WO2014090003A1 - 一种介质谐振器及其装配方法及介质滤波器 - Google Patents

一种介质谐振器及其装配方法及介质滤波器 Download PDF

Info

Publication number
WO2014090003A1
WO2014090003A1 PCT/CN2013/083674 CN2013083674W WO2014090003A1 WO 2014090003 A1 WO2014090003 A1 WO 2014090003A1 CN 2013083674 W CN2013083674 W CN 2013083674W WO 2014090003 A1 WO2014090003 A1 WO 2014090003A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric resonator
metal cavity
sealing cover
dielectric
conductive elastic
Prior art date
Application number
PCT/CN2013/083674
Other languages
English (en)
French (fr)
Inventor
康玉龙
戴晓文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/651,333 priority Critical patent/US9722291B2/en
Priority to JP2015546815A priority patent/JP6003005B2/ja
Priority to EP13861670.1A priority patent/EP2919316A4/en
Publication of WO2014090003A1 publication Critical patent/WO2014090003A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20309Strip line filters with dielectric resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/008Manufacturing resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Definitions

  • Dielectric resonator Assembly method thereof and dielectric filter
  • the present invention relates to the field of mobile communications, and in particular to a dielectric resonator, an assembly method thereof, and a dielectric filter.
  • dielectric filters When electromagnetic waves propagate in a high dielectric constant material, the wavelength can be shortened. Using this theory, a dielectric material can be used instead of a conventional metal material, and the volume of the filter can be reduced under the same index.
  • Research on dielectric filters has been a hot topic in the communications industry. Filters are an important part of wireless communication products, and dielectric filters are particularly important for miniaturization of communication products.
  • the TM (transverse magnetic) mode dielectric filter is mainly composed of a dielectric resonator column 103, a sealing cover 102, a tuning screw 101, and a metal cavity 104, as shown in FIG. 1;
  • the upper and lower end faces of the dielectric resonator column 103 and the metal cavity 104 have a high electric field distribution. If the upper and lower end faces of the dielectric resonator column are not in sufficient contact with the metal cavity 104, the impedance will be discontinuous, the field energy cannot be transmitted, and the high dielectric constant and high quality factor of the medium will not be exerted, and the medium will be burned. Therefore, it is particularly important that the upper and lower surfaces of the dielectric resonator column in the TM mode dielectric filter are in good contact with the surface of the metal cavity. How to solve the fixed research and application of TM mode dielectric resonator column as the key research direction of dielectric filter application;
  • the upper surface of the dielectric resonator column 103 is crimped by the sealing cover 102 for the medium to be in close contact with the sealing cover 102, and the lower surface of the dielectric resonator column 103 is soldered or otherwise connected by other means.
  • On the metal cavity 104 it is used for close contact with the bottom surface of the metal cavity.
  • the sealing cover 102 and the metal cavity 104 are sealed by screws to form a closed cavity. Since the temperature coefficient of the dielectric resonator column is different from that of the metal material, once the cavity is expanded or contracted by the temperature, there is a gap or extrusion on the upper surface of the entire dielectric resonator column, which seriously affects the performance and service life of the filter.
  • a related art solution is to add a conductive elastomer between the cover plate and the dielectric resonator column.
  • the electroelastic body is used for contact between the cover plate and the dielectric resonator column.
  • the dielectric filter relies on the conductive elastomer to be pressed back to ensure good contact between the dielectric resonator column and the cover.
  • the dielectric resonator is connected only by several contacts of the reed, and the cavity expands or contracts as the temperature changes, the contact contact area and depth are not the same, resulting in a change in the filter performance index.
  • Embodiments of the present invention provide a dielectric resonator, an assembly method thereof, and a dielectric filter made of the dielectric resonator, which ensure that a dielectric resonator column in a dielectric resonator is in good contact with a metal cavity, and is not affected by temperature, thereby improving dielectric resonance. Performance.
  • a dielectric resonator includes a sealing cover, a dielectric resonator, a metal cavity, and a conductive elastic structure, wherein the dielectric resonator is located inside the metal cavity, wherein: the sealing cover Connected to the upper surface of the dielectric resonator column, the sealing cover plate is located at the upper end surface of the metal cavity, and the sealing cover plate is arranged to seal the metal cavity;
  • the bottom of the metal cavity has a groove, the conductive elastic structure is located in the bottom groove of the metal cavity, and the conductive elastic structure is arranged to support the dielectric resonator column, and the depth of the groove is After the sealing cover seals the metal cavity, a lower surface of the dielectric resonator column is lower than a bottom surface of the metal cavity;
  • the lower end surface of the dielectric resonator column is in contact with the conductive elastic structure.
  • the sealing cover is connected to the upper surface of the dielectric resonator column, and the method comprises: the sealing cover is soldered to the upper surface of the dielectric resonator column.
  • the bottom surface of the metal cavity has a protrusion; the conductive elastic structure has an intermediate hole, and the middle hole is coupled with the bottom of the metal cavity to make the conductive elastic structure The relative position to the metal cavity is fixed.
  • the electrically conductive elastic structure comprises a resilient gasket.
  • the dielectric resonator further includes a tuning screw arranged to adjust a frequency of the dielectric resonator, the tuning screw extending from the top of the metal cavity through the sealing cover into the interior of the dielectric resonator column, or the tuning screw
  • the metal cavity and the conductive elastic structure extend from the bottom of the metal cavity into the interior of the dielectric resonator column.
  • the embodiment of the invention further provides a dielectric filter which is formed by connecting two or more of the above dielectric resonators.
  • the embodiment of the invention further provides a method for assembling a dielectric resonator, comprising:
  • the depth of the bottom groove of the metal cavity is such that the sealing cover plate is connected to the upper end surface of the metal cavity and the lower surface of the dielectric resonator column is low In the bottom surface of the metal cavity;
  • the sealing cover is connected to the upper end surface of the metal cavity while the lower surface of the dielectric resonator column is in contact with the conductive elastic structure.
  • the metal cavity has a protrusion in a bottom groove
  • the conductive elastic structure has an intermediate hole
  • the conductive elastic structure is placed in the bottom groove of the metal cavity
  • the method comprises: the conductive elastic structure
  • the body is coupled to the bottom of the metal cavity.
  • the method further comprises: extending the tuning screw from the top of the metal cavity through the sealing cover into the interior of the dielectric resonator column.
  • the method further comprises: extending the tuning screw from the bottom of the metal cavity through the metal cavity and the conductive elastic structure into the interior of the dielectric resonator column.
  • the elastic rebound of the conductive elastic structure ensures that the dielectric resonator column is in good contact with the metal cavity, and even if the metal cavity is under the influence of external force or temperature condition, there is compression or expansion, which can ensure good contact. And because the depth of the groove at the bottom of the metal cavity causes the sealing plate to seal the metal cavity, the lower surface of the dielectric resonator column is lower than the bottom surface of the metal cavity, thereby improving the performance of the dielectric resonator.
  • TM mode dielectric resonator 2 is a schematic structural view of a dielectric resonator according to Embodiment 1 of the present invention
  • Figure 3 is a flow chart showing the assembly method of the embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a dielectric resonator according to an application example of the present invention.
  • FIG. 5 is a schematic structural view of a dielectric resonator according to an application example of the present invention.
  • Figure 6 is a schematic view showing the structure of an elastic gasket of the application example of the present invention.
  • Fig. 7 is a schematic view showing the structure of a corrugated 0-ring of the application example 3 of the present invention. Preferred embodiment of the invention
  • This embodiment introduces a dielectric resonator, as shown in FIG. 2, including a sealing cover 201, a dielectric resonator 202, a metal cavity 203, and a conductive elastic structure 204.
  • the dielectric resonator 202 is located inside the metal cavity 203. , among them:
  • the sealing cover 201 is connected to the upper surface of the dielectric resonator 202, and the sealing cover 201 is located on the upper end surface of the metal cavity 203, and is arranged to seal the metal cavity 203;
  • the bottom of the metal cavity 203 has a groove, and the conductive elastic structure 204 is located in the bottom groove of the metal cavity 203, and is disposed to support the dielectric resonator column 202, the depth of the groove makes the seal After the cover plate 201 seals the metal cavity 203, the lower surface of the dielectric resonator column 202 is lower than the inner bottom surface of the metal cavity 203;
  • the lower end surface of the dielectric resonator column 202 is in contact with the conductive elastic structure 204.
  • the sealing cover 201 and the upper surface of the dielectric resonator column 202 may be welded or otherwise tightly joined together.
  • the conductive elastic structure 204 located under the dielectric resonator column 202 is pressed by the gravity of the dielectric resonator column 202, and is in a state of force rebound, which can ensure the dielectric resonance column. 202 is in good contact with the metal cavity 203.
  • the lower surface of the dielectric resonator column 202 is lower than the inner surface of the metal cavity 203, so that the electromagnetic wave transmission path can be improved. Thereby improving the electrical performance of the resonant cavity.
  • the metal cavity 203 can be ensured to be in good contact with the dielectric resonator column 202, thereby improving the performance of the dielectric resonator while reducing the volume of the entire filter.
  • the conductive elastic structure 204 has a tensile and compressive margin to better accommodate expansion or contraction of the cavity of the metal cavity 203 as a function of temperature.
  • the conductive elastic structure 204 may be directly placed in the recess or may be fixed in the bottom recess by other means to keep the conductive elastic structure 204 in close contact with the dielectric resonator 202 and the metal cavity 203.
  • the metal cavity 203 has a protrusion in the bottom groove; the conductive elastic structure 204 has an intermediate hole, and the intermediate hole is convexly coupled with the bottom of the metal cavity to make the conductive elasticity The relative position of the structure to the metal cavity is fixed.
  • the bottom IHJ groove in the metal cavity 203 is a ring-shaped IHJ groove.
  • the dielectric resonator further includes a tuning screw configured to adjust a frequency of the dielectric resonator, the tuning screw may extend from the top of the metal cavity through the sealing cover into the interior of the dielectric resonator column, or The bottom of the metal cavity extends through the metal cavity and the conductive elastic structure into the interior of the dielectric resonator column. See the application example for details.
  • the above two or more (including two) dielectric resonators are connected together to form a multi-order dielectric filter.
  • the assembly method of the above dielectric resonator is introduced. As shown in FIG. 3, the method includes the following steps: Step 301: connecting the sealing cover to the upper surface of the dielectric resonator column;
  • Step 302 placing a conductive elastic structure in a bottom groove of the metal cavity, the depth of the bottom groove of the metal cavity is such that the sealing cover is connected with the upper end surface of the metal cavity, and the dielectric resonant column is The lower surface is lower than the bottom surface of the metal cavity;
  • Step 303 connect the sealing cover to the upper end surface of the metal cavity, and the lower surface of the dielectric resonator column is in contact with the conductive elastic structure.
  • the recess in the bottom of the metal cavity has a protrusion
  • the conductive elastic structure has an intermediate hole
  • the conductive elastic structure is coupled to the bottom of the metal cavity.
  • the method further includes: extending the tuning screw from the top of the metal cavity through the sealing cover into the interior of the dielectric resonator column.
  • the tuning screw extends from the bottom of the metal cavity through the metal cavity and the conductive elastic structure into the interior of the dielectric resonator column.
  • the above dielectric resonator will be exemplified by taking an elastic gasket as a conductive elastic structure as an example.
  • the dielectric resonator includes a dielectric resonator 403, a sealing cover 402, a spring washer 405, a metal cavity 404, and a tuning screw 401, wherein:
  • the dielectric resonator column 403 is located inside the metal cavity 404, and the upper surface of the dielectric resonator column 403 is soldered to the sealing cover 402 or otherwise connected tightly;
  • the sealing cover 402 is located on the upper surface of the metal cavity 404, that is, the top end, and is arranged to seal the metal cavity
  • the elastic gasket 405 is located between the metal cavity 404 and the dielectric resonator 403, and is in contact with the two.
  • the elastic property and the conductive property ensure that the metal cavity 404 is in good contact with the dielectric resonator 403, thereby ensuring the performance of the dielectric resonator. .
  • the assembly process of the dielectric resonator is as follows: First, the dielectric resonator column 403 is welded or otherwise tightly connected to the sealing cover 402, and then the elastic gasket 405 is placed on the groove of the bottom surface of the metal cavity 404 (for example, a circular groove). Then, the assembled sealing cover 402 with the dielectric resonator column is placed on the metal cavity 404, and then fixedly sealed, and then the tuning screw 401 is assembled. The tuning screw 401 is located at the center of the dielectric resonator 403.
  • the tuning screw 401 From the top of the metal cavity through the sealing cover 402 extends into the interior of the dielectric resonator column 403; after the entire assembly is completed, the elastic gasket 405 is subjected to the pressure of the dielectric resonator column 403, and is always in an elastic deformation state.
  • the depth of the groove is such that the lower surface of the dielectric resonator column 403 is lower than the bottom surface of the metal cavity. According to the electromagnetic field theory, this is more advantageous for the propagation of the electric field within the medium.
  • This example describes a dielectric resonator which, as shown in Fig. 5, includes a dielectric resonator 503, a sealing cover 502, a spring washer 505, a metal cavity 504, and a tuning screw 501.
  • the upper surface of the dielectric resonator column 503 is soldered or otherwise tightly connected to the sealing cover 502; the lower surface of the dielectric resonator column 503 is in close contact with the metal cavity 504 through the elastic gasket 505.
  • the difference from the application example 1 is that, in the present example, the tuning screw 501 protrudes from the bottom of the metal cavity 504 through the metal cavity 504 and the elastic washer 505 into the interior of the dielectric resonator 503, and the tuning screw 501 is arranged to adjust the dielectric resonator. frequency.
  • the protrusion has a threaded hole at this time, the threaded hole realizes the connection of the tuning screw 501 and the metal cavity 504, and the outer diameter of the protrusion is smaller than the diameter of the central hole of the elastic washer 505, In order to fix the position of the elastic washer 505.
  • This example describes the conductive elastic structural body 204 of the above embodiment, which is made of a metal having good electrical conductivity, such as a silver plated elastic piece, or a copper piece.
  • the conductive elastic structure 204 may be a resilient washer as shown in Fig. 6, which in this example includes a rim a and an elastic tooth b:
  • the outer side of the edge a is in contact with the metal cavity
  • the upper surface of the elastic tooth b is in contact with the lower surface of the dielectric resonator column, and the lower surface of the elastic tooth is in contact with the metal cavity. After the assembly is completed, the elastic tooth b is subjected to a force deformation state.
  • the elastic washer may further include an intermediate hole c, and the intermediate hole c is coupled with the bottom of the metal cavity to fix the relative position of the elastic washer and the metal cavity to prevent the elastic washer from slipping out. Groove.
  • One implementation of the elastic teeth is the double-sided tooth shown in Fig. 6, that is, the upper and lower sides of the rim have elastic teeth, and another possible implementation is a single-sided tooth, that is, only elastic teeth above the rim.
  • the conductive elastic structure 204 can also be realized by a one-piece structure as shown in FIG. 7 - a corrugated 0-ring.
  • dl is the inner diameter of the 0-ring
  • d2 is the outer diameter of the 0-ring.
  • the minimum height of the 0-ring is s, and the maximum height is h.
  • the dielectric resonator provided by the embodiment of the invention can ensure that the dielectric resonator column is in close contact with the metal cavity, and the filter performance of the dielectric resonator is stable and reliable, the production process is simple, and the volume of the dielectric resonator is reduced.
  • duplexer and the filter can be combined or replaced according to the technical solution and the concept of the embodiments of the present invention, and the duplex and filter integrated modules of other combined structures are designed, and all Such changes or substitutions are intended to fall within the scope of the appended claims.
  • the elastic rebound of the conductive elastic structure ensures that the dielectric resonator column is in good contact with the metal cavity, and even if the metal cavity is under the influence of external force or temperature condition, there is compression or expansion, which can ensure good contact. And because the depth of the groove at the bottom of the metal cavity causes the sealing plate to seal the metal cavity, the lower surface of the dielectric resonator column is lower than the bottom surface of the metal cavity, thereby improving the performance of the dielectric resonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种介质谐振器及其装配方法和该介质谐振器制成的介质滤波器,所述介质谐振器,包括密封盖板、介质谐振柱、金属腔体和导电弹性结构体,所述介质谐振柱位于所述金属腔体内部,其中:所述密封盖板与介质谐振柱上表面连接,所述密封盖板位于金属腔体上端面,设置为密封所述金属腔体;所述金属腔体底部有凹槽,所述导电弹性结构体位于所述金属腔体底部凹槽内,设置为支撑所述介质谐振柱,所述凹槽的深度使所述密封盖板密封所述金属腔体后介质谐振柱的下表面低于金属腔体内底面;所述介质谐振柱下端面与所述导电弹性结构体接触。

Description

一种介质谐振器及其装配方法及介质滤波器 技术领域
本发明涉及移动通信领域, 具体涉及一种介质谐振器及其装配方法和一 种介质滤波器。
背景技术
电磁波在高介电常数物质中传播时, 其波长可以缩短, 利用这一理论, 可釆用介质材料代替传统金属材料, 在相同指标下, 滤波器的体积可以缩小。 对于介质滤波器的研究一直是通信行业的热点。 滤波器作为无线通信产品重 要部件, 介质滤波器对通信产品的小型化具有特别重要的意义。
通常 TM (横磁 )模介质滤波器主要由介质谐振柱 103、 密封盖板 102、 调谐螺钉 101、 金属腔体 104组成, 参见图 1 ;
根据 TM模介质谐振腔体的工作原理, 介质谐振器在正常工作时, 介质 谐振柱 103上下端面及金属腔体 104结合部位存在高电场分布。 如果介质谐 振柱的上下端面与金属腔体 104接触不充分, 会造成阻抗不连续, 场能量无 法传输出去, 介质的高介电常数、 高品质因数发挥不出来, 甚至会烧毁介质。 因此, TM模介质滤波器中介质谐振柱上下表面与金属腔体表面接触是否良 好尤为关键。 如何解决 TM模介质谐振柱固定及接触成为介质滤波器应用的 重点研究方向;
相关技术的介质谐振器参见图 1 , 其中介质谐振柱 103 的上表面通过密 封盖板 102压接, 用于介质与密封盖板 102紧密接触, 介质谐振柱 103下表 面焊接或使用其他方式紧密连接在金属腔体 104上, 用于与金属腔体底面紧 密接触。 密封盖板 102与金属腔体 104通过螺钉进行密封, 形成一个密闭腔 体。 由于介质谐振柱的温度系数与金属材料不同, 一旦这种谐振腔受温度影 响出现膨胀或收缩时, 整个介质谐振柱上表面就会存在间隙或挤压, 严重影 响滤波器的性能和使用寿命。
相关技术的解决方案是在盖板及介质谐振柱之间增加导电弹性体, 该导 电弹性体用于盖板和介质谐振柱接触。 该介质滤波器依靠导电弹性体受压回 弹保证介质谐振柱与盖板间的良好接触。 但由于该介质谐振器仅靠簧片的几 个触点连接, 并且随温度的变化腔体膨胀或收缩时, 触点接触面积及深度也 不尽相同, 从而导致滤波器性能指标的变化。
发明内容
本发明实施例提供一种介质谐振器及其装配方法和该介质谐振器制成的 介质滤波器, 保证介质谐振器中介质谐振柱与金属腔体良好接触, 且不受温 度影响, 提高介质谐振器的性能。
本发明实施例提供的一种介质谐振器, 包括密封盖板、 介质谐振柱、 金 属腔体和导电弹性结构体, 所述介质谐振柱位于所述金属腔体内部, 其中: 所述密封盖板与介质谐振柱上表面连接, 所述密封盖板位于金属腔体上 端面, 所述密封盖板设置为密封所述金属腔体;
所述金属腔体底部有凹槽, 所述导电弹性结构体位于所述金属腔体底部 凹槽内, 所述导电弹性结构体设置为支撑所述介质谐振柱, 所述凹槽的深度 使所述密封盖板密封所述金属腔体后介质谐振柱的下表面低于金属腔体内底 面;
所述介质谐振柱下端面与所述导电弹性结构体接触。
较佳地, 所述密封盖板与介质谐振柱上表面连接, 包括: 所述密封盖板 与介质谐振柱上表面焊接连接。
较佳地, 所述金属腔体内底部凹槽内有凸起; 所述导电弹性结构体有中 间孔, 所述中间孔与所述金属腔体内底部凸起配合连接, 使所述导电弹性结 构体与所述金属腔体的相对位置固定。 较佳地, 所述导电弹性结构体包括弹性垫圈。
较佳地,所述介质谐振器还包括设置为调整介质谐振器频率的调谐螺钉, 所述调谐螺钉从金属腔体的顶部穿过密封盖板伸入介质谐振柱内部, 或者, 所述调谐螺钉从金属腔体的底部穿过金属腔体和导电弹性结构体伸入介质谐 振柱内部。 本发明实施例还提供了一种介质滤波器, 该介质滤波器由两个以上上述 介质谐振器连接而成。
本发明实施例还提供了一种介质谐振器的装配方法, 包括:
将密封盖板与介质谐振柱上表面连接;
将导电弹性结构体置于金属腔体底部凹槽内, 所述金属腔体底部凹槽的 深度使所述密封盖板与所述金属腔体上端面连接后所述介质谐振柱的下表面 低于金属腔体内底面;
将密封盖板与金属腔体上端面连接, 同时介质谐振柱下表面与所述导电 弹性结构接触。
较佳地, 所述金属腔体内底部凹槽内有凸起, 所述导电弹性结构体有中 间孔, 将导电弹性结构体置于金属腔体底部凹槽内, 包括: 将所述导电弹性 结构体与所述金属腔体内底部凸起配合连接。 较佳地, 所述方法还包括: 将调谐螺钉从金属腔体的顶部穿过密封盖板 伸入介质谐振柱内部。
较佳地, 所述方法还包括: 将调谐螺钉从金属腔体的底部穿过金属腔体 和导电弹性结构体伸入介质谐振柱内部。
本发明实施例依据导电弹性结构体受力回弹保证介质谐振柱与所述金属 腔体良好接触, 即使所述金属腔体在外力或者温度条件影响下, 存在压缩或 膨胀, 均能保证良好接触, 且由于金属腔体底部凹槽的深度使密封盖板密封 金属腔体后介质谐振柱的下表面低于金属腔体内底面, 从而提高介质谐振器 性能。
附图概述
图 1是相关技术 TM模介质谐振器的示意图 图 2是本发明实施例 1介质谐振器结构示意图;
图 3是本发明实施例 2装配方法流程图;
图 4是本发明应用示例 1介质谐振器结构示意图;
图 5是本发明应用示例 2介质谐振器结构示意图;
图 6是本发明应用示例 3弹性垫圈结构示意图;
图 7是本发明应用示例 3波紋状 0型圈结构示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例 1
本实施例介绍介质谐振器, 如图 2所示, 包括密封盖板 201、 介质谐振 柱 202、金属腔体 203和导电弹性结构体 204, 所述介质谐振柱 202位于所述 金属腔体 203内部, 其中:
所述密封盖板 201与介质谐振柱 202上表面连接, 所述密封盖板 201位 于金属腔体 203上端面, 设置为密封所述金属腔体 203;
所述金属腔体 203底部有凹槽, 所述导电弹性结构体 204位于所述金属 腔体 203底部凹槽内, 设置为支撑所述介质谐振柱 202, 所述凹槽的深度使 所述密封盖板 201密封所述金属腔体 203后介质谐振柱 202的下表面低于金 属腔体 203内底面;
所述介质谐振柱 202下端面与所述导电弹性结构体 204接触。
上述密封盖板 201与介质谐振柱 202上表面可釆用焊接或使用其他方式 紧密连接在一起。
在密封盖板 201与金属腔体 203连接后, 位于介质谐振柱 202之下的导 电弹性结构体 204由于受到介质谐振柱 202的重力压迫,处于受力回弹状态, 可以保证其与介质谐振柱 202和金属腔体 203的良好接触。 另外, 介质谐振 柱 202下表面低于金属腔体 203内底面, 这样可以改善电磁波的传输路径, 从而提升谐振腔的电性能。 即使金属腔体 203在外力或者温度条件影响下, 存在压缩或膨胀, 均能保证金属腔体 203与介质谐振柱 202良好接触, 从而 提高介质谐振器性能, 同时缩小整个滤波器的体积。
优选地,在密封盖板 201与金属腔体 203连接后,该导电弹性结构体 204 具有拉伸和压缩余量, 以更好的适应金属腔体 203随温度变化后的腔体膨胀 或收缩。
导电弹性结构体 204可以直接放置于该凹槽内, 也可以釆用其他方式固 定在底部凹槽内, 以保持导电弹性结构体 204与介质谐振柱 202、 金属腔体 203紧密接触。
在一个优选实施例中, 金属腔体 203 内底部凹槽内有凸起; 导电弹性结 构体 204有中间孔, 所述中间孔与所述金属腔体内底部凸起配合连接, 使所 述导电弹性结构体与所述金属腔体的相对位置固定。 在有凸起时, 金属腔体 203内底部 IHJ槽为环形 IHJ槽。
在优选实施例中, 该介质谐振器还包括设置为调整介质谐振器频率的调 谐螺钉, 该调谐螺钉可以从金属腔体的顶部穿过密封盖板伸入介质谐振柱内 部, 或者, 也可以从金属腔体的底部穿过金属腔体和导电弹性结构体伸入介 质谐振柱内部。 具体参见应用示例。
上述两个以上 (包括两个)介质谐振器连接在一起可以形成多阶介质滤 波器。
实施例 2
本实施例介绍上述介质谐振器的装配方法, 如图 3所示, 包括以下步骤: 步骤 301 , 将密封盖板与介质谐振柱上表面连接;
步骤 302 , 将导电弹性结构体置于金属腔体底部凹槽内, 所述金属腔体 底部凹槽的深度使所述密封盖板与所述金属腔体上端面连接后所述介质谐振 柱的下表面低于金属腔体内底面;
步骤 303 , 将密封盖板与金属腔体上端面连接, 同时介质谐振柱下表面 与所述导电弹性结构接触。 在一个优选实施例中, 金属腔体内底部凹槽内有凸起, 导电弹性结构体 有中间孔, 将导电弹性结构体与金属腔体内底部凸起配合连接。
在一个优选实施例中, 上述方法还包括: 将调谐螺钉从金属腔体的顶部 穿过密封盖板伸入介质谐振柱内部。 或者将调谐螺钉从金属腔体的底部穿过 金属腔体和导电弹性结构体伸入介质谐振柱内部。
下面以弹性垫圈作为导电弹性结构体为例对上述介质谐振器进行举例说 明。
应用示例 1
本示例介绍一种介质谐振器, 如图 4所示, 该介质谐振器包括介质谐振 柱 403、 密封盖板 402、 弹性垫圈 405、 金属腔体 404以及调谐螺钉 401 , 其 中:
介质谐振柱 403位于金属腔体 404内部, 介质谐振柱 403的上表面与密 封盖板 402焊接或使用其他方式紧密连接;
密封盖板 402位于金属腔体 404上表面, 即顶端, 设置为密封金属腔体
404;
弹性垫圈 405位于金属腔体 404与介质谐振柱 403之间, 与二者接触连 接, 其弹性特性及导电特性可以确保金属腔体 404与介质谐振柱 403 良好接 触, 从而保证介质谐振腔体的性能。
介质谐振器的装配过程为: 首先将介质谐振柱 403焊接或使用其他方式 紧密连接在密封盖板 402上, 再将弹性垫圈 405放置在金属腔体 404底面的 凹槽(例如圓形凹槽) 内, 再将装配好的带介质谐振柱的密封盖板 402放置 在金属腔体 404的上面, 然后固定密封, 再装配调谐螺钉 401 , 调谐螺钉 401 位于介质谐振器 403中心位置, 该调谐螺钉 401从金属腔体的顶部穿过密封 盖板 402伸入介质谐振柱 403内部; 整个装配完成后, 弹性垫圈 405受到介 质谐振柱 403的压力, 始终处于弹性形变状态。
优选地凹槽的深度使介质谐振柱 403下表面低于金属腔体底面, 根据电 磁场理论, 这样更有利于电场在介质内的传播。 应用示例 2
本示例介绍一种介质谐振器, 如图 5所示, 该介质谐振器包括介质谐振 柱 503、 密封盖板 502、 弹性垫圈 505、 金属腔体 504以及调谐螺钉 501。 本 介质谐振柱 503上表面与密封盖板 502焊接或使用其他方式紧密连接在一起; 介质谐振柱 503下表面通过弹性垫圈 505与金属腔体 504紧密接触。 与应用 示例 1不同之处在于, 在本示例中调谐螺钉 501从金属腔体 504底部穿过金 属腔体 504和弹性垫圈 505伸入介质谐振柱 503内部, 调谐螺钉 501设置为 调整介质谐振器的频率。
如果金属腔体 504底部设置有凸起, 此时该凸起具有螺紋孔, 该螺紋孔 实现调谐螺钉 501与金属腔体 504的连接,该凸起的外直径小于弹性垫圈 505 中心孔的直径, 以便固定该弹性垫圈 505的位置。
应用示例 3
本示例介绍上述实施例中导电弹性结构体 204, 其由导电性良好的金属 制成, 例如镀银的弹片, 也可以釆用铜片。 该导电弹性结构体 204可以为如 图 6所示的弹性垫圈, 在本例中该弹性垫圈包括边沿 a和弹性齿 b:
所述边沿 a外侧与金属腔体接触;
所述弹性齿 b的上表面与介质谐振柱下表面接触, 弹性齿的下表面与金 属腔体接触, 在装配完成后弹性齿 b呈现受力变形状态。
当金属腔体内底部有凸起时, 弹性垫圈还可包括中间孔 c , 该中间孔 c 与金属腔体内底部凸起配合连接, 使弹性垫圈与金属腔体的相对位置固定, 防止弹性垫圈滑出凹槽。
弹性齿的一种实现方式即如图 6所示的双边齿, 即边沿的上下均有弹性 齿, 另一种可行的实现方式是单边齿, 即仅在边沿的上方具有弹性齿。
此外, 该导电弹性结构体 204还可以釆用如图 7所示的一体结构——波 紋状 0型圈实现。 图 7中 dl为 0型圈内径, d2为 0型圈外径, 该 0型圈的 最小高度为 s, 最大高度为 h。 本发明实施例提供的介质谐振器, 可以保证介质谐振柱与金属腔体紧密 接触, 且介质谐振器的滤波性能稳定可靠, 生产工艺简单, 同时减少介质谐 振器体积。 对于本领域相关技术人员来说, 可以根据本发明实施例的技术方案及其 构思对双工器、 滤波器以组合或更换, 设计出其它组合结构的双工、 滤波器 一体化模块, 而所有这些改变或替换都应属于本发明所附的权利要求保护范 围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明实施例依据导电弹性结构体受力回弹保证介质谐振柱与所述金属 腔体良好接触, 即使所述金属腔体在外力或者温度条件影响下, 存在压缩或 膨胀, 均能保证良好接触, 且由于金属腔体底部凹槽的深度使密封盖板密封 金属腔体后介质谐振柱的下表面低于金属腔体内底面, 从而提高介质谐振器 性能。

Claims

权 利 要 求 书
1、 一种介质谐振器, 包括密封盖板、 介质谐振柱、 金属腔体和导电弹性 结构体, 所述介质谐振柱位于所述金属腔体内部, 其中: 所述密封盖板与介质谐振柱上表面连接, 所述密封盖板位于金属腔体上 端面, 所述密封盖板设置为密封所述金属腔体;
所述金属腔体底部有凹槽, 所述导电弹性结构体位于所述金属腔体底部 凹槽内, 所述导电弹性结构体设置为支撑所述介质谐振柱, 所述凹槽的深度 使所述密封盖板密封所述金属腔体后介质谐振柱的下表面低于金属腔体内底 面;
所述介质谐振柱下端面与所述导电弹性结构体接触。
2、 如权利要求 1所述的介质谐振器, 其中:
所述密封盖板与介质谐振柱上表面连接, 包括: 所述密封盖板与介质谐 振柱上表面焊接连接。
3、 如权利要求 1所述的介质谐振器, 其中:
所述金属腔体内底部凹槽内有凸起; 所述导电弹性结构体有中间孔, 所 述中间孔与所述金属腔体内底部凸起配合连接, 使所述导电弹性结构体与所 述金属腔体的相对位置固定。
4、 如权利要求 3所述的介质谐振器, 其中:
所述导电弹性结构体包括弹性垫圈。
5、 如权利要求 1-4中任一权利要求所述的介质谐振器, 其中:
所述介质谐振器还包括设置为调整介质谐振器频率的调谐螺钉; 所述调谐螺钉从金属腔体的顶部穿过密封盖板伸入介质谐振柱内部, 或 者, 所述调谐螺钉从金属腔体的底部穿过金属腔体和导电弹性结构体伸入介 质谐振柱内部。
6、 一种介质滤波器, 所述介质滤波器由两个以上介质谐振器连接而成, 所述介质谐振器为权利要求 1-5中任一权利要求所述的介质谐振器。
7、 一种介质谐振器的装配方法, 所述方法包括: 将密封盖板与介质谐振柱上表面连接;
将导电弹性结构体置于金属腔体底部凹槽内, 所述金属腔体底部凹槽的 深度使所述密封盖板与所述金属腔体上端面连接后所述介质谐振柱的下表面 低于金属腔体内底面;
将密封盖板与金属腔体上端面连接, 同时介质谐振柱下表面与所述导电 弹性结构接触。
8、 如权利要求 7所述的方法, 其中:
所述金属腔体内底部凹槽内有凸起, 所述导电弹性结构体有中间孔, 将 导电弹性结构体置于金属腔体底部 IHJ槽内, 包括: 将所述导电弹性结构体与 所述金属腔体内底部凸起配合连接。
9、 如权利要求 7或 8所述的方法, 所述方法还包括:
将调谐螺钉从金属腔体的顶部穿过密封盖板伸入介质谐振柱内部。
10、 如权利要求 7或 8所述的方法, 所述方法还包括:
将调谐螺钉从金属腔体的底部穿过金属腔体和导电弹性结构体伸入介质 谐振柱内部。
PCT/CN2013/083674 2012-12-11 2013-09-17 一种介质谐振器及其装配方法及介质滤波器 WO2014090003A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/651,333 US9722291B2 (en) 2012-12-11 2013-09-17 Dielectric resonator, assembly method thereof, and dielectric filter
JP2015546815A JP6003005B2 (ja) 2012-12-11 2013-09-17 誘電体共振器及びその組立方法並びに誘電体フィルタ
EP13861670.1A EP2919316A4 (en) 2012-12-11 2013-09-17 DIELECTRIC RESONATOR, ASSEMBLY METHOD AND DIELECTRIC FILTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210531727.3 2012-12-11
CN201210531727.3A CN103872419A (zh) 2012-12-11 2012-12-11 一种介质谐振器及其装配方法及介质滤波器

Publications (1)

Publication Number Publication Date
WO2014090003A1 true WO2014090003A1 (zh) 2014-06-19

Family

ID=50910708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083674 WO2014090003A1 (zh) 2012-12-11 2013-09-17 一种介质谐振器及其装配方法及介质滤波器

Country Status (5)

Country Link
US (1) US9722291B2 (zh)
EP (1) EP2919316A4 (zh)
JP (1) JP6003005B2 (zh)
CN (1) CN103872419A (zh)
WO (1) WO2014090003A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599388B2 (en) 2012-12-13 2017-03-21 Whirlpool Corporation Clear ice maker with varied thermal conductivity
US9599385B2 (en) 2012-12-13 2017-03-21 Whirlpool Corporation Weirless ice tray
US9410723B2 (en) 2012-12-13 2016-08-09 Whirlpool Corporation Ice maker with rocking cold plate
US9303903B2 (en) 2012-12-13 2016-04-05 Whirlpool Corporation Cooling system for ice maker
US9557087B2 (en) 2012-12-13 2017-01-31 Whirlpool Corporation Clear ice making apparatus having an oscillation frequency and angle
US9476629B2 (en) 2012-12-13 2016-10-25 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9500398B2 (en) 2012-12-13 2016-11-22 Whirlpool Corporation Twist harvest ice geometry
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9310115B2 (en) 2012-12-13 2016-04-12 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US9518773B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Clear ice maker
CN204029964U (zh) * 2014-08-20 2014-12-17 中兴通讯股份有限公司 一种谐振柱及谐振器
CN104282977A (zh) * 2014-10-17 2015-01-14 张家港保税区灿勤科技有限公司 高q值ku波段介质谐振器
WO2016172880A1 (zh) * 2015-04-29 2016-11-03 华为技术有限公司 一种介质滤波器
CN105552496B (zh) * 2016-02-16 2018-01-12 苏州子波电子科技有限公司 Te模介质谐振器装置
KR102642238B1 (ko) 2016-10-25 2024-03-04 주식회사 케이엠더블유 캐비티 구조를 가진 무선 주파수 필터
CN107732401B (zh) * 2017-09-29 2019-07-19 电子科技大学 一种微波同轴谐振腔
CN109702674A (zh) * 2019-02-26 2019-05-03 武汉心浩智能科技有限公司 5g通讯产品装配线工装夹具及其方法
US11538696B2 (en) * 2019-10-25 2022-12-27 Xia Tai Xin Semiconductor (Qing Dao) Ltd. Semiconductor processing apparatus and sealing device
CN111403874A (zh) * 2020-05-15 2020-07-10 摩比天线技术(深圳)有限公司 介质滤波器及通信设备
CN114665246B (zh) * 2022-04-15 2024-04-05 武汉凡谷电子技术股份有限公司 一种介质谐振器、滤波器、通信设备及安装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581569A (zh) * 2003-08-04 2005-02-16 松下电器产业株式会社 介质谐振器、介质过滤器、以及支撑介质谐振元件的方法
US20080272861A1 (en) * 2007-05-02 2008-11-06 M/A-Com, Inc. Cross coupling tuning apparatus for dielectric resonator circuit
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102148417A (zh) * 2010-08-18 2011-08-10 深圳市大富科技股份有限公司 介质滤波器、介质谐振器及盖板单元和通信设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957008U (ja) * 1982-10-07 1984-04-13 株式会社村田製作所 誘電体共振器
JPH071841Y2 (ja) * 1988-02-23 1995-01-18 株式会社村田製作所 誘電体フィルタ
US6535086B1 (en) 2000-10-23 2003-03-18 Allen Telecom Inc. Dielectric tube loaded metal cavity resonators and filters
JP2005033327A (ja) * 2003-07-08 2005-02-03 Hitachi Kokusai Electric Inc 誘電体共振器及び誘電体共振器を用いた空中線共用装置
WO2010013982A2 (en) 2008-08-01 2010-02-04 Kmw Inc. Dielectric resonator in rf filter and assembly method therefor
CN201673986U (zh) * 2010-03-30 2010-12-15 深圳市威富通讯技术有限公司 Tm01模介质滤波器
EP2538487A1 (en) * 2011-06-24 2012-12-26 CommScope Italy S.r.l. Temperature-independent dielectric resonator
CN202217778U (zh) 2011-07-08 2012-05-09 武汉凡谷电子技术股份有限公司 一种两端接地tm模介质谐振器
CN102368574A (zh) * 2011-10-31 2012-03-07 华为技术有限公司 Tm模介质滤波器
CN102509826A (zh) * 2011-11-17 2012-06-20 摩比天线技术(深圳)有限公司 一种tm模介质滤波器
CN102637940A (zh) * 2012-04-27 2012-08-15 深圳市国人射频通信有限公司 介质滤波器及其介质谐振器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581569A (zh) * 2003-08-04 2005-02-16 松下电器产业株式会社 介质谐振器、介质过滤器、以及支撑介质谐振元件的方法
US20080272861A1 (en) * 2007-05-02 2008-11-06 M/A-Com, Inc. Cross coupling tuning apparatus for dielectric resonator circuit
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102148417A (zh) * 2010-08-18 2011-08-10 深圳市大富科技股份有限公司 介质滤波器、介质谐振器及盖板单元和通信设备

Also Published As

Publication number Publication date
EP2919316A1 (en) 2015-09-16
JP6003005B2 (ja) 2016-10-05
EP2919316A4 (en) 2015-12-02
CN103872419A (zh) 2014-06-18
US20150318594A1 (en) 2015-11-05
US9722291B2 (en) 2017-08-01
JP2016501491A (ja) 2016-01-18

Similar Documents

Publication Publication Date Title
WO2014090003A1 (zh) 一种介质谐振器及其装配方法及介质滤波器
EP2605330B1 (en) Transverse magnetic mode dielectric resonator, transverse magnetic mode dielectric filter and base station
US9979070B2 (en) Resonator, filter, duplexer, multiplexer, and communications device
US7106152B2 (en) Dielectric resonator, dielectric filter, and method of supporting dielectric resonance element
WO2012022062A1 (zh) 介质滤波器、介质谐振器及盖板单元和通信设备
KR101307107B1 (ko) 유전체 공진기 필터
CN102509826A (zh) 一种tm模介质滤波器
US10840577B2 (en) Resonator and communications apparatus
CN102324617B (zh) 一种两端接地tm模介质谐振器
WO2014169434A1 (zh) 一种介质谐振器、介质滤波器和制造方法
WO2015043300A1 (zh) 一种介质滤波器及其装配方法
WO2011113279A1 (zh) 介质谐振器、弹性导电屏蔽件、介质滤波器和通信设备
WO2014090004A1 (zh) 一种介质谐振器及其装配方法、介质滤波器
CN104009276A (zh) 介质谐振器及其装配方法、介质滤波器
CN106910967B (zh) 射频器件及其双端短路介质滤波器
KR101605863B1 (ko) 유전체 공진기 필터
JP2021527981A (ja) キャビティフィルタおよびこれに含まれるコネクティング構造体
KR20160008486A (ko) 동축 공진기를 포함하는 캐비티 필터
JP2002026602A (ja) 誘電体共振器装置、フィルタ、デュプレクサおよび通信装置
JP6287031B2 (ja) 誘電体共振部品
CN208849050U (zh) 一种新型介质滤波器
JP2018195982A (ja) 導波管フィルタ
JP5569686B2 (ja) 誘電体共振部品及びそれを用いた実装構造体
CN105280994A (zh) 一种tm模介质滤波器和多工器
CN109994807B (zh) 一种介质双短滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651333

Country of ref document: US

Ref document number: 2013861670

Country of ref document: EP