WO2014086244A1 - 电子膨胀阀及其芯部结构体的装配方法 - Google Patents

电子膨胀阀及其芯部结构体的装配方法 Download PDF

Info

Publication number
WO2014086244A1
WO2014086244A1 PCT/CN2013/088063 CN2013088063W WO2014086244A1 WO 2014086244 A1 WO2014086244 A1 WO 2014086244A1 CN 2013088063 W CN2013088063 W CN 2013088063W WO 2014086244 A1 WO2014086244 A1 WO 2014086244A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic expansion
assembly
expansion valve
sleeve
intermediate member
Prior art date
Application number
PCT/CN2013/088063
Other languages
English (en)
French (fr)
Inventor
吕晓
刘敬喜
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012206723975U external-priority patent/CN202971946U/zh
Priority claimed from CN201210523500.4A external-priority patent/CN103851209B/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2014086244A1 publication Critical patent/WO2014086244A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an electronic expansion valve and a method of assembling the core structure thereof. Background technique
  • Electronic expansion valves typically include a core structure comprised of a rotor assembly, a support mechanism (assembly), and a valve needle assembly.
  • the rotor assembly is threadedly coupled to the valve needle assembly via a support mechanism, and the support mechanism and the valve needle assembly each have an interlocking anti-rotation structure (e.g., a polyhedral profile).
  • the rotor assembly can force the valve needle assembly to move up and down during rotation, so that the electronic expansion valve can adjust the flow rate of the refrigerant fluid.
  • the electronic expansion valve is usually also provided with a rotary stop mechanism for limiting the range of rotation of the rotor assembly.
  • an electronic expansion valve comprising a core structure, the core structure comprising: a valve needle assembly, the valve needle assembly including a sleeve and a valve a rotor assembly, the rotor assembly including a mandrel, the mandrel being threadedly coupled to the sleeve; a support assembly; and an intermediate member interposed between the sleeve and the support assembly, Wherein the intermediate member is provided with a first anti-rotation structure on one side, and one of the sleeve and the support assembly is provided with a second anti-rotation structure, the first anti-rotation structure and the second The anti-rotation structure cooperates such that the valve needle assembly can move axially relative to the support assembly as the rotor assembly rotates but cannot be rotated move.
  • 1 is a longitudinal sectional view showing an electronic expansion valve of the related art
  • FIG. 2 is a perspective view showing a support mechanism of a related art electronic expansion valve
  • FIG. 3 is a longitudinal sectional view showing a main part of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 5 is a perspective longitudinal sectional view showing a rotor assembly or the like of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention
  • FIG. 6 is a perspective longitudinal sectional view showing a support assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention
  • Figure 7 is a longitudinal sectional view showing a support assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • FIG. 8 is a perspective view showing an intermediate member of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • FIG. 9 is a perspective view showing an alternative intermediate member of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Figure 10 is a perspective longitudinal sectional view showing a valve needle assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention
  • FIG. 11 is a perspective longitudinal sectional view showing a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • FIG. 12 is a longitudinal cross-sectional view showing a sleeve of a valve needle assembly according to a modification of an exemplary embodiment of the present invention. detailed description
  • FIG. 1 is a longitudinal sectional view showing an electronic expansion valve of the related art
  • FIG. 2 is a perspective view showing a support mechanism of the related art electronic expansion valve.
  • the electronic expansion valve 10 generally includes: a valve mechanism 100 for regulating the flow rate of the fluid flowing through the electronic expansion valve 10; a movable valve member (ie, a valve for driving the valve mechanism 100) Activating mechanism 300 for axial movement; and a support mechanism (assembly) 500 for supporting respective components of the valve mechanism 100 and corresponding components of the actuation mechanism 300 and guiding their axial and/or rotational movement.
  • the electronic expansion valve 10 may also include an electromagnetic retention mechanism 700 for holding and releasing the rotor assembly of the actuation mechanism 300.
  • the valve mechanism 100 generally includes a valve body 120.
  • An inlet 121 connected to the inlet pipe 180 and an outlet 122 connected to the outlet pipe 190 are disposed in the valve body 120.
  • the fluid flows into the electronic expansion valve 10 via the inlet pipe 180, and then flows out of the electronic expansion valve 10 via the outlet pipe 190.
  • a fixed valve member (i.e., valve seat) 160 is disposed at the outlet 122 of the valve body 120.
  • Valve mechanism 100 also generally includes a valve needle assembly 140.
  • the valve needle assembly 140 includes a sleeve 142 and a valve needle 144.
  • the sleeve 142 generally includes: a first/upper section (internal threaded portion/anti-rotation portion) 1421; and a second/lower section (a valve needle joint) 1422.
  • a hole e.g., a through hole
  • the outer circumference of the first section 1421 of the sleeve 142 has an anti-rotation structure (e.g., a non-circular or multi-faceted outer circumference).
  • the valve needle 144 generally includes a first end (upper end) 1441 and a second end (lower end) 1442.
  • the first end 1441 is for engagement with the second section (the valve needle joint) 1422 of the sleeve 142.
  • the second end 1442 is for use with the valve seat 160 to close the valve seat 160.
  • the actuation mechanism 300 generally includes a motor (eg, a stepper motor) 310.
  • the motor 310 includes a stator 312 and a rotor 314. Additionally, the actuation mechanism 300 generally also includes a mandrel 320.
  • the rotor 314 is rotatable in the stator 312.
  • the rotor 314 can be injection molded with the mandrel 320 or any of its It is integrated in a suitable manner such that the rotor 314 rotates integrally with the mandrel 320 when the motor 310 is energized.
  • the rotor 314 and the mandrel 320 constitute a so-called rotor assembly 340.
  • the mandrel 320 generally includes a first end (upper end) 321 and a second end (lower end) 322.
  • the first end 321 is for engaging with the moving iron 710 of the electromagnetic holding mechanism 700.
  • the second end 322 is formed with an external thread.
  • the second end (external thread end) 322 is for threaded connection with the first section (internal threaded portion) 1421 of the sleeve 142.
  • the mandrel 320 may be provided with a journal 323 at a lower section of the mandrel 320, particularly adjacent the second end 322 of the mandrel 320.
  • the support mechanism 500 generally includes: a first/upper section (sliding support) 501; and a second/lower section (anti-rotation section) 502.
  • a through hole is formed in the first section 501, and the through hole has a circular shape.
  • the first section 501 slidably receives the mandrel 320 (eg, the journal 323 of the mandrel 320) by its circular through-holes, thereby guiding the rotational and/or axial movement of the mandrel 320, To make the rotational and/or axial movement of the mandrel 320 smoother.
  • a through hole is also formed in the second section 502, having an anti-rotation structure (eg, a non-circular or multi-faceted inner circumference) at the through hole, and the through hole is for receiving the first section 1421 of the sleeve 142,
  • the first section 1421 of the sleeve 142 is capable of axial movement in the second section 502 of the support mechanism 500 but is not capable of rotational movement about its axis.
  • the valve needle 144 of the valve needle assembly 140 is forced to perform an axial translational movement by rotation of the spindle 320 of the rotor assembly 340.
  • a stop mechanism 350 may be provided.
  • the stop mechanism 350 can include: a spiral guide 351; and a slip ring 352.
  • the stop mechanism 350 can also include a guide 353.
  • the spiral guide 351 can be integrally formed on the outer circumference of the mandrel 320 by injection molding together with the mandrel 320.
  • the helical track 351 can be disposed about the mandrel 320 between the first end 321 and the second end 322 of the mandrel at an intermediate section of the mandrel 320.
  • the spiral guide 351 may include: a spiral guide portion for supporting the slip ring 352; a first end (upper end) serving as an upper stop portion; and a second end (lower end) serving as a lower stop portion.
  • the slip ring 352 can include: a spiral body portion; and a protrusion.
  • the spiral body portion may have a spiral configuration that matches the spiral configuration of the spiral rail portion such that the spiral body portion can be supported by the spiral rail portion and enables relative sliding between the spiral body portion 5321 and the spiral rail portion.
  • the guide member 353 can be implemented as two guide bars 3531.
  • Guide rod 3531 can be supported from the support machine
  • the upper end surface of the first section 501 of the structure 500 extends, for example, vertically upward.
  • Two guide bars 3531 are disposed to define a gap therebetween.
  • the free end of the extension of the slip ring 352 is preferably received in the gap in a sliding engagement.
  • the valve body assembly 140 of the valve mechanism 100, the rotor assembly 340 of the actuation mechanism 300, and the support mechanism (assembly) 500 constitute a so-called core structure 50.
  • the moving iron 710 of the electromagnetic holding mechanism 700 attached to the rotor assembly 340 also constitutes a part of the core structure 50.
  • the slip ring 352 is in the upper stop position (i.e., the slip ring 352 abuts against the upper stop portion of the spiral guide 351).
  • the mandrel 320 is in the first rotational stop position and the valve needle 144 is in the fully open position (here, it will be understood by those skilled in the art that the electronic expansion valve 10 can also be designed such that when the slip ring 352 is in the lower stop position The valve needle 144 is in the fully open position).
  • the electromagnetic holding mechanism 700 is optionally provided, as shown in FIG. 1, the electromagnetic holding mechanism 700 magnetically attracts the moving iron 710 and the fixed iron 720 when the electric power is applied, thereby the spindle 320
  • the entire rotor assembly 340 is held in a fixed axial position.
  • the motor 310 of the actuating mechanism 300 is energized to rotate the rotor 314 in the first direction.
  • Rotation of the rotor 314 causes the mandrel 320 to also rotate in the first direction to move away from the first rotational stop position.
  • the first section (internal threaded portion) 1421 is threadedly coupled to the sleeve 142 of the second end (external threaded end) 322 of the mandrel 320.
  • the valve needle 144 i.e., the valve needle assembly 140
  • the valve opening degree of the electronic expansion valve 10 can be appropriately reduced, or the electronic expansion valve 10 can be completely closed by bringing the second end 1442 of the needle 144 into contact with the valve seat 180.
  • the helical guide 351 formed integrally with or fixedly coupled to the mandrel 320 also rotates in the first direction.
  • Rotation of the helical track 351 forces the slip ring 352 to translate downwardly in the axial direction.
  • the slip ring 352 can be translated downward in the axial direction until the abutting end of the spiral body portion of the slip ring 352 abuts against the lower stop portion of the spiral guide 351 in the lower stop position.
  • the spindle 320 is in the second rotation stop position.
  • an electronic expansion valve according to an exemplary embodiment of the present invention will be described below with reference to Figs. It should be noted that the exemplary embodiment of the present invention is primarily directed to improvements in the support assembly (mechanical) and/or valve needle assembly of the core structure in an electronic expansion valve, and thus the construction of other components in the electronic expansion valve will not Let me repeat.
  • Fig. 3 is a longitudinal sectional view showing a main part of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 4 is a longitudinal sectional view showing a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 5 is a perspective longitudinal sectional view showing a rotor assembly or the like of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 6 is a perspective longitudinal sectional view showing a support assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 7 is a longitudinal sectional view showing a support assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • FIG. 8 is a perspective view showing an intermediate member of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 9 is a perspective view showing an alternative intermediate member of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 10 is a perspective longitudinal sectional view showing a valve needle assembly of a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 11 is a perspective longitudinal sectional view showing a core structure of an electronic expansion valve according to an exemplary embodiment of the present invention.
  • Fig. 12 is a longitudinal sectional view showing a sleeve of a valve needle assembly according to a modification of an exemplary embodiment of the present invention.
  • the core structure 50A of the electronic expansion valve 10A includes a valve needle assembly 140A, a rotor assembly 340A, and a support assembly 500A.
  • the valve needle assembly 140A includes a sleeve 142A and a valve needle 144A.
  • the sleeve 142A includes: a first section (internal thread portion/anti-rotation portion) 1421A; and a second section (valve needle joint portion) 1422A
  • a hole is formed in the first section 1421A of the sleeve 142A (for example, The hole has a circular shape, and an internal thread is formed in the hole.
  • the outer circumference of the first section 1421A of the sleeve 142A has an anti-rotation structure.
  • the anti-rotation structure may be the non-rotation of the first section 1421A. Circular or multifaceted extracorporeal circumference.
  • Valve needle 144A includes a first end (upper end) 1441A and second end (lower end) 1442A.
  • the first end 1441A is for engagement with the second section (the valve needle joint) 1422A of the sleeve 142A.
  • the second end 1442A is for engaging the valve seat 160 to close the valve seat 160.
  • the rotor assembly 340A includes a rotor 314A and a mandrel 320A.
  • Rotor 314A can rotate in stator 312.
  • the rotor 314A can be injection molded integrally with the mandrel 320A or integrated in any other suitable manner such that the rotor 314A rotates integrally with the mandrel 320A when the motor 310 is energized.
  • the mandrel 320A includes a first end (upper end) 321A and a second end (lower end) 322A.
  • the first end 321A is for engaging with the moving iron 710 of the electromagnetic holding mechanism 700.
  • the second end 322A is formed with an external thread.
  • the second end (outer thread end) 322A is for threaded connection with the first section (internal threaded portion) 1421A of the sleeve 142A.
  • the mandrel 320A can be provided with a journal 323A at a lower section of the mandrel 320A, particularly adjacent the second end 322A of the mandrel 320A.
  • the support assembly 500A includes: a first section (sliding support portion) 501A; and a second section (anti-rotation portion) 502A.
  • a through hole is formed in the first section 501A, and the through hole has a circular shape.
  • the first section 501A can slidably receive the mandrel 320A (e.g., the journal 323A of the mandrel 320A) by its circular through-holes, thereby guiding the rotational motion and/or the axis of the mandrel 320A. The motion is moved to make the rotational motion and/or the axial motion of the mandrel 320A smoother.
  • a through hole is also formed in the second section 502A, and has an anti-rotation structure at the through hole.
  • the anti-rotation feature can be a non-circular or multi-faceted inner circumference of the through-hole of the second section 502A, the non-circular or multi-faceted inner circumference and the first section of the sleeve 142A of the valve needle assembly 140A (anti-rotational portion)
  • the non-circular or multifaceted extracorporeal phase of 1421A is matched.
  • it can be implemented as a four-sided inner circumference (see Figures 6 and 8), and in another example, can be implemented as an octahedral circumference (see Figure 9).
  • the through hole of the second section 502A is for receiving the first section 1421A of the sleeve 142A such that the first section 1421A of the sleeve 142A is capable of axial movement in the second section 502A of the support assembly 500A but cannot Rotating motion about its axis.
  • the valve needle 144A of the valve needle assembly 140A is forced to perform an axial translational movement by the rotation of the spindle 320A of the rotor assembly 340A.
  • the support assembly 500A employs a split design.
  • the second section (anti-rotation portion) 502A of the support assembly 500A provided with the anti-rotation structure employs a split structure.
  • the second section 502A includes a radially outer portion 5021A and a radially inner portion 5022A that is separate from the radially outer portion 5021A (used as Intermediate member according to the invention).
  • the radially inner portion 5022A is a member provided with an anti-rotation structure.
  • the radially inner portion 5022A is formed with a through hole having a non-circular or multifaceted inner circumference at the through hole.
  • non-circular or multifaceted inner circumferences in one example, it can be implemented as a four-sided inner circumference (see Figures 6 and 8), and in another example, can be implemented as an octahedral circumference (see Figure 9).
  • the anti-rotational structure of the radially inner portion 5022A of the second section 502A of the support assembly 500A and the first section 1421A of the sleeve 142A is not limited to a non-rhodium or polyhedral profile, but It may be any structure that allows for a sliding motion between the support assembly 500A and the sleeve 142A but does not allow for relative rotational movement therebetween.
  • the through hole of the radially inner portion 5022A of the second section 502A of the support assembly 500A may have a circular inner peripheral surface, but form a keyway or key on the inner peripheral surface thereof.
  • the first section 1421A of the sleeve 142A may have a circular outer peripheral surface, but forms a key on its outer peripheral surface that matches a keyway or key in the radially inner portion 5022A of the second section 502A of the support assembly 500A. Or keyway.
  • Radial inner 5022A and radial outer 5021A can be used with an interference fit.
  • the radially inner portion 5022A can be inserted into the radially outer portion 5021A by extrusion to achieve an interference fit.
  • the degree of interference fit between the radially inner portion 5022A and the radially outer portion 5021A can be set such that the radially inner portion 5022A can be rotated relative to the radially outer portion 5021A by the screwing tool during assembly (ie, relative The support assembly body 510A), which is constituted by the radially outer portion 5021A of the second section 502A and the first section 501A, rotates, but rotates with respect to the radially outer portion 5021 A under the action of the electronic expansion valve 10A.
  • the outer circumference of the radially inner portion 5022A may be provided with a planar structure, that is, the outer circumference of the radially inner portion 5022A may be set as a multi-faceted outer circumference (see Figs. 8 and 9).
  • the tool it is convenient to use the tool to rotate the radially inner portion 5022A or the radially inner portion 5022A with the temporary assembly of the valve needle assembly 140A relative to the support assembly body 510A of the support assembly 500A.
  • the inner circumference of the radially outer portion 5021A for receiving the bore of the radially inner portion 5022A can be a circular inner circumference that causes the radially inner portion 5022A to be rotated relative to the support assembly body 510A of the support assembly 500A using a tool or The temporary assembly of the radially inner portion 5022A and the valve needle assembly 140A avoids excessive resistance and is difficult to rotate.
  • a modular solution can be employed in the manufacture and assembly of the electronic expansion valve 10A. That is, the core structure (core module) 50A and the electronics are separately manufactured and assembled. The other modules of the expansion valve 10A (for example, the housing module and the valve body module) are then assembled together to form the electronic expansion valve 10A. Since the exemplary embodiment of the present invention mainly relates to an improvement of the core structure in the electronic expansion valve, only the assembly process of the core structure 50A of the electronic expansion valve 10A will be described.
  • the rotor assembly 340A is prepared (see Fig. 5). At this time, in order to facilitate control of the size of the core structural body 50A and thus the entire electronic expansion valve 10A (e.g., axial length), it is generally necessary to set the slip ring 352A at, for example, the lowest position (i.e., the lower stop position).
  • the rotor assembly 340A shown in Fig. 5 is attached with the moving iron 710 of the electromagnetic holding mechanism 700, however, as described above, the electronic expansion valve 10A may not be provided with the electromagnetic holding mechanism.
  • the upper end surface of the driven iron 710 of the core structure 50A to the lower end 1442A of the valve needle 144A when the slip ring 352A is in the lower stop position can be
  • the distance C of the lower end surface of the seal ring 1443A at the position is set to the reference axial length (see Fig. 4).
  • a separate support assembly 500A is prepared.
  • the support assembly body 510A of the support assembly 500A is then placed over the lower section of the mandrel 320A of the rotor assembly 340A such that the free end of the extension of the slip ring 352A is received on the first section 501A of the support assembly 500A. In the gap between the two guide bars 3531A.
  • the support assembly body 510A of the support assembly 500A can be temporarily translated axially upward relative to the rotor assembly 340A beyond its normal assembly position such that the lower end (external thread end) 322A of the mandrel 320A is supported from the support assembly of the support assembly 500A.
  • the body 510A is exposed.
  • valve needle assembly 140A is prepared (see Fig. 10).
  • the radially inner portion 5022A of the split support assembly 500A is then placed over the first section 1421A of the sleeve 142A of the valve needle assembly 140A.
  • the radially inner portion 5022A and the valve needle assembly 140A are not rotatable relative to each other due to the matching anti-rotation structure.
  • the valve cartridge assembly 140A is then coupled to the temporary assembly of the radially inner portion 5022A to the temporary assembly of the rotor assembly 340A and the support assembly body 510A.
  • the temporarily exposed lower end (external thread end) 322A of the mandrel 320A is inserted into the first section (internal threaded portion) 1421A of the sleeve 142A by screwing until the reference axis of the core structure 50A The length reaches a predetermined reference axial length.
  • the support assembly body 510A of the support assembly 500A that was previously temporarily translated axially upward relative to the rotor assembly 340A is then returned to its normal assembly position, in which case the support assembly body 510A needs to be squeezed, for example by means of a tool.
  • the sleeve is placed on the radially inner portion 5022A such that an interference fit is achieved between the radially inner portion 5022A and the radially outer portion 5021A. Note that the predetermined reference axial length that the core structure 50A has obtained is not affected during the press fitting process.
  • the support assembly body 510A of the support assembly 500A may not be axially translated upward relative to the rotor assembly 340A beyond its normal assembly position, but the radially inner portion 5022A of the support assembly 500A may be temporarily positioned relative to the sleeve.
  • the barrel 142A translates axially downward beyond its normal assembly position.
  • the lower end (external thread end) 322A of the mandrel 320A can also be inserted into the sleeve 142A by screwing in a state where the radially inner portion 5022A of the support assembly 500A does not interfere with the support assembly body 510A of the support assembly 500A at all.
  • the reference axial length of the core structure 50A reaches a predetermined reference axial length.
  • the radially inner portion 5022A of the support assembly 500A which was previously temporarily translated axially downward relative to the sleeve 142A, is then returned to its normal assembly position for an interference fit with the radially outer portion 5021A.
  • the mandrel 320A is involved in a state where the radially inner portion 5022A of the support assembly 500A does not interfere with the support assembly body 510A of the support assembly 500A at all.
  • the lower end (external thread end) 322A is threadedly coupled to the first section (internal threaded portion) 1421A of the sleeve 142A.
  • the connected valve needle assembly 140A is screwed, thereby screwing the lower end (external thread end) 322A of the mandrel 320A with the first section (internal thread portion) 1421A of the sleeve 142A.
  • the support assembly body 510A and the rotor assembly 340A of the support assembly 500A cannot be axially translated relative to each other such that the lower end of the mandrel 320A (external), for example, due to limited mounting space or structural structure of the core structure itself.
  • This alternative assembly method is particularly advantageous in the case where the threaded end 322A is fully exposed from the support assembly body 510A of the support assembly 500A.
  • the stopper mechanism 350A is provided in the assembly process of the core structure 50A described above.
  • the present invention is equally applicable to the case where the stop mechanism is not provided.
  • the support assembly 500A according to an exemplary embodiment of the present invention The split design is still advantageous for the overall assembly of the core structure.
  • the lower end (external thread end) 322A of the mandrel 320A and the first section of the sleeve 142A (internal thread portion) are involved. 1421 A is threaded until the reference axial length of the core structure 50A reaches a predetermined reference axial length.
  • the present invention is equally applicable to the case where the lower end (external thread end) 322A of the mandrel 320A is aligned with and close to the threaded opening of the first section (internal threaded portion) 1421A of the sleeve 142A without being screwed to each other.
  • the support assembly adopts a split design, the assembly process difficulty of the electronic expansion valve, especially the core structure, can be further simplified to further improve the production efficiency, and at the same time, the components can be further weakened or even eliminated.
  • the cumulative error caused by the transmission of the dimensional chain reduces the valve opening pulse of the electronic expansion valve and improves the assembly accuracy and flow control accuracy of the electronic expansion valve.
  • valve needle assemblies are no longer capable of relative rotational movement after assembly with each other or are not suitable for relative rotational movement in view of facilitating control of the axial length of the core structure, and the support assembly and the valve needle assembly due to the presence of the anti-rotation structure It is not possible to rotate relative to each other after assembly with each other, so it is difficult to freely rotate the valve needle assembly and the rotor assembly relative to each other for threaded connection until the core structure obtains the desired reference axial length.
  • valve needle assembly and the rotor assembly can be made in a state in which the support assembly and the valve needle assembly are temporarily not connected in some cases (for example, the support assembly is translated upward in the axial direction to temporarily interfere with the valve needle assembly). Freely rotating relative to each other to be threadedly coupled to each other, but when the temporary assembly of the valve needle assembly and the rotor assembly achieves the desired reference axial length, the anti-rotation structure of the valve needle assembly (eg, multi-faceted outer contour) and the support assembly are protected Rotating structures (e.g., multi-faceted inner contours) tend to be offset from one another in the circumferential direction to return the support assembly that has been temporarily translated axially upwards to its normal assembly position.
  • Rotating structures e.g., multi-faceted inner contours
  • the support assembly adopts Body design
  • the valve needle assembly and the rotor assembly can be freely rotated relative to each other for threaded connection (unconstrained or by means of a tool to screw) up to the core structure
  • the body accurately obtains the desired reference axial length.
  • the invention is susceptible to a variety of different variations.
  • the split structure can be placed on the sleeve of the valve needle assembly rather than on the support assembly.
  • the sleeve 142B of the valve needle assembly is provided with a first section of the anti-rotation structure (internal thread portion / anti-rotation)
  • the rotating part) 1421B adopts a split structure.
  • the first section 1421B includes a radially inner portion 1426B and a radially outer portion 1428B that is a separate body from the radially inner portion 1426B (used as an intermediate member in accordance with the present invention).
  • the radially outer portion 1428B is a member that is provided with an anti-rotation structure, for example, the radially outer portion 1428B may have a non-circular or multi-faceted outer circumference.
  • the radial inner 1426B and the radially outer 1428B can be used with an interference fit.
  • a planar configuration may be provided on the outer circumference of the second section 1422B of the sleeve 142B of the valve needle assembly to facilitate rotation of the sleeve 142B with respect to the radially outer portion 1428B of the first section 1421B of the sleeve 142B using the tool.
  • the radially inner portion 1426B of the first section 1421B ie, the sleeve body 148B that is comprised of the radially inner portion 1426B and the second section 1422B of the first section 1421B).
  • the axial dimension of the radially outer portion 1428B of the split body can vary.
  • the axial extent of the radially outer portion 1428B may be longer than the axial dimension of the corresponding radially inner portion 1426B or may be shorter than the axial dimension of the corresponding radially inner portion 1426B.
  • the split radial outer portion 1428B of the sleeve 142B can be temporarily translated axially upward relative to the rotor assembly over its normal assembly position during assembly of the core structure. Then, the sleeve body 148B (along with the valve needle) is screwed unconstrainedly to the mandrel of the rotor assembly until the desired reference axial length is obtained, and then previously temporarily pressed relative to the rotor, for example by means of a tool. The radially outer portion 1428B of the assembly that translates upwardly in the axial direction is returned to its normal assembly position with the support assembly.
  • the radially outer portion 1428B may first be interference fit with the radially inner portion 1426B of the sleeve body 148B and then The valve needle assembly (specifically the sleeve 142B of the valve needle assembly) is inserted into the support assembly and then the sleeve body 148B is applied by using a screwing tool that cooperates with the outer circumference of the second section 1422B of the sleeve 142B having a planar configuration.
  • This variant can provide a beneficial effect similar to the case where the split structure is placed on the support assembly, and for this variant it can be more conveniently screwed by means of a screwing tool.
  • the split structure can be disposed on both the sleeve and the support assembly of the valve needle assembly. According to this variant, different assembly methods can be flexibly adapted to different specific assembly environments.
  • the support assembly is provided with a split anti-rotation structure or the sleeve of the valve needle assembly is provided with a split anti-rotation structure
  • these split bodies can be
  • the anti-rotation structure is considered as a separate intermediate member.
  • an electronic expansion valve including a core structure, the core structure comprising: a valve needle assembly, the valve needle assembly including a sleeve a rotor and a valve needle; the rotor assembly including a mandrel, the mandrel being threadedly coupled to the sleeve; a support assembly; and an intermediate member, the intermediate member being disposed in the sleeve and the support assembly Between the intermediate members being provided with a first anti-rotation structure on one side, and one of the sleeve and the support assembly is provided with a second anti-rotation structure, the first anti-rotation structure and The second anti-rotation structure cooperates such that the valve needle assembly is axially movable relative to the support assembly as the rotor assembly rotates but is not capable of rotational movement.
  • the intermediate member is a ring body and is provided with the first anti-rotation structure at an inner circumference, and the second anti-rotation structure is disposed at At the sleeve.
  • the intermediate member is An interference fit with the support assembly at the outer periphery such that the intermediate member can be rotated relative to the support assembly by means of a screwing tool during assembly of the core structure, but during operation of the electronic expansion valve The intermediate member does not rotate relative to the support assembly.
  • an outer circumference of the intermediate member is provided as a non-circular or multi-faceted outer circumference and an inner circumference of a hole of the support assembly for accommodating the intermediate member It is provided as a circular inner circumference, or the outer circumference of the intermediate member is provided as a circular outer circumference and the inner circumference of the hole of the support assembly for accommodating the intermediate member is set to be a non-circular or multi-faceted inner circumference.
  • the intermediate member is a ring body and is provided with the first anti-rotation structure at an outer circumference, and the second anti-rotation structure is disposed at the At the support assembly.
  • the intermediate member is interference-fitted with the sleeve at an inner circumference, so that the sleeve is assembled during assembly of the core structure
  • the sleeve can be rotated relative to the intermediate member by means of a screwing tool, but the sleeve does not rotate relative to the intermediate member during operation of the electronic expansion valve.
  • the outer circumference of the lower section of the sleeve is provided as a non-circular or multi-faceted outer circumference.
  • the first anti-rotation structure of the intermediate member is a non-circular or polyhedral structure or a key-keyway structure.
  • the electronic expansion valve is further provided with a stopper mechanism for restricting a rotation range of the rotor assembly.
  • the stopping mechanism includes: a spiral guide formed on an outer circumference of the spindle to integrally rotate with the spindle; a slip ring in which the spiral guide slides; and a guide for guiding the slide ring to translate axially.
  • the spiral guide includes a spiral guide portion, a first end serving as a top dead portion, and a second end serving as a lower stop portion
  • the slip ring includes a spiral body portion configured to have a spiral configuration that matches a helical configuration of the spiral rail portion, and a protrusion portion configured to enable the spiral body portion to be slidably Supported on the spiral rail portion, the spiral body portion is configured to have an abutting end, and the protruding portion is configured to be capable of abutting with the first end of the spiral guide rail, and the abutting end Constructed to abut the second end of the spiral guide.
  • an electronic expansion valve assembled as described above
  • the method of the core structure comprising the steps of: in a state in which the intermediate member is temporarily not in interference fit with one of the sleeve and the support assembly in which the second anti-rotation structure is not formed, Having the sleeve of the valve needle assembly unconstrainedly threaded with the mandrel of the rotor assembly until a reference axial length of the core structure reaches a predetermined reference axial length;
  • the intermediate member is in an interference fit with one of the sleeve and the support assembly that is not formed with the second anti-rotation structure.
  • a method of assembling a core structure of an electronic expansion valve as described above comprising: wherein the intermediate member has been associated with the sleeve and the support assembly Forcibly coupling the sleeve of the valve needle assembly to the mandrel of the rotor assembly in a state in which one of the second anti-rotation structures is not formed with an interference fit until the The reference axial length of the core structure reaches a predetermined reference axial length.
  • the electronic expansion valve is provided with a stopper mechanism for restricting a rotation range of the rotor assembly, and the stopper mechanism is formed in the a periphery of the mandrel with a spiral guide integrally rotating with the mandrel, a slip ring rotatable along the spiral guide, and a guide for guiding the slide ring to translate axially, and the method It is performed in a state where the slip ring of the stop mechanism is maintained at a predetermined position.
  • the predetermined position of the slip ring is a bottom stop position or a top stop position of the slip ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

公开了一种电子膨胀阀,该电子膨胀阀包括芯部结构体(50A),芯部结构体包括:阀针组件(140A),阀针组件包括套筒(142A,142B)和阀针(144A);转子组件(340A),转子组件包括心轴(320A),心轴(320A)与套筒螺纹连接;支撑组件(500A);以及中间构件(5022A,1428B),中间构件(5022A,1428B)置于套筒与支撑组件(500A)之间。中间构件(5022A,1428B)在一侧设置有第一防旋转结构,套筒和支撑组件(500A)中的一者设置有第二防旋转结构,第一防旋转结构与第二防旋转结构配合,从而使得阀针组件(140A)随着转子组件(340A)的旋转,同时,能够相对于支撑组件(500A)进行轴向运动但是不能进行旋转运动。该电子膨胀阀使得芯部结构体的装备更容易,并且减小了开阀脉冲,进而提高了阀控制精度。

Description

电子膨胀岡及其芯部结构体的装配方法 相关申请的交叉引用
[01]本申请要求于 2012 年 12 月 7 日提交中国专利局、 申请号为
201210523500.4,发明名称为 "电子膨胀阀及其芯部结构体的装配方法" 的中国专利申请以及于 2012 年 12 月 7 提交中国专利局、 申请号为
201220672397.5,发明名称为 "电子膨胀阀"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
[02]本发明涉及电子膨胀阀及其芯部结构体的装配方法。 背景技术
[03]电子膨胀阀通常包括由转子组件、 支撑机构 (组件)和阀针组件构 成的芯部结构体。通常,转子组件经由支撑机构而与阀针组件螺紋连接, 并且支撑机构和阀针组件各自具有相互配合的防旋转结构(例如多面体 轮廓)。 由此, 转子组件在旋转时能够迫使阀针组件进行上下平移运动, 使得电子膨胀阀能够对制冷剂流体的流量进行调节。 另外, 电子膨胀阀 通常还设置有用于限制转子组件的旋转范围的旋转止位机构。
[04]然而, 对于上述电子膨胀阀而言, 存在改进芯部结构体的装配(尤 其是转子组件与阀针组件之间的装配)的便易性、 以及进一步减小开阀 脉冲进而进一步提高阀控制精度的期望。
[05]这里, 应当指出的是, 本部分中所提供的技术内容旨在有助于本领域 技术人员对本发明的理解, 而不一定构成现有技术。 发明内容
[06]根据本发明的一个方面,提供一种电子膨胀阀,所述电子膨胀阀包括 芯部结构体, 所述芯部结构体包括: 阀针组件, 所述阀针组件包括套筒和 阀针; 转子组件, 所述转子组件包括心轴, 所述心轴与所述套筒螺紋连 接; 支撑组件; 以及中间构件, 所述中间构件置于所述套筒与所述支撑 组件之间, 其中, 所述中间构件在一侧设置有第一防旋转结构, 所述套 筒和所述支撑组件中的一者设置有第二防旋转结构, 所述第一防旋转结 构与所述第二防旋转结构配合,从而使得所述阀针组件随着所述转子组 件的旋转而能够相对于所述支撑组件进行轴向运动但是不能进行旋转运 动。 附图说明
[07]通过以下参照附图的详细描述, 本发明的特征和优点将变得更加容 易理解, 在附图中:
[08]图 1是示出相关技术的电子膨胀阀的纵剖视图;
[09]图 2是示出相关技术的电子膨胀阀的支撑机构的立体图;
[10]图 3是示出根据本发明示例性实施方式的电子膨胀阀的主要部分的 纵剖视图;
[11]图 4是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的纵剖视图;
[12]图 5是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的转子组件等的立体纵剖视图;
[13]图 6是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的支撑组件的立体纵剖视图;
[14]图 7是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的支撑组件的纵剖视图;
[15]图 8是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的中间构件的立体图;
[16]图 9是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的替代性中间构件的立体图;
[17]图 10是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构 体的阀针组件的立体纵剖视图;
[18]图 11 是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构 体的立体纵剖视图; 以及
[19]图 12是示出根据本发明示例性实施方式的变型的阀针组件的套筒 的纵剖视图。 具体实施方式
[20]下面参照附图、 借助示例性实施方式对本发明进行详细描述。 对本 发明的以下详细描述仅仅是出于示范目的, 而绝不是对本发明及其应用 或用途的限制。
[21]首先, 参照图 1和图 2描述电子膨胀阀的总体构造和运行原理。 其 中, 图 1是示出相关技术的电子膨胀阀的纵剖视图, 而图 2是示出相关 技术的电子膨胀阀的支撑机构的立体图。
[22]如图 1所示, 电子膨胀阀 10—般包括: 用于对流过电子膨胀阀 10的 流体的流量进行调节的阀机构 100;用于带动阀机构 100的可动阀构件(即 阀针)进行轴向运动的致动机构 300; 以及用于支撑阀机构 100的相应部 件和致动机构 300 的相应部件并引导它们的轴向运动和 /或旋转运动的支 撑机构(组件) 500。 可选地, 电子膨胀阀 10还可以包括用于保持和释放 致动机构 300的转子组件的电磁保持机构 700。
[23]阀机构 100一般包括阀体 120。 在阀体 120中设置有与入流管 180连 接的入口 121以及与出流管 190连接的出口 122。 流体经由入流管 180流 入电子膨胀阀 10, 然后经由出流管 190流出电子膨胀阀 10。 在阀体 120 的出口 122处设置有固定阀构件(即阀座) 160。
[24]阀机构 100一般还包括阀针组件 140。 阀针组件 140包括套筒 142以 及阀针 144。
[25]套筒 142—般包括: 第一 /上部区段(内螺纹部 /防旋转部) 1421; 以及 第二 /下部区段(阀针接合部 ) 1422。 在套筒 142的第一区段 1421中形成 有孔(例如通孔), 该孔具有圆形形状, 并且在该孔中形成有内螺紋。 此 外,套筒 142的第一区段 1421的外周具有防旋转结构(例如非圆形或多面 体外周)。
[26]阀针 144一般包括第一端(上端) 1441以及第二端(下端) 1442。 第 一端 1441用于与套筒 142的第二区段 (阀针接合部 ) 1422接合。 第二端 1442用于与阀座 160 从而关闭阀座 160。
[27]致动机构 300一般包括电机 (例如步进电机 ) 310。 电机 310包括定子 312以及转子 314。 另外, 致动机构 300—般还包括心轴 320。 转子 314能 够在定子 312中旋转。 转子 314可以与心轴 320注塑成一体或者以任何其 它合适的方式结合成一体,从而使得当电机 310通电时转子 314与心轴 320 一体地旋转。 转子 314与心轴 320构成所谓的转子组件 340。
[28]心轴 320—般包括第一端(上端) 321以及第二端(下端) 322。 在可 选地设置有电磁保持机构 700的情况下, 第一端 321用于与电磁保持机构 700的动铁 710接合。 第二端 322形成有外螺纹。 第二端(外螺纹端) 322 用于与套筒 142的第一区段(内螺纹部 ) 1421螺紋连接。可选地,心轴 320 可以在心轴 320的下区段处——具体为在心轴 320的第二端 322的邻近上 方处一一设置有轴颈部 323。
[29]支撑机构 500一般包括: 第一 /上部区段(滑动支承部) 501; 以及第 二 /下部区段(防旋转部) 502。 在第一区段 501 中形成有通孔, 该通孔具 有圆形形状。 由此, 第一区段 501借助其圆形通孔以可滑动的方式容纳心 轴 320 (例如心轴 320的轴颈部 323 ), 从而引导心轴 320的旋转运动和 / 或轴向运动, 以使心轴 320的旋转运动和 /或轴向运动更加平稳。 在第二区 段 502中也形成有通孔, 在该通孔处具有防旋转结构(例如非圆形或多面 体内周), 并且该通孔用于容纳套筒 142的第一区段 1421, 从而使得套筒 142的第一区段 1421能够在支撑机构 500的第二区段 502中进行轴向运动 但是不能绕其轴线进行旋转运动。 由此, 在转子组件 340轴向固定且支撑 机构 500周向固定的状态下, 通过转子组件 340的心轴 320的旋转而迫使 阀针组件 140的阀针 144进行轴向平移运动。
[30〗在致动机构 300中, 可以设置有止位机构 350。 止位机构 350可以包 括: 螺旋导轨 351; 以及滑环 352。 止位机构 350还可以包括导向件 353。
[31]螺旋导轨 351可以通过与心轴 320—起注塑而一体地形成在心轴 320 的外周。 例如, 螺旋导轨 351可以在心轴 320的中间区段处、 在心轴的第 一端 321与第二端 322之间围绕心轴 320设置。 螺旋导轨 351可以包括: 用于支承滑环 352的螺旋导轨部; 用作上止位部的第一端(上端); 以及用 作下止位部的第二端(下端)。
[32〗滑环 352可以包括: 螺旋本体部; 以及伸出部。 螺旋本体部可以具有 与螺旋导轨部的螺旋构型相匹配的螺旋构型, 使得螺旋本体部能够支承于 螺旋导轨部并且使得在螺旋本体部 5321 与螺旋导轨部两者之间能够实现 相对滑动。
[33]导向件 353可以实施为两根导向杆 3531。 导向杆 3531可以从支撑机 构 500的第一区段 501 的上端面例如垂直地向上延伸。 两根导向杆 3531 设置成在其间限定出间隙。 滑环 352的伸出部的自由端优选地以滑动接合 的方式容纳在该间隙中。
[34]这里, 应当指出的是, 在电子膨胀阀 10中, 由阀机构 100的阀针组 件 140、致动机构 300的转子组件 340和支撑机构 (组件 ) 500构成所谓的 芯部结构体 50。 另一方面, 在电子膨胀阀 10设置有电磁保持机构 700 的情况下, 附接至转子组件 340的电磁保持机构 700的动铁 710也构成芯 部结构体 50的一部分。
[35]下面简单描述电子膨胀阀 10的工作过程。
[36]从电子膨胀阀 10处于如图 1所示的状态开始进行描述。在图 1中,滑 环 352处于上止位位置(亦即,滑环 352与螺旋导轨 351的上止位部抵接)。 对应地,心轴 320处于第一旋转止位位置,并且阀针 144处于全开位置(这 里, 本领域技术人员应当理解, 也可以将电子膨胀阀 10设计成当滑环 352 处于下止位位置时阀针 144处于全开位置)。在可选地设置有电磁保持机构 700的情况下, 如图 1所示, 电磁保持机构 700在被施电时使动铁 710与 定铁 720磁性吸合在一起, 由此将心轴 320进而整个转子组件 340保持在 固定的轴向位置。
[37]接着, 当需要关闭电子膨胀阀 10或者需要蜩节电子膨胀阀 10的阀开 度时, 向致动机构 300的电机 310施电, 使得转子 314沿第一方向旋转。 转子 314的旋转导致心轴 320也沿第一方向旋转从而移动离开第一旋转止 位位置。 随着心轴 320在固定的轴向位置处沿第一方向旋转, 其第一区段 (内螺纹部 ) 1421与心轴 320的第二端(外螺纹端 ) 322螺紋连接的套筒 142连同阀针 144 (即阀针组件 140 )被迫沿轴向向下平移。 由此, 可以仅 适当地减小电子膨胀阀 10的阀开度,也可以通过使阀针 144的第二端 1442 与阀座 180抵接而使电子膨胀阀 10完全关闭。
[38]与此同时, 随着心轴 320在固定的轴向位置处沿第一方向旋转, 与心 轴 320形成为一体的或者固定地连接的螺旋导轨 351也沿第一方向旋转。 螺旋导轨 351的旋转迫使滑环 352沿轴向向下平移。 滑环 352可以沿轴向 向下平移直至滑环 352的螺旋本体部的抵接端与螺旋导轨 351的下止位部 抵接而处于下止位位置。此时,对应地, 心轴 320处于第二旋转止位位置。
[39]反之亦然, 当需要从阀针 144处于全关位置的状态打开电子膨胀阀 10 或者需要调节电子膨胀阀 10的阀开度时, 则向致动机构 300的电机 310 施电, 使得转子 314沿与第一方向相反的第二方向旋转。
[40]然而, 对于上述电子膨胀阀 10而言, 存在改进由转子组件、 支撑机 构(组件)和阀针组件构成的芯部结构体的装配(尤其是转子组件与阀 针组件之间的装配)的便易性、 以及进一步减小开阀脉冲进而进一步提 高阀控制精度的期望。
[41]下面参照图 3至图 12描述才艮据本发明示例性实施方式的电子膨胀阀的 构造。 应当指出的是, 本发明示例性实施方式主要涉 电子膨胀阀中的 芯部结构体的支撑组件(机构)和 /或阀针组件的改进, 因此对电子膨胀阀 中的其它部件的构造将不再赘述。
[42]图 3是示出根据本发明示例性实施方式的电子膨胀阀的主要部分的 纵剖视图。 图 4是示出根据本发明示例性实施方式的电子膨胀阀的芯部 结构体的纵剖视图。 图 5是示出根据本发明示例性实施方式的电子膨胀 阀的芯部结构体的转子组件等的立体纵剖视图。 图 6是示出根据本发明 示例性实施方式的电子膨胀阀的芯部结构体的支撑组件的立体纵剖视 图。 图 7是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体 的支撑组件的纵剖视图。 图 8是示出根据本发明示例性实施方式的电子 膨胀阀的芯部结构体的中间构件的立体图。 图 9是示出根据本发明示例 性实施方式的电子膨胀阀的芯部结构体的替代性中间构件的立体图。 图 10 是示出根据本发明示例性实施方式的电子膨胀阀的芯部结构体的阀 针组件的立体纵剖视图。 图 11是示出根据本发明示例性实施方式的电 子膨胀阀的芯部结构体的立体纵剖视图。 图 12是示出根据本发明示例 性实施方式的变型的阀针组件的套筒的纵剖视图。
[43]如图 4 最清楚地示出, 根据本发明示例性实施方式的电子膨胀阀 10A的芯部结构体 50A包括阀针组件 140A、 转子组件 340A以及支撑组 件 500A。
[44]阀针组件 140A包括套筒 142A以及阀针 144A。 套筒 142A包括: 第 一区段(内螺纹部 /防旋转部) 1421A; 以及第二区段(阀针接合部 ) 1422A„ 在套筒 142A的第一区段 1421A中形成有孔(例如通孔), 该孔具有圆形 形状, 并且在该孔中形成有内螺紋。 此外, 套筒 142A的第一区段 1421A 的外周具有防旋转结构。防旋转结构可以是第一区段 1421A的非圆形或多 面体外周。 对于非圆形或多面体外周, 在一个示例中, 可以实施为四面体 外周, 而在另一示例中, 可以实施为八面体外周。 阀针 144A包括第一端 (上端) 1441A以及第二端(下端) 1442A。第一端 1441A用于与套筒 142A 的第二区段 (阀针接合部) 1422A接合。 第二端 1442A用于与阀座 160接 合从而关闭阀座 160。
[45]转子组件 340A包括转子 314A以及心轴 320A。 转子 314A能够在定 子 312中旋转。转子 314A可以与心轴 320A注塑成一体或者以任何其它合 适的方式结合成一体,从而使得当电机 310通电时转子 314A与心轴 320A 一体地旋转。心轴 320A包括第一端(上端)321A以及第二端(下端)322A。 在可选地设置有电磁保持机构 700的情况下, 第一端 321A用于与电磁保 持机构 700的动铁 710接合。 第二端 322A形成有外螺紋。 第二端(外螺 紋端) 322A用于与套筒 142A的第一区段(内螺纹部) 1421A螺紋连接。 可选地, 心轴 320A可以在心轴 320A的下区段处——具体为在心轴 320A 的第二端 322A的邻近上方处——设置有轴颈部 323A。
[46]支撑组件 500A包括: 第一区段(滑动支承部) 501A; 以及第二区段 (防旋转部) 502A。 在第一区段 501A中形成有通孔, 该通孔具有圆形形 状。 由此, 例如, 第一区段 501A可以借助其圆形通孔以可滑动的方式容 纳心轴 320A (例如心轴 320A的轴颈部 323A ), 从而引导心轴 320A的旋 转运动和 /或轴向运动, 以使心轴 320A 的旋转运动和 /或轴向运动更加平 稳。 在第二区段 502A中也形成有通孔, 在该通孔处具有防旋转结构。 例 如, 防旋转结构可以是第二区段 502A的通孔的非圆形或多面体内周, 该 非圆形或多面体内周与阀针组件 140A的套筒 142A的第一区段 (防旋转 部) 1421A的非圆形或多面体外周相匹配。 对于非圆形或多面体内周, 在 一个示例中,可以实施为四面体内周(参见图 6和图 8 ),而在另一示例中, 可以实施为八面体内周 (参见图 9 )。 第二区段 502A的通孔用于容纳套筒 142A的第一区段 1421A,从而使得套筒 142A的第一区段 1421A能够在支 撑组件 500A的第二区段 502A中进行轴向运动但是不能绕其轴线进行旋转 运动。 由此,在转子组件 340A轴向固定且支撑组件 500A周向固定的状态 下, 通过转子组件 340A的心轴 320A的旋转而迫使阀针组件 140A的阀针 144A进行轴向平移运动。
[47]根据本发明示例性实施方式, 支撑组件 500A采用分体设计。
[48]如图 6和 7最清楚地示出, 支撑组件 500A的设置有防旋转结构的第 二区段(防旋转部 ) 502A采用分体结构。 具体地, 第二区段 502A包括径 向外部 5021A以及相对于径向外部 5021A是分体的径向内部 5022A(用作 根据本发明的中间构件)。 径向内部 5022A是设置有防旋转结构的部件。 例如, 径向内部 5022A形成有通孔, 在通孔处具有非圆形或多面体内周。 对于非圆形或多面体内周, 在一个示例中, 可以实施为四面体内周 (参见 图 6和图 8 ),而在另一示例中,可以实施为八面体内周(参见图 9 )。这里, 本领域技术人员应当理解, 支撑组件 500A的第二区段 502A的径向内部 5022A和套筒 142A的第一区段 1421A的防旋转结构并不局限于非圃形或 多面体轮廓,而是可以为允许支撑组件 500A与套筒 142A之间的滑动运动 但是不允许在其间进行相对旋转运动的任何结构。 例如, 支撑组件 500A 的第二区段 502A的径向内部 5022A的通孔可以具有圆形内周表面, 但是 在其内周表面上形成键槽或键。 同时, 套筒 142A的第一区段 1421A可以 具有圆形外周表面, 但是在其外周表面上形成与支撑组件 500 A的第二区 段 502A的径向内部 5022A中的键槽或键相匹配的键或键槽。
[49]径向内部 5022A与径向外部 5021A可以采用过盈配合。在一个示例中, 可以采用挤压方式将径向内部 5022A嵌入到径向外部 5021A中以实现过盈 配合。在一个示例中,径向内部 5022A与径向外部 5021A之间的过盈配合 程度可以设定成使得:在装配期间径向内部 5022A能够借助旋拧工具而相 对于径向外部 5021A (即, 相对于由第二区段 502A的径向外部 5021A和 第一区段 501A构成的支撑组件本体 510A )旋转, 但是在电子膨胀阀 10A 作用下而相对于径向外部 5021 A旋转。
[50]在一个示例中, 径向内部 5022A的外周可以设置有平面结构, 亦即径 向内部 5022A的外周可以设置为多面体外周(参见图 8和图 9 )。 由此,便 于使用工具相对于支撑组件 500A 的支撑组件本体 510A旋转径向内部 5022A或者径向内部 5022A与阀针组件 140A的临时组装体。 在一个示例 中,径向外部 5021A的用于容纳径向内部 5022A的孔的内周可以是圆形内 周,这使得在使用工具相对于支撑组件 500A的支撑组件本体 510A旋转径 向内部 5022A或者径向内部 5022A与阀针组件 140A的临时组装体时避免 阻力过大而难以旋转。
[51]下面描述根据本发明示例性实施方式的电子膨胀阀的示例性制造和组 装过程。
[52]根据本发明, 在电子膨胀阀 10A的制造和组装过程中,可以采用模块 化方案。 亦即, 单独地制造和装配芯部结构体(芯部模块) 50A以及电子 膨胀阀 10A的其它模块(例如壳体模块和阀体模块), 然后再将这些模块 组装在一起而制成电子膨胀阀 10A。 由于本发明示例性实施方式主要涉及 对电子膨胀阀中的芯部结构体的改进, 因此将仅描述电子膨胀阀 10A的芯 部结构体 50A的装配过程。
[53]首先, 准备转子组件 340A (参见图 5 )。 此时, 为了便于控制芯部结 构体 50A进而整个电子膨胀阀 10A的尺寸 (例如轴向长度), 一般需要将 滑环 352A设定在例如最低位置(即下止位位置)。 这里, 需要指出的是, 如图 5所示的转子组件 340A附接有电磁保持机构 700的动铁 710, 然而, 如上所述, 电子膨胀阀 10A可以不设置有电磁保持机构。 在一个示例中, 在设置有电磁保持机构 700的情况下, 可以将滑环 352A处于例如下止位 位置时的、 芯部结构体 50A的从动铁 710的上端面至阀针 144A的下端 1442A处的密封环 1443A的下端面的距离 C设定为基准轴向长度(参见图 4 )。
[54]接下来, 准备分体的支撑组件 500A。 然后, 将支撑组件 500A的支撑 组件本体 510A套在转子组件 340A的心轴 320A的下区段上, 使得滑环 352A的伸出部的自由端容纳在支撑组件 500A的第一区段 501A上的两根 导向杆 3531A之间的间隙中。 此时, 可以使支撑组件 500A的支撑组件本 体 510A临时地相对于转子组件 340A沿轴向向上平移超过其正常装配位 置, 使得心轴 320A的下端(外螺纹端 ) 322A从支撑组件 500A的支撑组 件本体 510A中露出。 这里, 应当指出的是, 在将支撑组件 500A的支撑 组件本体 510A套在转子组件 340A的心轴 320A的下区段上之后, 支撑组 件 500A与转子组件 340A之间不可以再进行相对旋转运动。这是由于以下 两方面的原因: 一方面是滑环 352A 已处于例如下止位位置, 因此沿其中 一个方向的相对旋转运动将被止挡, 另一方面是滑环 352A 已容纳在支撑 组件 500A的第一区段 501A上的两根导向杆 3531A之间的间隙中, 因此 沿另一个方向的相对旋转运动将导致滑环离开下止位位置从而不利于或 不能够适当地控制芯部结构体 50A进而整个电子膨胀阀 10A的轴向长度。
[55〗接下来, 准备阀针组件 140A (参见图 10 )。 然后, 将分体的支撑组件 500A 的径向内部 5022A套在阀针组件 140A 的套筒 142A 的第一区段 1421A上。 此时, 径向内部 5022A与阀针组件 140A由于相匹配的防旋转 结构而不能够相对于彼此旋转。然后,将阀针组件 140 A与径向内部 5022A 的临时组装体连接至转子组件 340A与支撑组件本体 510A的临时组装体。 具体地, 通过旋拧而使心轴 320A的临时地露出的下端(外螺紋端) 322A 插入到套筒 142A的第一区段(内螺紋部) 1421A中,直至芯部结构体 50A 的基准轴向长度达到预定的基准轴向长度。 然后, 使先前临时地相对于转 子组件 340A沿轴向向上平移的支撑组件 500A的支撑组件本体 510A返回 至其正常装配位置, 在这个过程中, 需要例如借助工具以挤压方式将支撑 组件本体 510A套在径向内部 5022A上, 使得在径向内部 5022A与径向外 部 5021A之间实现过盈配合。 注意, 在该挤压配合过程中, 不会影响芯部 结构体 50A已获得的预定的基准轴向长度。
[56]由此, 获得了具有期望的基准轴向长度的芯部结构体 50A。
[57]另外,可以不使支撑组件 500A的支撑组件本体 510A临时地相对于转 子组件 340A沿轴向向上平移超过其正常装配位置、 而是使支撑组件 500A 的径向内部 5022A临时地相对于套筒 142A沿轴向向下平移超过其正常装 配位置。这样,也能够在支撑组件 500A的径向内部 5022A与支撑组件 500A 的支撑组件本体 510A完全不相干涉的状态下通过旋拧而使心轴 320A的下 端(外螺纹端) 322A插入到套筒 142A的第一区段(内螺紋部) 1421A中, 直至芯部结构体 50A的基准轴向长度达到预定的基准轴向长度。 然后, 使 先前临时地相对于套筒 142A沿轴向向下平移的支撑组件 500A的径向内部 5022A返回至其正常装配位置以与径向外部 5021A过盈配合。
[58]在上文所描述的芯部结构体 50A 的装配过程中, 涉及到在支撑组件 500A的径向内部 5022A与支撑组件 500A的支撑组件本体 510A完全不相 干涉的状态下使心轴 320A的下端(外螺紋端 ) 322A与套筒 142A的第一 区段(内螺纹部) 1421A进行螺纹连接。 然而, 也可以在支撑组件 500A 的径向内部 5022A至少部分地嵌入支撑组件 500A的支撑组件本体 510A (具体为支撑组件 500A的径向外部 5021A ) 中的状态下, 例如通过使用 与径向内部 5022A连接的阀针组件 140A进行旋拧, 由此使心轴 320A的 下端(外螺紋端 ) 322A与套筒 142A的第一区段 (内螺紋部 ) 1421A进行 螺纹连接。 例如, 在比如由于安装空间有限或芯部结构体本身结构方面的 原因而不能够使支撑组件 500A的支撑组件本体 510A与转子组件 340A相 对于彼此沿轴向平移成使得心轴 320A的下端(外螺纹端 ) 322A从支撑组 件 500A的支撑组件本体 510A中完全露出的情形中,这种替代性装配方法 是特别有利的。 [59]另外, 在上文所描述的芯部结构体 50A的装配过程中, 涉及到的是设 置有止位机构 350A的情况。 然而, 本发明同样可以适用于不设置有止位 机构的情况。例如,在转子组件 340A和支撑组件 350A已预先组装至壳体 中从而支撑组件 500 A与转子组件 340A之间不便于进行相对旋转运动的情 形中, 根据本发明示例性实施方式的支撑组件 500A的分体设计对于芯部 结构体的整体装配仍是有利的。
[60]另外, 在上文所描述的芯部结构体 50A的装配过程中, 涉及到的是使 心轴 320A的下端(外螺紋端 ) 322A与套筒 142A的第一区段 (内螺纹部 ) 1421 A进行螺紋连接直至芯部结构体 50A的基准轴向长度达到预定的基准 轴向长度。 然而, 本发明同样可以适用于使心轴 320A的下端(外螺紋端) 322A与套筒 142A的第一区段 (内螺纹部 ) 1421A的螺紋 口对齐和靠 近而尚未彼此螺纹连接的情形。
[61 ]根据本发明示例性实施方式, 至少可以获得如下有益效果。
[62]由于支撑组件采用分体设计, 相对于相关技术, 能够进一步简化电子 膨胀阀尤其是芯部结构体的装配工艺难度从而进一步提高生产效率, 同 时, 能够进一步弱化甚至消除各零部件之间的尺寸链传递而造成的累积误 差, 从而减小电子膨胀阀的开阀脉冲并改进电子膨胀阀的装配精度和流量 控制精度。
[63]特别地, 对于相关技术, 在电子膨胀阀设置有旋转止位结构和防旋转 结构的情况下, 在芯部结构体的装配过程中, 由于旋转止位结构的存在而 使支撑组件与阀针组件在彼此装配之后不能够再进行相对旋转运动或者 鉴于便于控制芯部结构体的轴向长度而不适合再进行相对旋转运动、 并且 由于防旋转结构的存在而使支撑组件与阀针组件在彼此装配之后不能够 再相对于彼此旋转, 因此难以使阀针组件和转子组件自由地相对于彼此旋 转以进行螺紋连接直至芯部结构体获得期望的基准轴向长度。 另一方面, 即使在某些情形中可以在支撑组件与阀针组件暂时未连接 (例如支撑组件 沿轴向向上平移而暂时与阀针组件不相干涉)的状态下使阀针组件和转子 组件自由地相对于彼此旋转以彼此螺纹连接, 但是在阀针组件与转子组件 的临时组装体获得期望的基准轴向长度时, 阀针组件的防旋转结构(例如 多面体外周轮廓)和支撑组件的防旋转结构(例如多面体内周轮廓)往往 会在圆周方向上相互错位而无法使已暂时沿轴向向上平移的支撑组件返 回至其正常装配位置。 根据本发明示例性实施方式, 由于支撑组件采用分 体设计, 在芯部结构体的装配过程中, 可以使阀针组件和转子组件自由地 相对于彼此旋转以进行螺紋连接 (不受约束地或以借助工具进行旋拧的方 式)直至芯部结构体精准地获得期望的基准轴向长度。 由此, 特别地, 可 题, 从而能够避免开阀脉冲增大和流量控制精度变差。 ^而, 总体上, 进了芯部结构体的装配的便易性、 以及减小了开阀脉冲进而提高了阀控 制精度。
[64]本发明可以容许多种不同的变型。
[65]例如, 分体结构可以设置在阀针组件的套筒上而不是设置在支撑组 件上。
[66]如图 12所示, 在分体结构设置在阀针组件的套筒上的变型中, 阀针 组件的套筒 142B的设置有防旋转结构的第一区段(内螺紋部 /防旋转部) 1421B采用分体结构。 具体地, 第一区段 1421B包括径向内部 1426B以及 相对于径向内部 1426B是分体的径向外部 1428B (用作根据本发明的中间 构件)。径向外部 1428B是设置有防旋转结构的部件,例如,径向外部 1428B 可以具有非圆形或多面体外周。径向内部 1426B与径向外部 1428B可以采 用过盈配合。 在一个示例中, 可以在阀针组件的套筒 142B 的第二区段 1422B的外周设置平面结构, 从而便于使用工具相对于套筒 142B的第一 区段 1421B的径向外部 1428B旋转套筒 142B的第一区段 1421B的径向内 部 1426B(即,旋转由第一区段 1421B的径向内部 1426B和第二区段 1422B 构成的套筒本体 148B )。
[67]在该变型中, 分体的径向外部 1428B的轴向尺寸可以变化。 径向外部 1428B的轴向尺寸可以长于对应的径向内部 1426B的轴向尺寸、 也可以短 于对应的径向内部 1426B的轴向尺寸。
[68]根据该变型, 在芯部结构体的装配过程中, 可以使套筒 142B的分体 的径向外部 1428B与支撑组件一起临时地相对于转子组件沿轴向向上平移 超过其正常装配位置, 然后在套筒本体 148B (连同阀针)与转子组件的心 轴不受约束地进行螺纹连接直至获得期望的基准轴向长度之后, 再例如借 助工具以挤压方式使先前临时地相对于转子组件沿轴向向上平移的径向 外部 1428B和支撑组件一起返回至其正常装配位置。 可替代地, 可以首先 使径向外部 1428B与套筒本体 148B的径向内部 1426B过盈配合, 然后将 阀针组件 (具体为阀针组件的套筒 142B )插入到支撑组件中, 然后通过使 用与套筒 142B的第二区段 1422B的具有平面结构的外周配合的旋拧工具 对套筒本体 148B进行旋拧, 由此迫使套筒 142B的第一区段 (内螺纹部 ) 1421B的径向内部 1426B相对于径向外部 1428B旋转从而与心轴的下端 (外螺紋端)进行螺紋连接、 同时迫使径向外部 122沿轴向向上平移, 直 至芯部结构体获得期望的基准轴向长度。 这里, 当径向外部 1428B的轴向 尺寸短于对应的径向内部 1426B的轴向尺寸时, 可以更加顺利地对套筒本 体 148B进行旋拧。
[69]该变型可以提供与分体结构设置在支撑组件上的情况类似的有益效 果, 而且对于该变型而言, 可以更加方便地借助旋拧工具来进行旋拧。
[70]另外, 分体结构可以设置在阀针组件的套筒和支撑组件两者上。 根据 该变型, 可以根据不同的具体装配环境灵活地采用不同的装配方式。
[71]这里, 需要指出的是, 尽管上文中具体描述的是支撑组件设置有分体 的防旋转结构或者阀针组件的套筒设置有分体的防旋转结构, 但是可以将 这些分体的防旋转结构视为独立的中间构件。
[72]上文已具体描述本发明示例性实施方式及其变型, 但是本领域技术 人员应当理解, 本发明并不局限于上述具体的实施方式 /示例 /变型而是 可以包括多种不同的可能方案。
[73] 例如, 根据本发明的第一方面, 提供一种电子膨胀阀, 所述电子膨 胀阀包括芯部结构体, 所述芯部结构体包括: 阀针组件, 所述阀针组件包 括套筒和阀针; 转子组件, 所述转子组件包括心轴, 所述心轴与所述套 筒螺紋连接; 支撑组件; 以及中间构件, 所述中间构件置于所述套筒与 所述支撑组件之间,其中,所述中间构件在一侧设置有第一防旋转结构, 所述套筒和所述支撑组件中的一者设置有第二防旋转结构, 所述第一防 旋转结构与所述第二防旋转结构配合,从而使得所述阀针组件随着所述 转子组件的旋转而能够相对于所述支撑组件进行轴向运动但是不能进行 旋转运动。
[74] 根据本发明的第二方面, 在上述电子膨胀阀中, 所述中间构件呈 环体并在内周处设置有所述第一防旋转结构,并且所述第二防旋转结构 设置在所述套筒处。
[75] 根据本发明的第三方面, 在上述电子膨胀阀中, 所述中间构件在 外周处与所述支撑组件过盈配合, 使得在所述芯部结构体的装配期间所 述中间构件能够借助旋拧工具相对于所述支撑组件旋转、但是在所述电子 膨胀阀的运行期间所述中间构件不会相对于所述支撑组件旋转。
[76] 根据本发明的第四方面,在上述电子膨胀阀中, 所述中间构件的外 周设置为非圆形或多面体外周而所述支撑组件的用于容纳所述中间构件 的孔的内周设置为圆形内周, 或者, 所述中间构件的外周设置为圆形外周 而所述支撑组件的用于容纳所述中间构件的孔的内周设置为非圆形或多 面体内周。
[77] 根据本发明的第五方面, 在上述电子膨胀阀中, 所述中间构件呈 环体并在外周处设置有所述第一防旋转结构,并且所述第二防旋转结构 设置在所述支撑组件处。
[78] 根据本发明的第六方面, 在上述电子膨胀阀中, 所述中间构件在 内周处与所述套筒过盈配合, 使得在所述芯部结构体的装配期间所述套 筒能够借助旋拧工具相对于所述中间构件旋转、但是在所述电子膨胀阀的 运行期间所述套筒不会相对于所述中间构件旋转。
[79] 根据本发明的第七方面, 在上述电子膨胀阀中, 所述套筒的下部区 段的外周设置为非圆形或多面体外周。
[80] 根据本发明的第八方面, 在上述电子膨胀阀中, 所述中间构件的 所述第一防旋转结构是非圆形或多面体结构、 或者是键 -键槽结构。
[81] 根据本发明的第九方面, 在上述电子膨胀阀中, 所述电子膨胀阀还 设置有用于限制所述转子组件的旋转范围的止位机构。
[82] 根据本发明的第十方面,在上述电子膨胀阀中,所述止位机构包括: 形成在所述心轴的外周以与所述心轴一体地旋转的螺旋导轨; 能够沿着所 述螺旋导轨滑动的滑环; 以及用于引导所述滑环沿轴向平移的导向件。
[83] 根据本发明的第十一方面, 在上述电子膨胀阀中, 所述螺旋导轨包 括螺旋导轨部、 用作上止位部的第一端和用作下止位部的第二端, 所述滑 环包括螺旋本体部和伸出部, 所述螺旋本体部构造成具有与所述螺旋导轨 部的螺旋构型相匹配的螺旋构型, 以便使得所述螺旋本体部能够以可滑动 的方式支承于所述螺旋导轨部,所述螺旋本体部构造成具有抵接端,并且, 所述伸出部构造成能够与所述螺旋导轨的所述第一端抵接, 而所述抵接端 构造成能够与所述螺旋导轨的所述第二端抵接。
[84] 根据本发明的第十二方面, 提供一种装配如上所述的电子膨胀阀的 芯部结构体的方法, 包括以下步骤: 在所述中间构件暂时未与所述套筒和 所述支撑组件中的未形成有所述第二防旋转结构的一者过盈配合的状态 下,使所述阀针组件的所述套筒与所述转子组件的所述心轴不受约束地螺 紋连接, 直至所述芯部结构体的基准轴向长度达到预定基准轴向长度; 以 及使所述中间构件与所述套筒和所述支撑组件中的未形成有所述第二防 旋转结构的一者过盈配合。
[85] 根据本发明的第十三方面, 提供一种装配如上所述的电子膨胀阀的 芯部结构体的方法, 包括: 在所述中间构件已与所述套筒和所述支撑组件 中的未形成有所述第二防旋转结构的一者过盈配合的状态下, 强制地使 所述阀针组件的所述套筒与所述转子组件的所述心轴螺紋连接,直至所述 芯部结构体的基准轴向长度达到预定基准轴向长度。
[86] 根据本发明的第十四方面, 在上述电子膨胀阀中, 所述电子膨胀阀 设置有用于限制所述转子组件的旋转范围的止位机构, 所述止位机构包 括形成在所述心轴的外周以与所述心轴一体地旋转的螺旋导轨、能够沿着 所述螺旋导轨滑动的滑环、 以及用于引导所述滑环沿轴向平移的导向件, 并且, 所述方法是在使所述止位机构的所述滑环保持处于预定位置的状态 下执行的。
[87] 根据本发明的第十五方面, 在上述方法中, 所述滑环的所述预定位 置是所述滑环的下止位位置或上止位位置。
[88] 在本申请文件中, 方位术语 "上"、 "下"和 "上方"等的使用仅仅出 于便于描述的目的, 而不应视为是限制性的。
[89]总之, 尽管文中已详细描述本发明, 但是应当理解本发明并不局限于 文中详细描述和示出的具体实施方式 /示例 /变型。 在不偏离本发明的实质 和范围的情况下可由本领域技术人员实现进一步的变型和变体。 所有这些 变型和变体都落入本发明的范围内。 另外, 所有在此描述的构件 /部件都可 以由其它技术性上等同的构件 /部件来代替。

Claims

权利要求书
1. 一种电子膨胀阀 (10A), 所述电子膨胀阀 (10A)包括芯部结构体 ( 50A ), 所述芯部结构体( 50A )包括:
阀针组件 ( 140A ), 所述阀针组件( 140A)包括套筒( 142A, 142B ) 和阀针( 144A);
转子组件 ( 340A ), 所述转子组件 ( 340A )包括心轴( 320A ), 所述 心轴( 320A) 与所述套筒 ( 142A, 142B )螺纹连接;
支撑组件 ( 500A ); 以及
中间构件( 5022A, 1428B ), 所述中间构件( 5022A, 1428B )置于 所述套筒 ( 142A, 142B) 与所述支撑组件 ( 500A )之间,
其中, 所述中间构件 ( 5022A, 1428B)在一侧设置有第一防旋转 结构, 所述套筒 ( 142A, 142B) 和所述支撑组件( 500A ) 中的一者设 置有第二防旋转结构, 所述第一防旋转结构与所述第二防旋转结构配 合, 从而使得所述阀针组件(140A)随着所述转子组件( 340A)的旋转 而能够相对于所述支撑组件(500A)进行轴向运动但是不能进行旋转运 动。
2.根据权利要求 1所述的电子膨胀阀 (10A), 其中, 所述中间构件 ( 5022A )呈环体并在内周处设置有所述第一防旋转结构, 并且所述第 二防旋转结构设置在所述套筒 ( 142A)处。
3.根据权利要求 2所述的电子膨胀阀 (10A), 其中, 所述中间构件 ( 5022A )在外周处与所述支撑组件 ( 500A )过盈配合, 使得在所述芯 部结构体(50A) 的装配期间所述中间构件( 5022A) 能够借助旋拧工具 相对于所述支撑组件 ( 500A )旋转、 但是在所述电子膨胀阀 (10A) 的运 行期间所述中间构件 ( 5022A) 不会相对于所述支撑组件 ( 500A )旋转。
4.根据权利要求 2或 3所述的电子膨胀阀 ( 10A), 其中, 所述中间 构件( 5022A )的外周设置为非圆形或多面体外周而所述支撑组件 ( 500A ) 的用于容纳所述中间构件( 5022A) 的孔的内周设置为圆形内周, 或者, 所述中间构件( 5022A) 的外周设置为圆形外周而所述支撑组件 ( 500A ) 的用于容纳所述中间构件( 5022A) 的孔的内周设置为非圆形或多面体内 周。
5.根据权利要求 1所述的电子膨胀阀 (10A), 其中, 所述中间构件 ( 1428B ) 呈环体并在外周处设置有所述第一防旋转结构, 并且所述第 二防旋转结构设置在所述支撑组件 ( 500A )处。
6.根据权利要求 5所述的电子膨胀阀 (10A), 其中, 所述中间构件 ( 1428B )在内周处与所述套筒 ( 142B) 过盈配合, 使得在所述芯部结 构体( 50A)的装配期间所述套筒( 142B )能够借助旋拧工具相对于所述 中间构件 ( 1428B)旋转、 但是在所述电子膨胀阀 (10A) 的运行期间所 述套筒 ( 142B) 不会相对于所述中间构件( 1428B)旋转。
7.根据权利要求 5或 6所述的电子膨胀阀 ( 10A), 其中, 所述套筒 ( 142B )的下部区段 ( 1422B )的外周设置为非圆形或多面体外周。
8.根据权利要求 1、 2、 3、 5和 6中任一项所述的电子膨胀阀( 10A), 其中, 所述中间构件( 5022A, 1428B)的所述第一防旋转结构是非圆形 或多面体结构、 或者是键 -键槽结构。
9.根据权利要求 1、 2、 3、 5和 6中任一项所述的电子膨胀阀( 10A), 其中, 所述电子膨胀阀 (10A)还设置有用于限制所述转子组件( 340A) 的旋转范围的止位机构 ( 350A )o
10.根据权利要求 9所述的电子膨胀阀 (10A), 其中, 所述止位 ¾ ( 350A ) 包括: 形成在所述心轴( 320A) 的外周以与所述心轴( 320A) 一体地旋转的螺旋导轨; 能够沿着所述螺旋导轨滑动的滑环(352A); 以 及用于引导所述滑环(352A)沿轴向平移的导向件。
11.根据权利要求 10所述的电子膨胀阀 (1 ), 其中
所述螺旋导轨包括螺旋导轨部、 用作上止位部的第一端和用作下止位 部的第二端,
所述滑环( 352A ) 包括螺旋本体部和伸出部, 螺旋构型, 以便使得所述螺旋本体部能够以可滑动的方式支承于所述螺旋 导轨部,
所述螺旋本体部构造成具有抵接端,
并且, 所述伸出部构造成能够与所述螺旋导轨的所述第一端抵接, 而 所述抵接端构造成能够与所述螺旋导轨的所述第二端抵接。
12. 一种装配如权利要求 1至 11中任一项所述的电子膨胀阀 ( 10A ) 的芯部结构体(50A ) 的方法, 包括以下步骤:
在所述中间构件( 5022A, 1428B )暂时未与所述套筒( 142A, 142B ) 和所述支撑组件( 500A )中的未形成有所述第二防旋转结构的一者过盈 配合的状态下, 使所述阀针组件 ( 140A )的所述套筒 (142A, 142B )与 所述转子组件 ( 340A ) 的所述心轴( 320A )不受约束地螺纹连接, 直至 所述芯部结构体(50A ) 的基准轴向长度 ( C )达到预定基准轴向长度; 以及
使所述中间构件( 5022A, 1428B ) 与所述套筒 ( 142A, 142B ) 和 所述支撑组件(500A )中的未形成有所述第二防旋转结构的一者过盈配 合。
13. 一种装配如权利要求 1至 11中任一项所述的电子膨胀阀 ( 10A ) 的芯部结构体(50A ) 的方法, 包括: 在所述中间构件( 5022A, 1428B ) 已与所述套筒 ( 142A, 142B ) 和所述支撑组件( 500A ) 中的未形成有 所述第二防旋转结构的一者过盈配合的状态下, 强制地使所述阀针组件 ( 140A )的所述套筒(142A, 142B )与所述转子组件 ( 340A ) 的所述心 轴( 320A )螺纹连接, 直至所述芯部结构体( 50A )的基准轴向长度 ( C ) 达到预定基准轴向长度。
14.根据权利要求 12或 13所述的方法, 其中
所述电子膨胀阀 (10A )设置有用于限制所述转子组件 ( 340A ) 的 旋转范围的止位机构 ( 350A ), 所述止位机构 ( 350A ) 包括形成在所述心 轴( 320A ) 的外周以与所述心轴( 320A )—体地旋转的螺旋导轨、 能够 沿着所述螺旋导轨滑动的滑环( 352A ), 以及用于引导所述滑环( 352A ) 沿轴向平移的导向件,
并且, 所述方法是在使所述止位机构 ( 350A )的所述滑环( 352A )保 持处于预定位置的状态下执行的。
15.根据权利要求 14所述的方法, 其中, 所述滑环(352A )的所述预 定位置是所述滑环(352A )的下止位位置或上止位位置。
PCT/CN2013/088063 2012-12-07 2013-11-28 电子膨胀阀及其芯部结构体的装配方法 WO2014086244A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210523500.4 2012-12-07
CN2012206723975U CN202971946U (zh) 2012-12-07 2012-12-07 电子膨胀阀
CN201220672397.5 2012-12-07
CN201210523500.4A CN103851209B (zh) 2012-12-07 2012-12-07 电子膨胀阀及其芯部结构体的装配方法

Publications (1)

Publication Number Publication Date
WO2014086244A1 true WO2014086244A1 (zh) 2014-06-12

Family

ID=50882811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088063 WO2014086244A1 (zh) 2012-12-07 2013-11-28 电子膨胀阀及其芯部结构体的装配方法

Country Status (1)

Country Link
WO (1) WO2014086244A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107278068A (zh) * 2016-04-07 2017-10-20 艾默生(北京)仪表有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298077A (ja) * 1985-10-23 1987-05-07 Tokyo Sokuhan Kk 液量制御弁
US4911404A (en) * 1989-07-28 1990-03-27 Sporlan Valve Company Electronically operated expansion valve
JP2003227575A (ja) * 2002-02-01 2003-08-15 Saginomiya Seisakusho Inc 電動流量制御弁
CN101517292A (zh) * 2006-09-27 2009-08-26 三浦工业株式会社 针阀
CN101788073A (zh) * 2009-01-22 2010-07-28 株式会社不二工机 电动阀
CN202971946U (zh) * 2012-12-07 2013-06-05 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298077A (ja) * 1985-10-23 1987-05-07 Tokyo Sokuhan Kk 液量制御弁
US4911404A (en) * 1989-07-28 1990-03-27 Sporlan Valve Company Electronically operated expansion valve
JP2003227575A (ja) * 2002-02-01 2003-08-15 Saginomiya Seisakusho Inc 電動流量制御弁
CN101517292A (zh) * 2006-09-27 2009-08-26 三浦工业株式会社 针阀
CN101788073A (zh) * 2009-01-22 2010-07-28 株式会社不二工机 电动阀
CN202971946U (zh) * 2012-12-07 2013-06-05 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107278068A (zh) * 2016-04-07 2017-10-20 艾默生(北京)仪表有限公司 电子设备

Similar Documents

Publication Publication Date Title
JP5315300B2 (ja) 電動膨張弁
JP5510686B2 (ja) 電動弁及びその止め装置
WO2014023014A1 (zh) 一种电子膨胀阀
CN208519284U (zh) 一种电动阀
JP6542806B2 (ja) 電動弁
KR101458424B1 (ko) 전동밸브
CN208252794U (zh) 一种电动阀
US11002371B2 (en) Flow control switch valve
JP4659514B2 (ja) 電動式コントロールバルブ
JP2007024274A (ja) 弁装置
WO2019179516A1 (zh) 电子膨胀阀
WO2014086244A1 (zh) 电子膨胀阀及其芯部结构体的装配方法
WO2019179518A1 (zh) 电子膨胀阀
CN110345267A (zh) 一种电动阀
CN103851209B (zh) 电子膨胀阀及其芯部结构体的装配方法
WO2000064034A1 (fr) Arbre de moteur pour moteur de conversion de rotation/action directe et procede de fabrication de l'arbre de moteur
CN202971946U (zh) 电子膨胀阀
JP6791508B2 (ja) 電動弁
WO2018133487A1 (zh) 丝杆传动装置及电动车门锁
JP5424919B2 (ja) 電動弁
WO2012109993A1 (zh) 一种电子膨胀阀
CN104696581A (zh) 止位机构和电子膨胀阀
CN203641643U (zh) 止位机构和电子膨胀阀
JP2003222260A (ja) 電動式制御弁
JP4267505B2 (ja) 流量調節弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860842

Country of ref document: EP

Kind code of ref document: A1