WO2014090096A1 - 一种led芯粒的固晶方法 - Google Patents

一种led芯粒的固晶方法 Download PDF

Info

Publication number
WO2014090096A1
WO2014090096A1 PCT/CN2013/088273 CN2013088273W WO2014090096A1 WO 2014090096 A1 WO2014090096 A1 WO 2014090096A1 CN 2013088273 W CN2013088273 W CN 2013088273W WO 2014090096 A1 WO2014090096 A1 WO 2014090096A1
Authority
WO
WIPO (PCT)
Prior art keywords
led core
led
core particles
solder paste
pcb
Prior art date
Application number
PCT/CN2013/088273
Other languages
English (en)
French (fr)
Inventor
林科闯
廖泳
包书林
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014090096A1 publication Critical patent/WO2014090096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1225Screens or stencils; Holders therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder

Definitions

  • the invention relates to a method for solid crystal bonding of LED core particles, in particular to adopt SMT surface mount technology (surface Acronym for Mounted Technology) A method of crystallizing LED core particles.
  • LED has been industrialized and brought to market, and has entered the general lighting market. Due to cost constraints, LED The size of the core particles continues to shrink, but its input current continues to increase, so higher requirements are placed on the packaging technology of LEDs. LED package requires high light extraction efficiency and thermal resistance as low as possible to delay LED The attenuation of brightness also requires that the efficiency is high enough to reduce production costs.
  • thermo conductivity is generally 1.5 ⁇ 15W/m ⁇ K
  • tin or gold tin is a metal material, high thermal conductivity, good shear strength, fast curing time, shorten the time of the entire process, and greatly reduce the cost of solid crystal, so the use of eutectic soldering has become power
  • the eutectic soldering method greatly reduces the thermal resistance between the chip and the holder and improves the thermal conductivity.
  • eutectic soldering There are two ways to eutectic soldering: one is; the bottom of the die is pure tin (Sn) or gold tin ( Au ⁇ Sn) alloy is used as contact surface coating.
  • the crystal grains can be soldered on the substrate coated with gold or silver.
  • the substrate is heated to a suitable eutectic temperature, the eutectic layer is cured and the LED is cured. Fastened to heat sink or substrate, but this way the welding efficiency is low (less than 5K / H); the other is directly solder paste instead of conductive silver paste after reflow soldering, but this way
  • the coating size control of solder paste is very high.
  • the LED core particles are extremely prone to drift and cause poor soldering.
  • the object of the present invention is to provide a simple and fast solid crystal welding method for the shortcomings of the prior art, which can not only adapt to small and medium size LED core particles, but also have a positive impact on LED integrated applications.
  • a method for bonding a die bond of an LED core particle comprising the steps of: 1 Providing a laser-engraved steel mesh, and the size of the steel mesh is 0.03 ⁇ 0.1mm smaller than the core particle; 2) providing a PCB, where the PCB Refers to an aluminum substrate or a fiberglass board designed with a wiring layer, which is screen printed with a solder paste at a predetermined position; 3) an LED core particle to be crystallized, which is packaged in a carrier tape; 4) a surface mount is used The device will carry the LEDs inside the tape The core particles are adsorbed and placed on the PCB with the solder paste; 5) The PCB with the LED core particles is reflow soldered.
  • the solder paste is an ultrafine powder solder paste having a powder diameter of 10 to 20 ⁇ m, which can effectively satisfy 10 to 50 mils ( Welding of LED chips in the range of 0.25 ⁇ 1.25mm).
  • a silk screen coated solder paste is employed.
  • the LED core particles are bare crystals which are not packaged, and are preferably flip-chip LED core particles.
  • 1 is a schematic structural view of an LED core particle to be crystallized according to an embodiment of the present invention, wherein 21 is an N electrode, 22 is the P electrode.
  • FIG. 2 is a schematic view showing a solid crystal process of an LED core particle according to an embodiment of the present invention.
  • 13 is the PCB board
  • 11 and 12 are the solder paste printed on the PCB board, corresponding to the N electrode and the P electrode of the LED core.
  • the cost of solder paste is much lower than that of silver paste and Au ⁇ Sn.
  • the alloy has small electric resistance, fast heat transfer, better heat conduction effect, and can greatly reduce the cost of solid crystal.
  • the ROHS Directive can be met by selecting the right alloy material.
  • the following example discloses a new LED core particle bonding method, which uses a steel mesh to accurately screen the solder paste at a predetermined position on the PCB, using SMT.
  • the high-speed placement equipment of the process deposits the LED core particles in the carrier tape onto the PCB on which the solder paste is printed. Specifically, the following steps are included: 1) providing a PCB and a corresponding steel mesh, on the PCB Coating the solder paste at a predetermined position; 2) providing the LED core particles to be crystallized, which are packaged in the carrier tape; 3) using a surface mount device to deposit the LED core particles in the carrier tape on the solder paste On the PCB; 4) Soldering the LED core particles to the PCB by reflow soldering to complete the solid crystal.
  • ultra-fine solder paste is used to replace the existing solid crystal materials such as conductive silver paste and thermal conductive adhesive.
  • the solder paste powder diameter is 10 ⁇ 20 ⁇ m, which can effectively meet the requirements.
  • LED range 10 ⁇ 50 mil (0.25 ⁇ 1.25mm) Soldering of the wafer.
  • the ultrafine tin powder has a uniform particle size and is matched with a high thixotropic solder paste. The thixotropic property is good, and the wafer does not drift, the residue is extremely small, and the welding mechanical strength is higher than that of the silver paste.
  • the steel mesh is engraved by a laser engraving machine, and the size of the steel mesh is smaller than the core particle. 0.03 ⁇ 0.1mm; after using silk screen coating solder paste, precisely control the area and thickness of solder paste.
  • the LED core pellets in the package are loaded with LEDs from the carrier tape using high-speed and precise surface mount equipment.
  • the core particles are accurately placed on the PCB with solder paste.
  • the positioning accuracy of the surface mount device requires X/Y offset ⁇ 0.03mm.
  • the temperature of the reflow furnace can be directly set at the alloy welding temperature point by hot air reflow or bench reflow.
  • the general welding process can be 6 minutes
  • the inside is completed, and the silver glue is generally 90 minutes, which reduces energy consumption.
  • the carrier tape on which the LED core particles are placed is mounted on the fixture of the SMT placement machine, and the LED is adsorbed by the SMT chip process.
  • the core particles are accurately placed on the PCB coated with solder paste.
  • the assembled PCB is sent to the hot air reflow soldering machine, and the reflow parameters are preset according to the composition of the solder paste, and the hot air is reflowed.
  • the fixing of the LED core particles by the die bonding method of the embodiment has at least the following positive effects: 1) The use of high-speed SMT equipment speeds up The solid crystal speed of the LED core particles can reach 20K/H; 2) Use the steel mesh silk screen solder paste to ensure uniform control of the area and thickness of the solder paste; Solder paste is firmly soldered, reliable in performance, has extremely low thermal resistance, and has excellent thermal conductivity. 4) In flip chip applications, it can directly realize the LED chip to the lighting unit, so that the LED application can effectively reduce the intermediate cost and promote LED lighting development.
  • the invention is suitable for the LED COB eutectic soldering and grain-reinforcing process, especially the flip-chip structure of the LED solid crystal process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

提供一种发光二极管(LED)芯粒的固晶方法,具体为采用表面贴装技术(SMT)对LED芯粒进行固晶的方法。

Description

一种 LED 芯粒的固晶方法
本申请主张如下优先权:中国发明专利申请号201210542245.8,题为 ' 一种 LED 芯粒的固晶方法 ' ,于 2012 年 12 月14 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种 LED 芯粒的固晶方法,具体为采用 SMT 表面贴装技术( Surface Mounted Technology 的缩写)对 LED 芯粒进行固晶的方法。
背景技术
目前白光 LED 已产业化并推向市场,并向普通照明市场迈进。由于成本的限制, LED 芯粒的尺寸不断缩小,但是其输入电流却不断提高,因此对 LED 的封装技术提出了更高的要求。 LED 封装既要有高的取光效率,又要热阻尽可能低以延缓 LED 亮度的衰减,同时还要求效率足够高以降低生产成本。
随着 LED 功率的增大,目前低热导率的银胶(导热系数一般为 1.5~15W/m · K )已难以满足功率 LED 的散热需求,而锡或者金锡都是金属材料,导热系数高,剪切强度好,固化时间快,缩短整个工艺流程的时间,且大大降低固晶成本,所以采用共晶焊接已成为功率 LED 封装的发展趋势。共晶焊接方式大大降低了芯片与支架之间的热阻,提高了导热性能。共晶焊接目前有两种方式:一种就是;晶粒底部采用纯锡( Sn )或金锡( Au~Sn )合金作接触面镀层,晶粒可焊接于镀有金或银的基板上,当基板被加热至适合的共晶温度时,令共晶层固化并将 LED 紧固的焊于热沉或基板上,但这种方式焊接效率低下(低于 5K/H );另一种是直接用锡膏代替导电银胶涂布后进行回流焊接,但这种方式对锡膏的涂布尺寸控制要求很高, LED 芯粒极容易漂移造成焊接不良。
发明内容
本发明的目的就是针对现有技术存在的不足,提供一种简便、快速的固晶焊接方法,不仅能适应中小尺寸 LED 芯粒,而且对 LED 集成应用会产生积极的影响。
为实现本发明之目的,本发明将通过以下的技术方案来实现:一种 LED 芯粒的固晶焊接方法,其包括步骤: 1 )提供一激光雕刻钢网,且钢网孔的尺寸比芯粒小 0.03~0.1mm ; 2 )提供一 PCB ,此处 PCB 是指设计有布线层的铝基板或玻纤板,在其预定的位置上丝印涂布锡膏; 3 )提供待固晶的 LED 芯粒,其包装于载带内; 4 )采用表面贴片设备将载带内的 LED 芯粒吸附置放于印有锡膏的 PCB 上; 5 )将有 LED 芯粒的 PCB 板进行回流焊接。
在步骤 2 )中,所述锡膏为超细粉锡膏,粉径为 10~20 μ m ,能有效满足 10~50mil ( 0.25~1.25mm )尺寸范围内 LED 晶片的焊接。在本发明的优选实施例中,采用丝印涂布锡膏。
在步骤 3 )中, LED 芯粒为未做封装处理的裸晶,优选为倒装结构的 LED 芯粒。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图 1 为依据本发明实施的一种待固晶的 LED 芯粒的结构简图,其中 21 为 N 电极, 22 为 P 电极。
图 2 为依据本发明实施的一种 LED 芯粒的固晶过程示意图。其中, 13 为 PCB 板, 11 和 12 为印刷在 PCB 板上的锡膏,分别对应 LED 芯粒的 N 电极和 P 电极。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,由实例所形成的技术方案均在本发明的保护范围之内。
满足 LED 导热散热需求的固晶键合材料中,锡膏的成本远远低于银胶和 Au~Sn 合金,且电阻小、传热快,具有更好的导热效果,且能大大降低固晶成本。选择合适的合金材料,即可满足 ROHS 指令要求。
下面实施例公开了一种新的 LED 芯粒固晶方式,其利用钢网在 PCB 预定的位置上精确丝印锡膏,采用 SMT 工艺的高速贴片设备将载带内的 LED 芯粒吸附置放于印有锡膏的 PCB 上。具体包括下面步骤: 1 )提供一 PCB 与对应的钢网,在 PCB 预定的位置上涂布锡膏; 2 )提供待固晶的 LED 芯粒,其包装于载带内; 3 )采用表面贴片设备将载带内的 LED 芯粒吸附置放于印有锡膏的 PCB 上; 4 )通过回流焊将 LED 芯粒焊接于所述 PCB 板上,完成固晶。
首先,采用超细锡膏代替现有的导电银胶和导热胶等固晶材料,锡膏粉径为 10~20 μ m ,能有效满足 10~50 mil ( 0.25~1.25mm )尺寸范围内 LED 晶片的焊接。超细锡粉的粒径均匀,配合高触变性的助焊膏,触变性好,不会引起晶片的漂移,残留物极少,焊接机械强度比银胶高。
接着,按照 LED 芯粒及 PCB 的尺寸,利用激光雕刻机雕刻钢网,且钢网孔的尺寸比芯粒小 0.03~0.1mm ;后采用丝印涂布锡膏,精确控制锡膏的面积与厚度。
然后,将载带包装的 LED 芯粒,利用高速精准的表面贴片设备,从载带中吸附 LED 芯粒,准确置放于备有锡膏的 PCB 上。其中,表面贴片设备的定位精度要求 X/Y 偏移 <0.03mm 。
最后,利用热风回流焊或台式回流焊,将回流炉的温度直接设定在合金焊接温度点即可。一般焊接过程可在 6min 内完成,而银胶一般为 90min ,减少了能耗。
下面结合附图及实施例对本发明的实施做进一步说明。
选择 24 × 12mil 的 LED 芯粒,芯粒高度 6mil ,公制尺寸为 0.6 × 0.3 × 0.15mm ,其结构简图如图 1 所示,其中 21 为 N 电极, 22 为 P 电极。
选择厚度约 0.1mm 的钢网,依据上述尺寸,设计钢网孔的尺寸比芯粒小 0.03~0.1mm 并进行激光雕刻,后将钢网固定于 PCB 上,采用丝印机印刷锡膏,其结构简图如图 2 所示,其中 13 为 PCB 板, 11 和 12 为印刷在 PCB 板上的锡膏, 分别对应 LED 芯粒的 N 电极和 P 电极。
将置放 LED 芯粒的载带装配在 SMT 贴片机的夹具上,利用 SMT 贴片工艺的吸附动作将 LED 芯粒准确置放于涂覆有锡膏的 PCB 上。
将装配完毕的 PCB 送于热风回流焊机,按照锡膏的成分预置回流参数,热风回流成型即可。
采用本实施例的固晶方法对 LED 芯粒进行固定,至少具有以下积极效果: 1 )采用高速 SMT 设备,加快了 LED 芯粒的固晶速度,可达 20K/H ; 2 )利用钢网丝印锡膏,确保锡膏的面积与厚度均匀控制; 3 )锡膏焊接牢固,性能可靠,具有极低的热阻,导热性能优良; 4 )在倒装芯片中应用,可直接实现从 LED 芯片到照明单元,使 LED 应用有效降低中间成本,促进 LED 照明发展。
本发明适用于 LED COB 共晶焊固晶工艺,尤其是倒装结构 LED 固晶制程工艺。

Claims (6)

  1. 一种 LED 芯粒的固晶方法,其包括步骤:
    1 )提供一钢网,且钢网孔的尺寸比芯粒小 0.03~0.1mm ;
    2 )提供一 PCB ,此处 PCB 是指设计有布线层的铝基板或玻纤板,在其预定的位置上丝印涂布锡膏;
    3 )提供待固晶的 LED 芯粒,芯粒尺寸为 10~50mil ,其包装于载带内;
    4 )采用表面贴片设备将载带内的 LED 芯粒吸附置放于印有锡膏的 PCB 上;
    5 )将包含 LED 芯粒的 PCB 板,送入回流焊接设备完成固晶焊接。
  2. 根据权利要求 1 所述的一种 LED 芯粒的固晶方法,其特征在于:所述钢网采用激光雕刻。
  3. 根据权利要求 1 所述的一种 LED 芯粒的固晶方法,其特征在于:步骤 2 )中,所述锡膏为超细粉锡膏,粉径为 10~20 μ m 。
  4. 根据权利要求 1 所述的一种 LED 芯粒的固晶方法,其特征在于:步骤 3 )中 , 所述 LED 芯粒为未做封装处理的裸晶。
  5. 根据权利要求 1 所述的一种 LED 芯粒的固晶方法,其特征在于:步骤 3 )中 , 所述 LED 芯粒为倒装结构的 LED 芯粒。
  6. 根据权利要求 1 所述的一种 LED 芯粒的固晶方法,其特征在于:步骤 4 )中,所述表面贴片设备的定位精度要求 X/Y 偏移 <0.03mm 。
PCT/CN2013/088273 2012-12-14 2013-12-02 一种led芯粒的固晶方法 WO2014090096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210542245.8A CN103022333B (zh) 2012-12-14 2012-12-14 一种led芯粒的固晶方法
CN201210542245.8 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014090096A1 true WO2014090096A1 (zh) 2014-06-19

Family

ID=47970680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088273 WO2014090096A1 (zh) 2012-12-14 2013-12-02 一种led芯粒的固晶方法

Country Status (2)

Country Link
CN (1) CN103022333B (zh)
WO (1) WO2014090096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159070A (zh) * 2016-08-26 2016-11-23 曾广祥 一种高密显示屏单元板及其制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022333B (zh) * 2012-12-14 2016-04-27 厦门市三安光电科技有限公司 一种led芯粒的固晶方法
CN104167380A (zh) * 2014-05-30 2014-11-26 上海芯哲微电子科技有限公司 一种smt贴片封装结构的smt贴片封装方法
CN105304788A (zh) * 2014-07-04 2016-02-03 利亚德光电股份有限公司 发光二极管的封装方法、封装装置及封装线
CN104599990A (zh) * 2015-01-13 2015-05-06 中国科学院半导体研究所 Led共晶焊方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873512A (en) * 1995-12-22 1999-02-23 International Business Machines Corporation Application of low temperature metallurgical paste to form a bond structure to attach an electronic component to a carrier
CN100508697C (zh) * 2007-08-21 2009-07-01 无锡荣志电子有限公司 在印刷电路板上贴装连接器的工艺方法
CN1852638B (zh) * 2006-01-24 2010-05-12 华为技术有限公司 一种印刷焊膏的方法及印锡钢网
CN102174999A (zh) * 2011-02-25 2011-09-07 江苏永兴多媒体有限公司 Led灯板的生产方法
CN103022333A (zh) * 2012-12-14 2013-04-03 厦门市三安光电科技有限公司 一种led芯粒的固晶方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639856U (zh) * 2009-11-17 2010-11-17 王定锋 带元件的双面电路板
CN202265040U (zh) * 2011-09-30 2012-06-06 深圳市聚飞光电股份有限公司 一种led载带

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873512A (en) * 1995-12-22 1999-02-23 International Business Machines Corporation Application of low temperature metallurgical paste to form a bond structure to attach an electronic component to a carrier
CN1852638B (zh) * 2006-01-24 2010-05-12 华为技术有限公司 一种印刷焊膏的方法及印锡钢网
CN100508697C (zh) * 2007-08-21 2009-07-01 无锡荣志电子有限公司 在印刷电路板上贴装连接器的工艺方法
CN102174999A (zh) * 2011-02-25 2011-09-07 江苏永兴多媒体有限公司 Led灯板的生产方法
CN103022333A (zh) * 2012-12-14 2013-04-03 厦门市三安光电科技有限公司 一种led芯粒的固晶方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159070A (zh) * 2016-08-26 2016-11-23 曾广祥 一种高密显示屏单元板及其制作方法

Also Published As

Publication number Publication date
CN103022333A (zh) 2013-04-03
CN103022333B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014090096A1 (zh) 一种led芯粒的固晶方法
US8378372B2 (en) Semiconductor chip assembly with post/base heat spreader and horizontal signal routing
US9091421B2 (en) LED array module and manufacturing method thereof
KR20130048143A (ko) Led 모듈 및 이러한 모듈의 본딩 방법
CN102881806B (zh) 一种smd led单元及其封装方法
WO2013143038A1 (zh) 直接发出白光的发光二极管晶圆片的制造方法
CN206558540U (zh) 一种散热性良好的倒装柔性cob光源
EP2761979A1 (en) Systems and methods for void reduction in a solder joint
JP2023516200A (ja) Micro-LEDのダイボンド方法
CN107516705B (zh) 一种基于ncsp封装技术的新型制作工艺
CN108807352B (zh) 一种新型led灯丝制作方法
CN111162158B (zh) 一种rgb芯片倒装封装结构及制备方法
CN110635017B (zh) 一种miniled背光基板封装方法
CN204042774U (zh) 一种可焊接型led基板
CN102522482A (zh) 发光二极管封装结构和制造方法
CN202454612U (zh) 芯片封装结构
CN111128769A (zh) 一种球栅阵列封装的植球结构及植球方法
CN202523751U (zh) 发光二极管封装结构
JP2007277619A (ja) 電気泳動による粒子堆積方法
CN118265269A (zh) 一种无陶瓷散热器及其制作方法
TWI455253B (zh) 一種通過印刷粘接材料封裝的半導體裝置及其製造方法
JP5976049B2 (ja) 半導体センサーを表面実装する実装基板およびその実装方法
JP2010186813A (ja) 電子部品パッケージの実装用構造体とそれを用いた実装方法。
CN104001925A (zh) 一种在导热塑料的led灯头上烧结银膜的方法
CN202930429U (zh) 一种smd led单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863617

Country of ref document: EP

Kind code of ref document: A1