WO2014080984A1 - 揮発性有機化合物回収装置 - Google Patents

揮発性有機化合物回収装置 Download PDF

Info

Publication number
WO2014080984A1
WO2014080984A1 PCT/JP2013/081402 JP2013081402W WO2014080984A1 WO 2014080984 A1 WO2014080984 A1 WO 2014080984A1 JP 2013081402 W JP2013081402 W JP 2013081402W WO 2014080984 A1 WO2014080984 A1 WO 2014080984A1
Authority
WO
WIPO (PCT)
Prior art keywords
volatile organic
organic compound
adsorbent
gas
adsorption
Prior art date
Application number
PCT/JP2013/081402
Other languages
English (en)
French (fr)
Inventor
宇治 茂一
Original Assignee
Uji Shigekazu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uji Shigekazu filed Critical Uji Shigekazu
Priority to JP2014548616A priority Critical patent/JP5990722B2/ja
Priority to US14/646,720 priority patent/US9539539B2/en
Publication of WO2014080984A1 publication Critical patent/WO2014080984A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0258Other waste gases from painting equipments or paint drying installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention provides a recovery method and a recovery device in the case where a volatile organic compound is recovered using adsorption and the volatile organic compound contains a water-soluble compound such as ethyl acetate, methyl ethyl ketone, isopropyl alcohol, or the like,
  • the volatile organic compound is a plurality of types of compounds, it belongs to the technical field of a method and a recovery device for separating and recovering each individual compound type.
  • the volatile organic compounds have been separated and recovered from exhaust gas containing volatile organic compounds such as toluene, xylene, and methylene chloride.
  • activated carbon is filled.
  • a fixed bed solvent recovery device that repeats adsorption and desorption alternately, or adsorbs solvents and the like while flowing the activated carbon through the raw gas fed from the tower bottom.
  • a fluidized bed type solvent recovery apparatus that allows desorption of adsorbed activated carbon obtained at the bottom of the tower in a desorber provided separately. The adsorption process of these devices is performed under atmospheric pressure, and the desorption process is often performed under atmospheric pressure or reduced pressure using water vapor or nitrogen gas.
  • the untreated gas containing the volatile organic compound is sent to the adsorption tower 1, the volatile organic compound in the untreated gas is adsorbed on the activated carbon layer, and the purified exhaust gas is released into the atmosphere.
  • the adsorption tower 1 finishes the adsorption, the untreated gas supply valve 2 and the treated gas exhaust valve 3 are closed, and water vapor is blown into the adsorption tower 1 through the adsorbent regeneration gas supply valve 5 and is adsorbed. Volatile organic compounds are desorbed and discharged in a gaseous form together with water vapor. This mixed gas (desorption gas) is led to the condenser 16 and condensed by cooling.
  • the water of this condensate and the recovered volatile organic compound are insoluble in each other, they are separated into a volatile organic compound phase and an aqueous phase in the separation tank 13 due to the difference in specific gravity, and the water is discharged as drainage 20 and is volatile.
  • the organic compound is recovered in the volatile organic compound recovery tank 12.
  • the separation into the upper and lower phases in the separation tank 13 is determined by the difference in specific gravity between them, and the relationship between the upper and lower phases is not fixed.
  • the solubility of the above water-soluble volatile organic compounds in water is in the range of 10% to 100%, and a considerable amount is dissolved in water. Therefore, in order to use the volatile organic compound for energy recycling, it is necessary to remove water in the recovered solution, and a distillation operation after adsorption recovery is essential. In addition, in order to use the volatile organic compound for material recycling, when the recovery solvent is a mixed solvent of a plurality of types of volatile organic compounds, it is necessary to separate and recover each individual compound. In addition, a distillation operation after adsorption recovery is essential. However, since a relatively large energy consumption occurs in the distillation operation, there is a problem that the process becomes energetically inefficient, and it has been a conventional problem to solve this problem.
  • the present invention has been made paying attention to the above-described conventional problems, and in the volatile organic compound recovery device for desorbing the volatile organic compound from the adsorbent adsorbing the volatile organic compound, the adsorbed water-soluble
  • the volatile organic compound can be recovered without dissolving it in water, and even when the adsorbed volatile organic compound is a plurality of types of compounds, it can be separated and recovered for each compound type. It is an object of the present invention to provide a volatile organic compound recovery device that is unnecessary and can realize energy saving, as well as simple equipment.
  • the present inventor desorbs the volatile organic compound adsorbed on the adsorbent by using another volatile organic compound without using water vapor to desorb the volatile organic compound adsorbed on the adsorbent. I focused on what I can do.
  • the volatile organic compound recovery device that desorbs the volatile organic compound from the adsorbent that has adsorbed the volatile organic compound, the volatile organic compound having a higher adsorption rate than the adsorbed volatile organic compound flows into the adsorbent. Then, the volatile organic compound having a large adsorption rate is already adsorbed by the adsorbent, and the volatile organic compound having a small adsorption rate is expelled from the adsorbent. Phenomenon that is adsorbed on. This is called competitive adsorption.
  • the present invention provides a volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed on the adsorbent or a plurality of adsorbed on the adsorbent when desorbing the volatile organic compound from the adsorbent.
  • a volatile organic compound recovery device and a recovery method using a volatile organic compound having the highest adsorption rate among volatile organic compounds of a species are provided.
  • the present invention is an apparatus for recovering a volatile organic compound contained in an untreated gas, and an adsorption tower including an adsorbent for adsorbing a volatile organic compound contained in the untreated gas A volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed on the adsorbent, or a plurality of types of volatile organic compounds adsorbed on the adsorbent.
  • Desorption gas supply means for supplying a large volatile organic compound; and recovery for recovering the volatile organic compound desorbed from the adsorbent by competitive adsorption with the volatile organic compound having a large adsorption rate Means for recovering the volatile organic compound.
  • the present invention also provides (i) a step of adsorbing a volatile organic compound contained in an untreated gas to an adsorbent; (ii) a volatile compound having a higher adsorption rate than the volatile organic compound adsorbed on the adsorbent.
  • the organic compound or the volatile organic compound having the largest adsorption rate among the volatile organic compounds adsorbed on the adsorbent is supplied to the adsorbent and is adsorbed on the adsorbent in step (i) by competitive adsorption.
  • a step of recovering the desorbed volatile organic compound A method for recovering a volatile organic compound contained in an untreated gas is provided.
  • a volatile organic compound recovery device for recovering a volatile organic compound wherein the adsorbent is built in, and an adsorption tower to which an untreated gas containing the volatile organic compound is supplied via a gas shutoff valve, and the adsorption Supply the volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed to the agent or the volatile organic compound having the highest adsorption rate among the adsorbed volatile organic compounds to the adsorption tower.
  • the desorption gas supply means is provided for supplying the adsorbent with the gas remaining in the adsorption tower after completion of adsorption and the volatile organic compound having a larger adsorption rate than the volatile organic compound adsorbed on the adsorbent.
  • the volatile organic compound recovery apparatus of the present invention supplies a volatile organic compound having a higher adsorption rate than the adsorbed volatile organic compound into the adsorption tower for desorption of the adsorbed volatile organic compound.
  • the volatile organic compound is provided with means for mixing air, nitrogen gas or other inert gas and supplying it into the adsorption tower.
  • the volatile organic compound recovery device of the present invention is a volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed by the adsorbent as a result of desorbing the adsorbed volatile organic compound.
  • the above-described configuration is adopted. Therefore, even if the volatile organic compound recovered from the untreated gas contains a water-soluble volatile organic compound, it dissolves in water. It is possible to recover without causing it. As a result, a distillation apparatus for separating and removing water can be dispensed with. In addition, even when the adsorbed volatile organic compound is a plurality of types of compounds, it can be separated and recovered for each compound type. Therefore, the liquefied and recovered volatile organic compounds are separated and recovered for each type of compound. This eliminates the need for a distillation apparatus. As a result, the energy consumption required by the distillation apparatus can be eliminated, so that energy saving can be realized as well as the excellent effect that the equipment can be simplified. Is brought about.
  • FIG. 6 is a schematic diagram showing operating states a to f of a volatile organic compound recovery device in Example 2 of the present invention.
  • A indicates the adsorption state.
  • b shows a purge state.
  • C indicates the desorption gas supply state.
  • d shows the desorption state I.
  • E indicates Desorption State II.
  • f shows the desorption gas purge state.
  • A indicates the adsorption state.
  • the present invention is to adsorb single or plural kinds of volatile organic compounds contained in an untreated gas to an adsorbent and then desorb the volatile organic compounds adsorbed to the adsorbent with a desorption gas. And relates to a volatile organic compound recovery method and apparatus for recovering a volatile organic compound from the untreated gas.
  • the adsorbed water-soluble volatile compound is obtained by using a volatile organic compound having a large adsorbing ability to the adsorbent instead of water vapor as a desorption gas. The organic compound can be recovered without dissolving it in water.
  • the volatile organic compound recovery device of the present invention includes an adsorption tower, a desorption gas supply means, and a volatile organic compound recovery means.
  • the adsorption tower includes an adsorbent for adsorbing a volatile organic compound contained in the untreated gas.
  • the untreated gas is, for example, exhaust gas generated with various operations such as various plastic products, synthetic fibers, semiconductor manufacturing processes, or magnetic tape industry; or a gas station, fuel oil shipping equipment, oil tank station And exhaust gas discharged into the atmosphere from a small general volatile organic compound emission source such as cleaning industry, printing industry or painting industry.
  • volatile organic compounds contained in the untreated gas include, for example, esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; ketones such as acetone and methyl ethyl ketone; aldehydes such as acetaldehyde; methanol Alcohols such as ethanol, propyl alcohol (n-propyl alcohol, and isopropyl alcohol), and butanol (n-butanol, isobutanol, sec-butanol, and tert-butanol); halogenated hydrocarbons such as dichloromethane and chloroform; Aromatic compounds such as xylene, toluene and benzene; and mixtures of two or more thereof.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate
  • ketones such as acetone and methyl ethyl ketone
  • examples of the adsorbent include activated carbon, silica gel, alumina, clay, and zeolite.
  • a polymeric material such as a crosslinked polymeric material, may be used as the adsorbent.
  • the adsorbent is activated carbon.
  • the shape of the activated carbon is not particularly limited, such as a spherical shape or a powder shape.
  • the activated carbon is not limited, and, for example, one having a specific surface area of 800 to 1200 m 2 ⁇ g ⁇ 1 , a pore volume of 0.2 to 2 cm 3 ⁇ g ⁇ 1 and a pore diameter of 1 to 4 nm can be used.
  • the desorption gas supply means in the apparatus of the present invention is used to supply a gas (desorption gas) for desorbing the volatile organic compound adsorbed by the adsorbent from the adsorbent into the adsorption tower. .
  • the desorption gas desorbs the volatile organic compound adsorbed on the adsorbent by competitive adsorption and is adsorbed by the adsorbent.
  • the desorption gas is a volatile organic compound having a larger adsorption rate than the volatile organic compound adsorbed on the adsorbent, or the most adsorbing rate among the volatile organic compounds adsorbed on the adsorbent.
  • the desorption gas may be a mixed gas of the volatile organic compound having a high adsorption rate and air or an inert gas such as nitrogen or argon, or a mixture thereof.
  • the volatile organic compound recovery apparatus of the present invention can include a desorption gas mixing means for creating the mixed gas.
  • the volatile organic compound having a high adsorption rate includes, for example, an aromatic compound such as toluene, xylene, or benzene.
  • the volatile organic compound having a high adsorption rate is toluene.
  • a person skilled in the art can select an appropriate volatile organic compound having a large adsorption rate based on the volatile organic compound contained in the untreated gas.
  • the volatile organic compound recovery means in the apparatus of the present invention recovers the volatile organic compound desorbed from the adsorbent by competitive adsorption with the volatile organic compound having a high adsorption rate.
  • the recovery means can include a condenser, a volatile organic compound recovery tank, and / or a vacuum pump.
  • a plurality of volatile organic compounds contained in the untreated gas a plurality (for example, 2, 3, 4 or 5 or more) of the recovery means may exist. In this case, using the difference in the adsorption rate of each volatile organic compound contained in the untreated gas, it can be collected separately for each type.
  • the volatile organic compound recovery device of the present invention can include a gas discharge means in the adsorption tower.
  • the gas exhaust means in the adsorption tower is used for exhausting the gas remaining in the adsorption tower after completion of adsorption and the volatile organic compound desorbed from the adsorbent to the outside of the adsorption tower.
  • the adsorption tower gas discharge means may include a vacuum pump.
  • the volatile organic compound recovery device of the present invention can further include a gas supply means for adsorbent regeneration.
  • the adsorbent regeneration gas supply means supplies a gas (adsorbent regeneration gas) for desorbing a volatile organic compound having a high adsorption rate from the adsorbent to the adsorption tower. Thereby, the adsorbent can be re-adsorbed and reused.
  • the adsorbent regeneration gas is, for example, water vapor, an inert gas (such as nitrogen or argon), or a mixture thereof.
  • the volatile organic compound recovery device of the present invention can further include a recovery means for recovering the volatile organic compound having a high adsorption rate.
  • the recovery means can include a condenser, a separation tank, a volatile organic compound recovery tank, and / or a vacuum pump.
  • a water-insoluble compound such as toluene
  • water vapor is used as the adsorbent regeneration gas
  • the recovered volatile organic compound having a high adsorption rate can be reused for competitive adsorption as a desorption gas.
  • the volatile organic compound recovery method of the present invention can be performed using the volatile organic compound recovery device.
  • the volatile organic compound recovery method of the present invention can include the following steps. (i) a step of adsorbing a volatile organic compound contained in an untreated gas on an adsorbent; (ii) A volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed on the adsorbent, or a volatile organic compound having the highest adsorption rate among the volatile organic compounds adsorbed on the adsorbent To the adsorbent and by desorption of the volatile organic compound adsorbed to the adsorbent in step (i) by competitive adsorption; and (iii) recovering the desorbed volatile organic compound; It is.
  • the volatile organic compound having a large adsorption rate may be mixed with air or an inert gas (such as nitrogen or argon), or a mixture thereof, and the mixed gas may be supplied to the adsorbent.
  • the recovery step of the step (iii) can include a step of condensing the desorbed volatile organic compound.
  • a condenser, a volatile organic compound recovery tank, and / or a vacuum pump can be used.
  • the desorbed volatile organic compounds can be collected separately for each type. This can be performed by utilizing the difference in adsorption ability of each volatile organic compound to the adsorbent. Specifically, see Example 3.
  • the volatile organic compound recovery method of the present invention can further include (iv) a step of supplying a gas for desorbing the volatile organic compound having a high adsorption rate to the adsorbent. By this process, the adsorbent can be regenerated and reused.
  • the volatile organic compound recovery method of the present invention can further include a step of recovering the volatile organic compound having a high adsorption rate desorbed from the adsorbent in (v) step (iv). Through this process, a volatile organic compound having a high adsorption rate can be recovered and reused.
  • a condenser, a separation tank, a volatile organic compound recovery tank, and / or a vacuum pump can be used. Steps (i) to (iii) can be repeated after step (iv) or (v).
  • FIG. 1 is a system configuration diagram showing a characteristic configuration of a volatile organic compound recovery apparatus according to Embodiment 1 of the present invention.
  • reference numeral 1 is an adsorption tower
  • 2 is an untreated gas supply valve
  • 3 is a process gas exhaust valve
  • 4 is a desorption gas supply valve.
  • the adsorption tower 1 adsorbs a volatile organic compound of an untreated gas containing a volatile organic compound on an adsorbent, for example, activated carbon, and the volatile organic compound adsorbed on the activated carbon is more than the adsorbed volatile organic compound.
  • a volatile organic compound is recovered from an untreated gas by desorption with a volatile organic compound having a high adsorption rate. After recovering the volatile organic compound from the untreated gas, the volatile organic compound having a high adsorption rate is adsorbed on the activated carbon, and the adsorbent can be adsorbed again by desorption with steam or nitrogen. It is supposed to be in a state.
  • this volatile organic compound recovery device supplies an adsorption tower 1 containing an adsorbent and an untreated gas containing a volatile organic compound to the adsorption tower 1 via an untreated gas supply valve 2.
  • Untreated gas supply line 6 processing gas discharge line 7 for exhausting the processing gas from the adsorption tower 1 through the processing gas exhaust valve 3, and desorption gas supplied when the adsorbed volatile organic compound is desorbed
  • Desorption gas for supplying the adsorption tower 1 with the desorption gas supply valve 4 (a volatile organic compound having a higher adsorption rate than the adsorbed volatile organic compound, air, nitrogen gas, or other inert gas or vapor).
  • a supply line 8 is provided.
  • a method for recovering a volatile organic compound by the recovery system configured as described above will be described.
  • the untreated gas containing the volatile organic compound is supplied to the adsorption tower 1
  • the volatile organic compound is adsorbed by the adsorbent.
  • the adsorbent is saturated with the volatile organic compound, the adsorption is completed, and a volatile organic compound having a higher adsorption rate than the volatile organic compound adsorbed by the adsorbent is supplied to the adsorption tower 1 via the desorption gas supply valve 4. Supplied.
  • the volatile organic compound adsorbed on the adsorbent is desorbed by the action of competitive adsorption with the volatile organic compound having a high adsorption rate supplied later, and the volatile organic compound having a high adsorption rate is substituted for itself. Is adsorbed by the adsorbent. As a result, the adsorbed volatile organic compound is discharged from the adsorption tower 1 and collected.
  • the volatile organic compound discharged from the adsorption tower 1 is water-soluble, it does not accompany water vapor, so it is dissolved in water even when cooled, condensed and liquefied and recovered.
  • competitive adsorption works with each other. Therefore, when they are discharged from the adsorption tower 1, they are discharged in order of decreasing adsorption rate. It is possible to separate and recover each type of organic compound.
  • the volatile organic compound recovery apparatus does not require a distillation apparatus to recover a water-soluble volatile organic compound and to separate and recover a plurality of types of volatile organic compounds. Therefore, it is possible not only to realize energy saving but also to simplify the equipment.
  • Example 2 is for solving the problems of Example 1 and relates to a volatile organic compound recovery device that is closer to an actual machine.
  • FIG. 2 the same components as those in the first embodiment are denoted by the same reference numerals.
  • the adsorption tower 1 adsorbs a volatile organic compound of an untreated gas containing a volatile organic compound on an adsorbent, for example, activated carbon, and the volatile organic compound adsorbed on the activated carbon is more than the adsorbed volatile organic compound.
  • a volatile organic compound is recovered from an untreated gas by desorption with a volatile organic compound having a high adsorption rate.
  • the activated carbon adsorbs the volatile organic compound having a large adsorption rate, and this is adsorbed by an adsorbent regeneration gas (for example, water vapor or nitrogen gas). By desorption, the adsorbent can be adsorbed again.
  • this volatile organic compound recovery device supplies an adsorption tower 1 containing an adsorbent and an untreated gas containing a volatile organic compound to the adsorption tower 1 via an untreated gas supply valve 2.
  • Untreated gas supply line 6 processing gas discharge line 7 for exhausting the processing gas from the adsorption tower 1 through the processing gas exhaust valve 3, and desorption gas supplied when the adsorbed volatile organic compound is desorbed
  • a desorption gas supply line that supplies a volatile organic compound having a higher adsorption rate than the adsorbed volatile organic compound, air, nitrogen gas, or other inert gas to the adsorption tower 1 via the desorption gas supply valve 4.
  • Adsorbent regeneration The adsorbent regeneration gas supply line 9 supplied to the adsorption tower 1 via the gas supply valve 5 and the desorption gas discharged from the adsorption tower 1 are supplied to the condensers 15 and 16 via the desorption gas switching valves 17 and 18.
  • a desorption gas line 10 and a desorption gas discharge line 19 are provided.
  • the desorption gas is a volatile organic compound having a low adsorption rate that is desorbed by a volatile organic compound having a high adsorption rate
  • the desorbed volatile organic compound having a low adsorption rate is sucked by the vacuum pump 14 and discharged from the adsorption tower 1. After that, it is liquefied by the condenser 15 via the desorption gas switching valve 17 and recovered in the volatile organic compound recovery tank 11.
  • the desorption gas for desorbing a volatile organic compound with a low adsorption rate is a volatile organic compound with a high adsorption rate
  • the desorption gas is desorbed with an adsorbent regeneration gas (nitrogen gas, other inert gas or water vapor), and desorbed.
  • the volatile organic compound having a high adsorption rate is sucked by the vacuum pump 14, discharged from the adsorption tower 1, liquefied by the condenser 16 via the desorption gas switching valve 18, and volatile organic by the separation tank 13. Specific gravity separation between the compound and water is performed, and the separated volatile organic compound collection tank 12 is recovered.
  • FIG. 4 is a timing chart showing the change of the operation state in FIG. 3 in time series.
  • the volatile organic compound having a large adsorption rate serving as a desorption gas is toluene, and the volatile organic compound having a small adsorption rate to be desorbed is ethyl acetate.
  • the specific application of the present invention is not limited to these materials, and can be applied to a combination of many volatile organic compounds.
  • the adsorbent of the adsorption tower 1 is repeatedly operated in the state shown in FIG. 3, so that the adsorption state a ⁇ purge state b ⁇ desorption gas supply state c ⁇ desorption state Id ⁇ desorption state IIe ⁇ desorption The state changes in the order of the working gas purge state f.
  • the white display indicates each valve is “open”. "Black” indicates that each valve is in the "closed state”.
  • the operation state a in FIG. 3 is “adsorption state”. That is, in the adsorption tower 1, the untreated gas supply valve 2 and the treated gas exhaust valve 3 are open, and the desorption gas supply valve 4, the adsorbent regeneration gas supply valve 5 and the desorption gas switching valves 17, 18 are closed. By setting the state, the untreated gas is sequentially supplied, and the volatile organic compound in the untreated gas is adsorbed by the adsorbent stored in the adsorption tower 1 and the treated gas passing through the adsorbent is sequentially The suction state is discharged.
  • the untreated gas supply valve 2 and the treated gas exhaust valve 3 are set to the closed state, and the desorption gas switching valve is set. 18 is set to the open state, and the vacuum pump 14 is activated to shift to the “purge state” shown in the operation state b of FIG. 3 in which the residual gas in the adsorption tower 1 is exhausted.
  • the untreated gas supply valve 2, the treated gas exhaust valve 3, the desorption gas supply valves 4 and 5, and the desorption gas switching valve 17 are set in the closed state, whereby the adsorption tower 1 is Depressurized state.
  • the reason why the residual gas in the adsorption tower 1 is exhausted without passing through the condenser 15 in this “purge state” is that the residual gas in the adsorption tower 1 may contain moisture. For this reason, moisture is prevented from being mixed into a volatile organic compound to be condensed later by the condenser 15.
  • the vacuum pump 14 is disposed downstream of the condenser 15.
  • the specific application of the present invention is not limited to such a configuration.
  • the condensation in the condenser 15 may be performed under atmospheric pressure. It may be advantageous to do so, in which case the vacuum pump 14 may be located upstream of the condenser 15 as shown in FIG.
  • the desorption gas supply valve 4 is set in an open state, and is supplied to the adsorption tower 1 in a state where air, nitrogen gas, or other inert gas is mixed with toluene as the desorption gas.
  • the mixing ratio of both gases is set so that the partial pressure of toluene as the desorption gas is equal to or lower than the vapor pressure of toluene at the temperature of the mixed gas. This mixing ratio is set so that the supplied toluene does not condense. Therefore, if the predetermined depressurized state is lower than the saturation pressure at the temperature of toluene, it is possible to cope with not having to mix air, nitrogen gas or other inert gas with toluene.
  • the mixed gas of toluene and air or nitrogen gas or other inert gas is supplied to the adsorption tower 1, the residual gas in the adsorption tower 1 is further discharged. Furthermore, by supplying a mixed gas of toluene and air, nitrogen gas or other inert gas to the adsorption tower 1, a state in which the residual gas in the adsorption tower 1 is completely discharged is realized. This operation state is the completion of the “desorption gas supply state”.
  • the desorption gas switching valve 17 is set in the open state and the desorption gas switching valve 18 is set in the closed state, and the state shifts to the “desorption state I” shown in the operation state d in FIG.
  • Toluene that has reached the adsorbent has a higher adsorption rate than the volatile organic compound adsorbed on the adsorbent (in this case, ethyl acetate), so the ethyl acetate is driven out of the adsorbent by the action of competitive adsorption. Adsorbed by the adsorbent.
  • Desorption state I is completed when all the ethyl acetate is desorbed from the adsorbent.
  • the desorbed ethyl acetate is sequentially discharged from the adsorption tower 1, condensed and liquefied by the condenser 15 via the desorption gas switching valve 17, and recovered in the volatile organic compound recovery tank 11.
  • the adsorbent regeneration gas supply valve 5 is set in the open state, the desorption gas supply valve 4 is closed, the desorption gas switching valve 17 is closed, and the desorption gas switching valve 18 is set in the open state. Transition to “desorption state II” shown in the operation state e. Vapor is supplied to the adsorption tower 1 through the adsorbent regeneration gas switching valve 5, the adsorbent is heated by the vapor, and the adsorbed toluene is desorbed.
  • the desorbed toluene is mixed with steam, discharged from the adsorption tower 1, and condensed and liquefied by the condenser 16 via the desorption gas switching valve 18.
  • the liquefied toluene and water are separated by specific gravity in the separation tank 13, the separated toluene is collected in the volatile organic compound collection tank 12, and the separated water is drained through the drain line 20.
  • the adsorbent regeneration gas supply valve 5 When the “desorption state II” is completed, the adsorbent regeneration gas supply valve 5 is set to the closed state, and the state changes to the “desorption gas purge state” shown in the operation state f of FIG. Vapor remaining in the adsorption tower 1 is discharged from the adsorption tower 1 by the vacuum pump 14, condensed and liquefied by the condenser 16 via the desorption gas switching valve 18, and condensed water and toluene in the separation tank 13 have a specific gravity. The separated toluene is recovered in the volatile organic compound recovery tank 12, and the separated water is drained through the drain line 20.
  • the desorption gas switching valve 18 is closed, the untreated gas supply valve 2 and the treated gas exhaust valve 3 are set to the open state, and the state returns to the “adsorption state” shown in the operation state a of FIG. Thereafter, by repeating the operation states a to e, recovery of the volatile organic compound from the untreated gas can be continued.
  • the recovery is performed when the untreated gas contains one or more kinds or two or more kinds of volatile organic compounds containing a desorption gas (toluene in the above example).
  • volatile organic compounds other than the desorption gas are collectively collected in the volatile organic compound recovery tank 11, and different types of compounds cannot be separated and recovered individually.
  • Example 3 is for solving the problems of the second embodiment, and relates to a volatile organic compound recovery device having a wider application range.
  • the volatile organic compound recovery apparatus includes liquefaction recovery units 24 and 25 corresponding to the volatile organic compound species to be separated and recovered.
  • the liquefaction recovery unit 25 additionally provided in the volatile organic compound recovery device of Example 2 shown in FIG. 2 includes a desorption gas switching valve 23, a condenser 22, and a volatile organic compound recovery tank 21. It arrange
  • FIG. 6 shows a timing chart showing the change of the operation state in FIG. 5 in time series.
  • the operations in the operation states a to c in this embodiment are the same as the operation states a to c in the second embodiment.
  • the volatile organic compound as the desorption gas is toluene as in Example 2, and the volatile organic compound to be separated and recovered is ethyl acetate and MEK (methyl ethyl ketone).
  • the adsorption rate of each volatile organic compound is, in descending order, toluene> ethyl acetate> MEK.
  • toluene having the highest adsorption rate introduced into the adsorption tower as a desorption gas desorbs MEK having the lowest adsorption rate by competitive adsorption, and is adsorbed by the adsorbent.
  • This state is the operation state d.
  • the desorption gas switching valve corresponding to the volatile organic substance recovery tank in which the desorbed and discharged MEK is to be recovered is set to the open state, and the other desorption gas switching valves are closed.
  • the desorption gas switching valve 17 is set to an open state.
  • the open / close states of the valves other than the desorption gas switching valve are the same as the operation state d of the second embodiment shown in FIG.
  • This state is the operation state d '.
  • the desorption gas switching valve corresponding to the volatile organic matter recovery tank in which the desorbed and discharged ethyl acetate is to be recovered is set to the open state, and the other desorption gas switching valves are closed.
  • the desorption gas switching valve 23 is set to an open state.
  • the open / close states of the valves other than the desorption gas switching valve are the same as the operation state d of the second embodiment shown in FIG.
  • the configuration is such that three types of volatile organic compounds (ethyl acetate, MEK, toluene) are separated and recovered.
  • the number of compounds is not limited to three, and the number of liquefied recovery units 24 and 25 corresponding to the number of volatile organic compounds to be separated and recovered increases the separation and recovery of three or more volatile organic compounds. Can respond.
  • the adsorption tower is constituted by one tower.
  • the adsorption tower is constituted by a plurality of towers, and each adsorption tower is constituted.
  • an embodiment in which the recovery operation of the volatile organic compound is continuously performed without any interruption by shifting the timing of each operation state is also possible.
  • a recovered volatile organic compound contains a water-soluble volatile organic compound, it can be recovered without being dissolved in water, and thus a distillation apparatus for separating and removing water
  • the adsorbed volatile organic compound is a plurality of types of compounds, it can be separated and recovered for each compound type, so that a plurality of types of volatile organic compounds that have been liquefied and recovered It is possible to eliminate the need for a distillation apparatus for separating and recovering each of the compound types, and as a result, it is possible to eliminate the energy consumption required for the distillation apparatus, so that energy saving can be realized. Of course, it can also be simplified in terms of equipment.
  • the configuration of the volatile organic compound recovery device according to the present invention is not limited to the configuration of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】省エネルギーを実現し、設備的に簡便なものとすることが可能な揮発性有機化合物回収装置を提供する。 【解決手段】揮発性有機化合物を含む未処理ガスが吸着塔1に供給されると、揮発性有機化合物は吸着剤に吸着される。吸着が完了すると、脱着用ガス供給弁4を介して、吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物が吸着塔1に供給される。すると、吸着剤に吸着されていた吸着率の小さい揮発性有機化合物はあとから供給された吸着率の大きい揮発性有機化合物との競争吸着の作用により、脱着され、吸着率の大きい揮発性有機化合物が代わって、自身が吸着剤に吸着される。その結果、吸着されていた揮発性有機化合物は吸着塔1から排出され、回収される。

Description

揮発性有機化合物回収装置
  本発明は、吸着を利用して揮発性有機化合物を回収する際に当該揮発性有機化合物に酢酸エチル、メチルエチルケトン、イソプロピルアルコール等の水溶性化合物が含まれる場合の回収方法及び回収装置、または、当該揮発性有機化合物が複数種の化合物である場合に個別の化合物種ごとに分離、回収する方法及び回収装置の技術分野に属するものである。
  従来から、大気汚染防止や資源の有効利用の観点から、トルエン、キシレン、塩化メチレン等の揮発性有機化合物を含む排ガスから、該揮発性有機化合物を分離・回収することが行われている。
  例えば、各種プラスチック製品、合成繊維、半導体の製造工程や磁気テープ工業等の各種操作に伴って発生する排ガス中に含まれる有機溶剤等の揮発性有機化合物を回収する活性炭吸着法では、活性炭を充填した複数の吸着塔を設け、吸着と脱着を交互に繰り返す固定床式溶剤回収装置、あるいは塔頂より活性炭を降下させて塔底より送り込まれる原ガスによりこの活性炭を流動させつつ溶剤等の吸着を行わせ、塔下段で得られる吸着済の活性炭を、別途設けられた脱着器において脱着を行わせる流動層式溶剤回収装置が知られている。これらの装置の吸着工程は大気圧下で行われ、脱着工程は水蒸気又は窒素ガスを使用して大気圧または減圧下で行われることが多い。
  これらの吸着方法のうち、大気圧脱着を行う固定床式吸着装置を例にして、その具体的操作について図7を基に説明する。揮発性有機化合物を含む未処理ガスは、吸着塔1に送り込まれ、未処理ガス中の揮発性有機化合物が活性炭層に吸着され、浄化された排ガスは大気中に放出される。吸着塔1が吸着を終了し、未処理ガス給気弁2及び処理ガス排気弁3が閉止され、吸着塔1内に吸着剤再生用ガス供給弁5を介して水蒸気が吹き込まれて吸着されていた揮発性有機化合物は脱着されて水蒸気と共にガス状で排出される。この混合ガス(脱着ガス)は凝縮器16に導かれ冷却によって凝縮される。
  この凝縮液の水と回収された揮発性有機化合物は、相互に不溶であれば分離槽13において比重差により揮発性有機化合物相と水相に分離し、水は排水20として排出され、揮発性有機化合物は揮発性有機化合物回収槽12に回収される。尚、分離槽13における上・下相への分離は、両者の比重差によって定まるものであり、上・下相の関係は固定的なものではない。
  ところが、水と回収された揮発性有機化合物が相互に一部または全部が溶け合う場合には、両者を分離し、溶剤のみを回収するためには、蒸留装置での蒸留分離が必要となる。また、未処理ガスに揮発性有機化合物が複数種含まれる場合、回収された揮発性有機化合物が相互に一部または全部が溶け合う場合にも、個別に分離し回収するためには、蒸留装置での蒸留分離が必要となる。水に溶解する揮発性有機化合物の代表的なものとしては、酢酸エチル、メチルエチルケトン、イソプロピルアルコール等がある。これらの揮発性有機化合物は印刷工業、塗装工業などで多用されており、従来は大気汚染防止のためほとんどが燃焼廃棄処理されていたが、将来的には、溶剤としてのリサイクル(マテリアルリサイクル)あるいは化石燃料代替の燃料としてのリサイクル(エネルギーリサイクル)により有効活用されることが期待されている。
特許第3976986号 特開2007-160163号
  上記した水溶性の揮発性有機化合物の水に対する溶解度は10%~100%の範囲にあり、かなりの量が水に溶解する。そのため、該揮発性有機化合物をエネルギーリサイクルに供するためには、回収溶液中の水分を除去する必要があり、吸着回収後の蒸留操作が必須となる。また、該揮発性有機化合物をマテリアルリサイクルに供するためには、回収溶剤が複数種の揮発性有機化合物の混合溶剤である場合には個別種の化合物ごとに分離、回収する必要があり、この場合も吸着回収後の蒸留操作が必須となる。しかしながら、蒸留操作には比較的大きいエネルギー消費が発生するため、エネルギー的に非効率な処理になってしまうという問題があり、この問題を解決することが従来の課題となっていた。
  本発明は、上記した従来の課題に着目してなされたもので、揮発性有機化合物を吸着させた吸着剤から該揮発性有機化合物を脱着させる揮発性有機化合物回収装置において、吸着された水溶性の揮発性有機化合物を水に溶解させずに回収することができ、吸着された揮発性有機化合物が複数種の化合物の場合でも、化合物種ごとに分離、回収することができるため、蒸留操作が不要となり、省エネルギーを実現することができるのは勿論のこと、設備的に簡便なものとすることが可能である揮発性有機化合物回収装置を提供することを目的としている。
  本発明者は、吸着剤に吸着された揮発性有機化合物を脱着するのに、水蒸気を用いないで、別の揮発性有機化合物を用いることにより、吸着剤に吸着された揮発性有機化合物を脱着できることに着眼した。
  揮発性有機化合物を吸着させた吸着剤から、該揮発性有機化合物を脱着する揮発性有機化合物回収装置において、吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物が吸着剤に流入すると、吸着率の大きい揮発性有機化合物が既に吸着剤に吸着されている吸着率の小さい揮発性有機化合物を吸着剤から追い出し、代わりに、前記の吸着率の大きい揮発性有機化合物自身が吸着剤に吸着される現象が起きる。これを競争吸着という。
  競争吸着の結果、吸着率の大きい揮発性有機化合物により吸着剤から追い出された吸着率の小さい揮発性有機化合物には水蒸気は含まれず、従って、これを凝縮液化しても水分は混入しないとの結論に達し、本発明をするに至った。
  したがって、本発明は、吸着剤から揮発性有機化合物を脱着する際に、該吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された複数種の揮発性有機化合物のなかで最も吸着率の大きい揮発性有機化合物を用いる、揮発性有機化合物回収装置及び回収方法を提供する。
  具体的には、本発明は、未処理ガスに含まれる揮発性有機化合物を回収するための装置であって、未処理ガスに含まれる揮発性有機化合物を吸着するための吸着剤を含む吸着塔;該吸着塔に、該吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された複数種の揮発性有機化合物のなかで最も吸着率の大きい揮発性有機化合物を供給するための脱着用ガス供給手段;及び該吸着率の大きい揮発性有機化合物との競争吸着により、該吸着剤から脱着された該揮発性有機化合物を回収するための回収手段;を備える、前記揮発性有機化合物回収装置を提供する。
  また、本発明は、(i)未処理ガスに含まれる揮発性有機化合物を吸着剤に吸着させる工程;(ii)該吸着剤に吸着された該揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された該揮発性有機化合物のうち最も吸着率の大きい揮発性有機化合物を、該吸着剤に供給し、競争吸着により、工程(i)において吸着剤に吸着された揮発性有機化合物を脱着させる工程;及び(iii)該脱着された揮発性有機化合物を回収する工程;を含む、未処理ガスに含まれる揮発性有機化合物を回収する方法を提供する。
  本発明は、未処理ガスに含まれる単一種又は複数種の揮発性有機化合物を吸着剤に吸着させ、この吸着剤に吸着された前記揮発性有機化合物を脱着させることで前記未処理ガスから揮発性有機化合物を回収する揮発性有機化合物回収装置であって、前記吸着剤が内蔵されて、ガス遮断弁を介して前記揮発性有機化合物を含む未処理ガスが供給される吸着塔と、前記吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は、吸着された複数種の揮発性有機化合物のなかで最も吸着率の大きい揮発性有機化合物を前記吸着塔に供給するための脱着用ガス供給手段を備え、吸着完了後に吸着塔内に残留するガスと吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物の吸着剤への供給により吸着剤から脱着された揮発性有機化合物とを順次吸着塔外に排出する吸着塔内ガス排出手段を備えることを特徴としている。
  さらに、本発明の揮発性有機化合物回収装置は、吸着された揮発性有機化合物の脱着のために前記吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物を吸着塔内に供給する際に、この揮発性有機化合物に空気又は窒素ガス又はその他不活性ガスを混合して吸着塔内に供給するための手段を備える構成としている。
  また、本発明の揮発性有機化合物回収装置は、吸着された揮発性有機化合物を脱着させた結果として、自身が吸着剤に吸着される前記揮発性有機化合物よりも吸着率の大きい揮発性有機化合物を脱着させるための吸着剤再生用ガスを吸着塔内に供給するための供給手段と、前記吸着剤再生用ガスと脱着された揮発性有機化合物の混合気を吸着塔外に排出し、吸着剤が再度吸着可能な状態になるようにする脱着ガス排出手段を備える構成としている。
  本発明に係る揮発性有機化合物回収装置及び回収方法では、上記した構成としているので、未処理ガスから回収された揮発性有機化合物に水溶性の揮発性有機化合物が含まれていても水に溶解させることなく回収することができる。その結果、水を分離、除去するための蒸留装置を不要とすることができる。また、吸着された揮発性有機化合物が複数種の化合物の場合でも、化合物種ごとに分離、回収することができるため、液化回収された複数種の揮発性有機化合物を化合物種ごとに分離、回収するための蒸留装置を不要とすることができる。その結果、蒸留装置で必要となるエネルギー消費を不要とすることができるため、省エネルギーを実現することができるのは勿論のこと、設備的に簡便なものとすることもできるという非常に優れた効果がもたらされる。
本発明の実施例1に係る揮発性有機化合物回収装置の特徴的構成を示すシステム構成図である。 本発明の実施例2に係る揮発性有機化合物回収装置の特徴的構成を示すシステム構成図である。 本発明の実施例2における揮発性有機化合物回収装置の動作状態a~fを示す模式図である。  aは吸着状態を示す。bはパージ状態を示す。  cは脱着用ガス供給状態を示す。dは脱着状態Iを示す。  eは脱着状態IIを示す。fは脱着用ガスパージ状態を示す。 本発明の実施例2における揮発性有機化合物回収装置の動作状態変化を示すタイミングチャートである。 本発明の実施例3に係る揮発性有機化合物回収装置の特徴的構成を示すシステム構成図である。 本発明の実施例3における揮発性有機化合物回収装置の動作状態変化を示すタイミングチャートである。 従来の吸着剤を使用した固定床式吸着装置の説明図である。 本発明の実施例2に係る別構成による対応を示す揮発性有機化合物回収装置の特徴的構成を示すシステム構成図である。
 本発明は、未処理ガスに含まれる単一種又は複数種の揮発性有機化合物を吸着剤に吸着させ、その後、脱着用ガスにより、該吸着剤に吸着された該揮発性有機化合物を脱着させることで、前記未処理ガスから揮発性有機化合物を回収する揮発性有機化合物回収方法及び装置に関する。該吸着剤から該揮発性有機化合物を脱着させる際に、脱着用ガスとして水蒸気の代わりに、該吸着剤への吸着能の大きい揮発性有機化合物を用いることにより、吸着された水溶性の揮発性有機化合物を水に溶解させることなく回収することができる。
 本発明の揮発性有機化合物回収装置は、吸着塔、脱着用ガス供給手段、及び揮発性有機化合物回収手段を備える。吸着塔は、未処理ガスに含まれる揮発性有機化合物を吸着するための吸着剤を含む。本発明において、該未処理ガスは、例えば、各種プラスチック製品、合成繊維、半導体の製造工程、又は磁気テープ工業等の各種操作に伴って発生する排ガス;又はガソリンスタンド、燃料油出荷設備、油槽所、クリーニング業、印刷業又は塗装業等の小規模な一般的揮発性有機化合物排出源から大気中に排出される排ガスなどである。本発明において、該未処理ガスに含まれる揮発性有機化合物は、例えば、酢酸メチル、酢酸エチル、酢酸プロピル及び酢酸ブチルなどのエステル類;アセトン及びメチルエチルケトンなどのケトン類;アセトアルデヒドなどのアルデヒド類;メタノール、エタノール、プロピルアルコール(n-プロピルアルコール、及びイソプロピルアルコール)、及びブタノール(n-ブタノール、イソブタノール、sec-ブタノール、及びtert-ブタノール)などのアルコール類;ジクロロメタン及びクロロホルムなどのハロゲン化炭化水素;キシレン、トルエン及びベンゼンなどの芳香族化合物;並びにこれらの2種以上の混合物である。
 本発明において、吸着剤の例を挙げると、活性炭、シリカゲル、アルミナ、粘土及びゼオライトなどがある。場合によって、ポリマー材料、例えば、架橋ポリマー材料を吸着剤として用いてもよい。好ましくは、吸着剤は、活性炭である。活性炭の形状は、球形又は粉末状など特に制限されない。活性炭は、制限されないが、例えば、800~1200m2・g-1の比表面積、0.2~2cm3・g-1の細孔容積、1~4nmの細孔径を有するものを使用することができる。
 本発明の装置における脱着用ガス供給手段は、吸着剤に吸着された該揮発性有機化合物を該吸着剤から脱着させるためのガス(脱着用ガス)を、吸着塔内に供給するように用いられる。該脱着用ガスは、競争吸着により、吸着剤に吸着された該揮発性有機化合物を脱着するとともに、自身が吸着剤に吸着される。本発明において、該脱着用ガスは、吸着剤に吸着された該揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は吸着剤に吸着された該揮発性有機化合物のうち最も吸着率の大きい揮発性有機化合物(本明細書中において、これらを「吸着率の大きい揮発性有機化合物」とも呼ぶ。)を含む。該脱着用ガスは、該吸着率の大きい揮発性有機化合物と、空気又は不活性ガス、例えば、窒素若しくはアルゴン、あるいはこれらの混合物との混合ガスであってもよい。本発明の揮発性有機化合物回収装置は、該混合ガスを作成するための脱着用ガス混合手段を含むことができる。
 該吸着率の大きい揮発性有機化合物は、例えば、トルエン、キシレン、又はベンゼンなどの芳香族化合物などを含む。好ましくは、該吸着率の大きい揮発性有機化合物は、トルエンである。当業者は、未処理ガスに含まれる揮発性有機化合物等に基づき、適切な該吸着率の大きい揮発性有機化合物を選択することができる。
 本発明の装置における揮発性有機化合物回収手段は、該吸着率の大きい揮発性有機化合物との競争吸着により、吸着剤から脱着された揮発性有機化合物を回収する。該回収手段は、凝縮器、揮発性有機化合物回収槽、及び/又は真空ポンプを含むことができる。未処理ガスに含まれる揮発性有機化合物が複数種である場合、該回収手段は、複数(例えば、2、3、4又は5以上)存在してもよい。この場合において、未処理ガスに含まれる各揮発性有機化合物の吸着率の差を利用して、それぞれの種類ごとに分けて回収することができる。
 本発明の揮発性有機化合物回収装置は、吸着塔内ガス排出手段を含むことができる。吸着塔内ガス排出手段は、吸着完了後に吸着塔内に残留するガス、及び吸着剤から脱着された揮発性有機化合物を、吸着塔外に排出するために用いられる。該吸着塔内ガス排出手段は、真空ポンプを含むことができる。
 本発明の揮発性有機化合物回収装置は、さらに、吸着剤再生用ガス供給手段を含むことができる。吸着剤再生用ガス供給手段は、吸着率の大きい揮発性有機化合物を前記吸着剤から脱着させるためのガス(吸着剤再生用ガス)を、吸着塔に供給する。これにより、吸着剤を再度吸着可能な状態にし、再利用することができる。本発明において、吸着剤再生用ガスは、例えば、水蒸気、又は不活性ガス(窒素若しくはアルゴンなど)、或いはこれらの混合物である。
 本発明の揮発性有機化合物回収装置は、さらに、該吸着率の大きい揮発性有機化合物を回収するための回収手段を含むことができる。該回収手段は、凝縮器、分離槽、揮発性有機化合物回収槽、及び/又は真空ポンプを含むことができる。該吸着率の大きい揮発性有機化合物としてトルエンなどの非水溶性化合物、及び吸着剤再生用ガスとして水蒸気を用いた場合、分離槽中で比重差により、これらを容易に分離することができる。回収された該吸着率の大きい揮発性有機化合物は、さらに、脱着用ガスとして競争吸着に再利用することができる。
 本発明の揮発性有機化合物回収方法は、前記揮発性有機化合物回収装置を用いて行うことができる。本発明の揮発性有機化合物回収方法は、以下の工程を含むことができる。
 (i) 未処理ガスに含まれる揮発性有機化合物を吸着剤に吸着させる工程;
 (ii) 該吸着剤に吸着された該揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された該揮発性有機化合物のうち最も吸着率の大きい揮発性有機化合物を、該吸着剤に供給し、競争吸着により、工程(i)において吸着剤に吸着された揮発性有機化合物を脱着させる工程;及び
 (iii) 該脱着された揮発性有機化合物を回収する工程;である。
 工程(ii)において、該吸着率の大きい揮発性有機化合物と、空気又は不活性ガス(窒素若しくはアルゴンなど)、あるいはこれらの混合物とを混合し、該混合ガスを該吸着剤に供給してもよい。また、工程(iii)の回収工程は、該脱着された揮発性有機化合物を凝縮する工程を含むことができる。工程(iii)の回収工程は、凝縮器、揮発性有機化合物回収槽、及び/又は真空ポンプを用いることができる。さらに、未処理ガスに含まれる揮発性有機化合物が複数種である場合、工程(iii)において、該脱着された揮発性有機化合物を、その種類ごとに分けて回収することができる。これは、各揮発性有機化合物の吸着剤への吸着能の差を利用して行うことができる。具体的には、実施例3を参照されたい。
 本発明の揮発性有機化合物回収方法は、さらに、(iv) 該吸着剤に、該吸着率の大きい揮発性有機化合物を脱着させるためのガスを供給する工程を含むことができる。当該工程により、吸着剤を再生及び再利用することができる。また、本発明の揮発性有機化合物回収方法は、さらに、(v) 工程(iv)において、吸着剤から脱着された該吸着率の大きい揮発性有機化合物を回収する工程を含むことができる。当該工程により、吸着率の大きい揮発性有機化合物を回収及び再利用することができる。該回収には、凝縮器、分離槽、揮発性有機化合物回収槽、及び/又は真空ポンプを用いることができる。工程(iv)又は(v)の後に、工程(i)~(iii)を繰り返すことができる。
  以下、本発明の実施形態を図面に基づいてさらに説明する。
  図1は本発明の実施例1に係る揮発性有機化合物回収装置の特徴的構成を示すシステム構成図である。図において、符号1は吸着塔、2は未処理ガス給気弁、3は処理ガス排気弁、4は脱着用ガス供給弁である。
  吸着塔1は揮発性有機化合物を含んだ未処理ガスの揮発性有機化合物を吸着剤、例えば、活性炭に吸着させ、この活性炭に吸着された揮発性有機化合物を吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物によって脱着させることで未処理ガスから揮発性有機化合物を回収するようになっている。未処理ガスからの揮発性有機化合物を回収した後、活性炭には前記の吸着率の大きい揮発性有機化合物が吸着されているので、これを蒸気又は窒素により脱着することで吸着剤を再度吸着可能な状態にするようになっている。
  具体的には、この揮発性有機化合物回収装置は吸着剤を内蔵する吸着塔1と、吸着塔1に揮発性有機化合物を含んだ未処理ガスを未処理ガス給気弁2を介して供給する未処理ガス供給ライン6と、処理ガスを吸着塔1から処理ガス排気弁3を介して排気する処理ガス排出ライン7と、吸着された揮発性有機化合物を脱着する際に供給される脱着用ガス(吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物や空気又は窒素ガス又はその他不活性ガスや蒸気)を脱着用ガス供給弁4を介して吸着塔1に供給する脱着用ガス供給ライン8を備えている。
  上記のように構成された回収システムによって揮発性有機化合物を回収する方法について説明する。
  揮発性有機化合物を含む未処理ガスが吸着塔1に供給されると、揮発性有機化合物は吸着剤に吸着される。吸着剤が揮発性有機化合物で飽和すると吸着を完了し、脱着用ガス供給弁4を介して、吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物が吸着塔1に供給される。すると、吸着剤に吸着された揮発性有機化合物はあとから供給された吸着率の大きい揮発性有機化合物との競争吸着の作用により、脱着され、吸着率の大きい揮発性有機化合物が代わって、自身が吸着剤に吸着される。その結果、吸着されていた揮発性有機化合物は吸着塔1から排出され、回収される。
  このような本実施形態によれば、吸着塔1から排出された揮発性有機化合物は水溶性であっても、水蒸気を伴わないため、冷却し、凝縮させて液化回収しても水に溶解することはなく、また、吸着された揮発性有機化合物が複数種であっても、相互に競争吸着が働くため、吸着塔1から排出されるときは、吸着率の低い順に排出されるため、揮発性有機化合物種ごとに分離、回収することが可能である。
  上記したように、本実施形態に係る揮発性有機化合物回収装置では、水溶性の揮発性有機化合物の回収、及び、複数種の揮発性有機化合物の分離、回収をするのに蒸留装置を不要とすることができるため、省エネルギーを実現することができるのは勿論のこと、設備的に簡便なものとすることもできる。
  次に、本発明の実施例2について、図2に示すシステム構成図を参照して説明する。
  上記実施例1に係る揮発性有機化合物回収装置は、吸着された揮発性有機化合物が水溶性である場合、吸着が完了した時点で、吸着塔1内に残留する未処理ガス中に水分が含まれている状況がほとんどであるため、脱着された揮発性有機化合物が吸着塔1から排出された後、冷却し、凝縮、回収する際に、完全に水分を溶解させないようにするのが困難であるという問題点がある。
  本実施例2は、このような実施例1の問題点を解決するためのものであり、より実機に近い揮発性有機化合物回収装置に関するものである。なお、図2では、上述した実施例1と同一の構成要素には同一符号を付している。
  吸着塔1は揮発性有機化合物を含んだ未処理ガスの揮発性有機化合物を吸着剤、例えば、活性炭に吸着させ、この活性炭に吸着された揮発性有機化合物を吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物によって脱着させることで未処理ガスから揮発性有機化合物を回収するようになっている。未処理ガスからの揮発性有機化合物を回収した後、活性炭には前記の吸着率の大きい揮発性有機化合物が吸着されているので、これを吸着剤再生用ガス(例えば、水蒸気又は窒素ガス)により脱着することで吸着剤を再度吸着可能な状態にするようになっている。
  具体的には、この揮発性有機化合物回収装置は吸着剤を内蔵する吸着塔1と、吸着塔1に揮発性有機化合物を含んだ未処理ガスを未処理ガス給気弁2を介して供給する未処理ガス供給ライン6と、処理ガスを吸着塔1から処理ガス排気弁3を介して排気する処理ガス排出ライン7と、吸着された揮発性有機化合物を脱着する際に供給される脱着用ガス(吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物や空気又は窒素ガス又はその他不活性ガス)を脱着用ガス供給弁4を介して吸着塔1に供給する脱着用ガス供給ライン8と、吸着剤に吸着した前記の吸着率の大きい揮発性有機化合物を脱着させ、吸着剤を再度吸着可能な状態にするために吸着剤再生用ガス(窒素ガス又はその他不活性ガス又は水蒸気)を吸着剤再生用ガス供給弁5を介して吸着塔1に供給する吸着剤再生用ガス供給ライン9、吸着塔1から排出される脱着ガスを脱着ガス切替弁17,18を介して凝縮器15,16に供給する脱着ガスライン10と、脱着ガス排出ライン19を備えている。脱着ガスが吸着率の大きい揮発性有機化合物によって脱着させられる吸着率の小さい揮発性有機化合物の場合、脱着された吸着率の小さい揮発性有機化合物は真空ポンプ14で吸引され、吸着塔1から排出された後、脱着ガス切替弁17を介して凝縮器15で液化されて揮発性有機化合物回収槽11に回収されるようになっている。
  吸着率の小さい揮発性有機化合物を脱着させる脱着ガスが吸着率の大きい揮発性有機化合物の場合、該脱着ガスは吸着剤再生用ガス(窒素ガス又はその他不活性ガス又は水蒸気)で脱着され、脱着された吸着率の大きい揮発性有機化合物は真空ポンプ14で吸引され、吸着塔1から排出された後、脱着ガス切替弁18を介して凝縮器16で液化され、分離槽13にて揮発性有機化合物と水とに比重分離され、分離された揮発性有機化合物回収槽12に回収されるようになっている。
  次に、吸着塔1、真空ポンプ14、凝縮器15,16、脱着用ガス供給弁4、吸着剤再生用ガス供給弁5、脱着ガス切替弁17,18、の動作について、図3~図4を参照して詳しく説明する。図3~図4は、上述した未処理ガス給気弁2、処理ガス排気弁3、脱着用ガス供給弁4、吸着剤再生用ガス供給弁5、脱着ガス切替弁17,18の開閉状態を示している。また、図4は、図3における動作状態の変化を時系列的に示したタイミングチャートである。
  本実施形態では、脱着用ガスとなる吸着率の大きい揮発性有機化合物をトルエン、脱着される吸着率の小さい揮発性有機化合物を酢酸エチルとしている。勿論、本発明の具体的な適用においては、これらの物質に限定されるものではなく、多くの揮発性有機化合物の組合せにおいて適用可能である。本実施形態では、吸着塔1の吸着剤は図3に示すような動作状態が繰り返されることによって、吸着状態a→パージ状態b→脱着用ガス供給状態c→脱着状態Id→脱着状態IIe→脱着用ガスパージ状態fの順で状態変化する。
  なお、未処理ガス給気弁2、処理ガス排気弁3、脱着用ガス供給弁4、吸着剤再生用ガス供給弁5、脱着ガス切替弁17,18において、白抜き表示は各弁が「開状態」にあることを示し、黒抜き表示は各弁が「閉状態」にあることを示している。
  図3の動作状態aは、「吸着状態」であることを示している。すなわち、吸着塔1は未処理ガス給気弁2及び処理ガス排気弁3が開状態、かつ、脱着用ガス供給弁4,吸着剤再生用ガス供給弁5及び脱着ガス切替弁17,18が閉状態に設定されることによって、未処理ガスが順次供給され、未処理ガス中の揮発性有機化合物が吸着塔1内に収納された吸着剤に吸着されると共に吸着剤を通過した処理ガスが順次排出される吸着状態となる。
  吸着塔1に収納されている吸着剤が揮発性有機化合物を吸着し、飽和状態になると、未処理ガス給気弁2及び処理ガス排気弁3が閉状態に設定され、かつ、脱着ガス切替弁18が開状態に設定されると共に真空ポンプ14が起動し、吸着塔1内の残留ガスを排気する図3の動作状態bに示す「パージ状態」に遷移する。この「パージ状態」において、未処理ガス給気弁2、処理ガス排気弁3、脱着用ガス供給弁4,5、及び脱着ガス切替弁17が閉状態に設定されていることによって吸着塔1は減圧状態になる。この「パージ状態」で、吸着塔1内の残留ガスを凝縮器15を通さないで排気するようにしているのは、吸着塔1内の残留ガスには水分が含まれている可能性があるため、後に凝縮器15で凝縮させる揮発性有機化合物に水分が混入するのを防止するためである。
  本実施形態では、真空ポンプ14は凝縮器15の下流に配置されている。勿論、本発明の具体的な適用においては、このような構成に限定されるものではなく、吸着塔1から排出される揮発性有機化合物の種類によっては凝縮器15での凝縮を大気圧下で行うほうが有利な場合もあり、その場合には、図8に示すように、真空ポンプ14を凝縮器15の上流に配置することでもよい。
  吸着塔1が所定の減圧状態になると、図3の動作状態cに示す「脱着用ガス供給状態」に遷移する。脱着用ガス供給弁4が開状態に設定され、脱着用ガスとしてのトルエンに空気又は窒素ガス又はその他不活性ガスが混合された状態で吸着塔1に供給される。両ガスの混合比は脱着ガスとしてのトルエンの分圧が当該混合ガスの温度におけるトルエンの蒸気圧以下となるように設定される。この混合比の設定は供給されたトルエンが凝縮しないようにするためになされる。従って、前記の所定の減圧状態がトルエンの温度における飽和圧力より低ければ、空気又は窒素ガス又はその他不活性ガスをトルエンに混合しなくても良い対応も可能である。
  トルエンと空気又は窒素ガス又はその他不活性ガスとの混合ガスが吸着塔1に供給されるにつれて、吸着塔1内の残留ガスを更に排出し続ける。更にトルエンと空気又は窒素ガス又はその他不活性ガスとの混合ガスを吸着塔1に供給することで、吸着塔1内の残留ガスを完全に排出しきった状態が実現される。この動作状態が「脱着用ガス供給状態」の完了になる。
  「脱着用ガス供給状態」が完了すると、脱着ガス切替弁17が開状態に、脱着ガス切替弁18が閉状態に設定され、図3の動作状態dに示す「脱着状態I」に遷移する。吸着剤に到達したトルエンは吸着剤に吸着されている揮発性有機化合物(ここでは酢酸エチルとしている)より吸着率が大きいため、競争吸着の作用により、酢酸エチルを吸着剤から追い出し、トルエン自身が吸着剤に吸着される。トルエンが吸着剤に供給され続け、吸着剤に吸着されていた酢酸エチルが全て吸着剤から追い出される(脱着される)までこの状態が継続する。酢酸エチルが全て吸着剤から脱着された時点で「脱着状態I」は完了する。脱着された酢酸エチルは順次吸着塔1から排出され、脱着ガス切替弁17を介して凝縮器15で凝縮、液化され、揮発性有機化合物回収槽11に回収される。
  「脱着状態I」が完了すると、吸着剤に吸着されている物質は全てトルエンとなっている。そこで、吸着剤再生用ガス供給弁5が開状態に、脱着用ガス供給弁4が閉状態に、脱着ガス切替弁17が閉状態に、脱着ガス切替弁18が開状態に設定され、図3の動作状態eに示す「脱着状態II」に遷移する。吸着剤再生用ガス切替弁5を介して吸着塔1に蒸気が供給され、該蒸気により吸着剤が加温され、吸着されたトルエンが脱着される。脱着されたトルエンは蒸気と混合し、吸着塔1から排出され、脱着ガス切替弁18を介して凝縮器16で凝縮、液化される。液化されたトルエンと水は分離槽13で比重分離され、分離されたトルエンは揮発性有機化合物回収槽12に回収され、分離された水は排水ライン20を経由して排水処理される。
  「脱着状態II」が完了すると、吸着剤再生用ガス供給弁5が閉状態に設定され、図3の動作状態fに示す「脱着用ガスパージ状態」に遷移する。吸着塔1に残留している蒸気が真空ポンプ14により吸着塔1から排出され、脱着ガス切替弁18を介して凝縮器16で凝縮、液化され、分離槽13で凝縮した水とトルエンとが比重分離され、分離されたトルエンは揮発性有機化合物回収槽12に回収され、分離された水は排水ライン20を経由して排水処理される。その後、脱着ガス切替弁18が閉状態に、未処理ガス給気弁2及び処理ガス排気弁3が開状態に設定され、図3の動作状態aに示す「吸着状態」に戻る。以後、前記の動作状態a~eを繰り返すことで、未処理ガスからの揮発性有機化合物の回収を続けることができる。
  次に、本発明の実施例3について、図5に示すシステム構成図を参照して説明する。
  上記実施例2に係る揮発性有機化合物回収装置では、未処理ガス中に1種類以上もしくは脱着用ガス(上記の例ではトルエン)を含む2種類以上の揮発性有機化合物が含まれる場合の回収を可能にしているが、脱着用ガス以外の揮発性有機化合物は一括して揮発性有機化合物回収槽11に回収され、異なる種類の化合物を個別に分離、回収することはできない。
  実施例3は、このような第2実施形態の問題点を解決するためのものであり、より適用範囲の広い揮発性有機化合物回収装置に関するものである。
  具体的には、この揮発性有機化合物回収装置は、分離、回収したい揮発性有機化合物種に対応した液化回収ユニット24、25を備える構成としている。図2に示す実施例2の揮発性有機化合物回収装置に追設された液化回収ユニット25は脱着ガス切替弁23、凝縮器22、揮発性有機化合物回収槽21から構成されており、図2に示す実施例2における脱着ガス切替弁17、凝縮器15、揮発性有機化合物回収槽11と並列に配置される。
  図6に、図5における動作状態の変化を時系列的に示したタイミングチャートを示す。本実施形態における動作状態a~cの動作は実施例2における動作状態a~cと同じ動作を行う。本実施形態で、脱着用ガスとしての揮発性有機化合物を実施例2と同様、トルエンとし、分離、回収すべき揮発性有機化合物を酢酸エチル、MEK(メチルエチルケトン)とする。各揮発性有機化合物の吸着率は大きい順に、トルエン>酢酸エチル>MEKとなる。
  従って、動作状態cが完了した後、脱着用ガスとして吸着塔内に導入される最も吸着率の大きいトルエンが競争吸着によって最も吸着率の小さいMEKを脱着させ、自身が吸着剤に吸着される。この状態が動作状態dである。この動作状態で、脱着、排出されたMEKを回収したい揮発性有機物回収槽に対応する脱着ガス切替弁が開状態に設定され、それ以外の脱着ガス切替弁は閉状態とされる。例えば、揮発性有機化合物回収槽11に回収したければ、脱着ガス切替弁17を開状態に設定する。ここで、脱着ガス切替弁以外の弁の開閉状態は図3に示す実施例2の動作状態dと同じである。
  全てのMEKが脱着しつくされると、次いで、MEKより吸着率の大きい酢酸エチルがトルエンとの競争吸着の作用で脱着される。この状態が動作状態d’である。この動作状態で、脱着、排出された酢酸エチルを回収したい揮発性有機物回収槽に対応する脱着ガス切替弁が開状態に設定され、それ以外の脱着ガス切替弁は閉状態とされる。例えば、揮発性有機化合物回収槽21に回収したければ、脱着ガス切替弁23を開状態に設定する。ここで、脱着ガス切替弁以外の弁の開閉状態は図3に示す実施例2の動作状態dと同じである。
  動作状態d’が完了すると、吸着剤には脱着用ガスとしてのトルエンのみが吸着されていることになり、以降の工程は実施例2と同様、動作状態e、fと進み、次の吸着工程に遷移する。
  上記した実施例3の揮発性有機化合物回収装置では、3種類の揮発性有機化合物(酢酸エチル、MEK、トルエン)を分離、回収する場合の構成としているが、勿論、分離、回収する揮発性有機化合物を3種類に限定するものではなく、分離、回収する揮発性有機化合物の数に対応して液化回収ユニット24,25を増やすことで、3種類以上の揮発性有機化合物の分離、回収にも対応することができる。
  なお、上記した実施例1、実施例2、実施例3の揮発性有機化合物回収装置では、吸着塔を1塔で構成しているが、勿論、吸着塔を複数塔で構成し、各吸着塔で各動作状態のタイミングをずらすことで、揮発性有機化合物の回収操作を途切れなく連続して行わせるようにする実施形態も可能である。
  以上、本発明では、回収された揮発性有機化合物に水溶性の揮発性有機化合物が含まれていても水に溶解させることなく回収することができるため、水を分離、除去するための蒸留装置を不要とすることができ、また、吸着された揮発性有機化合物が複数種の化合物の場合でも、化合物種ごとに分離、回収することができるため、液化回収された複数種の揮発性有機化合物を化合物種ごとに分離、回収するための蒸留装置を不要とすることができ、その結果、蒸留装置で必要となるエネルギー消費を不要とすることができるため、省エネルギーを実現することができるのは勿論のこと、設備的に簡便なものとすることもできる。
  本発明に係る揮発性有機化合物回収装置の構成は、上記した実施形態の構成に限定されるものではない。
1 吸着塔
2 未処理ガス給気弁
3 処理ガス排気弁
4 脱着用ガス供給弁
5 吸着剤再生用ガス供給弁
6 未処理ガス供給ライン
7 処理ガス排出ライン
8 脱着用ガス供給ライン
9 吸着剤再生用ガス供給ライン
10 脱着ガスライン
11,12,21 揮発性有機化合物回収槽
13 分離槽
14 真空ポンプ
15,16,22 凝縮器
17,18,23 脱着ガス切替弁
19 脱着ガス排出ライン
20 排水ライン
24,25 液化回収ユニット

Claims (10)

  1.  未処理ガスに含まれる揮発性有機化合物を回収するための装置であって、
     未処理ガスに含まれる揮発性有機化合物を吸着するための吸着剤を含む吸着塔;
     該吸着塔に、該吸着剤に吸着された揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された複数種の揮発性有機化合物のなかで最も吸着率の大きい揮発性有機化合物を供給するための脱着用ガス供給手段;及び
     該吸着率の大きい揮発性有機化合物との競争吸着により、該吸着剤から脱着された該揮発性有機化合物を回収するための回収手段;
     を備える、前記揮発性有機化合物回収装置。
  2.  前記脱着用ガス供給手段が、さらに、前記吸着率の大きい揮発性有機化合物と空気又は不活性ガスとを混合するための脱着用ガス混合手段を含む、請求項1記載の揮発性有機化合物回収装置。
  3.  前記吸着率の大きい揮発性有機化合物を前記吸着剤から脱着させるガスを、前記吸着塔に供給するための吸着剤再生用ガス供給手段をさらに備える、請求項1又は2記載の揮発性有機化合物回収装置。
  4.  前記吸着剤から脱着された前記吸着率の大きい揮発性有機化合物を回収するための回収手段をさらに含む、請求項3記載の揮発性有機化合物回収装置。
  5.  前記吸着率の大きい揮発性有機化合物との競争吸着により該吸着剤から脱着された該揮発性有機化合物を回収するための回収手段を、2以上含む、請求項1~4のいずれか1項記載の揮発性有機化合物回収装置。
  6.  (i)未処理ガスに含まれる揮発性有機化合物を吸着剤に吸着させる工程;
     (ii)該吸着剤に吸着された該揮発性有機化合物よりも吸着率の大きい揮発性有機化合物、又は該吸着剤に吸着された該揮発性有機化合物のうち最も吸着率の大きい揮発性有機化合物を、該吸着剤に供給し、競争吸着により、工程(i)において吸着剤に吸着された揮発性有機化合物を脱着させる工程;及び
     (iii)該脱着された揮発性有機化合物を回収する工程;
     を含む、未処理ガスに含まれる揮発性有機化合物を回収する方法。
  7.  前記工程(ii)において、前記吸着率の大きい揮発性有機化合物を、空気又は不活性ガスと混合する工程をさらに含む、請求項6記載の方法。
  8.  さらに、(iv)前記吸着剤に、前記吸着率の大きい揮発性有機化合物を脱着させるためのガスを供給し、吸着剤を再生させる工程を含む、請求項6又は7記載の方法。
  9.  さらに、(v)工程(iv)において、吸着剤から脱着された前記吸着率の大きい揮発性有機化合物を回収する工程を含む、請求項8記載の方法。
  10.  前記工程(iii)において、吸着剤への吸着率の差を利用して、該脱着された揮発性有機化合物を、その種類ごとに別々に回収する工程を含む、請求項6~9のいずれか1項記載の方法。
PCT/JP2013/081402 2012-11-22 2013-11-21 揮発性有機化合物回収装置 WO2014080984A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014548616A JP5990722B2 (ja) 2012-11-22 2013-11-21 揮発性有機化合物回収装置
US14/646,720 US9539539B2 (en) 2012-11-22 2013-11-21 Device for recovering volatile organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270760 2012-11-22
JP2012270760 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080984A1 true WO2014080984A1 (ja) 2014-05-30

Family

ID=50776162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081402 WO2014080984A1 (ja) 2012-11-22 2013-11-21 揮発性有機化合物回収装置

Country Status (4)

Country Link
US (1) US9539539B2 (ja)
JP (1) JP5990722B2 (ja)
KR (1) KR20150086246A (ja)
WO (1) WO2014080984A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664710A (zh) * 2016-02-02 2016-06-15 周益辉 一种涂装车间喷漆挥发性有机废气的治理方法
CN109351129A (zh) * 2018-09-29 2019-02-19 广东中微环保生物科技有限公司 一种乙酸丁酯废气的处理装置和方法
JP2020146668A (ja) * 2019-03-15 2020-09-17 株式会社栗本鐵工所 真空脱着式揮発性有機化合物回収装置の運用方法
CN111760419A (zh) * 2020-07-20 2020-10-13 广州鹏灏节能环保科技有限公司 一种流化床回收有机废气的系统和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422653A (zh) * 2016-11-24 2017-02-22 天津市联合环保工程设计有限公司 一种喷涂废气深冷吸附及副产物综合利用的方法与装置
EP3568225A4 (en) * 2017-01-10 2020-06-03 Emerging Compounds Treatment Technologies, Inc. SYSTEM AND METHOD FOR IMPROVING THE ADSORPTION OF CONTAMINATED VAPORS TO INCREASE THE PROCESSING CAPACITY OF ADSORPTION MEDIA
CN107261741A (zh) * 2017-07-11 2017-10-20 茂名市鹰鹏机电设备有限公司 一种挥发性有机气体回收系统及其回收方法
KR101970242B1 (ko) * 2018-03-12 2019-04-17 한일상 용존 휘발성 유기 화합물의 제거를 위한 수처리 방법 및 장치
KR102171080B1 (ko) * 2020-08-31 2020-10-28 (주)동일캔바스엔지니어링 휘발성유기화합물 응축 및 회수 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059275A (ja) * 1973-09-27 1975-05-22
JPH03254810A (ja) * 1990-03-02 1991-11-13 Fuji Photo Film Co Ltd 有機溶剤ガス回収方法
JP2007244985A (ja) * 2006-03-15 2007-09-27 Ihi Corp 揮発性有機化合物の脱着方法及びその処理方法並びに揮発性有機化合物吸着装置及び揮発性有機化合物処理システム
JP2012115773A (ja) * 2010-12-01 2012-06-21 Taikisha Ltd 吸脱着式濃縮装置
JP2012166155A (ja) * 2011-02-15 2012-09-06 Toyobo Co Ltd 有機溶剤回収システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826780B2 (ja) 1993-02-26 1996-03-21 石川島播磨重工業株式会社 部分再生式二流体ガスタービン
JP3646834B2 (ja) 1996-12-27 2005-05-11 石川島播磨重工業株式会社 ガスタービン発電装置
JP2001027131A (ja) 1999-07-16 2001-01-30 Ishikawajima Harima Heavy Ind Co Ltd 複圧蒸気噴射型部分再生サイクルガスタービン
JP3976986B2 (ja) 2000-04-27 2007-09-19 月島環境エンジニアリング株式会社 揮発性有機化合物の回収における排水の処理方法
FR2852019B1 (fr) * 2003-03-07 2007-04-27 Inst Francais Du Petrole Procede de desulfuration, de deazotation et/ou de desaromatisation d'une charge hydrocarbonee par adsorption par un solide adsorbant use
WO2006019131A1 (ja) 2004-08-19 2006-02-23 Ishikawajima-Harima Heavy Industries Co., Ltd. ガスタービンを用いた揮発性有機化合物処理方法及び揮発性有機化合物処理システム
JP2007160163A (ja) 2005-12-12 2007-06-28 Inst Of Research & Innovation 揮発性易吸着性成分及び難吸着性成分を含有する溶液から吸着剤を利用して揮発性易吸着性成分と難吸着性成分とを分離する方法
JP3956993B1 (ja) 2006-01-30 2007-08-08 石川島播磨重工業株式会社 ガスタービンを用いた揮発性有機化合物処理方法及び揮発性有機化合物処理システム
JP3956996B1 (ja) 2006-02-22 2007-08-08 石川島播磨重工業株式会社 揮発性有機化合物処理方法及び揮発性有機化合物処理システム
JP3948486B1 (ja) 2006-07-10 2007-07-25 石川島播磨重工業株式会社 揮発性有機化合物の処理方法、吸着・脱着装置及び揮発性有機化合物の処理システム
WO2011102408A1 (ja) 2010-02-19 2011-08-25 株式会社Ihi 排熱回収システム、エネルギ供給システム及び排熱回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059275A (ja) * 1973-09-27 1975-05-22
JPH03254810A (ja) * 1990-03-02 1991-11-13 Fuji Photo Film Co Ltd 有機溶剤ガス回収方法
JP2007244985A (ja) * 2006-03-15 2007-09-27 Ihi Corp 揮発性有機化合物の脱着方法及びその処理方法並びに揮発性有機化合物吸着装置及び揮発性有機化合物処理システム
JP2012115773A (ja) * 2010-12-01 2012-06-21 Taikisha Ltd 吸脱着式濃縮装置
JP2012166155A (ja) * 2011-02-15 2012-09-06 Toyobo Co Ltd 有機溶剤回収システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664710A (zh) * 2016-02-02 2016-06-15 周益辉 一种涂装车间喷漆挥发性有机废气的治理方法
CN109351129A (zh) * 2018-09-29 2019-02-19 广东中微环保生物科技有限公司 一种乙酸丁酯废气的处理装置和方法
CN109351129B (zh) * 2018-09-29 2021-07-20 广东中微环保生物科技有限公司 一种乙酸丁酯废气的处理装置和方法
JP2020146668A (ja) * 2019-03-15 2020-09-17 株式会社栗本鐵工所 真空脱着式揮発性有機化合物回収装置の運用方法
JP7236888B2 (ja) 2019-03-15 2023-03-10 株式会社栗本鐵工所 真空脱着式揮発性有機化合物回収装置の運用方法
CN111760419A (zh) * 2020-07-20 2020-10-13 广州鹏灏节能环保科技有限公司 一种流化床回收有机废气的系统和方法

Also Published As

Publication number Publication date
US9539539B2 (en) 2017-01-10
JP5990722B2 (ja) 2016-09-14
US20150314228A1 (en) 2015-11-05
KR20150086246A (ko) 2015-07-27
JPWO2014080984A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5990722B2 (ja) 揮発性有機化合物回収装置
KR20090113360A (ko) 공정 가스의 회수 및 재사용 방법 및 장치
KR101715826B1 (ko) 유기 용매의 제거 방법 및 제거 장치
JP2007105657A (ja) ガス処理装置
KR100698764B1 (ko) 휘발성 유기화합물의 흡착 응축식 회수 방법 및 회수 장치
JP7055556B2 (ja) 活性炭の性能回復可能性判断方法及び活性炭再生方法並びに活性炭リユースシステム
JP2013087017A (ja) 二酸化炭素回収精製方法及びシステム
JP2014147865A (ja) ガス処理装置およびガス処理方法
JP6318580B2 (ja) 有機溶剤回収システム
JP2019195758A (ja) ガス分離装置及びガス分離方法
JP2010142728A (ja) 排ガス処理システム
KR101167207B1 (ko) 휘발성 유기화합물 회수장치 및 휘발성 유기화합물 회수방법
KR20090093077A (ko) 휘발성 유기화합물 회수 장치 및 회수 방법
JP4548891B2 (ja) 有機溶剤の回収方法
JP2012081411A (ja) 溶剤脱水装置
JP2000117048A (ja) 揮発性石油化合物の吸着式補集装置及び吸着回収装置
JP2012081412A (ja) 溶剤脱水装置
JP5978808B2 (ja) 排水処理システム
JP3363986B2 (ja) 溶剤回収方法
JP4611355B2 (ja) ガス処理方法およびガス処理設備
JP5115279B2 (ja) 吸着回収装置
CN203469760U (zh) 一种有机废气回收循环利用装置
JP2008119570A (ja) Voc回収装置及びvoc回収方法
CN211098274U (zh) 一种有机废气两级吸附回收处理系统
US20230014093A1 (en) Method for solvent recovery and activated carbon regeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548616

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010773

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14646720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857305

Country of ref document: EP

Kind code of ref document: A1