WO2014082107A1 - Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids - Google Patents

Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids Download PDF

Info

Publication number
WO2014082107A1
WO2014082107A1 PCT/AT2013/000188 AT2013000188W WO2014082107A1 WO 2014082107 A1 WO2014082107 A1 WO 2014082107A1 AT 2013000188 W AT2013000188 W AT 2013000188W WO 2014082107 A1 WO2014082107 A1 WO 2014082107A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnets
fluid
conduit
drum
pairs
Prior art date
Application number
PCT/AT2013/000188
Other languages
English (en)
French (fr)
Inventor
Maria Michaela BARILITS-GUPTA
Original Assignee
Barilits-Gupta Maria Michaela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barilits-Gupta Maria Michaela filed Critical Barilits-Gupta Maria Michaela
Priority to KR1020157016797A priority Critical patent/KR20150090168A/ko
Priority to JP2015544270A priority patent/JP2015537152A/ja
Priority to US14/648,248 priority patent/US20150314303A1/en
Priority to ES13798543.8T priority patent/ES2593202T3/es
Priority to CN201380062033.2A priority patent/CN104870798A/zh
Priority to EP13798543.8A priority patent/EP2925996B1/de
Publication of WO2014082107A1 publication Critical patent/WO2014082107A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • C10G32/02Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • F02M27/045Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0294Detection, inspection, magnetic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetical field, special shape or generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/10Pretreatment
    • F23K2300/101Application of magnetism or electricity

Definitions

  • the invention relates to a device for the magnetic treatment of a hydrocarbon-containing fluid, which form a conduit for the flow of fluid and six magnets, the three consecutively arranged pairs whose Magnetfel ⁇ penetrate the interior of the conduit having .
  • US 2007/0138077 AI, WO 02/101224 AI and EP 0399 801 AI show similar devices for the magnetic activation of fuels, but have a more complex structure.
  • a plurality of magnets, along with other devices such as flow or heating elements, are disposed within a fuel-carrying container so that the fuel is processed in various ways.
  • the disadvantage of these solutions is that not all amounts of fuel experience the same effect of the magnetic fields or other treatment elements, and that the devices are not interchangeable without opening the fuel line as a whole.
  • US 4 050 426 A discloses a method and apparatus for treating liquid fuel. It flows Fuel close to the inner surfaces of as a hollow cylinder ⁇ formed permanent magnets along. Another disadvantage is that the device forms part of the fuel line and thus the fuel line must be opened if the device is to be replaced or installed. In addition, the fuel must pass through two apertured diaphragms in order to flow into a jacket channel of a double-walled hollow cylinder. The preparation of this device is therefore complicated.
  • the invention aims to provide a device as stated at the outset, which is simple in construction, easy or hardly to maintain, and easy to install or replace. Furthermore, an improved and increased activation of the fluid should be achieved by the device according to the invention.
  • the device according to the invention accomplishes this by forming the magnets substantially cylindrically shaped and disposed outside the conduit, the two magnets of a pair being aligned with each other on opposite sides of the conduit wall, each facing the conduit with one of their faces, and each one Magnet having a bar pattern of alternating magnetic polarity, which is aligned perpendicular to the direction of flow of the fluid.
  • the device comprises at least one further group of three pairs of magnets.
  • the magnets are arranged in a housing, which is preferably tubular.
  • the magnets are fixed in position with plastic pieces.
  • a preferred embodiment of the device is characterized in that the axes of two successive pairs of magnets in the direction of flow include an angle.
  • the magnets are arranged in a drum which is axially rotatably mounted on the line, and wherein the drum is connected to an electric drive.
  • the controller is connected to at least one sensor, by which the activation of the fluid is measurable.
  • FIG. 1 shows a schematic longitudinal section through the device
  • FIG. 2 shows a schematic cross section through a further embodiment of the device
  • FIG. 3 shows a schematic plan view of a magnet
  • FIG. 4 shows a schematic longitudinal section through a magnet
  • FIG. 5 shows a schematic longitudinal section through the device
  • FIG. 6 shows a schematic cross section through the device.
  • Fluids are all known fossil, liquid or gasförmi ⁇ gen fuels, such as gasoline, fuel oil, kerosene, natural gas, etc..
  • the fluid passes through three pairs of magnets 3.
  • Each of the magnets 3 is designed as a permanent magnet and directed to the conduit 2, but arranged outside the conduit.
  • the polarity of the magnets 3 is chosen such that a north pole of a first magnet 3 always faces a south pole of the oppositely arranged magnet 3 and vice versa.
  • permanent magnets and electromagnets or other magnet types can be used.
  • the arrangement and the polarity of the magnets 3 according to the present invention provides a device in which carbon atoms of hydrocarbons are particularly highly active. tivated so that they react with oxygen in the subsequent combustion to carbon dioxide.
  • the magnets 3 are formed as cylindrical bar magnets. Their circular end faces 4 are each directed to the line 2.
  • the three magnet pairs are arranged in a housing 5. So that they remain in their exact position, the magnets 3 are held by plastic pieces 6. They are shaped in the example shown so that they almost completely fill the interior of the housing 5 and have only milled or drilled cavities for receiving the magnets 3.
  • the plastic pieces 6 can of course also be made of another solid material as long as it does not affect the magnetic fields of the magnets 3.
  • the housing 5 is tubular and coaxially aligned with the conduit 2.
  • the housing 5 is preferably made of Stg. 37 and is chromed outside.
  • end caps 7 can have a thread at both ends, which serve for screwing on end caps 7.
  • Other types of construction of the housing for the storage and fixed support of the magnets 3 are conceivable, such as e.g. two half-shells that can be folded over an existing line 2. If end caps 7 are provided, they are, like the housing 5, made of Stg. 37 made. The housing 5 and end caps are designed in their dimensions so that no magnetic saturation is achieved by the magnets 3, thus the magnetic circuit is closed, and the magnetic field reaches exactly where it is needed, the largest field strength.
  • the conduit 2 may be made of stainless steel because stainless steel is paramagnetic.
  • Fig. 2 shows a cross-section of the device 1 along the line AB of Fig. 1.
  • Fig. 2 are two 3 magnets on a common axis 8 and show with their end faces 4 on the line. 2
  • FIG. 3 shows the exact polarity of the magnets 3. North and south poles alternate with one another in a line pattern (in FIG. 3, two strips are identified by way of example as north pole N and as south pole S). The same bar pattern, only with reverse polarity, has the corresponding magnet 3 on the opposite side of the line 2. As a result, an alternating magnetic field is established within the line 2. It turns out, surprisingly, that at a suitable frequency of the magnetic field change, an increased activation of the carbon atoms takes place. The alternating frequency is essentially due to the spatial distance of the north and south poles on the magnet 3 and by the flow rate of the fluid through the conduit 2.
  • the efficiency of the device 1 can be increased by using three magnet pairs, with the spacing between the first and second pairs and the spacing between the second and third pairs of magnets 3 being the same is. A further increase in efficiency occurs significantly when another group of three pairs of magnets 3 is added to the first group. Furthermore, it has surprisingly been found that the efficiency of the device is increased when the axes 8 of two successive pairs of magnets enclose an angle (FIG. 2). Two magnets 3 of a pair, which are arranged opposite to the line 2 around, are aligned with each other, ie they lie on a common axis 8, which is perpendicular to the flow direction 2, determined by the line 2, is located. Seen in the direction of flow, the axes 8 of two adjacent pairs of magnets can now form an angle.
  • Fig. 5 shows a further embodiment of the invention.
  • the three pairs of magnets 3 are arranged in a drum 9 within the housing 5.
  • the drum 9 is coaxially rotatable on the line 2 by means of ball bearings 10, for example.
  • coils 11 are provided which can drive the drum 9 rotationally. Tests have shown that the activation of the carbon atoms increases as the three pairs of magnets 3 rotate around the conduit 2 during the passage of the fuel.
  • a controller 12 controls the rotational speed of the drum 9 via the spools 11.
  • the drum 9 need not be driven by the spools 11.
  • Alternatives such as electric motors or similar are equally possible.
  • the housing 5 now takes over the function of the mechanical protection of the rotating drum 9 and possibly the inclusion of parts of the drive means of the drum 9.
  • the housing 5 could, however, be structurally changed in this embodiment, e.g. towards a mesh basket or guards.
  • Fig. 6 shows this embodiment in cross-section along the line AB in Fig. 5. More or less than the six coils 11 shown in Fig. 5 can be used. In addition, they need not be arranged at the height of the magnets 3.
  • the magnetic field generated by the coils 11 is to be chosen so that a safe and fast drive of the drum 9 is ensured, but that the magnetic field generated by the magnets 3 in the conduit 2 remains unchanged.
  • the controller 12 may also control the rotational speed of the drum 9 in response to the actual or desired activation of the carbonators.
  • at least one sensor 13 is attached to the fluid outlet of the line 2 of the device 1, which measures the activation and passes it on via a line 14 to the controller.
  • a sensor 13 may consist of an LED and a photocell.
  • the LED then emits electromagnetic radiation of a particular frequency, such as the resonant frequency of carbon, and the photocell receives the electromagnetic radiation subsequently emitted by the carbon atoms.
  • sensors 13 may be arranged on the input side of the line 2 in order to be able to measure the excitation difference.
  • the best rotational speed of the drum 9 can change due to changes in the composition or temperature of the fluid.
  • the flow rate plays a role. For example, it may change in engines when a vehicle changes vehicle speed or driving performance.
  • the device is suitable for the activation of diesel, gasoline, kerosene, fuel oil, heavy oil, vegetable oils, etc. as well as for gases, such as camping gas, butane, propane, etc.
  • the increase in efficiency is measured either in the increase in the power of a motor whose Fuel supply line is equipped with a device 1, or by reducing the fuel consumption at the same power.
  • the efficiency also increases with heaters or burners.
  • increased efficiency is directly reflected in the reduction of soot or carbon monoxide in the exhaust gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Vorrichtung (1) zur magnetischen Behandlung eines kohlenwasserstoffhaltigen Fluids, die eine Leitung (2) zum Durchfluß des Fluids sowie sechs Magneten (3), die drei hintereinander angeordnete Paare bilden, deren Magnetfelder das Innere der Leitung durchdringen, aufweist, wobei die Magnete im wesentlichen zylinderförmig ausgebildet und außerhalb der Leitung angeordnet sind, wobei die beiden Magnete eines Paares miteinander fluchtend an gegenüberliegenden Seiten der Leitungswand angeordnet sind und jeweils mit einer ihrer Stirnseiten (4) auf die Leitung weisen, und wobei jeder Magnet ein Strichmuster abwechselnder Magnetpolung aufweist, das senkrecht zur Flußrichtung des Fluids ausgerichtet ist.

Description

Vorrichtung zur magnetischen Behandlung eines
kohlenwasserstoffhaltigen Fluids
Die Erfindung betrifft eine Vorrichtung zur magnetischen Behandlung eines kohlenwasserstoffhaltigen Fluids, die eine Leitung zum Durchfluß des Fluids sowie sechs Magneten, die drei hintereinander angeordnete Paare bilden, deren Magnetfel¬ der das Innere der Leitung durchdringen, aufweist.
Die Behandlung von fossilen Treibstoffen für Fahrzeugmoto- ren durch Magnetfelder sind im Stand der Technik bekannt. Die US 6,456,178 Bl, die KR 10-2009-0011385 A, die US 5,348,050, die WO 97/29279 sowie die AT 010455 Ul lehren verschiedene Vorrichtungen, die mittels einer einfachen Anordnung von weni¬ gen Permanentmagneten den Treibstoff für Verbrennungsmotoren kurz vor der Einspritzung in den Brennraum behandeln. Der Treibstoff passiert dabei ein inhomogenes Magnetfeld in Längsoder Querrichtung, wodurch die Kohlenstoffatome angeregt werden sollen.
Die US 2007/0138077 AI, die WO 02/101224 AI und die EP 0399 801 AI zeigen ähnliche Vorrichtungen zum magnetischen Aktivieren von Treibstoffen, die jedoch einen komplexeren Aufbau aufweisen. Eine Vielzahl von Magneten werden zusammen mit anderen Vorrichtungen, wie Strömungsblenden oder Heizelementen, innerhalb eines von Treibstoff durchflossenen Behälters angeordnet, so daß der Treibstoff auf verschiedene Art und Weise aufbereitet wird. Der Nachteil dieser Lösungen besteht darin, daß nicht alle Treibstoffmengen die gleiche Wirkung der Magnetfelder oder anderer Behandlungselemente erfahren, und daß die Vorrichtungen nicht austauschbar sind, ohne die Treib- Stoffleitung insgesamt zu öffnen.
Die US 4, 050, 426 A offenbart ein Verfahren und eine Vorrichtung zum Behandeln flüssigen Treibstoffes. Dabei strömt Treibstoff dicht an den Innenflächen von als Hohlzylinder aus¬ gebildeten Permanentmagneten entlang. Nachteilig ist auch hier, daß die Vorrichtung einen Teil der Treibstoffleitung bildet und somit die Treibstoffleitung geöffnet werden muß, falls die Vorrichtung gewechselt oder eingebaut werden soll. Zudem muß der Treibstoff zwei Lochblenden passieren, um in einen Mantelkanal eines doppelwandigen Hohlzylinders zu strömen. Die Herstellung dieser Vorrichtung ist daher aufwendig.
Die DE 35 03 691 AI beschreibt einen Magnet-Aktivator für Brenn- oder Kraftstoffe, wobei außerhalb der geradlinig ausgeführten Kraftstoffleitung drei Paare von Permanentmagneten angeordnet sind. Nachteilig wirken sich bei dieser Lehre die schlicht gehaltenen drei Magnetfelder aus, die der Treibstoff passiert. Zwar ist eine Aktivierung der Kohlenwasserstoffe in dem Treibstoff feststellbar, doch fällt sie vergleichsweise gering aus .
Die Erfindung zielt darauf ab, eine Vorrichtung, wie eingangs angeführt, zu schaffen, welche einfach im Aufbau ist, leicht oder kaum gewartet werden muß, sowie leicht einbaubar oder austauschbar ist. Weiterhin soll durch die erfindungsgemäße Vorrichtung eine verbesserte und gesteigerte Aktivierung des Fluids erreicht werden.
Die erfindungsgemäße Vorrichtung erreicht dies dadurch, daß die Magnete im wesentlichen zylinderförmig ausgebildet und außerhalb der Leitung angeordnet sind, wobei die beiden Magnete eines Paares miteinander fluchtend an gegenüberliegenden Seiten der Leitungswand angeordnet sind und jeweils mit einer ihrer Stirnseiten auf die Leitung weisen, und wobei jeder Magnet ein Strichmuster abwechselnder Magnetpolung aufweist, das senkrecht zur Flußrichtung des Fluids ausgerichtet ist. In einer Ausführungsform der Erfindung weist die Vorrichtung mindestens eine weitere Gruppe aus drei Paaren von Magneten auf.
Zur weiteren Ausgestaltung der Erfindung sind die Magnete in einem Gehäuse angeordnet, das bevorzugt rohrförmig ist.
Bevorzugt ist in einer Ausgestaltung der Erfindung, daß die Magnete mit Kunststoffstücken in ihrer Position fixiert sind .
Eine bevorzugte Ausführungsform der Vorrichtung zeichnet sich dadurch aus, daß die Achsen zweier hintereinanderliegen- der Magnetpaare in Flußrichtung gesehen einen Winkel einschließen .
In einer weiteren Ausführungsform sind die Magnete in einer Trommel angeordnet, die axial drehbar auf der Leitung ge- lagert ist, und wobei die Trommel mit einem elektrischen Antrieb verbunden ist.
Bevorzug wird der Antrieb der Trommel durch eine Steuerung geregelt .
Weiterhin bevorzugt ist die Steuerung mit mindestens einem Sensor verbunden, durch welchen die Aktivierung des Fluids meßbar ist.
Die Erfindung wird nachstehend anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert. Es zeigen: Fig. 1 einen schematischen Längsschnitt durch die Vor- richtung, Fig. 2 einen schematischen Querschnitt durch eine weitere Ausführungsform der Vorrichtung, Fig. 3 eine schematische Draufsicht auf einen Magneten, Fig. 4 einen schematischen Längsschnitt durch einen Magneten, Fig. 5 einen schematischen Längsschnitt durch die Vorrichtung und Fig. 6 einen schemati- sehen Querschnitt durch die Vorrichtung.
Gemäß Fig. 1 strömt ein kohlenwasserstoffhaltiges Fluid in Pfeilrichtung durch eine Leitung 2. Kohlenwasserstoffhaltige Fluids sind alle bekannten fossilen, flüssigen oder gasförmi¬ gen Treibstoffe, wie Benzin, Heizöl, Kerosin, Erdgas u.dgl. Beim Strömen durch die Leitung 2 passiert das Fluid drei Paare von Magneten 3. Jeder der Magneten 3 ist als Permanentmagnet ausgeführt und auf die Leitung 2 gerichtet, jedoch außerhalb der Leitung angeordnet. Die Polung der Magnete 3 ist derart gewählt, daß ein Nordpol eines ersten Magneten 3 immer einem Südpol des gegenüberliegend angeordneten Magneten 3 gegenüberliegt und umgekehrt. Anstelle von Permanentmagneten können auch Elektromagneten oder andere Magnettypen verwendet werden.
Beim Verbrennen von Kohlenwasserstoffen in Motoren, Bren¬ nern, Heizöfen oder ähnlichem fällt die Leistung dann am höchsten aus, wenn die Kohlenstoffatome und die Wasserstoffatome zusammen mit dem LuftSauerstoff vollständig zu Kohlendi- oxid (CO ) und zu Wasser (H20) verbrennen. Voraussetzung dafür ist nicht nur das geeignete Mischungsverhältnis von Fluid und Luft Sauerstoff sowie eine möglichst gleichmäßige Vernebelung des Fluids im Luftsauerstoff zum Zeitpunkt der Verbrennung, sondern auch der beste Zustand der in den Kohlenwasserstoffen gebundenen Kohlenstoffatome vor der Verbrennung. Befinden sich nämlich von den vier an der Reaktion beteiligten Valenzelektronen eines Kohlenstoffatoms nicht alle im angeregten Zustand, kann es trotz Vorhandenseins ausreichend vieler Sauer¬ stoffatome dazu kommen, daß der Kohlenstoff nur zu Kohlenmono- xid (CO) verbrennt oder unverbrannt als Ruß verbleibt. Die Leistung des Verbrennungsmotors' oder der Heizungsanlage verringert sich dadurch und der Ausstoß an unerwünschtem Kohlen- monoxid und an Rußpartikeln wird erhöht. Überraschenderweise schafft die Anordnung und die Polung der Magnete 3 gemäß der vorliegenden Erfindung eine Vorrichtung, in welcher Kohlenstoffatome von Kohlenwasserstoffen in besonders hohem Maße ak- tiviert v/erden, so daß sie bei der anschließenden Verbrennung mit Sauerstoff zu Kohlendioxid reagieren.
Weiterhin gemäß Fig. 1 und gemäß Fig. 3 und 4 sind die Magnete 3 als zylinderförmige Stabmagneten ausgebildet. Ihre kreisförmigen Stirnseiten 4 sind jeweils auf die Leitung 2 gerichtet. Zur einfachen und sicheren Handhabung sind die drei Magnetpaare in einem Gehäuse 5 angeordnet. Damit sie in ihrer exakten Position verharren, werden die Magnete 3 durch Kunststoffstücke 6 gehalten. Sie sind im gezeigten Beispiel derart geformt, daß sie den Innenraum des Gehäuses 5 fast vollständig ausfüllen und lediglich gefräste oder gebohrte Hohlräume zur Aufnahme der Magnete 3 aufweisen. Die Kunststoffstücke 6 können selbstverständlich auch aus einem anderen festen Material hergestellt sein, solange es die Magnetfelder der Magneten 3 nicht beeinflußt. Bevorzugt ist das Gehäuse 5 rohrförmig und koaxial mit der Leitung 2 ausgerichtet. Das Gehäuse 5 besteht vorzugsweise aus Stg. 37 und ist außen verchromt. Es kann an beiden Enden ein Gewinde aufweisen, welche zum Aufschrauben von Endkappen 7 dienen. Auch andere Arten des Aufbaues des Ge- häuses zur Aufbewahrung und feststehenden Halterung der Magnete 3 sind denkbar, wie z.B. zwei Halbschalen, die über eine bestehende Leitung 2 geklappt werden können. Wenn Endkappen 7 vorgesehen sind, sind auch sie, wie das Gehäuse 5, aus Stg. 37 gefertigt. Das Gehäuse 5 und Endkappen sind in ihren Abmessun- gen so ausgelegt, daß durch die Magnete 3 keine magnetische Sättigung erreicht wird, somit der magnetische Kreis geschlossen ist, und das magnetische Feld genau dort, wo es benötigt wird, die größte Feldstärke erreicht. Die Leitung 2 kann aus Edelstahl gefertigt sein, weil Edelstahl paramagnetisch ist.
Fig. 2 stellt einen Querschnitt der Vorrichtung 1 entlang der Linie AB aus Fig. 1 dar. Gemäß Fig. 2 liegen sich zwei Magnete 3 gegenüber auf einer gemeinsamen Achse 8 und zeigen mit ihren Stirnseiten 4 auf die Leitung 2.
Fig. 3 zeigt die genaue Polung der Magnete 3. Es wechseln sich in einem Strichmuster Nord- und Südpole miteinander ab (in Fig. 3 sind beispielhaft zwei Streifen als Nordpol N und als Südpol S gekennzeichnet) . Das gleiche Strichmuster, nur mit umgekehrter Polung, besitzt der entsprechende Magnet 3 auf der gegenüberliegenden Seite der Leitung 2. Dadurch wird innerhalb der Leitung 2 ein magnetisches Wechselfeld errichtet. Es zeigt sich überraschenderweise, daß bei geeigneter Frequenz des Magnetfeldwechsels eine gesteigerte Aktivierung der Kohlenstoffatome stattfindet. Die Wechselfrequenz wird im wesentlichen durch den räumlichen Abstand der Nord- und Südpole auf den Magneten 3 sowie durch die Durchflußgeschwindigkeit des Fluids durch die Leitung 2 bedingt.
Auch gemäß Fig. 4 zeigt sich das Strichmuster der abwechselnden Nord- und Südpolung auf einem Magneten 3, wobei in dieser Längsschnitt-Ansicht die Stirnseite 4 nach unten weist.
Tests haben ergeben, daß sich der Wirkungsgrad der Vor- richtung 1 dadurch steigern läßt, daß drei Magnetpaare verwendet werden, wobei der Abstand zwischen dem ersten und dem zweiten Paar sowie der Abstand zwischen dem zweiten und dem dritten Paar der Magnete 3 gleich groß zu wählen ist. Eine weitere Steigerung des Wirkungsgrades findet signifikant dann statt, wenn eine weitere Gruppe aus drei Paaren von Magneten 3 der ersten Gruppe hinzugefügt wird. Weiterhin hat sich überraschend herausgestellt, daß der Wirkungsgrad der Vorrichtung gesteigert ist, wenn die Achsen 8 zweier hintereinanderliegen- der Magnetpaare einen Winkel einschließen (Fig. 2) . Zwei Ma- gnete 3 eines Paares, die gegenüber um die Leitung 2 herum angeordnet sind, sind fluchtend zueinander ausgerichtet, d.h. sie liegen auf einer gemeinsamen Achse 8, die senkrecht auf der Durchflußrichtung 2, bestimmt durch die Leitung 2, liegt. Gesehen in Flußrichtung können nun die Achsen 8 zweier benachbarter Magnetpaare einen Winkel einschließen.
Fig. 5 zeigt eine weitere Ausführungsform der Erfindung. Durch eine einfache Veränderung wird der Wirkungsgrad zur Ak¬ tivierung des Fluids erhöht. Dazu sind die drei Paare der Magneten 3 in einer Trommel 9 innerhalb des Gehäuses 5 angeordnet. Die Trommel 9 ist koaxial drehbar auf der Leitung 2 mittels beispielsweise von Kugellagern 10 gelagert. Im Gehäuse 5 sind dann Spulen 11 vorgesehen, die die Trommel 9 drehend antreiben können. Tests haben ergeben, daß die Aktivierung der Kohlenstoffatome steigt, wenn die drei Paare der Magneten 3 um die Leitung 2 während des Durchflusses des Brennstoffes rotieren. Eine Steuerung 12 steuert die Rotationsgeschwindigkeit der Tommel 9 über die Spulen 11. Die Trommel 9 muß nicht von den Spulen 11 angetrieben werden. Alternativen wie Elektromotoren o.a. sind gleichermaßen möglich.
Durch Anordnung der Magnete 3 in der Trommel 9 sind sie immer noch innerhalb des Gehäuses 5 positioniert. Das Gehäuse 5 übernimmt nun die Funktion des mechanischen Schutzes der rotierenden Trommel 9 sowie ggf. der Aufnahme von Teilen der Antriebsmittel der Trommel 9. Das Gehäuse 5 könnte aber bei dieser Ausführungsform konstruktiv verändert werden, z.B. in Richtung eines Gitterkorbes oder von Schutzbügeln.
Fig. 6 zeigt diese Ausführungsform im Querschnitt entlang der Linie AB in Fig. 5. Es können mehr oder weniger als die sechs in Fig. 5 dargestellten Spulen 11 verwendet werden. Sie müssen zudem nicht auf der Höhe der Magneten 3 angeordnet sein. Das von den Spulen 11 erzeugte Magnetfeld ist so zu wäh- len, daß ein sicherer und schneller Antrieb der Trommel 9 gewährleistet ist, daß jedoch das von den Magneten 3 in der Leitung 2 erzeugte Magnetfeld unverändert bleibt. Die Steuerung 12 kann die Drehgeschwindigkeit der Trommel 9 auch in Abhängigkeit der tatsächlich erfolgten oder gewünschten Aktivierung der Kohlenstoffatorae regeln. Zu diesem Zweck wird mindestens ein Sensor 13 am Fluidausgang der Lei- tung 2 der Vorrichtung 1 angebracht, welcher die Aktivierung mißt und über eine Leitung 14 an die Steuerung weitergibt. Ein solcher Sensor 13 kann aus einer LED und einer Photozelle bestehen. Die LED sendet dann elektromagnetische Strahlung einer bestimmten Frequenz, wie etwa der Resonanzfrequenz von Kohlen- stoff, aus, und die Photozelle empfängt die von den Kohlenstoffatomen anschließend emittierte elektromagnetische Strahlung. An der Eingangsseite der Leitung 2 können zusätzlich Sensoren 13 angeordnet sein, um die Anregungsdifferenz messen zu können. Die beste Drehgeschwindigkeit der Trommel 9 kann sich durch Veränderungen in der Zusammensetzung oder Temperatur des Fluids ändern. Ebenso spielt die Durchflußgeschwindigkeit eine Rolle. Sie kann sich beispielsweise bei Motoren ändern, wenn ein Fahrzeug die Fahrgeschwindigkeit oder die Fahrleistung ändert.
Die Vorrichtung ist geeignet für die Aktivierung von Diesel, Benzin, Kerosin, Heizöl, Schweröl, pflanzlichen Ölen etc. sowie für Gase, wie Campinggas, Butan, Propan etc. Die Steigerung des Wirkungsgrades bemißt sich wahlweise in der Steigerung der Leistung eines Motors, dessen Treibstoffzufuhrleitung mit einer Vorrichtung 1 ausgestattet wird, oder durch die Verminderung des TreibstoffVerbrauches bei gleicher Leistung. Selbstverständlich erhöht sich der Wirkungsgrad ebenso bei Heizungen oder Brennern. Ebenso bildet sich ein gesteigerter Wirkungsgrad direkt in der Verringerung des Rußanteiles oder des Kohlenmonoxidanteiles in den Abgasen ab.

Claims

Patentansprüche :
1. Vorrichtung (1) zur magnetischen Behandlung eines kohlenwasserstoffhaltigen Fluids, die eine Leitung (2) zum Durchfluß des Fluids sowie sechs Magneten (3) , die drei hintereinander angeordnete Paare bilden, deren Magnetfelder das Innere der Leitung durchdringen, aufweist, dadurch gekennzeichnet, daß die Magnete (3) im wesentlichen zylinderförmig ausgebildet und außerhalb der Leitung (2) angeordnet sind, wo- bei die beiden Magnete (3) eines Paares miteinander fluchtend an gegenüberliegenden Seiten der Leitungswand angeordnet sind und jeweils mit einer ihrer Stirnseiten (4) auf die Leitung (2) weisen, und wobei jeder Magnet (3) ein Strichmuster abwechselnder Magnetpolung aufweist, das senkrecht zur Flußrich- tung des Fluids ausgerichtet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie mindestens eine weitere Gruppe aus drei Paaren von Magneten (3) aufweist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, daß die Magnete (3) in einem Gehäuse (5) angeordnet sind, das bevorzugt rohrförmig ist.
4. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Magnete (3) mit Kunststoffstücken (6) in ihrer Position fixiert sind.
5. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Achsen zweier hintereinander- liegender Magnetpaare in Flußrichtung gesehen einen Winkel einschließen .
6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Magnete (3) in einer Trommel (9) angeordnet sind, die axial drehbar auf der Leitung (2) ge- lagert ist, und wobei die Trommel (9) mit einem elektrischen Antrieb verbunden ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Antrieb der Trommel (9) durch eine Steuerung (12) ge- regelt wird.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Steuerung (12) mit mindestens einem Sensor (13) verbunden ist, durch welchen die Aktivierung des Fluids meßbar ist .
PCT/AT2013/000188 2012-11-28 2013-11-08 Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids WO2014082107A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157016797A KR20150090168A (ko) 2012-11-28 2013-11-08 탄화수소 함유 유체의 자기 처리 장치
JP2015544270A JP2015537152A (ja) 2012-11-28 2013-11-08 炭化水素を含む流体を磁気処理する装置
US14/648,248 US20150314303A1 (en) 2012-11-28 2013-11-08 Device For The Magnetic Treatment Of A Hydrocarbon-Containing Fluid
ES13798543.8T ES2593202T3 (es) 2012-11-28 2013-11-08 Dispositivo para el tratamiento magnético de un fluido con hidrocarburos
CN201380062033.2A CN104870798A (zh) 2012-11-28 2013-11-08 用于磁化处理含烃流体的设备
EP13798543.8A EP2925996B1 (de) 2012-11-28 2013-11-08 Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1254/2012A AT513642B1 (de) 2012-11-28 2012-11-28 Vorrichtung zur magnetischen Behandlung eines kohlenwasserstoffhaltigen Fluids
ATA1254/2012 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014082107A1 true WO2014082107A1 (de) 2014-06-05

Family

ID=49680744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2013/000188 WO2014082107A1 (de) 2012-11-28 2013-11-08 Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids

Country Status (9)

Country Link
US (1) US20150314303A1 (de)
EP (1) EP2925996B1 (de)
JP (1) JP2015537152A (de)
KR (1) KR20150090168A (de)
CN (1) CN104870798A (de)
AT (1) AT513642B1 (de)
ES (1) ES2593202T3 (de)
PL (1) PL2925996T3 (de)
WO (1) WO2014082107A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115137A1 (de) 2014-10-17 2016-04-21 Yasar Kes Vorrichtung zur Behandlung von Kraftstoff
US11828691B2 (en) * 2017-01-27 2023-11-28 Dh Technologies Development Pte. Ltd. Electromagnetic assemblies for processing fluids
CN108731024A (zh) * 2017-04-21 2018-11-02 陈宗佑 具有节能效果的合金磁性管结构

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050426A (en) 1974-10-29 1977-09-27 Sanderson Charles H Method and apparatus for treating liquid fuel
DE3503691A1 (de) 1985-02-04 1986-08-07 Heinrich 8673 Rehau Kunel Magnet-aktivator
EP0399801A1 (de) 1989-05-26 1990-11-28 Wribro Limited Verbesserung des Wirkungsgrades der Verbrennung von Brennstoff
US5348050A (en) 1993-07-19 1994-09-20 Ashton Thomas E Magnetic fluid treatment device
WO1997029279A1 (en) 1996-02-08 1997-08-14 Che Moon Im A device for refining fuel oil
WO1998039564A1 (en) * 1997-03-07 1998-09-11 CENTRUM BADAWCZO-PRODUKCYJNE SORBENTÓW I CZYSTYCH TECHNOLOGII WEGLA 'EKOCENTRUM' SPÓ$m(C)KA Z O.O. A method and a device for the magnetic activation of solid, liquid and gas media, especially coal dust and other hydrocarbon fuels
GB2333977A (en) * 1998-02-06 1999-08-11 David Saul Glass Asymmetric field magnetic treatment device
GB2353742A (en) * 1999-09-02 2001-03-07 Richard Aird Mcfadzean Magnetic device for treating fluids
US6456178B1 (en) 2002-03-22 2002-09-24 Hsiang-Lan Chiu Fuel pipe magnetizing structure
WO2002101224A1 (en) 2001-06-08 2002-12-19 Crete Trading S.R.I. A process for heating and double electromagnetic polarization of liquid and gaseous fuel, and the relative device
US20070138077A1 (en) 2003-11-28 2007-06-21 Maxsys Limited Fuel combustion
KR20090011385A (ko) 2007-07-26 2009-02-02 이찬수 자동차의 연료 활성화 장치
AT10455U1 (de) 2006-02-07 2009-03-15 Aks Produktionsgmbh Aufbereitungsvorrichtung für energieträger
AT511345B1 (de) * 2011-07-18 2012-11-15 Eu Trucktec Gmbh Vorrichtung zum aufbereiten von gasförmigen oder flüssigen energieträgern

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559565A (en) * 1947-12-24 1951-07-03 Robert E Crockett Magnetic separator
US2660308A (en) * 1948-10-21 1953-11-24 Honan Crane Corp Magnetic separator
US3168464A (en) * 1961-12-04 1965-02-02 Eriez Mfg Company Permanent magnetic separator
US3595391A (en) * 1969-02-24 1971-07-27 Byron C Schmid Magnetic separator
CN2171688Y (zh) * 1993-08-30 1994-07-13 中国人民解放军第九八二八工厂 强磁节油净化器
DE9315673U1 (de) * 1993-10-04 1994-02-17 Kaempf Roland Magnetisches Fluid-Aufbereitungsgerät
US5453188A (en) * 1994-04-20 1995-09-26 Florescu; Viorel Magnetic apparatus for preventing deposit formation in flowing fluids
US6361749B1 (en) * 1998-08-18 2002-03-26 Immunivest Corporation Apparatus and methods for magnetic separation
JP2003254175A (ja) * 2002-02-27 2003-09-10 Yamato Kankyo Kenkyusho:Kk 燃料用磁気処理装置
JP2003269268A (ja) * 2002-03-11 2003-09-25 Toshiaki Tsunematsu 液体燃料磁気処理装置
CN100538362C (zh) * 2002-11-07 2009-09-09 株式会社三菱化学药得论 用于收集磁性颗粒的磁性材料及其应用
DE20300452U1 (de) * 2003-01-13 2003-03-13 Chang Hung Cheng Flüssigkeitsmagnetisierer
EP2218898A1 (de) * 2009-02-11 2010-08-18 Instalaciones Y Proyectos Electricos Castellon, S.L. Kraftstoff sparenden Gerät
WO2010114113A1 (ja) * 2009-04-02 2010-10-07 株式会社ソーワ・テクノ 磁気処理装置
US20110005628A1 (en) * 2009-07-13 2011-01-13 Elmer Mason Magnetohydrodynamic Fluid Conditioner

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050426A (en) 1974-10-29 1977-09-27 Sanderson Charles H Method and apparatus for treating liquid fuel
DE3503691A1 (de) 1985-02-04 1986-08-07 Heinrich 8673 Rehau Kunel Magnet-aktivator
EP0399801A1 (de) 1989-05-26 1990-11-28 Wribro Limited Verbesserung des Wirkungsgrades der Verbrennung von Brennstoff
US5348050A (en) 1993-07-19 1994-09-20 Ashton Thomas E Magnetic fluid treatment device
WO1997029279A1 (en) 1996-02-08 1997-08-14 Che Moon Im A device for refining fuel oil
WO1998039564A1 (en) * 1997-03-07 1998-09-11 CENTRUM BADAWCZO-PRODUKCYJNE SORBENTÓW I CZYSTYCH TECHNOLOGII WEGLA 'EKOCENTRUM' SPÓ$m(C)KA Z O.O. A method and a device for the magnetic activation of solid, liquid and gas media, especially coal dust and other hydrocarbon fuels
GB2333977A (en) * 1998-02-06 1999-08-11 David Saul Glass Asymmetric field magnetic treatment device
GB2353742A (en) * 1999-09-02 2001-03-07 Richard Aird Mcfadzean Magnetic device for treating fluids
WO2002101224A1 (en) 2001-06-08 2002-12-19 Crete Trading S.R.I. A process for heating and double electromagnetic polarization of liquid and gaseous fuel, and the relative device
US6456178B1 (en) 2002-03-22 2002-09-24 Hsiang-Lan Chiu Fuel pipe magnetizing structure
US20070138077A1 (en) 2003-11-28 2007-06-21 Maxsys Limited Fuel combustion
AT10455U1 (de) 2006-02-07 2009-03-15 Aks Produktionsgmbh Aufbereitungsvorrichtung für energieträger
KR20090011385A (ko) 2007-07-26 2009-02-02 이찬수 자동차의 연료 활성화 장치
AT511345B1 (de) * 2011-07-18 2012-11-15 Eu Trucktec Gmbh Vorrichtung zum aufbereiten von gasförmigen oder flüssigen energieträgern

Also Published As

Publication number Publication date
US20150314303A1 (en) 2015-11-05
PL2925996T3 (pl) 2016-12-30
EP2925996A1 (de) 2015-10-07
AT513642A1 (de) 2014-06-15
JP2015537152A (ja) 2015-12-24
KR20150090168A (ko) 2015-08-05
AT513642B1 (de) 2014-10-15
ES2593202T3 (es) 2016-12-07
EP2925996B1 (de) 2016-06-08
CN104870798A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
DE60309355T2 (de) Magnetische konditionierung von fluiden und gasen und vorrichtung dafür
DE69825730T2 (de) Vorrichtung zur magnetischen aktivierung von festen, flüssigen und gasförmigen medien, insbesondere kohlenstaub und kohlenwasserstoffbrennstoffen
CH637448A5 (de) Vorrichtung zur magnetischen behandlung von fluids.
EP2925996B1 (de) Vorrichtung zur magnetischen behandlung eines kohlenwasserstoffhaltigen fluids
DE19732834A1 (de) Vorrichtung zur Behandlung von flüssigen oder gasförmigen Brennstoffen
EP2035336A1 (de) Physikalischer wasseraufbereiter
EP1251264B1 (de) Vorrichtung zur Aufbereitung von Kraftstoffen
AT511345B1 (de) Vorrichtung zum aufbereiten von gasförmigen oder flüssigen energieträgern
DE102006008288A1 (de) Vorrichtung zur magnetischen Behandlung von Flüssigkeiten
AT10455U1 (de) Aufbereitungsvorrichtung für energieträger
DE19742651A1 (de) Magnetischer Kraftstoff-Regler für Verbrennungsmotoren
EP1025356B1 (de) Magnetischer aufbereiter für fluide brennstoffe
DE3503691A1 (de) Magnet-aktivator
DE2800790A1 (de) Verfahren und vorrichtung zum wirksamen verbrennen von fluessigem brennstoff
EP1730073A1 (de) Verfahren und vorrichtung zur erzeugung von wasserstoff
DE19507080A1 (de) Vorrichtung zur magnetischen Behandlung einer strömenden Flüssigkeit sowie Baueinheit zur Verwendung in der Vorrichtung
WO2001038226A2 (de) Verfahren und vorrichtung zur behandlung von flüssigkeiten
DE60205381T2 (de) Umweltschutz- und Sparvorrichtung für flüssige Treibstoffe
DE202023102097U1 (de) Vorrichtung zur Veränderung eines Spins eines fluiden Mediums, Heizung
DE19604060A1 (de) Vorrichtung zur Behandlung von flüssigen oder gasförmigen Medien
DE19851088A1 (de) Verfahren und Vorrichtung zum Konditionieren eines Mediums
DE2227389A1 (de) Vorrichtung zum verbrennen von gasen
DE381504C (de) Vorrichtung zur Verbrennung von Luft im elektrischen Flammenbogen
EP1775456A1 (de) Verfahren und Vorrichtung zur Aktivierung von flüssigen oder gasförmigen Brennstoffen, insbesondere von Benzin- und Dieselkraftstoffen, Kerosin, Heizöl, Erdgas oder dergleichen
DE10040159A1 (de) Vorrichtung zur energetischen Beeinflussung eines Fluids mit Zusatzspulen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013798543

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015544270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14648248

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157016797

Country of ref document: KR

Kind code of ref document: A