WO2014082530A1 - 电控多模式转向阀、转向液控系统以及轮式起重机 - Google Patents

电控多模式转向阀、转向液控系统以及轮式起重机 Download PDF

Info

Publication number
WO2014082530A1
WO2014082530A1 PCT/CN2013/087187 CN2013087187W WO2014082530A1 WO 2014082530 A1 WO2014082530 A1 WO 2014082530A1 CN 2013087187 W CN2013087187 W CN 2013087187W WO 2014082530 A1 WO2014082530 A1 WO 2014082530A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
steering
ports
mode
electromagnetic reversing
Prior art date
Application number
PCT/CN2013/087187
Other languages
English (en)
French (fr)
Inventor
史先信
丁宏刚
叶海翔
方新
张付义
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to RU2015111565/06A priority Critical patent/RU2604466C1/ru
Priority to EP13858490.9A priority patent/EP2927094B1/en
Priority to CA2881103A priority patent/CA2881103C/en
Priority to AU2013351662A priority patent/AU2013351662B2/en
Priority to BR112015006338A priority patent/BR112015006338A2/pt
Priority to IN1007DEN2015 priority patent/IN2015DN01007A/en
Publication of WO2014082530A1 publication Critical patent/WO2014082530A1/zh
Priority to US14/706,598 priority patent/US9533704B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0446Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with moving coil, e.g. voice coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/09Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by means for actuating valves
    • B62D5/091Hydraulic steer-by-wire systems, e.g. the valve being actuated by an electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/20Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0846Electrical details
    • F15B13/085Electrical controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/09Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by means for actuating valves
    • B62D5/091Hydraulic steer-by-wire systems, e.g. the valve being actuated by an electric motor
    • B62D5/092Hydraulic steer-by-wire systems, e.g. the valve being actuated by an electric motor the electric motor being connected to the final driven element of the steering gear, e.g. rack

Definitions

  • the invention relates to the field of engineering machinery, in particular to an electronically controlled multi-mode steering valve, a steering hydraulic control system and a wheeled crane. Background technique
  • the multi-mode steering here refers to the various steering modes of the vehicle.
  • Common steering modes are: front axle (front group) independent steering, rear axle (rear group) independent, small turning (also called coordinated) steering, crab steering, etc. .
  • front axle front group
  • rear axle rear group
  • small turning also called coordinated
  • crab steering etc.
  • the steering directions of the front and rear wheels are reversed, so that the minimum turning radius can be achieved, so it is called a small turning steering.
  • the crab is turning, the steering directions of the front and rear wheels are the same, which can be realized.
  • the crab walks like a sport, so it is said that the crab line is turning.
  • Figure 1 shows a schematic diagram of four common steering modes.
  • the implementation of this multi-mode steering is generally manual and electronically controlled.
  • a manually controlled multi-mode steering valve is generally available.
  • the steering principle of a multi-mode steering valve is shown in Figure 2.
  • the hydraulic steering gear a3 When the driver operates the steering wheel a4, the hydraulic steering gear a3 outputs the hydraulic oil supplied from the steering pump from the A port or the B port according to the left and right rotation of the steering wheel, and then enters the front group steering cylinder a1 and the rear through the multi-mode steering valve a2 connected in series.
  • the group turns to the cylinder a5 to push the wheels to rotate left and right.
  • the hydraulic oil output from the steering gear passes only the front group steering cylinder to realize the front axle independent steering function; when the spool of the multi-mode steering valve a2 is on the left side In the second position, the hydraulic oil output from the steering gear sequentially passes through the front group steering cylinder and the rear group steering cylinder to push the wheel to rotate.
  • the front and rear group wheels rotate in opposite directions to realize a small turning steering function;
  • the multi-mode steering valve a2 When the spool is in the third position on the left side, the hydraulic oil output from the steering gear is only After the rear group steering cylinder, the rear axle independent steering function is realized;
  • the spool of the multi-mode steering valve a2 is in the fourth position on the left side, the hydraulic oil output from the steering gear passes through the front group steering cylinder and the rear group steering cylinder in turn, pushing the wheel Rotating, at this time, the front and rear group wheels rotate in the same direction to realize the crab steering function.
  • the electro-hydraulic proportional control and the solenoid valve control can be used for the electronic control mode.
  • the principle of the electro-hydraulic proportional control multi-mode steering system is shown in Figure 3.
  • the front group of wheels is controlled by the driver by steering the steering wheel.
  • the rotation angle of each wheel outputs different electric signals according to the rotation angle of a certain wheel of the front group and the steering mode selected by the driver through the program set in the controller, thereby controlling the opening degree of the electro-hydraulic proportional valve and the flow rate of the hydraulic oil.
  • the steering cylinder is driven to rotate the wheel according to the driver's intention to realize the multi-mode steering function.
  • the corners of the wheels are detected by an encoder on the axle.
  • the principle of the parallel multi-mode steering scheme controlled by the solenoid valve is shown in Figure 4.
  • the valve position switching of the solenoid valve is used to perform multi-mode selection.
  • the shunting and collecting valve is used to realize the parallel operation of the front and rear axle cylinders.
  • the three existing multi-mode steering schemes given above have some degree of defects.
  • the manually operated multi-mode steering valve shown in FIG. 2 is switched to the small turning and the crab steering position (ie, the valve body is in the second position and the fourth position on the left side), the front and rear group steering hydraulic cylinders Forming a series structure, when the pressure provided by the hydraulic system pushes the front axle to steer, the remaining pressure can also push the rear axle to turn, which will cause the pressure of the front group steering cylinder to be too large, and the sealing requirement is high, and at the same time
  • the manually operated switching valve itself has a complicated structure, and the spool function is special, so the cost is high.
  • the double-split parallel multi-mode steering valve shown in Fig. 4 uses two shunt collector valves, which causes a large system pressure loss.
  • the oil output through the steering gear only partially flows into the front (rear) group steering cylinder, and half or more of the oil is wasted, and at the same time,
  • the diverter manifold cannot achieve normal shunt due to less oil output from the diverter, and it is prone to small angle steering without action, while at high speed, it often needs small The angle corrects the direction, so this defect will seriously affect driving safety.
  • the object of the present invention is to provide an electronically controlled multi-mode steering valve, a steering hydraulic control system and a wheeled crane, which can realize multi-mode steering of an engineering vehicle, and is reliable in operation and low in cost.
  • the present invention provides an electronically controlled multi-mode steering valve, comprising: a split manifold, a first electromagnetic reversing valve, and a second electromagnetic reversing valve, the valve body of the electronically controlled multi-mode steering valve
  • the valve port includes four sets of valves, the split flow collecting valve has a collecting port, a first dividing port and a second dividing port, and the first electromagnetic reversing valve and the second electromagnetic reversing valve each have a first oil a first port, a second port, and a third port, wherein the first ports of the first electromagnetic reversing valve and the second electromagnetic reversing valve are respectively in communication with the first group of valve ports of the valve body, a second port of the electromagnetic reversing valve and the second electromagnetic reversing valve respectively communicate with a second group of valve ports of the valve body, a third port of the first electromagnetic reversing valve and the diverter set a flow port of the flow valve is communicated, and a first branch port of the split flow valve and
  • the electronically controlled multi-mode steering valve has a first electric power by switching a first working mode and a second working mode realized by the magnetic reversing valve and the second electromagnetic reversing valve, in the first working mode, the first set of valve ports of the valve body and the second set of valves
  • the oil port is in communication; in the second working mode, the first group of valve ports of the valve body are in communication with the third group of valve ports and the fourth group of valve ports.
  • a third electromagnetic reversing valve is further provided, the third electromagnetic reversing valve has two pairs of oil ports, the second diversion port of the diverting flow collecting valve and the second electromagnetic reversing valve The three oil ports are respectively communicated with the first group of oil ports of the third electromagnetic reversing valve, and the second group of oil ports of the third electromagnetic reversing valve are communicated with the fourth group of valve ports of the valve body .
  • the electronically controlled multi-mode steering valve further has a third working mode realized by switching the first electromagnetic reversing valve, the second electromagnetic reversing valve and the third electromagnetic reversing valve, in the third working In the mode, the first group of valve ports of the valve body are in communication with the third group of valve ports and the fourth group of valve ports, and the first group of valve ports and the fourth group of valve oils The direction of oil flow in the port is different from the direction of oil flow in the second mode of operation.
  • the fourth electromagnetic reversing valve has two pairs of oil ports, the first group of valve body ports of the valve body and the fourth electromagnetic reversing valve The first group of ports communicates with each other, and the second group of ports of the fourth electromagnetic reversing valve are respectively in communication with the first ports of the first electromagnetic reversing valve and the second electromagnetic reversing valve.
  • the electronically controlled multi-mode steering valve further has a fourth working mode realized by switching the first electromagnetic reversing valve, the second electromagnetic reversing valve and the fourth electromagnetic reversing valve, in the fourth work
  • the first group of valve ports of the valve body communicate with the second group of valve ports
  • the oil flow direction of the first group of valve ports and the second group of valve ports The direction of oil flow in the first mode of operation is different.
  • first electromagnetic reversing valve and the second electromagnetic reversing valve are both Three-way electromagnetic reversing valve.
  • the third electromagnetic reversing valve and the fourth electromagnetic reversing valve are two-position four-way electromagnetic steering valves.
  • the present invention provides a steering hydraulic control system comprising: a steering wheel, a full hydraulic steering gear, a safety valve group, a first group of independent steering cylinders and a second group of independent steering cylinders, the full hydraulic steering gear having The two groups of oil ports, the first group of oil ports of the full hydraulic steering gear respectively establish a system circuit with the pressure circuit and the oil return circuit, and further comprising the aforementioned electronically controlled multi-mode steering valve, the electronically controlled multi-mode steering valve a first set of valve ports of the valve body communicate with a second set of ports of the full hydraulic steering gear, a second set of valve ports of the valve body of the electronically controlled multi-mode steering valve and the first set of independent steering
  • the cylinders are in communication, and the third group of valve ports and the fourth group of valve ports of the valve body of the electronically controlled multi-mode steering valve are independently steered by the safety valve group and the first group of independent steering cylinders and the second group respectively The cylinders are connected.
  • the present invention provides a wheeled crane comprising: a vehicle body and a cab, the vehicle body having two sets of wheels, the cab being provided with a steering wheel and a multi-mode electronically controlled selector switch, wherein
  • the steering wheel is connected to a full hydraulic steering gear in the steering hydraulic control system, and the two sets of wheels are respectively associated with a first set of independent steering cylinders and a second group in the steering hydraulic control system
  • An independent steering cylinder is connected, and the multi-mode electronically controlled selector switch is connected to an electromagnetic reversing valve in the electronically controlled multi-mode steering valve in the steering hydraulic control system, and the multi-mode electronically controlled selector switch selects different working modes by The electromagnetic reversing valve in the electronically controlled multi-mode steering valve issues a corresponding switching signal.
  • the electronically controlled multi-mode steering valve of the present invention realizes switching between two modes of independent commutation and non-independent commutation through the first electromagnetic reversing valve and the second electromagnetic reversing valve, and is driven in a non-independent manner.
  • the input of the pressure oil is adjusted to the parallel input of the two independent steering cylinders through the diverting flow collecting valve, so that the steering pressures of the two independent steering cylinders do not affect each other, and the existing two sets of cylinder pressure series structure are avoided.
  • the accumulated pressure caused by the lowering effectively reduces the pressure of the steering system and improves the reliability of the system.
  • the pressure oil does not need to pass through the diverter manifold, and all flows into one of the independent steering cylinders, thus avoiding
  • the existing oil waste by the silent split flow collecting valve method also avoids the phenomenon that the small angle steering cannot be corrected, and effectively improves the system energy utilization and driving safety.
  • the electronically controlled multi-mode steering valve of the invention is relatively simple in structure realization, and the required electromagnetic reversing valve and the diverting manifold are all conventional valve members, which are easy to obtain and low in cost.
  • a third electromagnetic reversing valve is added to the electronically controlled multi-mode steering valve, and the direction of the pressure oil respectively input to the two independent steering cylinders is changed by the third electromagnetic reversing valve to realize non-independent replacement.
  • the fourth electromagnetic reversing valve is added to the electronically controlled multi-mode steering valve.
  • the front wheel steering mode is automatically switched to the rear wheel steering mode, and the fourth electromagnetic reversing mode is utilized.
  • the valve can switch the direction of entry of the pressure oil in the independent commutation mode to conform to the operating habits of the driver in reverse driving.
  • Figure 1 shows a schematic diagram of four common steering modes.
  • FIG. 2 is a schematic diagram of the steering principle of the existing manual control multi-mode steering valve.
  • Figure 3 is a schematic diagram of the steering principle of the multi-mode steering system of the prior electro-hydraulic proportional control.
  • Figure 4 is a schematic illustration of the steering principle of a parallel multi-mode steering scheme controlled by a prior art solenoid valve.
  • Figure 5 is a schematic view showing the structure of the first embodiment of the electronically controlled multi-mode steering valve of the present invention.
  • Fig. 6 is a schematic structural view of a steering hydraulic control system to which the embodiment of Fig. 5 is applied.
  • Figure 7 is a schematic view showing the structure of a second embodiment of the electronically controlled multi-mode steering valve of the present invention.
  • Fig. 8 is a schematic view showing the structure of a steering hydraulic control system to which the embodiment of Fig. 7 is applied.
  • Figure 9 is a schematic view showing the structure of a third embodiment of the electronically controlled multi-mode steering valve of the present invention.
  • Figure 10 is a schematic view showing the structure of a steering hydraulic control system to which the embodiment of Figure 9 is applied. detailed description
  • the electrically controlled multi-mode steering valve includes: a split manifold Y, a first electromagnetic reversing valve Y1, and a second electromagnetic reversing valve ⁇ 2.
  • the valve body of the electronically controlled multi-mode steering valve comprises four pairs of valve ports, the split collecting valve ⁇ has a collecting port, a first dividing port and a second dividing port, the first electromagnetic reversing valve Y1 and the second electromagnetic switching
  • the valve port 2 has a first port, a second port, and a third port.
  • the first ports of the first electromagnetic reversing valve Y1 and the second electromagnetic reversing valve ⁇ 2 respectively communicate with the first group of valve ports [P R , PiJ of the valve body, the first electromagnetic reversing valve Y1 and the second electromagnetic exchange
  • the second port of the valve Y2 is respectively communicated with the second group of valve ports [Al, Bl] of the valve body
  • the third port of the first electromagnetic reversing valve Y1 is in communication with the collecting port of the diverting collecting valve Y
  • the first split port of the split collecting valve Y and the third port of the second electromagnetic reversing valve Y2 are respectively communicated with the third group of valve ports [A2, B2] of the valve body, and the second split of the split collecting valve Y
  • the third port of the port and the second reversing valve Y2 are respectively in communication with the fourth group of valve ports [A3, B3] of the valve body.
  • the first electromagnetic reversing valve and the second electromagnetic reversing valve are used to perform
  • the selection of the working mode is switched, and the splitting and collecting functions of the splitting and collecting valve are used to realize the proportional distribution of the oil, thereby realizing the steering function of various modes.
  • a two-position three-way electromagnetic directional control valve can be selected.
  • the electronically controlled multi-mode steering valve of the embodiment is installed in the steering hydraulic control system, at least two types of operation modes can be switched, wherein the two working modes can be switched by switching the first electromagnetic reversing valve and the second electromagnetic The reversing valve is implemented.
  • the first set of valve ports [P R , PxJ of the valve body communicate with the second set of valve ports [Al, Bl]. It can be seen from Fig. 5 that at this time, the first electromagnetic reversing valve Y1 and the second electromagnetic reversing valve Y2 are not energized, the valve port is? ! ⁇ Directly connected to A1, and the valve port PL is directly connected to B1. At this time, the pressurized oil can flow into the independent steering cylinder in the steering hydraulic control system directly through the electronically controlled multi-mode steering valve.
  • the first set of valve ports [P R , PxJ of the valve body are in communication with the third set of valve ports [A2, B2] and the fourth set of valve ports [A3, B3]. It can be seen from Fig. 5 that at this time, both the first electromagnetic reversing valve Y1 and the second electromagnetic reversing valve Y2 need to be powered, so that the valve port is so? !
  • the electronically controlled multi-mode steering valve can lead two oil paths, which are respectively connected to two sets of independent steering cylinders of the steering hydraulic control system, thereby coordinating the two independent groups.
  • the steering cylinder is steered.
  • the steering mode can be either a crab steering or a small turning steering mode. This is related to the third group of valve ports [A2, B2] and the fourth group of valve ports [A3, B3] and two groups respectively.
  • the connection mode of the independent steering cylinder is related.
  • a new electromagnetic reversing valve may be added for switching, and the electromagnetic reversing valve may be disposed outside the electronically controlled multi-mode steering valve of the embodiment.
  • the function can also be further integrated with the electronically controlled multi-mode steering valve of the present embodiment.
  • Figure 7 is a schematic view showing the structure of a second embodiment of the electronically controlled multi-mode steering valve of the present invention.
  • the embodiment also integrates a third electromagnetic reversing valve Y3 in the electronically controlled multi-mode steering valve, and the third electromagnetic reversing valve ⁇ 3 has two pairs of oil ports, and the diverting collecting valve ⁇
  • the third port of the second split port and the second electromagnetic reversing valve ⁇ 2 respectively communicate with the first group of ports of the third electromagnetic reversing valve ⁇ 3, and then pass through the second group of ports of the third electromagnetic reversing valve ⁇ 3
  • the fourth set of valve ports [A3, ⁇ 3] of the valve body are connected.
  • the electronically controlled multi-mode steering valve of the embodiment is installed in the steering hydraulic control system, at least three types of operation modes can be switched, in addition to the two working modes in the first embodiment described above, Further implement the third mode of operation.
  • the switching of the third working mode and the second working mode is achieved by the third electromagnetic reversing valve.
  • the first set of valve ports [P R , P L ] of the valve body are in communication with the third group of valve ports [A2, B2] and the fourth group of valve ports [A3, B3], And the oil flow direction of the first group of valve ports [P R , P L ] and the fourth group of valve ports [A3, B3] is different from the direction of oil flow in the second working mode.
  • both the first electromagnetic reversing valve Y1 and the second electromagnetic reversing valve Y2 need to be energized, and the third electromagnetic reversing valve Y3 is not energized, such that the valve
  • the port P R is connected to the valve ports A2 and A3 through the diverter manifold Y, respectively, and the third port of the second electromagnetic reversing valve Y2 is connected to the port ports B2 and B3 respectively, and when switching to the third working mode
  • the third electromagnetic reversing valve Y3 is energized, at this time, the valve port P R is connected to the valve port A2 and B3 through the diverting collecting valve Y, respectively, and the third port of the second electromagnetic reversing valve Y2 is respectively connected with the valve Ports B2 and A3 are connected. In this way, the flow direction of the oil is changed by the third electromagnetic reversing
  • the above two embodiments adopt the structure of a single-split collecting valve, and the same split-current collecting function can be realized compared with the existing double-split collecting valve structure. It is also possible to further reduce the loss of oil pressure by the split flow collecting valve and improve the portability of the steering.
  • the front axle independent steering mode and the rear axle independent steering mode are switched, but there is also a problem that the steering direction controlled by the driver is opposite to the actual steering direction, and does not conform to the driver's operating habits.
  • a new electromagnetic reversing valve can be added to switch the oil direction.
  • the electromagnetic directional control valve may be disposed outside the electronically controlled multi-mode steering valve of the present embodiment, or may be further integrated with the electronically controlled multi-mode steering valve of the present embodiment.
  • FIG. 9 is a schematic structural view of a third embodiment of the electronically controlled multi-mode steering valve of the present invention. Compared with the second embodiment, the embodiment is further provided in the electronically controlled multi-mode steering valve
  • the fourth electromagnetic reversing valve Y4 is integrated, and the fourth electromagnetic reversing valve ⁇ 4 has two pairs of oil ports, the first group of valve body ports of the valve body [P R , and the first of the fourth electromagnetic reversing valve Y4 The group ports are communicated, and the second group of ports of the fourth electromagnetic reversing valve Y4 are respectively communicated with the first ports of the first electromagnetic reversing valve Y1 and the second electromagnetic reversing valve Y2.
  • the fourth operational mode can be realized by switching the first electromagnetic reversing valve, the second electromagnetic reversing valve, and the fourth electromagnetic reversing valve.
  • the first set of valve ports [P R , P L ] of the valve body communicate with the second set of valve ports [Al, Bl], and the first set of valve ports [P R , PiJ and
  • the oil flow direction of the second group of valve ports [Al, Bl] is different from the direction of oil flow in the first mode of operation. It can be seen from FIG.
  • valve port P R It is in communication with the valve port A1, and the valve port P L is in communication with the valve port B1, and in the fourth mode of operation, the first electromagnetic reversing valve and the second electromagnetic reversing valve are not energized, and the fourth electromagnetic exchange The valve is energized.
  • the valve port PL communicates with the valve port A1
  • the valve port P R communicates with the valve port B1. This changes the flow direction of the pressurized oil in the valve body, so that when the construction vehicle is driving in the reverse direction, it can still meet the driver's operating habits.
  • the third electromagnetic reversing valve and the fourth electromagnetic reversing valve may each select a two-position four-way electromagnetic steering valve according to the required port and function.
  • Fig. 6 is a schematic structural view of the steering hydraulic control system using the embodiment of Fig. 5.
  • the steering hydraulic control system includes a full hydraulic steering gear 2, a safety valve group 4, a first independent steering cylinder 5, a second independent steering cylinder 6, and an electronically controlled multi-mode steering valve shown in Fig. 5.
  • the full hydraulic steering gear 2 has two sets of oil ports, and the first group of oil ports of the full hydraulic steering gear 2 respectively establish a system circuit with the pressure circuit and the oil return circuit.
  • the first set of valve ports and full hydraulic steering of the valve body of the electronically controlled multi-mode steering valve 3 The second group of ports of the device 2 communicates with each other, and the second group of valve ports of the valve body communicate with the first group of independent steering cylinders 5, and the third group of valve ports of the valve body and the fourth group of valve ports respectively pass through the safety valve group 4 communicates with the first set of independent steering cylinders 5 and the second set of independent steering cylinders 6.
  • the safety valve group 4 is used to protect the oil cylinder to avoid excessive pressure, and the function of replenishing the oil cylinder can also be considered.
  • the safety valve group 4 can adopt various existing structures. Implementation, and not the focus of the discussion of the present invention, this will not repeat its structure.
  • the third electromagnetic reversing valve 9 can be added between the electronically controlled multi-mode steering valve 3 and the second group of independent steering cylinders 6, and in order to reverse driving in the construction vehicle
  • the fourth electromagnetic reversing valve 10 can be added between the full hydraulic steering gear 2 and the electronically controlled multi-mode steering valve 3.
  • Fig. 8 is a schematic structural view of the steering hydraulic control system using the embodiment of Fig. 7.
  • the third electromagnetic reversing valve 9 is integrated in the electronically controlled multi-mode steering valve 3 as compared with the steering hydraulic control system shown in FIG.
  • Fig. 10 is a schematic structural view of the steering hydraulic control system using the embodiment of Fig. 9.
  • the third electromagnetic reversing valve 9 and the fourth electromagnetic reversing valve 10 are integrated in the electrically controlled multi-mode steering valve 3 as compared with the steering hydraulic control system shown in FIG.
  • This electronically controlled multi-mode steering valve has a high degree of integration and is more practical for the user.
  • valve members used in the above various electronically controlled multi-mode steering valve embodiments can adopt general-purpose conventional valve members, have mature technology, reliable operation, and relatively low price.
  • each electromagnetic reversing valve of the electronically controlled multi-mode steering valve is electrically switched to lose power reset. Even if a circuit failure occurs during the working process, the spool will automatically reset under the action of the spring to restore the independent steering function of the front wheel. , to ensure the safety of driving.
  • the above embodiments of the steering hydraulic control system are applicable to various types of engineering vehicles, and are particularly suitable for use in a wheeled crane.
  • the vehicle body and the cab (both not shown) and the steering fluid may be included. Control system, the car body has two sets of wheels
  • the steering wheel is equipped with a steering wheel 1 and multi-mode electronic control selector switch (not shown).
  • the steering wheel 1 is connected to the hydraulic steering gear 2 in the steering hydraulic control system, and the two sets of wheels 7, 8 are respectively connected to the first independent steering cylinder 5 and the second independent steering cylinder 6 in the steering hydraulic control system, multi-mode electric
  • the control selection switch is connected with the electromagnetic reversing valve in the electronically controlled multi-mode steering valve in the steering hydraulic control system, and the multi-mode electronically controlled selector switch selects the electromagnetic reversing valve in the electronically controlled multi-mode steering valve by selecting different working modes. Send the corresponding switching signal.
  • the first group of oil ports of the full hydraulic steering gear 2 establishes a system circuit with the pressure circuit and the oil return circuit, and the flow direction of the pressure oil can be switched by operating the steering wheel 1 according to actual needs.
  • the default working mode is the front axle independent steering mode. In this mode, all the electromagnetic reversing valves in the electronically controlled multi-mode steering valve are not energized. At this time, the pressure oil is from the full hydraulic steering gear 2 through the electronic control.
  • the mode steering valve 3 flows into the first group of independent steering cylinders 5, and the front axle independent steering mode is realized in the forward direction shown in the drawing.
  • the electromagnetic reversing valves Y1 and ⁇ 2 in the electronically controlled multi-mode steering valve 3 are energized, and the electromagnetic reversing valves Y1 and ⁇ 4 are de-energized.
  • the pressure oil output from the full hydraulic steering gear 2 is passed through
  • the electrically controlled multi-mode steering valve 3 flows into the first set of independent steering cylinders 5 and the second set of independent steering cylinders 6, thereby achieving a small turning steering function.
  • the electromagnetic reversing valves Yl, ⁇ 2, and ⁇ 3 in the electronically controlled multi-mode steering valve 3 are energized, and the electromagnetic reversing valve ⁇ 4 is de-energized.
  • the pressure oil discharged from the full hydraulic steering gear 2 is electrically discharged.
  • the multi-mode steering valve 3 flows into the first set of independent steering cylinders 5 and the second set of independent steering cylinders 6, but the pressurized oil flows into the second set of independent steering
  • the oil direction of the cylinder 6 is opposite to the direction of the oil in the small turning steering mode, thereby realizing the crab steering function.
  • the front wheel of the original vehicle becomes the rear wheel, and the original rear wheel becomes the front wheel. If the direction of the steering gear output oil is not changed, turn the steering wheel to the right (left). The vehicle turns to the left (right), which is very inconsistent with the driver's operating habits. Therefore, when the vehicle is traveling in the reverse direction, the electromagnetic reversing valve Y4 will be energized, thereby changing the direction of the hydraulic output of the full hydraulic steering gear, so that the steering operation in the reverse driving still conforms to the driver's operating habits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Servomotors (AREA)
  • Power Steering Mechanism (AREA)

Abstract

公开了一种电控多模式转向阀,该转向阀包括:分流集流阀(Y)、第一电磁换向阀(Y1)和第二电磁换向阀(Y2),阀体包括四组成对的阀门油口,第一电磁换向阀(Y1)和第二电磁换向阀(Y2)的第一油口分别与阀体的第一组阀门油口(PR,PL)相通,第一电磁换向阀(Y1)和第二电磁换向阀(Y2)的第二油口分别与阀体的第二组阀门油口(A1,B1)相通,第一电磁换向阀(Y1)的第三油口与分流集流阀(Y)的集流口相通,分流集流阀(Y)的第一分流口和第二电磁换向阀(Y2)的第三油口分别与阀体的第三组阀门油口(A2,B2)相通,分流集流阀(Y)的第二分流口和第二换向阀(Y2)的第三油口分别与阀体的第四组阀门油口(A3,B3)相通。还公开了一种转向液控系统和一种轮式起重机。该转向阀能够实现工程车辆的多模式转向,工作可靠,成本较低。

Description

电控多模式转向阀、 转向液控系统以及轮式起重机 技术领域
本发明涉及工程机械领域, 尤其涉及一种电控多模式转向阀、 转向液控系统以及轮式起重机。 背景技术
目前工程车辆为应对复杂的场地条件一般都设有多模式转 向功能。 这里的多模式转向是指车辆的多种转向模式, 常见的转 向形式有: 前桥(前组)独立转向、 后桥(后组)独立、 小转弯 (又称协调)转向、 蟹行转向等。 小转弯转向时, 前组车轮和后 组车轮的转向方向相反, 可以实现最小的转弯半径, 故称小转弯 转向; 蟹行转向时, 前组车轮和后组车轮的转向方向相同, 可以 实现像螃蟹行走一样运动, 故称蟹行转向。 图 1为常见的四种转 向模式示意图。
这种多模式转向的实现形式一般为手动操控和电控操控。对 于手动操控方式, 一般可采用手动控制的多模式转向阀, 使用多 模式转向阀的转向原理如图 2所示。 驾驶员在操作方向盘 a4时, 全液压转向器 a3 根据方向盘的左右转动将转向泵提供的液压油 从 A口或 B口输出, 然后经过串联的多模式转向阀 a2进入前组 转向油缸 al和后组转向油缸 a5, 推动车轮左右转动。
当多模式转向阀 a2的阀芯处于左侧第 1位置时, 从转向器 输出的液压油只经过前组转向油缸, 实现前桥独立转向功能; 当 多模式转向阀 a2的阀芯处于左侧第 2位置时,从转向器输出的液 压油依次经过前组转向油缸、 后组转向油缸, 推动车轮转动, 此 时前后组车轮转动方向相反, 实现小转弯转向功能; 当多模式转 向阀 a2的阀芯处于左侧第 3位置时,从转向器输出的液压油只经 过后组转向油缸, 实现后桥独立转向功能; 当多模式转向阀 a2 的阀芯处于左侧第 4位置时, 从转向器输出的液压油依次经过前 组转向油缸、 后组转向油缸, 推动车轮转动, 此时前后组车轮转 动方向相同, 实现蟹行转向功能。
对于电控操控方式, 目前可采用电液比例控制和电磁阀控制 两种方式, 其中电液比例控制的多模式转向系统的原理参见图 3, 前组车轮由驾驶员通过操纵方向盘控制, 后组各个车轮的转角根 据前组某一车轮的转角大小和驾驶员选择的转向模式通过控制器 中设定的程序来输出不同的电信号,进而控制电液比例阀的开度、 液压油的流量,使转向油缸按照驾驶员的操作意图推动车轮转动, 实现多模式转向功能。 而车轮的转角通过安 * 车桥上的编码器 进行检测。
电磁阀控制的并联多模式转向方案的原理参见图 4, 利用电 磁阀的阀位切换, 进行多模式选择, 通过分流集流阀, 使前后桥 油缸实现并联动作。
上面所给出的三种现有多模式转向方案均存在一定程度的 缺陷。 其中, 图 2所示的手动操控的多模式转向阀在切换到小转 弯和蟹行转向位置 (即阀体处于左侧第 2个位置和第 4个位置 ) 时, 前、 后组转向液压油缸形成一串联结构, 此时液压系统提供 的压力在推动前桥转向后, 剩余的压力还要能推动后桥转向, 这 样会使前组转向油缸的压力过大, 对密封性要求较高, 同时手动 操控的切换阀本身结构复杂, 阀芯机能特殊, 因此成本较高。
图 3所示的电液比例多模式方案中, 车轮转角的准确度、 灵 敏度以及可靠性过于依赖电气元件、 液压元件的精度和可靠性, 一旦电气元件(尤其是编码器、 控制器) 出现故障, 转向系统将 不能按照驾驶员的意图工作,这对于高速行驶车辆是十分危险的。 另外这种控制系统结构相对复杂,需要专业人员操作,检修不便, 成本也相对较高。
图 4示出的双分流并联多模式转向阀由于采用了两个分流集 流阀, 因此会造成系统压损较大。 同时, 在前桥独立转向和后桥 独立转向时, 经转向器输出的油液只有部分流入前(后)组转向 油缸, 有一半或更多的油液被浪费掉了, 与此同时, 当在这两种 模式下进行小角度转向时, 由于转向器输出的油液较少, 分流集 流阀无法实现正常分流, 易出现小角度转向无动作的故障, 而高 速行驶状态下, 经常需要小角度修正方向, 因此该缺陷将严重影 响行车安全。 发明内容
本发明的目的是提出一种电控多模式转向阀、转向液控系统 以及轮式起重机, 能够实现工程车辆的多模式转向, 而且工作可 靠, 成本较低。
为实现上述目的, 本发明提供了一种电控多模式转向阀, 包 括: 分流集流阀、 第一电磁换向阀和第二电磁换向阀, 所述电控 多模式转向阀的阀体包括四组成对的阀门油口, 所述分流集流阀 具有集流口、 第一分流口和第二分流口, 所述第一电磁换向阀和 第二电磁换向阀均具有第一油口、 第二油口和第三油口, 所述第 一电磁换向阀和第二电磁换向阀的第一油口分别与所述阀体的第 一组阀门油口相通, 所述第一电磁换向阀和第二电磁换向阀的第 二油口分别与所述阀体的第二组阀门油口相通, 所述第一电磁换 向阀的第三油口与所述分流集流阀的集流口相通, 所述分流集流 阀的第一分流口和所述第二电磁换向阀的第三油口分别与所述阀 体的第三组阀门油口相通, 所述分流集流阀的第二分流口和所述 第二换向阀的第三油口分别与所述阀体的第四组阀门油口相通。
进一步的,所述电控多模式转向阀具有通过切换所述第一电 磁换向阀和第二电磁换向阀实现的第一工作模式和第二工作模 式, 在所述第一工作模式下, 所述阀体的第一组阀门油口与所述 第二组阀门油口相通; 在所述第二工作模式下, 所述阀体的第一 组阀门油口与所述第三组阀门油口和第四组阀门油口均相通。
进一步的, 还包括第三电磁换向阀, 所述第三电磁换向阀具 有两组成对的油口, 所述分流集流阀的第二分流口和所述第二电 磁换向阀的第三油口分别与所述第三电磁换向阀的第一组油口相 通, 再通过所述第三电磁换向阀的第二组油口与所述阀体的第四 组阀门油口相通。
进一步的,所述电控多模式转向阀还具有通过切换所述第一 电磁换向阀、 第二电磁换向阀和第三电磁换向阀实现的第三工作 模式, 在所述第三工作模式下, 所述阀体的第一组阀门油口与所 述第三组阀门油口和第四组阀门油口均相通, 且所述第一组阀门 油口与所述第四组阀门油口的油液流动方向与所述第二工作模式 下的油液流动方向不同。
进一步的, 还包括第四电磁换向阀, 所述第四电磁换向阀具 有两组成对的油口, 所述阀体的第一组阀体油口与所述第四电磁 换向阀的第一组油口相通, 再通过所述第四电磁换向阀的第二组 油口分别与所述第一电磁换向阀和第二电磁换向阀的第一油口相 通。
进一步的,所述电控多模式转向阀还具有通过切换所述第一 电磁换向阀、 第二电磁换向阀和第四电磁换向阀实现的第四工作 模式, 在所述第四工作模式下, 所述阀体的第一组阀门油口与所 述第二组阀门油口相通, 且所述第一组阀门油口与所述第二组阀 门油口的油液流动方向与所述第一工作模式下的油液流动方向不 同。
进一步的,所述第一电磁换向阀和第二电磁换向阀均为二位 三通电磁换向阀。
进一步的,所述第三电磁换向阀和第四电磁换向阀均为二位 四通电磁转向阀。
为实现上述目的, 本发明提供了一种转向液控系统, 包括: 方向盘、 全液压转向器、 安全阀组、 第一组独立转向油缸和第二 组独立转向油缸, 所述全液压转向器具有两组油口, 所述全液压 转向器的第一组油口分别与压力回路和回油回路建立系统回路, 其中还包括前述的电控多模式转向阀, 所述电控多模式转向阀的 阀体的第一组阀门油口与所述全液压转向器的第二组油口相通, 所述电控多模式转向阀的阀体的第二组阀门油口与所述第一组独 立转向油缸相通, 所述电控多模式转向阀的阀体的第三组阀门油 口和第四组阀门油口分别通过所述安全阀组与所述第一组独立转 向油缸和第二组独立转向油缸相通。
为实现上述目的, 本发明提供了一种轮式起重机, 包括: 车 体和驾驶室, 所述车体具有两组车轮, 所述驾驶室内设有方向盘 和多模式电控选择开关, 其中还包括前述的转向液控系统, 所述 方向盘与所述转向液控系统中的全液压转向器相连, 所述两组车 轮分别与所述转向液控系统中的第一组独立转向油缸和第二组独 立转向油缸相连, 所述多模式电控选择开关与所述转向液控系统 中的电控多模式转向阀内的电磁换向阀相连, 所述多模式电控选 择开关通过选择不同工作模式对所述电控多模式转向阀内的电磁 换向阀发出相应的切换信号。
基于上述技术方案,本发明的电控多模式转向阀通过第一电 磁换向阀和第二电磁换向阀实现了独立换向和非独立换向两种模 式的切换, 并在非独立换向模式下通过分流集流阀将压力油的输 入调整为对两组独立转向油缸的并联式输入, 这样两组独立转向 油缸的转向压力互不影响, 避免了现有的两组油缸压力串联结构 下造成的压力累加, 有效减小了转向系统的压力, 提高系统工作 可靠性; 在独立换向模式下压力油不需经过分流集流阀, 全部流 入其中一组独立转向油缸, 这样既避免了现有采用默分流集流阀 方式的油液浪费, 也避免了小角度转向无法修正的现象, 有效提 高了系统能量利用率和行驶安全性。 本发明电控多模式转向阀在 结构实现上比较简单, 而且所需要的电磁换向阀和分流集流阀均 属于常规阀件, 易获得且成本较低。
在另一个实施例中,在电控多模式转向阀中增加第三电磁换 向阀, 利用第三电磁换向阀改变分别输入到两组独立转向油缸的 压力油的方向, 以实现非独立换向模式下的小转弯转向模式和蟹 行转向模式。
在另一个实施例中,在电控多模式转向阀中增加第四电磁换 向阀, 当工程车辆反向行驶时, 前轮转向模式自动切换为后轮转 向模式, 而利用第四电磁换向阀可以在独立换向模式下, 切换压 力油的进入方向, 以符合驾驶员反向行驶时的操作习惯。 附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本 申请的一部分,本发明的示意性实施例及其说明用于解幹本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为常见的四种转向模式示意图。
图 2为现有手动控制多模式转向阀的转向原理示意图。
图 3为现有电液比例控制的多模式转向系统的转向原理示意 图。
图 4为现有电磁阀控制的并联多模式转向方案的转向原理示 意图。
图 5 为本发明电控多模式转向阀的第一实施例的结构示意 图。
图 6为应用图 5实施例的转向液控系统的结构示意图。
图 7 为本发明电控多模式转向阀的第二实施例的结构示意 图。
图 8为应用图 7实施例的转向液控系统的结构示意图。
图 9 为本发明电控多模式转向阀的第三实施例的结构示意 图。
图 10为应用图 9实施例的转向液控系统的结构示意图。 具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详 细描述。
如图 5所示,为本发明电控多模式转向阀的第一实施例的结 构示意图。 在本实施例中, 电控多模式转向阀包括: 分流集流阀 Y、 第一电磁换向阀 Y1和第二电磁换向阀 Υ2。 电控多模式转向 阀的阀体包括四组成对的阀门油口, 分流集流阀 Υ具有集流口、 第一分流口和第二分流口, 第一电磁换向阀 Y1和第二电磁换向 阀 Υ2均具有第一油口、 第二油口和第三油口。
第一电磁换向阀 Y1和第二电磁换向阀 Υ2的第一油口分别 与阀体的第一组阀门油口 [PR, PiJ相通, 第一电磁换向阀 Y1和第 二电磁换向阀 Y2的第二油口分别与阀体的第二组阀门油口 [Al, Bl】相通,第一电磁换向阀 Y1的第三油口与分流集流阀 Y的集流 口相通, 分流集流阀 Y的第一分流口和第二电磁换向阀 Y2的第 三油口分别与阀体的第三组阀门油口 [A2, B2】相通, 分流集流阀 Y的第二分流口和第二换向阀 Y2的第三油口分别与阀体的第四 组阀门油口 [A3, B3】相通。
在本实施例中,第一电磁换向阀和第二电磁换向阀用来进行 工作模式的选择切换, 利用分流集流阀的分、 集流功能实现油液 的比例分配, 从而实现多种模式的转向功能。 考虑到第一电磁换 向阀和第二电磁换向阀所用到的油口数量以及功能, 可以选用二 位三通电磁换向阀。
如果将本实施例的电控多模式转向阀安装在转向液控系统 中, 至少可实现两种工作模式的选择切换, 其中这两种工作模式 可通过切换第一电磁换向阀和第二电磁换向阀实现。
在第一工作模式下, 阀体的第一组阀门油口 [PR, PxJ与第二 组阀门油口 [Al, Bl】相通。 从图 5中可以看出, 此时第一电磁换 向阀 Y1和第二电磁换向阀 Y2均未得电, 阀门油口 ?!^与 A1直 接连通, 而阀门油口 PL与 B1直接连通, 此时压力油液可以通过 直接通过电控多模式转向阀流入到转向液控系统中的独立转向油 缸中。 相比于前面所提到的现有技术, 由于压力油液无需经过分 流集流阀而直接流入了独立转向油缸, 既避免了采用双分流方式 的转向阀的油液浪费, 由于有足够的油液压力, 避免了小角度转 向无法修正的现象,有效地提高了系统能量利用率和行驶安全性。
在第二工作模式下, 阀体的第一组阀门油口 [PR, PxJ与第三 组阀门油口 [A2, B2】和第四组阀门油口 [A3, B3】均相通。 从图 5 中可以看出,此时第一电磁换向阀 Y1和第二电磁换向阀 Y2均需 得电,这样阀门油口?!^经过分流集流阀 Y分别与阀门油口 A2和 A3连通, 而阀门油口 PL经过分流集流阀 Y分别与阀门油口 B2 和 B3连通, 也就是说, 压力油液在由阀门油口 PR流入, 流出 时, 油液需经分流集流阀被分流成两路到达阀门油口 Α2和 A3, 而当压力油液由阀门油口 PL流入, ?!^流出时, 阀门油口 A2和 A3流入的油液会经分流集流阀汇合成一路到达阀门油口 PR
在第二工作模式下, 电控多模式转向阀可以引出两路油路, 分别接到转向液控系统的两组独立转向油缸, 从而协调两组独立 转向油缸进行转向, 转向方式可以为蟹行转向, 也可以是小转弯 转向方式, 这与第三组阀门油口 [A2, B2】和第四组阀门油口 [A3, B3】分别与两组独立转向油缸的连接方式有关。
为了进一步的对蟹行转向方式和小转弯转向方式进行选择 切换, 可以增加新的电磁换向阀来进行切换, 该电磁换向阀可以 布置在与本实施例的电控多模式转向阀的外部实现功能, 也可以 进一步的与本实施例的电控多模式转向阀进行集成。
如图 7所示,为本发明电控多模式转向阀的第二实施例的结 构示意图。 与第一实施例相比, 本实施例在电控多模式转向阀还 集成了第三电磁换向阀 Y3, 第三电磁换向阀 Υ3具有两组成对的 油口, 分流集流阀 Υ的第二分流口和第二电磁换向阀 Υ2的第三 油口分别与第三电磁换向阀 Υ3 的第一组油口相通, 再通过第三 电磁换向阀 Υ3 的第二组油口与阀体的第四组阀门油口 [A3, Β3] 相通。
如果将本实施例的电控多模式转向阀安装在转向液控系统 中, 至少可实现三种工作模式的选择切换, 除了前面所述的第一 实施例中的两种工作模式外,还可以进一步实现第三种工作模式。 第三工作模式与第二工作模式的切换通过第三电磁换向阀实现。
在第三工作模式下, 阀体的第一组阀门油口 [PR, PL】与第三 组阀门油口 [A2, B2】和第四组阀门油口 [A3, B3】均相通, 且第一 组阀门油口 [PR, PL】与第四组阀门油口 [A3, B3】的油液流动方向 与第二工作模式下的油液流动方向不同。 从图 7中可以看出, 在 第二工作模式下, 此时第一电磁换向阀 Y1和第二电磁换向阀 Y2 均需得电, 第三电磁换向阀 Y3未得电, 这样阀门油口 PR经过分 流集流阀 Y分别与阀门油口 A2和 A3连通, 第二电磁换向阀 Y2 的第三油口分别与阀门油口 B2和 B3连通, 而当切换到第三工作 模式时,第一电磁换向阀 Y1和第二电磁换向阀 Y2仍处于得电的 状态, 第三电磁换向阀 Y3得电, 此时阀门油口 PR经过分流集流 阀 Y分别与阀门油口 A2和 B3连通,第二电磁换向阀 Y2的第三 油口分别与阀门油口 B2和 A3连通。 这样通过第三电磁换向阀 Y3改变了油液的流动走向,实现蟹行转向和小转弯转向的模式切 换。
从上面介绍的两个电控多模式转向阀实施例可以看出,对于 小转弯、 蟹行转向模式, 压力油液对两组独立转向油缸的输入为 并联式输入, 两者的转向压力互不影响, 相比于现有的前后桥油 缸压力串联方式, 可以有效地减少油液对转向油缸的压力, 而压 力的减小意味着可以有效地降低油缸密封元件损坏的几率, 同时 对于全液压转向器来说, 工作压力一般不能超过 20MPa, 所以降 低油液压力也同样会减小全液压转向器的损坏几率, 进而提高了 系统工作的可靠性。
另外, 对于小转弯、 蟹行转向模式, 上述两个实施例均采用 了单分流集流阀的结构, 相比于现有的双分流集流阀结构, 仍能 实现同样的分流集流功能, 还可以进一步减少分流集流阀对油液 压力的损耗, 提高转向的轻便性。
对于工程车辆来说,可以实现反向行驶,而当其反向行驶时, 原来工程车辆的前轮变成了实际的后轮, 而后轮变成了实际的前 轮, 这就自然的实现了前桥独立转向模式和后桥独立转向模式的 切换, 但还存在一个问题, 即驾驶人员操控的转向方向与实际的 转向方向是相反的, 不符合驾驶人员的操作习惯。 为了克服这一 问题, 可以增加新的电磁换向阀来进行油液方向的切换。 该电磁 换向阀可以布置在与本实施例的电控多模式转向阀的外部实现功 能, 也可以进一步的与本实施例的电控多模式转向阀进行集成。
如图 9所示,为本发明电控多模式转向阀的第三实施例的结 构示意图。 与第二实施例相比, 本实施例在电控多模式转向阀还 集成了第四电磁换向阀 Y4, 第四电磁换向阀 Υ4具有两组成对的 油口, 阀体的第一组阀体油口 [PR, 与第四电磁换向阀 Y4的第 一组油口相通, 再通过第四电磁换向阀 Y4 的第二组油口分别与 第一电磁换向阀 Y1和第二电磁换向阀 Y2的第一油口相通。
如果将本实施例的电控多模式转向阀安装在转向液控系统 中, 可通过切换第一电磁换向阀、 第二电磁换向阀和第四电磁换 向阀实现的第四工作模式。 在第四工作模式下, 阀体的第一组阀 门油口 [PR, PL】与第二组阀门油口 [Al, Bl】相通, 且第一组阀门 油口 [PR, PiJ与第二组阀门油口 [Al, Bl】的油液流动方向与第一 工作模式下的油液流动方向不同。 从图 9中可以看出, 在第一工 作模式下, 第一电磁换向阀和第二电磁换向阀未得电, 第四电磁 换向阀也未得电, 此时阀门油口 PR与阀门油口 A1相通, 而阀门 油口 PL与阀门油口 B1相通, 而在第四工作模式下, 第一电磁换 向阀和第二电磁换向阀未得电, 而第四电磁换向阀得电, 此时阀 门油口 PL与阀门油口 A1相通, 而阀门油口 PR与阀门油口 B1相 通。 这样就改变了压力油液在阀体内的流动方向, 从而在工程车 辆反向行驶时, 仍然能够符合驾驶人员的操作习惯。
在前面说明的实施例中,第三电磁换向阀和第四电磁换向阀 均可根据需要的油口以及功能选择二位四通电磁转向阀。
上述电控多模式转向阀的几种实施例均可以被应用到转向 液控系统中, 以图 5所示实施例为例, 图 6为应用图 5实施例的 转向液控系统的结构示意图。 从图 6中可以看出, 转向液控系统 包括全液压转向器 2、 安全阀组 4、 第一组独立转向油缸 5、 第二 组独立转向油缸 6以及图 5所示电控多模式转向阀 3的实施例, 全液压转向器 2具有两组油口, 而全液压转向器 2的第一组油口 分别与压力回路和回油回路建立系统回路。
电控多模式转向阀 3的阀体的第一组阀门油口与全液压转向 器 2的第二组油口相通, 阀体的第二组阀门油口与第一组独立转 向油缸 5相通, 阀体的第三组阀门油口和第四组阀门油口分别通 过安全阀组 4与第一组独立转向油缸 5和第二组独立转向油缸 6 相通。
在本转向液控系统实施例中, 安全阀组 4用来保护油缸, 避 免压力过大, 而且还可以考虑实现对油缸进行补油的功能, 该安 全阀组 4可采用现有的多种结构实现, 而且并未本发明讨论的重 点, 这就不再对其结构进行赘述了。
为了实现蟹形转向和小转弯转向的模式选择切换,可以在电 控多模式转向阀 3和第二组独立转向油缸 6之间增加第三电磁换 向阀 9, 而为了在工程车辆反向行驶时符合驾驶人员的操作习惯, 可以在全液压转向器 2与电控多模式转向阀 3之间增加第四电磁 换向阀 10。
如果以图 7所示的电控多模式转向阀实施例为例,则图 8为 应用图 7实施例的转向液控系统的结构示意图。 与图 6所示的转 向液控系统相比, 第三电磁换向阀 9被集成在电控多模式转向阀 3内。
如果以图 9所示的电控多模式转向阀实施例为例, 则图 10 为应用图 9实施例的转向液控系统的结构示意图。 与图 6所示的 转向液控系统相比,第三电磁换向阀 9和第四电磁换向阀 10均被 集成在电控多模式转向阀 3内。 这种电控多模式转向阀集成度较 高, 对用户的实用性更高。
上述各种电控多模式转向阀实施例所采用的阀件均可采用 通用的常规阀件, 技术成熟, 工作可靠, 价格上比较低廉。 在实 现上,电控多模式转向阀各个电磁换向阀均为得电切换失电复位, 在工作过程中即使出现电路故障, 阀芯也会在弹簧作用下自动复 位, 恢复前轮独立转向功能, 保证了行车安全。 上述各转向液控系统实施例均适用于各类工程车辆,尤其适 合应用于轮式起重机, 对于这类轮式起重机, 可以包括车体、 驾 驶室 (均未在图中示出) 以及转向液控系统, 车体具有两组车轮
7、 8, 驾驶室内设有方向盘 1和多模式电控选择开关 (图中未示 出) 。 方向盘 1与转向液控系统中的全液压转向器 2相连, 两组 车轮 7、 8分别与转向液控系统中的第一组独立转向油缸 5和第二 组独立转向油缸 6相连, 多模式电控选择开关与转向液控系统中 的电控多模式转向阀内的电磁换向阀相连, 多模式电控选择开关 通过选择不同工作模式对所述电控多模式转向阀内的电磁换向阀 发出相应的切换信号。
下面以图 9和图 10所示的电控多模式转向阀及转向液控系 统的实施例为例对本发明的工作原理进行说明。
在图 10中, 全液压转向器 2的第一组油口与压力回路、 回 油回路建立系统回路, 可根据实际需要通过操作方向盘 1来切换 压力油液的流动方向。 默认的工作模式为前桥独立转向模式, 在 该种模式下, 电控多模式转向阀内的所有电磁换向阀均不得电, 此时压力油液均从全液压转向器 2经由电控多模式转向阀 3流入 第一组独立转向油缸 5, 在图中所示的前进方向下实现前桥独立 转向模式。
在小转弯转向模式下, 电控多模式转向阀 3中的电磁换向阀 Yl、 Υ2均得电, 电磁换向阀 Yl、 Υ4失电, 此时全液压转向器 2 输出的压力油液经由电控多模式转向阀 3流入第一组独立转向油 缸 5和第二组独立转向油缸 6, 从而实现小转弯转向功能。
在蟹行转向模式下, 电控多模式转向阀 3 中的电磁换向阀 Yl、 Υ2、 Υ3得电, 电磁换向阀 Υ4失电, 此时全液压转向器 2 输出的压力油液经由电控多模式转向阀 3流入第一组独立转向油 缸 5和第二组独立转向油缸 6, 但压力油液流入第二组独立转向 油缸 6的油液方向与小转弯转向模式下的油液方向相反, 从而实 现蟹行转向功能。
当车辆反向行驶时, 原来车辆的前轮变成了后轮, 原来的后 轮变成了前轮,此时若不改变转向器输出油液的方向,则向右 (左) 转方向盘, 车辆却会向左 (右)转弯, 非常不符合驾驶员的操作习 惯。 因此在车辆反向行驶时, 电磁换向阀 Y4将得电, 从而改变 全液压转向器输出油液的方向, 使得反向行驶的转向操作依然符 合驾驶员的操作习惯。
最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

1. 一种电控多模式转向阀, 其特征在于, 包括: 分流集流 阀、 第一电磁换向阀和第二电磁换向阀, 所述电控多模式转向阀 的阀体包括四组成对的阀门油口, 所述分流集流阀具有集流口、 第一分流口和第二分流口, 所述第一电磁换向阀和第二电磁换向 阀均具有第一油口、 第二油口和第三油口, 所述第一电磁换向阀 和第二电磁换向阀的第一油口分别与所述阀体的第一组阀门油口 相通, 所述第一电磁换向阀和第二电磁换向阀的第二油口分别与 所述阀体的第二组阀门油口相通, 所述第一电磁换向阀的第三油 口与所述分流集流阀的集流口相通, 所述分流集流阀的第一分流 口和所述第二电磁换向阀的第三油口分别与所述阀体的第三组阀 门油口相通, 所述分流集流阀的第二分流口和所述第二换向阀的 第三油口分别与所述阀体的第四组阀门油口相通。
2. 根据权利要求 1所述的电控多模式转向阀,其特征在于, 所述电控多模式转向阀具有通过切换所述第一电磁换向阀和第二 电磁换向阀实现的第一工作模式和第二工作模式, 在所述第一工 作模式下, 所述阀体的第一组阀门油口与所述第二组阀门油口相 通; 在所述第二工作模式下, 所述阀体的第一组阀门油口与所述 第三组阀门油口和第四组阀门油口均相通。
3. 根据权利要求 2所述的电控多模式转向阀,其特征在于, 还包括第三电磁换向阀, 所述第三电磁换向阀具有两组成对的油 口, 所述分流集流阀的第二分流口和所述第二电磁换向阀的第三 油口分别与所述第三电磁换向阀的第一组油口相通, 再通过所述 第三电磁换向阀的第二组油口与所述阀体的第四组阀门油口相 通。
4. 根据权利要求 3所述的电控多模式转向阀,其特征在于, 所述电控多模式转向阀还具有通过切换所述第一电磁换向阀、 第 二电磁换向阀和第三电磁换向阀实现的第三工作模式, 在所述第 三工作模式下, 所述阀体的第一组阀门油口与所述第三组阀门油 口和第四组阀门油口均相通, 且所述第一组阀门油口与所述第四 组阀门油口的油液流动方向与所述第二工作模式下的油液流动方 向不同。
5. 根据权利要求 4所述的电控多模式转向阀,其特征在于, 还包括第四电磁换向阀, 所述第四电磁换向阀具有两组成对的油 口, 所述阀体的第一组阀体油口与所述第四电磁换向阀的第一组 油口相通, 再通过所述第四电磁换向阀的第二组油口分别与所述 第一电磁换向阀和第二电磁换向阀的第一油口相通。
6. 如根据权利要求 5所述的电控多模式转向阀, 其特征在 于,所述电控多模式转向阀还具有通过切换所述第一电磁换向阀、 第二电磁换向阀和第四电磁换向阀实现的第四工作模式, 在所述 第四工作模式下, 所述阀体的第一组阀门油口与所述第二组阀门 油口相通, 且所述第一组阀门油口与所述第二组阀门油口的油液 流动方向与所述第一工作模式下的油液流动方向不同。
7. 根据权利要求 1所述的电控多模式转向阀,其特征在于, 所述第一电磁换向阀和第二电磁换向阀均为二位三通电磁换向 阀。
8. 根据权利要求 5或 6所述的电控多模式转向阀, 其特征 在于, 所述第三电磁换向阀和第四电磁换向阀均为二位四通电磁 转向阀。
9. 一种转向液控系统, 包括: 全液压转向器、 安全阀组、 第一组独立转向油缸和第二组独立转向油缸, 所述全液压转向器 具有两组油口, 所述全液压转向器的第一组油口分别与压力回路 和回油回路建立系统回路, 其特征在于, 还包括权利要求 1~8任 一所述的电控多模式转向阀, 所述电控多模式转向阀的阀体的第 一组阀门油口与所述全液压转向器的第二组油口相通, 所述电控 多模式转向阀的阀体的第二组阀门油口与所述第一组独立转向油 缸相通, 所述电控多模式转向阀的阀体的第三组阀门油口和第四 组阀门油口分别通过所述安全阀组与所述第一组独立转向油缸和 第二组独立转向油缸相通。
10. 一种轮式起重机, 包括: 车体和驾驶室, 所述车体具有 两组车轮, 所述驾驶室内设有方向盘和多模式电控选择开关, 其 特征在于, 还包括权利要求 9所述的转向液控系统, 所述方向盘 与所述转向液控系统中的全液压转向器相连, 所述两组车轮分别 与所述转向液控系统中的第一组独立转向油缸和第二组独立转向 油缸相连, 所述多模式电控选择开关与所述转向液控系统中的电 控多模式转向阀内的电磁换向阀相连, 所述多模式电控选择开关 通过选择不同工作模式对所述电控多模式转向阀内的电磁换向阀 发出相应的切换信号。
PCT/CN2013/087187 2012-11-27 2013-11-15 电控多模式转向阀、转向液控系统以及轮式起重机 WO2014082530A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2015111565/06A RU2604466C1 (ru) 2012-11-27 2013-11-15 Клапан многорежимного рулевого управления с электрическим управлением, гидравлическая система рулевого управления и кран колесного типа
EP13858490.9A EP2927094B1 (en) 2012-11-27 2013-11-15 Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane
CA2881103A CA2881103C (en) 2012-11-27 2013-11-15 Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane
AU2013351662A AU2013351662B2 (en) 2012-11-27 2013-11-15 Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane
BR112015006338A BR112015006338A2 (pt) 2012-11-27 2013-11-15 válvula de direção multimodo de controle elétrico, sistema de controle hidráulico de direção e guindaste do tipo com roda
IN1007DEN2015 IN2015DN01007A (zh) 2012-11-27 2013-11-15
US14/706,598 US9533704B2 (en) 2012-11-27 2015-05-07 Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210492525.2 2012-11-27
CN201210492525.2A CN102923188B (zh) 2012-11-27 2012-11-27 电控多模式转向阀、转向液控系统以及轮式起重机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/706,598 Continuation US9533704B2 (en) 2012-11-27 2015-05-07 Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane

Publications (1)

Publication Number Publication Date
WO2014082530A1 true WO2014082530A1 (zh) 2014-06-05

Family

ID=47638161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087187 WO2014082530A1 (zh) 2012-11-27 2013-11-15 电控多模式转向阀、转向液控系统以及轮式起重机

Country Status (9)

Country Link
US (1) US9533704B2 (zh)
EP (1) EP2927094B1 (zh)
CN (1) CN102923188B (zh)
AU (1) AU2013351662B2 (zh)
BR (1) BR112015006338A2 (zh)
CA (1) CA2881103C (zh)
IN (1) IN2015DN01007A (zh)
RU (1) RU2604466C1 (zh)
WO (1) WO2014082530A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317112A (zh) * 2018-03-21 2018-07-24 安徽合力股份有限公司 一种叉车双联泵转向停车制动解除液压系统
CN109501855A (zh) * 2018-11-29 2019-03-22 湖北航天技术研究院特种车辆技术中心 一种多模式转向系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923188B (zh) * 2012-11-27 2015-07-22 徐州重型机械有限公司 电控多模式转向阀、转向液控系统以及轮式起重机
CN104309683B (zh) * 2014-09-22 2017-02-22 三一汽车起重机械有限公司 转向液压系统和轮式起重机
CN105857387B (zh) * 2016-05-11 2019-01-22 姚连涛 一种可变角度传动装置、车辆底盘及其控制方法
CN106741166A (zh) * 2016-12-16 2017-05-31 中国重汽集团柳州运力科迪亚克机械有限责任公司 除雪车四轮转向系统
US10086868B1 (en) * 2017-05-12 2018-10-02 Cnh Industrial America Llc Four wheel steering with independent control valves
CN108547821B (zh) * 2018-07-04 2023-08-01 北京路凯智行科技有限公司 集成液压转向控制阀组及液压转向控制系统
US11472395B2 (en) * 2020-02-28 2022-10-18 Cnh Industrial America Llc System and method for executing multi-mode turns with a work vehicle
CN115465359A (zh) * 2022-09-15 2022-12-13 泰安航天特种车有限公司 一种超重型电驱多轴车辆模块化电液转向系统及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012881A (en) * 1988-07-20 1991-05-07 Nissan Motor Co., Ltd. Vehicle steering system with flow dividing valve
JPH03287470A (ja) * 1990-04-05 1991-12-18 Iseki & Co Ltd 四輪操舵制御装置
US5230399A (en) * 1991-11-21 1993-07-27 Trak International, Inc. Four-wheel steering system for vehicles
JPH0699824A (ja) * 1992-09-17 1994-04-12 Toyota Autom Loom Works Ltd 四輪操舵装置
JPH09240503A (ja) * 1996-03-12 1997-09-16 Iseki & Co Ltd 四輪操舵トラクタ
JP2002154445A (ja) * 2000-11-20 2002-05-28 Tcm Corp 操舵装置
CN1702007A (zh) * 2005-05-26 2005-11-30 江苏大学 车辆四轮独立转向机构及其控制方法
CN101489853A (zh) * 2006-12-21 2009-07-22 日立建机株式会社 工程车辆的转向系统
CN102923188A (zh) * 2012-11-27 2013-02-13 徐州重型机械有限公司 电控多模式转向阀、转向液控系统以及轮式起重机
CN202923708U (zh) * 2012-11-27 2013-05-08 徐州重型机械有限公司 电控多模式转向阀、转向液控系统以及轮式起重机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263242A (ja) * 1998-03-18 1999-09-28 Iseki & Co Ltd 作業車両の操舵装置
DE10304796B4 (de) * 2003-02-05 2007-07-12 Sauer-Danfoss Aps Vollhydraulische Lenkung
RU2344959C1 (ru) * 2007-08-22 2009-01-27 Валерий Яковлевич Обидин Усилитель потока рулевого механизма транспортного средства
RU2378539C1 (ru) * 2008-08-26 2010-01-10 Общество с ограниченной ответственностью "Центр технического сотрудничества" при МГТУ им. Н.Э. Баумана" Автономный электрогидравлический рулевой привод
RU2493995C2 (ru) * 2008-09-30 2013-09-27 Вольво Констракшн Эквипмент Аб Гидравлическая система рулевого управления с двумя органами рулевого управления и содержащее ее транспортное средство
CN103648890B (zh) * 2012-03-29 2016-02-10 株式会社小松制作所 轮式装载机的转向装置
EP2923090B1 (en) * 2012-11-20 2021-04-14 Volvo Construction Equipment AB Pressurized medium assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012881A (en) * 1988-07-20 1991-05-07 Nissan Motor Co., Ltd. Vehicle steering system with flow dividing valve
JPH03287470A (ja) * 1990-04-05 1991-12-18 Iseki & Co Ltd 四輪操舵制御装置
US5230399A (en) * 1991-11-21 1993-07-27 Trak International, Inc. Four-wheel steering system for vehicles
JPH0699824A (ja) * 1992-09-17 1994-04-12 Toyota Autom Loom Works Ltd 四輪操舵装置
JPH09240503A (ja) * 1996-03-12 1997-09-16 Iseki & Co Ltd 四輪操舵トラクタ
JP2002154445A (ja) * 2000-11-20 2002-05-28 Tcm Corp 操舵装置
CN1702007A (zh) * 2005-05-26 2005-11-30 江苏大学 车辆四轮独立转向机构及其控制方法
CN101489853A (zh) * 2006-12-21 2009-07-22 日立建机株式会社 工程车辆的转向系统
CN102923188A (zh) * 2012-11-27 2013-02-13 徐州重型机械有限公司 电控多模式转向阀、转向液控系统以及轮式起重机
CN202923708U (zh) * 2012-11-27 2013-05-08 徐州重型机械有限公司 电控多模式转向阀、转向液控系统以及轮式起重机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317112A (zh) * 2018-03-21 2018-07-24 安徽合力股份有限公司 一种叉车双联泵转向停车制动解除液压系统
CN108317112B (zh) * 2018-03-21 2023-08-04 安徽合力股份有限公司 一种叉车双联泵转向停车制动解除液压系统
CN109501855A (zh) * 2018-11-29 2019-03-22 湖北航天技术研究院特种车辆技术中心 一种多模式转向系统
CN109501855B (zh) * 2018-11-29 2023-09-19 湖北航天技术研究院特种车辆技术中心 一种多模式转向系统

Also Published As

Publication number Publication date
AU2013351662B2 (en) 2017-04-13
BR112015006338A2 (pt) 2017-07-04
CN102923188A (zh) 2013-02-13
CA2881103A1 (en) 2014-06-05
EP2927094B1 (en) 2019-10-02
US9533704B2 (en) 2017-01-03
EP2927094A4 (en) 2016-08-17
AU2013351662A1 (en) 2015-03-26
RU2604466C1 (ru) 2016-12-10
EP2927094A1 (en) 2015-10-07
CA2881103C (en) 2017-05-16
CN102923188B (zh) 2015-07-22
US20150307124A1 (en) 2015-10-29
IN2015DN01007A (zh) 2015-06-12

Similar Documents

Publication Publication Date Title
WO2014082530A1 (zh) 电控多模式转向阀、转向液控系统以及轮式起重机
JP5727099B2 (ja) 建設機械用の油圧システム
CN105667580B (zh) 一种基于模糊控制的线控转向系统及其控制方法
CN102951198B (zh) 一种车辆及液压转向驱动系统
CN103963825A (zh) 一种转向系统及独立悬架轮式重载车辆
CN204341185U (zh) 四模式转向液压控制系统及具有其的车辆
CN103465957B (zh) 一种手动切换的多模式转向液压控制系统以及轮式起重机
WO2013091424A1 (zh) 工程机械车辆、车辆转向随动控制系统及方法
CN201472461U (zh) 车桥转向锁止切换控制系统
CN202923708U (zh) 电控多模式转向阀、转向液控系统以及轮式起重机
CN203485987U (zh) 转向控制阀以及工程车辆转向系统
CN108517918B (zh) 履带式挖掘机转向自动变速控制系统及控制方法
JP3890215B2 (ja) 自動操舵システム
CN110962924B (zh) 液压驱动及转向系统及高空作业机械
CN103895700B (zh) 一种转向装置及遥控转向系统
JP4018333B2 (ja) 操舵装置
US9248855B2 (en) Steering system for wheeled construction equipment
CN206900471U (zh) 液压轮毂马达辅助差动助力转向系统
CN207712135U (zh) 一种宽体自卸车的转向系统
CN107176204B (zh) 液压轮毂马达辅助差动助力转向系统
CN203485988U (zh) 一种手动切换的多模式转向液压控制系统以及轮式起重机
CN215922320U (zh) 转向系统及作业车辆
CN111022436B (zh) 液压驱动系统及高空作业设备
CN204279682U (zh) 正反向行驶切换装置及起重机
CN118107652A (zh) 一种具有电控及方向盘转向的液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2881103

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013351662

Country of ref document: AU

Date of ref document: 20131115

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006338

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013858490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015111565

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015006338

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150320