酯不存在交叉耐药现象。青蒿素药物作为抗疟 疾药物己在临床应用多年,其安全性已在数千万例临床病例的应用中 得到确认。 其抗肿瘤作用的理正在进一步研究中, 可能同青蒿素与 Fe2+反应产生大量自由基以及烷基化作用有关, 并且与诱导肿瘤细胞 凋亡的关系也十分密切。 癌细胞的铁浓度较正常细胞高出许多, 青蒿 素结构中的过氧桥被铁催化而裂解产生自由基,通过自由基途径将细 胞杀死。 另夕卜, 研究表明青蒿素可以诱导小鼠白血病癌细胞和人肝癌 发生凋亡, 但是对于刺激 (药物作用于靶点)和效应(细胞凋亡)的具体 机制尚不够清楚。研究也提示青蒿素对肿瘤血管生长因子有一定的影 响, 青蒿琥酯有广谱抗癌活性。 体外研究表明: 青蒿素类药物作用于体外培养的白血病 P388细 胞, 发现能够明显抑制白血病细胞的增殖。 一些青蒿酸及青蒿酸类化 合物体外对多种肿瘤细胞有选择性抑制作用。 青蒿酯钠对人宫颈癌
HeLa 细胞显示杀伤作用, 对人低分化鳞状上皮鼻咽癌细胞 (HeLa, SU E-1和 CNE2)均有杀伤作用, 对肝癌细胞 BEL-7402细胞生长有 明显抑制作用, 对棵鼠异体移植人肝癌的生长有明显抑制作用。 青蒿 琥酯有诱导 U937细胞凋亡的作用, 对人结肠癌细胞 HCT-8、 人红白 血病细胞 K562及人乳腺癌 MCF-7细胞株有杀伤作用。 在体内实验方面: 不同剂量的青蒿琥酯抗小鼠 Hep2肝癌的实验 研究发现腹腔注射 60mg/kg青蒿琥酯对小鼠 Hep2肝癌有显著抑制作 用,抑瘤率为 80.4%。通过肌肉注射给药方式来研究青蒿琥酯的影响, 结果发现青蒿琥酯对小鼠肝癌、 S180 实体瘤均有明显的抑瘤作用。 青蒿琥酯对小鼠肝癌 H22的抑制作用的研究中发现,青蒿琥酯以 300 mg/kg灌胃时, 抑瘤率为 40%以上, 与阳性对照药 5-Fu作用相近。 实验小鼠口服硫酸亚铁 6h后再给双氢青蒿素, 可显著抑制移植性小 鼠纤维肉瘤的生长, 比单纯使用双氢青蒿素的效果大大增加。 另外, 青蒿素类药物还可以抑制棵鼠人卵巢癌 HO-8910移植性瘤、 转基因 鼠前列腺腺癌等瘤体的生长。 但是, 青蒿素类化合物水溶性较差, 生物利用度低, 不能较好的 传输到癌细胞上; 在人体和动物模型中青蒿素类化合物消除较快, 不 能在癌细胞表面形成治疗剂量。 环糊精 (cyclodextrins, CDs)是淀粉经环糊精葡萄糖基转移酶催化 降解得到的半天然大分子化合物。 环糊精几乎不能水解, 通过人体胃 和小肠部位时仅有少量的吸收。 然而, 环糊精可被结肠内部的 生物 发酵, 降解成为单糖或双糖, 这样能被大肠所吸收。 本发明人出乎意 料地发现, 可将青蒿素类化合物与环糊精类化合物键合制成缀合物, 所述青蒿素环糊精缀合物可克服青蒿素类化合物固有缺点, 增加疗 效, 减小毒副作用。 发明内容 有鉴于此, 本发明目的是提供一种靶向性的青蒿素环糊精缀合 物, 即青蒿素类化合物-胺基修饰的环糊精缀合物。
为实现本发明的目的, 本发明采用如下技术方案:
一种青蒿素环糊精缀合物,其中青蒿素类化合物与胺基修饰的环 糊精通过青蒿素类化合物的羧基与胺基修饰的环糊精的胺基形成酰 胺键而连接。
本领域技术人员能够理解, "缀合物"是指两个或更多个分子彼 此之间通过共价键连接而形成的新的分子实体。 在本发明中, 所述青 蒿素环糊精缀合物是指青蒿素类化合物与环糊精类化合物(胺基修饰 的环糊精)通过酰胺键连接而形成的化合物; 更具体地, 是指青蒿素 类化合物通过其羧基与胺基修饰的环糊精的胺基形成酰胺键而形成 的化合物。
在本发明中, 所述青蒿素类化合物为构成青蒿素分子的 c12被含 羧酸化合物取代而生成的青蒿素类化合物。青蒿素类化合物的合成可 参照现有技术中的已有文献进行。 环糊精 (Cyclodextrin, 筒称 CD)是直链淀粉在由芽孢杆菌产生的 环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,其中 研究得较多并且具有重要实际意义的是含有 6、 7、 8个葡萄糖单元的 分子, 分别称为 α-、 β-和 γ-环糊精。 根据 X-线晶体衍射、 红外光谱 和核磁共振波语分析的结果, 确定构成环糊精分子的每个 D(+)-吡喃 葡萄糖都是椅式构象, 各葡萄糖单元均以 1 , 4-糖苷键结合成环。 由 于连接葡萄糖单元的糖苷键不能自由旋转, 环糊精是两端开口、 一端 大一端小、 中空的圓筒立体环状结构, 在其空洞结构中, 腔内部由于 受到 C-H键的屏蔽作用形成了疏水区, 而所有羟基则在分子外部, 大口端由 C2和 C3的仲羟基构成, 小口端由 C6的伯羟基构成, 具有 4艮强的亲水性, 其结构为:
Figure imgf000005_0001
其中 q=6为 α-环糊精, q=7为 β-环糊精, q=8为 γ-环糊精。
胺基修饰的环糊精为构成环糊精分子的 D(+)-吡喃葡萄糖 C2、 C3 和 /或 C6的羟基被胺基取代而生成的化合物。 胺基修饰的环糊精的合 成可参照已有文献进行。环糊精先可与磺酰化试剂反应生成磺酰化环 糊精 [R.C. Petter, J.S. Salek, C.T. Sikorski, G. Kumaravel, and F.-T. Lin: J. Am. Chem. Soc. 112, 3860 - 3868 (1990)] , 环糊精可以在 D(+)-吡喃 葡萄糖 2位、 3位和 /或 6位上发生橫酰化。 常用的磺酰化试剂是苯橫 酰氯和对曱基苯蹟酰氯。 然后在胺化试剂的亲核进攻下,蹟酰化环糊 精上的磺酰基离去, 被胺基替换, 生成胺基修饰的环糊精 [B丄. May, S.D. Kean, C.J. Easton, and S.F. Lincoln: J. Chem. Soc, Perkin Trans. 13157 - 3160 (1997)]。 其中, 所述胺化试剂可以为各类含胺基的有机 试剂, 包括氨、 曱胺、 乙胺、 丙胺、 丁胺、 乙二胺、 乙醇胺、 乙酰胺 和二乙烯三胺等。 如, 对曱苯蹟酰氯与 β -环糊精反应生成 6-对曱苯 磺酰- β -环糊精( 6-OTs- β -CD ) , 6-对曱苯石黄酰- β -环糊精加入乙二 胺溶液中, 反应得到乙二胺修饰的 β -环糊精, 反应式如下:
Figure imgf000005_0002
其中, 作为优选, 所述胺基修饰的环糊精具有式 I所示结构,
Figure imgf000006_0001
其中 m是 0至 7、 n是 1至 8且 m+n=6、 7或 8中的一个;
、 R2和 R3为- OH或 -RNH2且 、 R2和 R3中至少有一个为 -RNH2; R 是(CH2)X、 NH(CH2)X 、 NH(CH2)XNH(CH2)X、 CO(CH2)x
0(CH2)x, x为大于等于 0的整数。 式 I中 m+n=6、 7或 8中的一个, 表示本发明所述胺基修饰环糊 精可以为 α -环糊精、 β -环糊精或 Υ -环糊精, 其中, η至少为 1表示 所述胺基修饰的环糊精分子中至少有一个 D(+)-吡喃葡萄糖被胺基修 饰, 此时 m为 5、 6或 7; 而 m是 0则表示所述胺基修饰的环糊精构 成环糊精分子的每个 D(+)-吡喃葡萄糖均被胺基修饰。 式 I中 Ri、 R2和 R3中至少有一个为 -RNH2表示所述胺基修饰的 环糊精被胺基修饰 D(+)-吡喃葡萄糖分子至少为单胺基修饰, 其可以 发生在 2位、 3位或 6位, 也可以为双胺基修饰或 、 R2和 R3均被 修饰。 式 I 中还定义了修饰环糊精的胺基 -RNH2中的 R, R是 (CH2)X、 NH(CH2)X 、 NH(CH2)XNH(CH2)X、 CO(CH2)x或 0(CH2)x表示修饰环糊 精的胺基可以为氨、 曱胺、 乙胺、 乙二胺、 乙醇胺、 乙酰胺和二乙烯 三胺等有机胺基, 其中, X为大于等于 0的整数, 优选为 0至 10, 更 优选为 0、 1、 2、 3或 4。 优选的, 所述胺基修饰的环糊精具有式 I所示结构,
Figure imgf000007_0001
其中 η是 l iL m+n=6、 7或 8中的一个; 、 R2或 R3为- RNH2;
R是 (CH2)X、 NH(CH2)X、 NH(CH2)XNH(CH2)X、 CO(CH2)x或 0(CH2)x ,
X为 0、 1、 2、 3或 4。 更优选地是, 所述胺基修饰的环糊精选自单 -[6- (乙二胺基) -6-脱 氧]- β -环糊精、单 -[2- (乙二胺基) -6-脱氧]- β -环糊精、单 -[3- (曱胺基) -6- 脱氧]- α -环糊精和单—[6-(乙醇胺基 )-6-脱氧]- γ 精。 在本发明中, 所述青蒿素类化合物为构成青蒿素分子的 c12被含 羧酸化合物取代而生成的青蒿素类化合物。青蒿素类化合物的合成可 参照现有技术中的已有文献进行。 双氢青蒿素可与含羧基化合物反应生成青蒿素类化合物 [P. M. 0, Neill, et al: J. Med. Chem. 44, 58 - 68 (2001)], 双氢青蒿素可以在 C12的羟基上发生醚化或酯化反应。 其中, 所述醚化或酯化试剂可以 为各类含 和羟基有机基团的化合物, 反应式如下:
Figure imgf000007_0002
其中, 作为优选, 所述胺基修饰的环糊精具有式 II所示结构,
Figure imgf000008_0001
II
其中 R4为 (CH2)y、 CO(CH2)y、 C6H6(CH2)y或 COC6H6(CH2)y, y 为大于等于 0的整数, CO为羰基, C6H6为苯环。
更优选地是, 所述醚化和酯化试剂为丁二酸、 丁二酸酐, 对苯二 曱酸, 对羟基苯曱酸, 对羟基苯曱酸酯, 对 代苯曱酸, 对 代苯曱 酸。
更优选的青蒿素类化合物为青蒿琥酯、 青蒿素 C-12上连接苯氧 基的化合物和青蒿素 C-12上连接烷氧基的化合物。 本发明另一个目的是提供本发明所述的青蒿素环糊精缀合物的 制备方法。
本发明所述青蒿素环糊精缀合物的一种制备方法包括在强极性 有机溶剂中, 在缩合剂作用下, 使青蒿素类化合物的羧基与胺基修饰 的环糊精的胺基发生酰胺化反应, 以制得青蒿素环糊精缀合物。
本发明制备方法中可用的缩合剂包括药物合成中酰胺化反应使 用的多种缩合剂, 包括碳二亚胺类缩合剂和鐺盐类缩合剂, 其中, 所 述碳二亚胺类缩合剂在药物合成的酰胺制备中应用极其广泛。本发明 所述制备方法中的所述缩合剂优选为碳二亚胺类缩合剂。
在本发明的方法中,碳二亚胺类缩合剂主要有三种: 二环己基碳 二亚胺(DCC )、 二异丙基碳二亚胺(DIC )和 1- ( 3-二曱胺基丙基) -3-乙基碳二亚胺(EDCI )。 其中, 二环己基碳二亚胺与 1-羟基苯并三 唑复合缩合剂 (DCC-HOBt )是本发明优选的缩合剂。
优选的,所述胺基修饰的环糊精与所述二环己基碳化二亚胺的重 量比为 1 :0.04~10, 更优选为 1 :0.4~5。
优选的,所述胺基修饰的环糊精与所述 1-羟基苯并三唑的重量比 为 1 :0.03~7.5 , 更优选为 1 :0.3~3。
更优选地, 本发明所述酰胺化反应中还可使用脱水剂, 以吸收缩 合反应产生的水分子, 防止缩合产物被水解, 提高缩合反应效率。 其 中, 所述脱水剂包括氧化钙、 五氧化二磷和分子筛等。
所述胺基修饰的环糊精溶于水和强极性有机溶剂,而青蒿素类化 合物、二环己基碳二亚胺和 1-羟基苯并三唑均不溶于水, 并且羧基与 胺基发生的酰胺化为脱水的缩合反应, 水作为溶剂不利于酰胺化反 应, 因此本发明所述制备方法以强极性有机溶剂做为溶剂。
优选的, 所述强极性有机溶剂为 Ν,Ν-二曱基酰胺、 Ν,Ν-二乙基 酰胺或二曱基亚砜。
优选的,本发明所述制备方法中的所述酰胺化反应包括使胺基修 饰的环糊精与过量的青蒿素类化合物在 - 10~10 °C条件下反应 6~24h , 形成羧基活化中间体, 然后在 15~40 °C条件下反应 6~24h使得青蒿琥 酯的羧基与环糊精胺基发生酰胺化反应,从而生成青蒿素环糊精缀合 物。
本发明所述制备方法在酰胺化反应前还包括活化胺基修饰的环 糊精的表面羟基的步骤, 包括使胺基修饰的环糊精与缩合剂在 -10~10°C条件下反应 0.5~5h。
本发明所述制备方法还包括对青蒿素环糊精缀合物进行纯化的 步骤。
由于二环己基碳化二亚胺和 1-羟基苯并三唑不溶于水,青蒿素类 化合物水溶性较差, 在水中难溶, 而本发明所述的青蒿素环糊精缀合 物中的青蒿素类化合物与胺基修饰的环糊精通过酰胺键连接,具有许 多亲水活性基团, 水溶性好, 易溶于水。 本发明所述的纯化步骤可包 括干燥酰胺化反应所得反应液, 收集固体残余物用水溶解, 然后过滤 除杂, 有机溶剂沉淀法分离以得到青蒿素环糊精缀合物纯品。 其中, 所述过滤除杂为除去未反应的青蒿琥酯、 二环己基碳化二亚胺和 1- 羟基苯并三唑。
不限于任何理论,有机溶剂沉淀法分离制得的青蒿素环糊精缀合 物的原理为有机溶剂能降低溶液的介电常数, 减小溶剂的极性, 从而 削弱溶剂分子与青蒿素环糊精缀合物分子间的相互作用力,溶解度降 氐而沉淀。
优选的, 所述有机溶剂为丙酮、 曱醇、 乙醇、 异丙醇、 氯仿或四 氢呋喃。
本发明中的有机溶剂沉淀法受溶液浓度的影响。 在低浓度溶液 下, 青蒿素环糊精缀合物沉淀不充分, 回收率低, 需要使用比例更大 的有机溶剂进行沉淀; 利用高浓度溶液, 可以节省有机溶剂。 本发明 所述制备方法还可包括浓缩步骤, 以减少溶液水分, 提高溶液浓度, 使青蒿素环糊精缀合物在有机溶剂中充分沉淀。
本发明所述制备方法还包括对青蒿素环糊精缀合物进行精制的 步骤。
优选的, 所述精制为有机溶剂萃取或色谱层析。
所述有机溶剂选自丙酮、 乙醚、 氯仿和四氢呋喃。
在具体实施方案中本发明通过核磁共振和高分辨质谱确定了青 蒿素环糊精缀合物的结构。 青蒿素环糊精缀合物 1 HNMR图显示, 在 D20条件下,在 0.3~3.0ppm 以及 5.0~7.1ppm处出现青蒿素类化合物 的 ¾,H12, H13,H14和 H15特征峰, 而环糊精在该处没有特征吸收, 而 青蒿琥酯几乎不溶于水, 可初步说明青蒿琥酯与环糊精发生了反应。 青蒿素环糊精缀合物 13CNMR图显示,在 10~50ppm处出现青蒿素的 特征碳骨架吸收峰, 在 170~190ppm处出现青蒿素类化合物的羰基特 征碳骨架吸收峰, 说明在青蒿琥酯的羧基上发生了酰胺化反应, 表明 青蒿琥酯通过 0=C-OH与 -NH2缩合键接在环糊精上。 高分辨质谱检 测, m/z: 1543.5715 ( M+ )。
本发明所述的青蒿素环糊精缀合物以环糊精为载体,青蒿素类化 合物分子通过自身的羧基与胺基修饰的环糊精的任意胺基形成酰胺 键而与环糊精连接。 与青蒿素和双氢青蒿素相比, 本发明所述的青蒿 素环糊精缀合物含有更多的亲水活性基团, 生物相溶性好, 比青蒿素 和双氢青蒿素具有更好的水溶性。本发明所述青蒿素环糊精缀合物在 25 °C时水中的溶解度为 45~98mg/mL, 而青蒿素和双氢青蒿素几乎不 溶于水。
另一方面,由于本发明所述的青蒿素环糊精缀合物具有抗癌靶向 特性, 尤其针对结直肠癌细胞靶点。 青蒿素环糊精缀合物通过人体胃 和小肠部位时仅有少量的吸收, 仅能在结肠道中分解释放, 然后被大 肠吸收, 具有结直肠释放特性。 本发明所述的青蒿素环糊精缀合物具 有抗癌靶向特性,尤其针对结直肠癌细胞,可以有效地进入患者体内。 在目标癌细胞处优先聚集, 选择性诱导人体直肠癌细胞死亡, 提高药 效, 减小毒副作用。
例如, 选取取人直肠癌细胞 HCT116 , Lovo, SW480和 HT29的 细胞悬液 (浓度 4χ 104个 /mL) 180μ1加于 96孔培养板,在 5% C02、 37。C、 饱和湿度条件下预培养 24h, 更换其中的 150μ1培养基后, 加入含有 不同浓度的分子组装体的培养基 20μ1,以不加样品的培养基为阴性对 照, 以含有不同浓度喜树碱, 奥沙利铂和氟尿嘧啶的培养基为阳性对 照, 继续培养 48h。 用 MTT法分别测定 OD值, 求出生长抑制率, 观察高、 中、 低各浓度的化合物对肿瘤细胞增殖的抑制作用。 上述所 有实验均平行操作三次。结果显示了青蒿素环糊精缀合物对于人直盲 肠癌细胞的体外实验的结果(如表 1所示)。 表 1 一些青蒿素类化合物在几种直肠癌细胞中的 IC5。值 (μΜ) (HCT1 16, Lovo, SW480和 HT 90 Cells) IC 50(μΜ) 化合物 MW
HCT116 Lovo SW480 ΗΤ 90 奥沙利铂 397 0.76 1.51 30.1 9.7 氟尿嘧啶 130 5.4 23.0 30.8 38.5 双氢青蒿素 284 1.76 2.11 14.1 21.1 青蒿琥酯 384 1.04 2.60 1.82 9.11 单 -[6- (乙二胺基) -6- 脱氧] -β-环糊精 -青蒿 1543 0.58 1.62 3.89 5.18 琥酯缀合物
从表 1可以发现:设计和合成适宜长度链接环糊精和青蒿琥酯的 缀合物 (例如, 单- [6- (乙二胺基) -6-脱氧] - β -环糊精 -青蒿琥酯缀 合物), 其抗癌活性大多超过反应原料(双氢青蒿素和青蒿琥酯), 也 好于临床上应用的药物 (奥沙利铂和氟尿嘧啶), 原因可能在于, 适 宜长度链接环糊精和青蒿琥酯的键接物能在目标直盲肠癌细胞处优 先聚集, 选择性诱导人体直肠癌细胞死亡。 鉴于环糊精能在结肠道中 被微生物菌群分解成开链麦芽糊精、 麦芽糖和葡萄糖, 然后被大肠吸 收, 可作为药物结直肠靶点载体, 将药物直接输送到直肠, 提高在结 肠部位吸收药物的生物利用度, 发挥药物作用。 因此, 本发明所述的 青蒿素环糊精缀合物具有抗癌靶向特性, 尤其针对结直肠癌细胞, 可 以有效地进入患者体内。 在目标癌细胞处优先聚集, 选择性诱导人体 直肠癌细胞死亡, 提高药效, 减小毒副作用。
本发明所述的青蒿素环糊精缀合物的制备方法, 操作筒单, 原料 易得, 反应条件温和, 可用于青蒿素环糊精缀合物的大量制备。 附图说明 图 1示 β-环糊精的核磁共振氢谱( iHNMR ) 图; 图 2 示实施例 1制备的单 -[2- (乙二胺基) -6-脱氧] -β-环糊精 -青蒿 琥酯缀合物的核磁共振氢谱图 HNMR ), 在 7~8ppm处出现青蒿琥 酯的 ¾,H12, H13,Hi4和 H15特征峰, 而环糊精在该处没有特征吸收; 图 3 示实施例 1制备的单 -[2- (乙二胺基) -6-脱氧] -β-环糊精 -青蒿 琥酯缀合物的核磁共振碳谱图(13CNMR ), 在 10~50ppm处出现青蒿 琥酯的特征不饱和碳骨架吸收峰, 在 170~190ppm处出现酰胺键不饱 和羰基吸收峰;
图 4 示实施例 1制备的单 -[2- (乙二胺基) -6-脱氧] -β-环糊精 -青蒿 琥酯缀合物的高分辨质谱图 [HSMS(TOF-ESI)]。
具体实施方式 本发明实施例公开了青蒿素环糊精缀合物及其制备方法。本领域 技术人员可以借鉴本文内容, 适当改进工艺参数实现。 特别需要指出 的是, 所有类似的替换和改动对本领域技术人员来说是显而易见的, 它们都被视为包括在本发明。本发明的产品和方法已经通过较佳实施 例进行了描述, 相关人员明显能在不脱离本发明内容、精神和范围内 对本文所述的产品和方法进行改动或适当变更与组合,来实现和应用 本发明技术。
为了进一步理解本发明, 下面结合实施例对本发明进行详细说 明。 实施例 1:
1、 磺酰化环糊精的制备 参照文献 [R.C. Petter, J.S. Salek, C.T. Sikorski, G. Kumaravel, and
F.-T. Lin: J. Am. Chem. Soc. 112, 3860-3868 (1990)]。 取重结晶后的 β- 环糊精 210g, 溶解于 1300mL蒸馏水中, 充分搅拌后溶液变成白色乳 状液, 加入氢氧化钠溶液(17.2g, 50mL), 搅拌 1.5h。 称量对曱苯蹟酰 氯 26.0g , 溶解于 80mL乙腈溶液中, 将该溶液緩慢滴加到 β-环糊精碱 液中, 室温搅拌 2h, 抽滤除去少量不溶物, 用 2M盐酸调节滤液 pH值 至 7.5 , 此时有大量沉淀产生, 抽滤除去滤液。 在加热下将沉淀溶解 于 450mL水中, 趁热滤掉不溶物, 滤液在 0°C重结晶 12h, 过滤后得到 的沉淀再用热水重结晶多次, 60°C真空干燥 12 h即得到纯单 6-对曱苯 磺酰 -β-环糊精约 18g , 产率 8%。
2、 单 -[6- (乙二胺基) -6-脱氧] -β-环糊精的制备
参照文献 [Β丄. May, S.D. Kean, C.J. Easton, and S.F. Lincoln: J. Chem. Soc" Perkin Trans. 13157-3160 (1997)]。 取单 6-对曱苯石黄酰 -β- 环糊精 (3g)加入 20mL乙二胺溶液中, 在 80°C反应 8h, 冷却后将反应液 滴入丙酮中, 收集沉淀即可得到单 -[6- (乙二胺基) -6-脱氧] -β-环糊精 (2.3g), 产率 84%。
3、 单 -[6- (乙二胺基) -6-脱氧] -β-环糊精-青蒿琥酯缀合物的制备
取 2.61g (2mmol) 单 -[2- (乙二胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν-二曱基酰胺 (50mL)中, 冷却至 0°C左右。 向该溶液中加入二环 己基碳化二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g, 冰浴 搅拌 5h后加入青蒿琥酯 2.77g (6mmol),反应液在 0°C搅拌 20h, 25 °C 搅拌 10h (采用 TCL跟踪检测,展开剂为曱醇: 乙酸乙酯:水 = 7:7:1 )。 60 °C减压蒸干反应液, 残余物用水充分溶解, 过滤, 滤液浓缩, 滴入 lOOmL氯仿萃取,过滤,收集沉淀, 50°C下真空干燥 24h,制得单 -[6- (乙 二胺基 )-6-脱氧] -β-环糊精 -青蒿琥酯缀合物, 产率为 65%。 溶解度为 68mg/mL„
核磁共振和高分辨质语检测, 结果见图 2,3,4。 青蒿素环糊精缀 合物的 ifiNMR图显示,在 D20条件下,在 0.3-3.0ppm 以及 5.0-7.1ppm 处出现青蒿素类化合物的 ¾,H12, 3, 4和 H15特征峰,, 而环糊精在 该处没有特征吸收, 而青蒿琥酯几乎不溶于水, 可初步说明青蒿琥酯 与环糊精发生了反应。 青蒿素环糊精缀合物的 13CNMR 图显示, 在 10-50ppm处出现青蒿素的特征碳骨架吸收峰,在 170~190ppm处出现 青蒿素类化合物的羰基特征碳骨架吸收峰,说明在青蒿琥酯的羧基上 发生了酰胺化反应, 表明青蒿琥酯通过 0=C-OH与 -NH2缩合键接在 环糊精上。 高分辨质语检测, m/z'. 1543.5715 ( M+ )。 实施例 2:
取 2.61g (2mmol) 单 -[6- (单胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν- 二乙基酰胺 (50mL)中, 冷却至 -10°C左右。 向该溶液中加入二环己基 碳化二亚胺 (DCC) 1.2g , 冰浴搅拌 0.5h 后加入青蒿琥酯 2.77g (6mmol) , 反应液在 10°C搅拌 6h, 45 °C搅拌 4h。 60 °C减压蒸干反应 液, 残余物用水充分溶解, 过滤, 滤液浓缩, 滴入 lOOmL四氢呋喃 萃取, 过滤, 收集沉淀, 50°C下真空干燥 24h, 制得单 -[6- (单胺基) -6- 脱氧] -β-环糊精 -青蒿琥酯缀合物, 产率为 58%。 溶解度为 45mg/mL。 实施例 3:
取单—[3- (二乙烯三胺基) -6-脱氧 ]-α-环糊精 2mmol溶于无水二曱 基亚砜 (50mL)中, 冷却至 -5 °C左右。 向该溶液中加入二环己基碳化 二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g , 冰浴搅拌 2.5h 后加入青蒿琥酯 2.77g (6mmol) ,反应液在 0°C搅拌 12h, 25 °C搅拌 24h。
60 °C减压蒸干反应液, 残余物用水充分溶解, 过滤, 滤液浓缩, 滴入 l OOmL异丙醇,过滤,收集沉淀, 50°C下真空干燥 24h,制得单 -[3- (二 乙烯三胺基) -6-脱氧 ]-α-环糊精 -青蒿琥酯缀合物, 产率为 56%。 溶解 度为 78mg/mL。 实施例 4:
取单 -[6- (乙醇胺基) -6-脱氧] -γ-环糊精 lmmol溶于无水 Ν,Ν-二曱 基酰胺 (50mL)中, 冷却至 0°C左右。 向该溶液中加入二环己基碳化二 亚胺 (DCC) 1.2g, 冰浴搅拌 24h后加入青蒿琥酯 2.77g (6mmol) , 反 应液在 10°C搅拌 24h, 45°C搅拌 12h。 60°C减压蒸干反应液, 残余物 用水充分溶解, 过滤, 滤液浓缩, 用水为洗脱剂柱层析, 收集层析液, 浓缩, 50°C下真空干燥 24h, 制得单 -[6- (乙醇胺基) -6-脱氧] -γ-环糊精- 青蒿琥酯缀合物, 产率为 57%。 溶解度为 75mg/mL。 实施例 5:
取 2.61g (2mmol) 单 -[2- (乙二胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν-二曱基酰胺 (50mL)中冷却至 0°C左右。 向该溶液中加入二环己 基碳化二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g, 冰浴搅 拌 5h后加入青蒿素 C-12上连接苯氧基的化合物 3.77g (6mmol), 反 应液在 0°C搅拌 20h, 25°C搅拌 10h (采用 TCL跟踪检测, 展开剂为 曱醇: 乙酸乙酯: 水 = 7:7:1 )。 60°C减压蒸干反应液, 残余物用水充 分溶解, 水充分溶解, 过滤, 滤液浓缩, 滴入 lOOmL氯仿萃取, 过 滤,收集沉淀, 50°C下真空干燥 24h,制得单 -[6- (乙二胺基) -6-脱氧] -β- 环糊精与青蒿素 C-12上连接苯氧基的化合物的缀合物,产率为 65%。 溶解度为 68mg/mL。 实施例 6:
取 2.61g (2mmol) 单 -[6- (单胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν- 二乙基酰胺 (50mL)中冷却至 -10°C左右。 向该溶液中加入二环己基碳 化二亚胺 (DCC) 1.2g,冰浴搅拌 0.5h后加入青蒿素 C-12上连接苯氧 基的化合物 3.77g (6mmol),反应液在 10°C搅拌 6h, 45°C搅拌 4h。 60 °C 减压蒸干反应液,残余物用水充分溶解,过滤,滤液浓缩,滴入 lOOmL 四氢呋喃萃取,过滤, 收集沉淀, 50°C下真空干燥 24h,制得单 -[6- (单 胺基) -6-脱氧] -β-环糊精与青蒿素 C-12上连接苯氧基的化合物的缀合 物, 产率为 58%。 溶解度为 54mg/mL。 实施例 7:
取单—[3- (二乙烯三胺基) -6-脱氧 ]-α-环糊精 2mmol溶于无水二曱 基亚砜 (50mL)中, 冷却至 -5°C左右。 向该溶液中加入二环己基碳化 二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g, 冰浴搅拌 2.5h 后加入青蒿素 C-12 上连接苯氧基的化合物 3.77g (6mmol)2.77g (6mmol), 反应液在 0°C搅拌 12h, 25°C搅拌 24h。 60°C减压蒸干反应 液, 残余物用水充分溶解, 过滤, 滤液浓缩, 滴入 1 OOmL异丙醇, 过滤, 收集沉淀, 50°C下真空干燥 24h, 制得单 -[3- (二乙烯三胺基) -6- 脱氧 ]-α-环糊精与青蒿素 C-12上连接苯氧基的化合物的缀合物,产率 为 56%。 溶解度为 88mg/mL。 实施例 8:
取单 -[6- (三乙烯四胺基) -6-脱氧] -γ-环糊精 lmmol溶于无水 Ν,Ν- 二曱基酰胺 (50mL)中,, 冷却至 0°C左右。 向该溶液中加入二环己基 碳化二亚胺 (DCC) 1.2g, 冰浴搅拌 24h后加入青蒿素 C-12上连接苯 氧基的化合物 3.77g (6mmol),反应液在 10°C搅拌 24h, 45°C搅拌 12h。 60°C减压蒸干反应液, 残余物用水充分溶解, 过滤, 滤液浓缩, 用水 为洗脱剂柱层析, 收集层析液, 浓缩, 50°C下真空干燥 24h, 制得单 -[6- (三乙烯四胺基) -6-脱氧] -γ-环糊精-青蒿素 C-12上连接苯氧基的化 合物的缀合物, 产率为 57%。 溶解度为 95mg/mL。 实施例 9:
取 2.61g (2mmol) 单 -[2- (乙二胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν-二曱基酰胺 (50mL)中, 冷却至 0°C左右。 向该溶液中加入二环 己基碳化二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g, 冰浴 搅拌 5h后加入青蒿素 C-12上连接烷氧基的化合物 3.47g (6mmol), 反应液在 0°C搅拌 20h, 25°C搅拌 10h (采用 TCL跟踪检测, 展开剂 为曱醇: 乙酸乙酯: 水 = 7:7:1 )。 60°C减压蒸干反应液, 残余物用水 充分溶解, 过滤, 滤液浓缩, 滴入 lOOmL氯仿萃取, 过滤, 收集沉 淀, 50°C下真空干燥 24h, 制得单 -[6- (乙二胺基) -6-脱氧] -β-环糊精与 青蒿素 C-12上连接烷氧基的化合物的缀合物, 产率为 65%。 溶解度 为 71mg/mL„ 实施例 10:
取 2.61g (2mmol) 单 -[6- (单胺基) -6-脱氧] -β-环糊精溶于无水 Ν,Ν- 二乙基酰胺 (50mL)中,冷却至 -10°C左右。 向该溶液中加入二环己基碳 化二亚胺 (DCC) 1.2g,冰浴搅拌 0.5h后加入青蒿素 C-12上连接烷氧 基的化合物 3.47g (6mmol),反应液在 10°C搅拌 6h, 45°C搅拌 4h。 60 °C 减压蒸干反应液,残余物用水充分溶解,过滤,滤液浓缩,滴入 lOOmL 四氢呋喃萃取,过滤, 收集沉淀, 50°C下真空干燥 24h,制得单 -[6- (单 胺基) -6-脱氧] -β-环糊精与青蒿素 C-12上连接烷氧基的化合物的缀合 物, 产率为 58%。 溶解度为 52mg/mL。 实施例 11:
取单—[3- (二乙烯三胺基) -6-脱氧 ]-α-环糊精 2mmol溶于无水二曱 基亚砜(50mL)中, 冷却至 -5°C左右。 向该溶液中加入二环己基碳化 二亚胺 (DCC) 1.2g和 1-羟基苯并三唑 (HOBT) 0.9g, 冰浴搅拌 2.5h 后加入青蒿素 C-12上连接烷氧基的化合物 3.47g (6mmol), 反应液在 0°C搅拌 12h, 25 °C搅拌 24h。 60°C减压蒸干反应液, 残余物用水充分 溶解, 过滤, 滤液浓缩, 滴入 1 OOmL异丙醇, 过滤, 收集沉淀, 50 V 下真空干燥 24h, 制得单 -[3- (二乙烯三胺基) -6-脱氧 ]-α-环糊精与青蒿 素 C-12 上连接烷氧基的化合物的缀合物, 产率为 56%。 溶解度为 80mg/mL„ 实施例 12:
取单 -[6- (三乙烯四胺基) -6-脱氧] -γ-环糊精 lmmol溶于无水 Ν,Ν- 二曱基酰胺 (50mL)中,, 冷却至 0°C左右。 向该溶液中加入二环己基 碳化二亚胺 (DCC) 1.2g, 冰浴搅拌 24h后加入青蒿素 C-12上连接烷 氧基的化合物 3.47g (6mmol),反应液在 10°C搅拌 24h, 45°C搅拌 12h。 60°C减压蒸干反应液, 残余物用水充分溶解, 过滤, 滤液浓缩, 用水 为洗脱剂柱层析, 收集层析液, 浓缩, 50°C下真空干燥 24h, 制得单 -[6- (三乙烯四胺基) -6-脱氧] -γ-环糊精与青蒿素 C-12上连接烷氧基的 化合物的缀合物, 产率为 57%。 溶解度为 98mg/mL。 以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发 明原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改进和 修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种青蒿素环糊精缀合物, 其特征在于, 其中青蒿素类化合 物通过其自身羧基与胺基修饰的环糊精的胺基形成酰胺键而连接。
2、 根据权利要求 1所述的青蒿素环糊精缀合物, 其特征在于, 所述胺基修饰的环糊 具有式 I所示结构,
Figure imgf000020_0001
其中 m是 0至 7、 n是 1至 8且 m+n=6、 7或 8中的一个;
Ri、R2和 R3为- OH或 -RNH2且 、 和 R3中至少有一个为 -RNH2; R是 (CH2)X、 NH(CH2)X、 NH(CH2)XNH(CH2)X、 CO(CH2)x或 0(CH2)x , x为大于等于 0的整数。
3、 根据权利要求 2所述的青蒿素环糊精缀合物, 其特征在于, 所述胺基修饰的环 具有式 I所示结构,
Figure imgf000020_0002
其中 η是 l iL m+n=6、 7或 8中的一个;
、 R2或 R3为- RNH2;
R是 (CH2)X、 NH(CH2)X、 NH(CH2)XNH(CH2)X、 CO(CH2)x或 0(CH2)x , x为 0、 1、 2、 3或 4。
4、 根据权利要求 2所述的青蒿素环糊精缀合物, 其特征在于, 所述胺基修饰的环糊精选自单 -[6- (乙二胺基) -6-脱氧] -β-环糊精、 单 -[2- (乙二胺基) -6-脱氧] -β-环糊精、 单 -[3- (曱胺基) -6-脱氧 ]-α-环糊精和 单 -[6- (乙醇胺基) -6-脱氧]- γ-环糊精。
5、 根据权利要求 1所述的青蒿素环糊精缀合物, 其特征在于, 所述青蒿素类化合物具有式 II所示结构,
Figure imgf000021_0001
其中 R4为 (CH2)y、 CO(CH2)y、 C6H6(CH2)y或 COC6H6(CH2)y, y 为大于等于 0的整数, CO为羰基, C6H6为苯环。
6、 根据权利要求 5所述的青蒿素环糊精缀合物, 其特征在于, 所述青蒿素类化合物选自青蒿琥酯、 青蒿素 C-12上连接苯氧基的化 合物和青蒿素 C-12上连接烷氧基的化合物。
7、 权利要求 1至 6中任一项所述的青蒿素环糊精缀合物的制备 方法, 其特征在于, 在强极性有机溶剂中, 在缩合剂作用下, 使青蒿 琥酯的羧基与胺基修饰的环糊精的胺基发生酰胺化反应,制得青蒿素 环糊精缀合物。
8、 根据权利要求 7所述的制备方法, 其特征在于, 所述缩合剂 为碳二亚胺类缩合剂。
9、 根据权利要求 7所述的制备方法, 其特征在于, 所述碳二亚 胺类缩合剂为二环己基碳二亚胺与 1-羟基苯并三唑复合缩合剂。
10、 根据权利要求 7所述的制备方法, 其特征在于, 所述酰胺化 反应包括使胺基修饰的环糊精与过量的青蒿琥酯在 -10~10°C条件下 反应 6~24h, 然后在 15~40°C条件下反应 6~24h。
11、 根据权利要求 7所述的制备方法, 其特征在于, 在酰胺化反 应前还包括活化胺基修饰的环糊精表面羟基的步骤,所述步骤包括使 胺基修饰的环糊精与缩合剂在 -10~10°C条件下反应 0.5~5h。
12、 根据权利要求 7所述的制备方法, 其特征在于, 还包括对青 蒿素环糊精缀合物进行纯化的步骤。
PCT/CN2013/088939 2012-12-14 2013-12-10 一种青蒿素环糊精缀合物及其制备方法 WO2014090128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13863004.1A EP2933270B1 (en) 2012-12-14 2013-12-10 Arteannuin cyclodextrin conjugate and preparing method thereof
JP2015546831A JP6453761B2 (ja) 2012-12-14 2013-12-10 アルテアンヌイン−シクロデキストリン結合体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210544032.9A CN103864962B (zh) 2012-12-14 2012-12-14 基于胺基修饰环糊精的青蒿素前药及其制备方法
CN201210544032.9 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014090128A1 true WO2014090128A1 (zh) 2014-06-19

Family

ID=50904017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088939 WO2014090128A1 (zh) 2012-12-14 2013-12-10 一种青蒿素环糊精缀合物及其制备方法

Country Status (4)

Country Link
EP (1) EP2933270B1 (zh)
JP (2) JP6453761B2 (zh)
CN (1) CN103864962B (zh)
WO (1) WO2014090128A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226851A (ja) * 2012-12-14 2017-12-28 昆薬集団股▲ふん▼有限公司Kpc Pharmaceuticals,Inc アルテアンヌイン−シクロデキストリン結合体及びその製造方法
CN112111025A (zh) * 2020-09-28 2020-12-22 沐荷永康生物科技(云南)有限公司 一种大麻二酚环糊精偶合物及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104473918B (zh) * 2014-11-18 2017-04-12 昆明理工大学 一种键接青蒿琥酯的聚轮烷及其制备方法
CN108976318B (zh) * 2017-06-01 2021-03-30 首都医科大学 单-6-(生物素酰胺基)-6-脱氧-β-环糊精及其制备方法和应用
CN108997514B (zh) * 2017-06-06 2021-06-08 首都医科大学 单-6-(苯达莫司汀酰胺基)-6-脱氧-β-环糊精的制备和应用
CN109134709B (zh) * 2018-07-19 2020-08-25 昆明理工大学 胺基修饰环糊精键接开环葫芦脲的键接物及其制备方法和应用
CN113350525B (zh) * 2021-06-21 2022-11-01 哈尔滨氧态健康科技有限公司 一种多孔淀粉负载青蒿素羟丙基-β-环糊精包合物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075921A1 (en) * 2003-02-26 2004-09-10 Vrije Universiteit Brussel Inclusion complex of artemisinin or derivates thereof with cyclodextrins
CN102716491A (zh) * 2012-07-02 2012-10-10 昆明理工大学 青蒿素系列物与碱性环糊精的包合物及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147177A1 (en) * 2001-01-24 2002-10-10 Yuen Kah Hay Formulation of artemisinin
US6951846B2 (en) * 2002-03-07 2005-10-04 The United States Of America As Represented By The Secretary Of The Army Artemisinins with improved stability and bioavailability for therapeutic drug development and application
CN100479807C (zh) * 2002-08-15 2009-04-22 刘云清 药物输送系统——固体纳米药物的制备方法
FI20065800A0 (fi) * 2006-12-13 2006-12-13 Glykos Finland Oy Polyvalentit biokonjugaatit
CN101125127B (zh) * 2007-08-16 2010-05-19 昆明制药集团股份有限公司 一种青蒿素类衍生物的冻干制剂及制备方法
CN101954090B (zh) * 2010-09-16 2012-11-28 桂林南药股份有限公司 双氢青蒿素β-环糊精包合物及其制备方法和含有该包合物的抗疟疾药物
CN103864962B (zh) * 2012-12-14 2016-04-06 昆药集团股份有限公司 基于胺基修饰环糊精的青蒿素前药及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075921A1 (en) * 2003-02-26 2004-09-10 Vrije Universiteit Brussel Inclusion complex of artemisinin or derivates thereof with cyclodextrins
CN102716491A (zh) * 2012-07-02 2012-10-10 昆明理工大学 青蒿素系列物与碱性环糊精的包合物及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B.L. MAY; S.D. KEAN; C.J. EASTON; S.F. LINCOLN, J. CHEM. SOC., PERKIN TRANS., 1997, pages 13157 - 3160
P. M. 0' NEILL ET AL., J. MED. CHEM., vol. 44, 2001, pages 58 - 68
R.C. PETTER; J.S. SALEK; C.T. SIKORSKI; G KUMARAVEL; F.-T. LIN, J. AM. CHEM. SOC., vol. 112, 1990, pages 3860 - 3868
R.C. PETTER; J.S. SALEK; C.T. SIKORSKI; G. KUMARAVEL; F. -T. LIN, J. AM. CHEM. SOC., vol. 112, 1990, pages 3860 - 3868

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226851A (ja) * 2012-12-14 2017-12-28 昆薬集団股▲ふん▼有限公司Kpc Pharmaceuticals,Inc アルテアンヌイン−シクロデキストリン結合体及びその製造方法
CN112111025A (zh) * 2020-09-28 2020-12-22 沐荷永康生物科技(云南)有限公司 一种大麻二酚环糊精偶合物及其制备方法
CN112111025B (zh) * 2020-09-28 2022-08-16 云南佩林科技有限公司 一种大麻二酚环糊精偶合物及其制备方法

Also Published As

Publication number Publication date
EP2933270A1 (en) 2015-10-21
CN103864962B (zh) 2016-04-06
CN103864962A (zh) 2014-06-18
JP2016503078A (ja) 2016-02-01
JP6453761B2 (ja) 2019-01-16
EP2933270A4 (en) 2016-07-20
EP2933270B1 (en) 2017-09-06
JP2017226851A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2014090128A1 (zh) 一种青蒿素环糊精缀合物及其制备方法
EP1580216B1 (en) High-molecular weight derivatives of camptothecins
CN101289482B (zh) 藤黄酸苷衍生物和类似物及其制备方法和用途
WO2008010463A1 (fr) Conjugué polymère d'une combrétastatine
JP6509969B2 (ja) シクロデキストリンキャリアベースのアルテアンヌイン化合物複合体及びその調製方法
CN114057692A (zh) 一种杂环类化合物、其制备方法及用途
CN109021026A (zh) 顺铂药物前体、制备方法和应用
CN108478804B (zh) 一种聚丙烯酸-s-s-药物共聚物及其制备方法
CN111467500B (zh) 一种低氧双靶向性agt抑制剂偶联物及其制备方法与应用
CN101613386B (zh) 藤黄酸环合类似物及其制备方法和应用
CN103627772B (zh) 一种雷公藤内酯醇衍生物的制备方法及其产物和应用
CA2446429C (en) Aloe-emodin derivatives and their use in the treatment of neoplastic pathologies
CN108976318B (zh) 单-6-(生物素酰胺基)-6-脱氧-β-环糊精及其制备方法和应用
CN102671213B (zh) 一种灯盏花乙素前药及其制备方法
CN110922450B (zh) Psma激活式抗肿瘤前药cpt-x及其制备方法和应用
CN111518040B (zh) 一种甲基吡嗪衍生物-哌嗪共晶
CN112138001A (zh) 一种槲皮素-低分子肝素-紫杉醇结合物、制备方法及应用
CN113024557A (zh) 一种Peganumine A生物碱结构简化物及其应用
WO2015199555A1 (en) Polymers for coating nanoparticles
CN111303175B (zh) 一种10-羟基喜树碱类衍生物及其制备方法、药物、应用
CN117924404B (zh) 一种基于雷公藤红素的protac化合物、制备方法及应用
WO2004080453A1 (ja) 抗c型肝炎ウイルス剤と抗hiv剤
KR20220059436A (ko) 신규한 공결정, 이를 포함하는 약학 조성물 및 이의 제조 방법
CN114874217A (zh) 苯并氮杂卓衍生物的盐、溶剂合物、多晶型物、制备方法及应用
CN113024449A (zh) 一种含金属的高效阳离子抗肿瘤药物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013863004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013863004

Country of ref document: EP