WO2014079338A1 - 发光二极管的制造方法 - Google Patents

发光二极管的制造方法 Download PDF

Info

Publication number
WO2014079338A1
WO2014079338A1 PCT/CN2013/087178 CN2013087178W WO2014079338A1 WO 2014079338 A1 WO2014079338 A1 WO 2014079338A1 CN 2013087178 W CN2013087178 W CN 2013087178W WO 2014079338 A1 WO2014079338 A1 WO 2014079338A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
screen printing
chip
emitting diode
light emitting
Prior art date
Application number
PCT/CN2013/087178
Other languages
English (en)
French (fr)
Inventor
黄苡叡
林科闯
林素慧
卓佳利
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014079338A1 publication Critical patent/WO2014079338A1/zh
Priority to US14/588,395 priority Critical patent/US10790418B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the invention belongs to the field of light-emitting diode illumination, and in particular relates to a method for manufacturing a light-emitting diode.
  • White light can be produced using a combination of red, green and blue LED chips, but this technology is not yet mature.
  • the world's mature white LED The technology uses a blue LED chip surface coated with a phosphor that excites yellow light, and a white LED is produced by mixing blue light and yellow light.
  • Conventional phosphor coating mainly adopts a potting method, that is, a dispensing process of a phosphor mixed glue.
  • a mixture of phosphor and colloid is applied to the LED chip by dispensing.
  • the phosphor cannot be uniformly applied, and the product inevitably produces different degrees of light color unevenness.
  • the output of the white LED is limited by the speed of the phosphor dispensing process and cannot be improved.
  • a new concept of phosphor flat coating is to uniformly mix the phosphor and the gel into a fluorescent gel in advance, and then uniformly coat the front and side surfaces of the LED chip light-emitting layer with a mesh plate.
  • the phosphor layer can be coated on various types of fluorescent glue on the LED chip in a thick and uniform manner.
  • the planar coating has better uniformity of light emission and fluorescence.
  • the thickness of the powder layer is easy to control and belongs to a planarization process suitable for integrated scale production.
  • iron filings in the screen printing process which causes the phosphor to be contaminated, which causes the following adverse effects: (1) may cause leakage, which may affect the yield of the product; (2) iron filings contained in the phosphor may cause The problem of light absorption and shading affects the luminous efficiency; (3) the scraped fluorescent powder cannot be recycled, resulting in material waste.
  • the first solution to solve the technical problem of the present invention is: an LED packaging method for recovering phosphor, comprising the steps: 1 a screen printing template is selected, a protective layer is coated on the surface thereof; 2) the LED chip is mounted on the substrate; 3) a screen printing template is mounted on the LED chip; Printing phosphor: printing phosphor on the surface of the chip by screen printing process, and recycling excess phosphor; 5) removing the screen printing template, baking and curing the phosphor, so that the cured phosphor is coated on the surface of the chip .
  • the thickness of the protection in step 1) is from 1 to 5000 ⁇ m.
  • the screen printing template described in step 1 is a steel plate, a ceramic plate or the like.
  • the step 5 Specifically, the screen printing template is removed, and the phosphor is baked and cured, so that the cured phosphor is coated on the surface of the chip.
  • the step 5 Specifically, the phosphor is baked and cured, and the cured phosphor is coated on the surface of the chip to separate the chip from the substrate.
  • the protective layer in the step 3) is silica gel.
  • the step 4) specifically comprises: uniformly mixing the phosphor with the glue to form a fluorescent glue; uniformly coating the LED with the screen The front side and the side surface of the chip light-emitting layer; excess phosphor is recovered.
  • the silica gel of the step 2) and the gel mixed with the phosphor in the step 4) are the same type.
  • the step 5 Specifically, the screen printing template is removed, and the phosphor is baked and cured, so that the cured phosphor is coated on the surface of the chip.
  • the step 5 Specifically, the phosphor is baked and cured, and the cured phosphor is coated on the surface of the chip to separate the chip from the substrate.
  • a protective layer is first applied on the surface of the screen printing template, which is generally a soft plastic material. Therefore, in the process of printing the phosphor, the surface of the screen printing template can be protected from being scratched, thereby contaminating the phosphor.
  • the material of the protective layer is preferably the same as the material to be subsequently mixed with the phosphor (such as silica gel), so that even if the protective layer is scraped off by the phosphor, it is the same as the material for the phosphor blending. It will not affect the subsequent light efficiency and brightness of the device. Phosphors that have not been used after screen printing can be recycled and reused because they are not contaminated by screen printing templates.
  • Figure 1 is a flow chart of the method of the present invention.
  • FIGS 2 to 7 are structural schematic views of various steps in an LED package process of Embodiment 1.
  • FIGS 8 to 12 are structural schematic views of various steps in an LED package process of Embodiment 2.
  • 100 , 200 LED chip
  • the following embodiment discloses an LED packaging method for recyclable phosphors, the flow chart of which is shown in FIG. Mainly includes step S01: The LED chip is mounted on the substrate; S02: installing the screen printing template; S03: coating the protective layer on the screen printing template; S04: printing the phosphor and recycling; S05: Curing the phosphor, separating the chip and screen printing template. .
  • step S01 for a single LED core, the first divided LED
  • the chips are respectively placed on a special fixture, a metal foil or other carrier or tool.
  • the metal foil may be metal such as gold, silver, copper or aluminum or a combination thereof.
  • LED tubes they can be mounted on the PCB On the board.
  • step S02 Before, it is necessary to first manufacture a screen printing template for printing.
  • the screen printing template material can be metal, such as stainless steel, or plastic.
  • the screen printing template is generally divided into an opening area and a shielding area.
  • the fluorescent glue can pass through the screen printing template and fill the space below to form The LED chips are bonded together, and the shielding area blocks the passage of the fluorescent glue, so that the LEDs originally intended to be exposed Surfaces, such as electrodes, will not be coated with fluorescent glue, allowing subsequent processing processes (such as wire bonding, connecting electrodes, etc.) to work properly.
  • the pattern of the opening area and the screen shielding area on the screen printing template can be arbitrarily changed, so that it can be adjusted
  • the ratio of yellow light converted from the light emitted by the LED chip into the fluorescent glue adjusts the composition and color temperature of the white light.
  • the material of the protective layer is generally a soft plastic material, and it is preferably the same as the material mixed with the phosphor, so that even if the protective layer is scraped off by the phosphor, it is the same as the material used for the phosphor blending, and at this time, Will affect the subsequent light efficiency and brightness of the device, the thickness of the protective layer is generally 1 ⁇ 5000 ⁇ m. It should be noted that the material of the protective layer may also be a different mixed material as long as it has light transmissivity.
  • Step S02 and step S03 It can be adjusted, that is, the protective layer is first coated on the screen printing template, and then mounted on the substrate, which can be selected according to the specific application.
  • step S05 if the LED chip is directly mounted on the carrying device of the illuminating device (such as PCB On the board), the screen printing template is generally removed from the carrier, and the thickness of the protective layer is small, and may take 1 ⁇ 500 ⁇ m; if the LED The chip is placed on a temporary carrying device (such as a special clamp), and after the screen printing phosphor is completed and cured, the chip is extracted from the temporary carrying device by the core particle extracting device, thereby installing the screen printing template.
  • the temporary carrying device can be reused, in which case the thickness of the protective layer is thick, and it is desirable 500 ⁇ 5000 ⁇ m.
  • a screen printing steel plate is selected as a screen printing template, and silica gel is used as a protective layer.
  • the first divided LED The chip 100 is sequentially mounted on the substrate 110, and the screen printing plate 120 is placed on the substrate to be opened; then a uniform layer of silica gel 130 is applied on the surface of the screen printing plate 120, and the thickness is 50.
  • FIG. 8 to FIG. 12 is different from Embodiment 1, in step 3 of this embodiment.
  • the silicone protective layer is simultaneously covered on the surface of the chip, as shown in Figure 9, so that the surface of the core is not directly directly related to the phosphor, and the remote phosphor concept is introduced (Remote-Phosphor) It can effectively reduce the problem of low efficiency of heat on the phosphor, and is beneficial to optical applications and increased heat dissipation.
  • This embodiment and embodiment 1 The difference is that the coating of the protective layer is performed before the screen printed steel plate is mounted on the substrate, which simplifies the coating process of the protective layer.
  • Embodiments 1 to 3 are all mounted on a substrate (such as a PCB)
  • the board removes the screen printing template after the phosphor coating is completed, and finally cooperates with the optical component, the circuit design and the heat sink to obtain a light-emitting device such as an LED tube.
  • this embodiment will LED
  • the chip is placed on a special fixture, and then the screen printing process is applied to apply a phosphor on the surface of the chip, and then the chip is extracted from the fixture by a core extraction device (such as a sorter), wherein the chip is protected.
  • the thickness of the layer is 1000 ⁇ m . In this way, the LED chip can be directly placed on the above-mentioned jig, without repeating the installation of the screen printing template.

Abstract

公开了一种发光二极管的制造方法,包括步骤:1)将LED芯片安装在基板上(S01);2)在LED芯片上安装网印模板(S02);3)在所述网印模板表面上涂布一层硅胶(S03);4)印刷荧光粉:用丝网印刷工艺将荧光粉印刷于芯片表面,并回收多余荧光粉(S04);5)去除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面(S05)。采用该封装方法,网印后未使用完的荧光粉混胶不受网印模板材料的污染,可以回收再利用。

Description

发光二极管的制造方法
本申请主张如下优先权:中国发明专利申请号 201210481055.X ,题为 ' 发光二极管的制造方法 ' ,于 2013 年11 月 23日 提交。 上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明属于发光二极管照明领域,具体涉及发光二极管的制造方法。
背景技术
近年来,由于材料及技术的突破,发光二极管的发光亮度已经有了非常多的提升,尤其是白光发光二极管的出现,更使得发光二极管渐渐的取代目前传统照明设备。
白光可以利用红、绿、蓝三色 LED 芯片组合产生,但是此种技术目前尚不成熟。目前世界上成熟的白光 LED 技术是采用蓝光 LED 芯片表面涂敷能够激发出黄光的荧光粉,以蓝光与黄光混合的方式来制作白光 LED 。
传统荧光粉涂敷主要采用灌封方式,即荧光粉混合胶的点胶工艺。通过点胶,在 LED 芯片上涂敷荧光粉与胶体的混合体层。但由于重力以及表面张力的作用,荧光粉不能均匀涂敷,产品不可避免的产生不同程度的光色不均匀问题,而且,白光 LED 的产量受限于荧光粉点胶工序速度影响而不能得到提升。一种新的荧光粉平面涂层概念,即将荧光粉与胶材预先均匀混合成荧光胶,再利用网板均匀涂布在 LED 芯片发光层的正面及侧面表面上。运用成熟简单的网版印刷技术,使荧光粉层可厚薄均匀的涂布各类荧光胶于 LED 芯片上,与传统的点胶工艺相比,这种平面涂层的出光均匀性较好,荧光粉层的厚度容易控制,且属于平面化工艺适合集成规模化的生产。但网印过程常会有铁屑产生,造成荧光粉被污染,从而造成了如下不良效果:( 1 )可能造成漏电产生,从而影响产品的良率;( 2 )荧光粉中含有的铁屑可能造成吸光和遮光问题,影响发光率效;( 3 )对于刮除的荧光粉无法回收利用,造成材料浪费。
发明内容
针对前述现有技术问题,本发明提出了一种新的荧光粉平面涂敷方法,其在现有网印涂敷的基础进行改良,可使荧光粉混胶后,不被丝网污染,可回收再次利用。
本发明解决技术问题的第一个方案为:一种可回收荧光粉的 LED 封装方法,包括步骤: 1 )选择一网印模板,在其表面上涂布一层保护层; 2 )将 LED 芯片安装在基板上; 3 )在 LED 芯片上安装网印模板; 4 )印刷荧光粉:用丝网印刷工艺将荧光粉印刷于芯片表面,并回收多余荧光粉; 5 )移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
在本发明的一些实施例中,步骤 4 )具体包括:将荧光粉与胶材均匀混合成荧光胶;利用网板均匀涂布在 LED 芯片发光层的正面及侧面表面上;回收多余荧光粉。更进一步地,所述步骤 2 )所述的硅胶和与荧光粉混合的胶材为相同型号。
在本发明的一些实施例中,步骤 1 )中所述保护的厚度为 1~5000 μ m 。
在本发明的一些实施例中,步骤 1 中所述的网印模板为钢板、陶瓷板等材料。
在本发明的一些实施例中,所述步骤 5 )具体为:移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
在本发明的一些实施例中,所述步骤 5 )具体为:对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面,将芯片从前述基板上分离。
本发明解决技术问题的第二个方案为:一种可回收荧光粉的 LED 封装方法,包括步骤: 1 )将 LED 芯片安装在基板上; 2 )在 LED 芯片上安装网印模板; 3 )在所述网印模板表面上涂布一层保护层; 4 )印刷荧光粉:用丝网印刷工艺将荧光粉印刷于芯片表面,,并回收多余荧光粉; 5 )移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
在本发明的一些实施例中,所述步骤 3 )中的保护层为硅胶。
本发明的一些实施例中,所述步骤 4 )具体包括:将荧光粉与胶材均匀混合成荧光胶;利用网板均匀涂布在 LED 芯片发光层的正面及侧面表面上;回收多余荧光粉。
在本发明的最佳实施例中,所述步骤 2 )所述的硅胶与步骤 4 )中与荧光粉混合的胶材为相同型号。
在本发明的一些实施例中,所述步骤 5 )具体为:移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
在本发明的一些实施例中,所述步骤 5 )具体为:对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面,将芯片从前述基板上分离。
在本发明中,首先在网印模板表面上涂布一层保护层,其一般为柔软可塑性材质,因此在印刷荧光粉的过程中,可以保护网印模板表层被刮被,进而污染荧光粉。更进一步地,保护层的材料取和后续同荧光粉混合的材料相同为佳(如硅胶),如此一来,即便保护层被荧光粉刮落,其与荧光粉混胶用的材料相同,此时亦不会影响到器件后续的光效与亮度。而在网印后未使用完的荧光粉,因未受网印模板污染,可以回收再次利用。
发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其它优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 为本发明所述方法的流程图。
图 2 ~ 图 7 为实施例 1 之一种 LED 封装过程中各个步骤的结构示意图。
图 8~ 图 12 为实施例 2 之一种 LED 封装过程中各个步骤的结构示意图。
图中各标号表示:
100 , 200 : LED 芯片;
110 , 210 :基板;
120 , 220 :网印模板;
121 , 221 :网印模板开孔区;
130 , 230 :硅胶保护层;
140 , 240 :荧光胶;
300 :刮刀
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
下面实施例公开了一种可回收荧光粉的 LED 封装方法,其流程图如图 1 所示。主要包括步骤 S01: 将 LED 芯片安装于基板上; S02: 安装网印模板; S03: 在网印模板上涂布保护层; S04: 印刷荧光粉,并做回收; S05: 固化荧光粉,分离芯片和网印模板。。
在步骤 S01 中,对于单颗 LED 芯粒来说,先将分割好的 LED 芯片分别放置在专用夹治具上、金属箔片上或者是其它承载器具或工具上,金属箔片可以是金,银,铜及铝等金属或其组合。对于 LED 灯管来说,可将其安装于 PCB 板上。
在进行步骤 S02 前,需要先制造印刷用的网印模板。网印模板材质可以是金属,如不锈钢,或是塑料等材质。网印模板一般区分为开孔区及屏蔽区,开孔区在涂布荧光胶时荧光胶可穿过网印模板而填入下方的空隙中从而与 LED 芯片接合在一起,屏蔽区会阻挡荧光胶通过,如此原先预定露出的 LED 表面,如电极等将不会包覆于荧光胶,使后续的加工制程(如打线、连接电极等)可以正常作业。同时网印模板上开孔区及网版屏蔽区的图案可以作任意变化,因此可以藉此调整 LED 芯片发射的光线射入荧光胶后转换出的黄光比率从而调整白光的组成及色温。
在步骤 S03 中,保护层的材料一般为柔软可塑性材质,取和后续同荧光粉混合的材料相同为佳,如此即便保护层被荧光粉刮落,其与荧光粉混胶用的材料相同,此时亦不会影响到器件后续的光效与亮度,保护层的厚度一般为 1~5000 μ m 。应该注意地是,保护层的材料也可以用不同的混合材料 , 只要其具有透光性即可。
步骤 S02 和步骤 S03 可对调,即先在网印模板上涂布保护层,再将其安装于基板上,可视具体应用进行选择。
在步骤 S04 中,网版印刷的工艺方法可以是刮涂、喷涂、滚涂、印制等各种涂布方法。
在步骤 S05 中,如果 LED 芯片直接安装于发光装置的承载器具(如 PCB 板)上,一般将网印模板从承载器具上移除,保护层的厚度较小,可取 1~500 μ m ;如果 LED 芯片放置在临时承载器具(如专用夹治器)上,则在完成网版印刷荧光粉后并做固化后,采用芯粒提取设备将芯片从临时承载器具上提取,从而安装有网印模板的临时承载器具可进行重复利用,在此情况,保护层的厚度较厚,可取 500~5000 μ m 。
实施例 1
在本实施例中,选择网印钢板作为网印模板、硅胶作为保护层。如图 2 至图 7 所示,先将分割好的 LED 芯片 100 按顺序安装在基板 110 上,将网印钢板 120 放置于基板上张开;接着在网印钢板 120 表面上涂布一层均匀的硅胶 130 ,其厚度为 50 μ m ;然后将预先混合荧光粉的荧光胶 140 置于网印钢板 120 上用刮刀 300 以适当的力量来回推挤荧光胶,使荧光胶 140 被推挤入网印模板下方的空隙 121 之中,而填充满基板、 LED 芯片及网印钢板下方的空隙,对于未使用的荧光粉混胶,因为硅胶层 110 的保护不会混有铁屑等杂质,因此可以回收再利用。取下网印钢板 110 ,进行荧光胶 140 固化烘烤,最后进行后续封装制程,完成封装工艺。
实施例 2
请参考图 8 至图 12 ,区别于实施例 1 ,在本实施例的步骤 3 中,硅胶保护层同时覆盖在芯片的表面上,具体如图 9 所示,从而获得芯的片表面没有直接与荧光粉直接,导入了远程荧光粉概念( Remote-Phosphor )可以有效减少热对荧光粉所产生的效率低下的问题,有利于光学上的光型应用及增加散热效果。
实施例 3
本实施例与实施例 1 的区别在于:在将网印钢板安装于基板之前先进行保护层的涂布,如此可简化保护层的涂布工艺。
实施例 1~3 均为将 LED 芯片安装于基板上(如 PCB 板),在完成荧光粉涂布后移除网印模板,最后配合光学元件、电路设计及散热装置从而获得发光装置,如 LED 灯管。
实施例 4
区别于实施例 1 和实施例 3 ,本实施例将 LED 芯片安放于专用夹治具上,接着采用前述网印涂敷工艺,在芯片表面上涂敷荧光粉,然后采用芯粒提取设备(如分拣机)将芯片从夹治具上提取,其中保护层的厚度取 1000 μ m 。如此可直接继续将 LED 芯片安放于前述夹治具上,不用重复进行网印模板的安装。

Claims (13)

  1. 发光二极管的制造方法,包括步骤:
    1 )选择一网印模板,在其表面上涂布一层保护层;
    2 )将 LED 芯片安装在基板上;
    3 )在 LED 芯片上安装网印模板;
    4 )印刷荧光粉:用丝网印刷工艺将荧光粉印刷于芯片表面,并回收多余荧光粉;
    5 )对荧光粉烘烤固化,并分离芯片和网印模板,使固化后的荧光粉涂敷在芯片表面。
  2. 根据权利要求 1 所述的发光二极管的制造方法,其特征在于:步骤 4 )具体包括:
    将荧光粉与胶材均匀混合成荧光胶;
    利用网板均匀涂布在 LED 芯片发光层的正面及侧面表面上;
    回收多余荧光粉。
  3. 根据权利要求 2 所述的发光二极管的制造方法,其特征在于:所述保护层的材料和步骤 4 )中与荧光粉混合的材料相同。
  4. 根据权利要求 2 所述的发光二极管的制造方法,其特征在于:所述保护层的厚度为 1~5000 μ m 。
  5. 根据权利要求 1 所述的发光二极管的制造方法,其特征在于:所述步骤 5 )具体为:移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
  6. 根据权利要求 1 所述的发光二极管的制造方法,其特征在于:所述步骤 5 )具体为:对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面,将芯片从前述基板上分离。
  7. 发光二极管的制造方法,包括步骤:
    1 )将 LED 芯片安装在基板上;
    2 )在 LED 芯片上安装网印模板;
    3 )在所述网印模板表面上涂布一层保护层;
    4 )印刷荧光粉:用丝网印刷工艺将荧光粉印刷于芯片表面,并回收多余荧光粉;
    5 )对荧光粉烘烤固化,并分离芯片和网印模板,使固化后的荧光粉涂敷在芯片表面。
  8. 根据权利要求 7 所述的发光二极管的制造方法,其特征在于:步骤 4 )具体包括:
    将荧光粉与胶材均匀混合成荧光胶;
    利用网板均匀涂布在 LED 芯片发光层的正面及侧面表面上;
    回收多余荧光粉。
  9. 根据权利要求 8 所述的发光二极管的制造方法,其特征在于:所述步骤 3 )中的保护层的材料和后续与荧光粉混合的材料相同。
  10. 根据权利要求 8 所述的发光二极管的制造方法,其特征在于:所述步骤 3 )中的保护层的厚度为 1~5000 μ m 。
  11. 根据权利要求 7 所述的发光二极管的制造方法,其特征在于:所述步骤 3 )中,所形成的保护层同时覆盖了网印模板的表面和 LED 芯片的表面,或仅覆盖网印模板的表面。
  12. 根据权利要求 7 所述的发光二极管的制造方法,其特征在于:所述步骤 5 )具体为:移除网印模板,对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面。
  13. 根据权利要求 7 所述的发光二极管的制造方法,其特征在于:所述步骤 5 )具体为:对荧光粉烘烤固化,使固化后的荧光粉涂敷在芯片表面,将芯片从前述基板上分离。
PCT/CN2013/087178 2012-11-23 2013-11-15 发光二极管的制造方法 WO2014079338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/588,395 US10790418B2 (en) 2012-11-23 2014-12-31 Light emitting diode fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210481055.X 2012-11-23
CN201210481055.XA CN102956797B (zh) 2012-11-23 2012-11-23 发光二极管的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/588,395 Continuation US10790418B2 (en) 2012-11-23 2014-12-31 Light emitting diode fabrication method

Publications (1)

Publication Number Publication Date
WO2014079338A1 true WO2014079338A1 (zh) 2014-05-30

Family

ID=47765316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087178 WO2014079338A1 (zh) 2012-11-23 2013-11-15 发光二极管的制造方法

Country Status (3)

Country Link
US (1) US10790418B2 (zh)
CN (1) CN102956797B (zh)
WO (1) WO2014079338A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128213A1 (en) 2015-02-11 2016-08-18 Sony Corporation Communications device, infrastructure equipment, and methods
EP3554136A1 (en) 2015-02-11 2019-10-16 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795005B (zh) 2012-07-09 2015-12-02 厦门飞德利照明科技有限公司 一种led模组的荧光粉丝网印刷工艺
CN102956797B (zh) * 2012-11-23 2015-01-07 天津三安光电有限公司 发光二极管的制造方法
CN104051598A (zh) * 2013-03-12 2014-09-17 安徽湛蓝光电科技有限公司 一种钢网式丝印荧光胶的led封装方法
CN104078367B (zh) * 2013-03-29 2017-10-13 天水天光半导体有限责任公司 一种倒扣封装肖特基二极管凸点的制作工艺
US10153328B2 (en) * 2015-07-03 2018-12-11 Shenzhen China Star Optoelectronics Technology Co., Ltd OLED display panle and a package method
CN105355729B (zh) * 2015-12-02 2018-06-22 佛山市国星半导体技术有限公司 Led芯片及其制作方法
JP2017112295A (ja) * 2015-12-18 2017-06-22 豊田合成株式会社 発光装置およびその製造方法
WO2017111752A1 (en) 2015-12-22 2017-06-29 Ozyegin Universitesi Lighting interlayers for optical paths of light emitting or absorbing systems
US9859477B2 (en) 2016-01-15 2018-01-02 Corning Incorporated Method of forming light emitting diode with high-silica substrate
US10193031B2 (en) * 2016-03-11 2019-01-29 Rohinni, LLC Method for applying phosphor to light emitting diodes and apparatus thereof
CN105702836A (zh) * 2016-04-26 2016-06-22 苏州瑞而美光电科技有限公司 一种白光半导体照明模块的丝印封装方法
GB2551770B (en) * 2016-06-30 2018-09-26 Shu Hung Lin Chip scale LED packaging method
CN106159070B (zh) * 2016-08-26 2019-01-15 曾广祥 一种高密显示屏单元板及其制作方法
CN106129227A (zh) * 2016-09-26 2016-11-16 麦科勒(滁州)新材料科技有限公司 一种包裹荧光粉在led倒装芯片上表面和侧面表层的方法
US10768358B2 (en) 2017-08-17 2020-09-08 Dura Operating, Llc Printed film with mounted light emitting diodes encapsulated in light guide
CN113488456A (zh) * 2021-06-25 2021-10-08 深圳市华星光电半导体显示技术有限公司 显示装置及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099964A (zh) * 2006-07-07 2008-01-09 明达光电(厦门)有限公司 Led芯片表面荧光粉层涂布方法
CN102956797A (zh) * 2012-11-23 2013-03-06 天津三安光电有限公司 发光二极管的制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801432A (en) * 1992-06-04 1998-09-01 Lsi Logic Corporation Electronic system using multi-layer tab tape semiconductor device having distinct signal, power and ground planes
JP2933065B2 (ja) * 1997-06-18 1999-08-09 日本電気株式会社 微小金属ボールの配列方法
US6592420B1 (en) * 1999-06-18 2003-07-15 Matsushita Electric Industrial Co., Ltd. Manufacturing method for a glass substrate having a phosphor layer used as a color cathode ray tube front panel and a color cathode ray tube manufacturing method
US6650044B1 (en) * 2000-10-13 2003-11-18 Lumileds Lighting U.S., Llc Stenciling phosphor layers on light emitting diodes
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US7595515B2 (en) * 2005-10-24 2009-09-29 3M Innovative Properties Company Method of making light emitting device having a molded encapsulant
CN102017206A (zh) * 2008-04-17 2011-04-13 株式会社东芝 白光发射设备、背光灯、液晶显示设备、以及照明设备
CN201226078Y (zh) * 2008-05-26 2009-04-22 新日光能源科技股份有限公司 复合式印刷模板
JP2010076164A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 成膜層構造体及びその製造方法並びにサーマルヘッド及びその製造方法
US20100181582A1 (en) * 2009-01-22 2010-07-22 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of manufacture thereof
US7994531B2 (en) * 2009-04-02 2011-08-09 Visera Technologies Company Limited White-light light emitting diode chips and fabrication methods thereof
US8597963B2 (en) * 2009-05-19 2013-12-03 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
WO2011145794A1 (ko) * 2010-05-18 2011-11-24 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
TW201448277A (zh) * 2013-06-05 2014-12-16 Lextar Electronics Corp 封裝結構及其形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099964A (zh) * 2006-07-07 2008-01-09 明达光电(厦门)有限公司 Led芯片表面荧光粉层涂布方法
CN102956797A (zh) * 2012-11-23 2013-03-06 天津三安光电有限公司 发光二极管的制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016128213A1 (en) 2015-02-11 2016-08-18 Sony Corporation Communications device, infrastructure equipment, and methods
EP3554136A1 (en) 2015-02-11 2019-10-16 Sony Corporation Communications device, infrastructure equipment, mobile communications network and methods
EP3843437A1 (en) 2015-02-11 2021-06-30 Sony Corporation Communications device, infrastructure equipment, and methods

Also Published As

Publication number Publication date
CN102956797A (zh) 2013-03-06
US10790418B2 (en) 2020-09-29
CN102956797B (zh) 2015-01-07
US20150111328A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2014079338A1 (zh) 发光二极管的制造方法
KR100540848B1 (ko) 이중 몰드로 구성된 백색 발광다이오드 소자 및 그 제조방법
CN102032528B (zh) 发光装置及光扩散板
JP6207151B2 (ja) ドライ・フィルム・フォトレジストを使用したダイ上部への蛍光体の堆積
US8900892B2 (en) Printing phosphor on LED wafer using dry film lithography
US20040000867A1 (en) Package structure of a composite LED
CN103972369B (zh) 一种led灯条及其制造方法
US8993358B2 (en) Deposition of phosphor on die top by stencil printing
CN101099964A (zh) Led芯片表面荧光粉层涂布方法
WO2013024907A1 (ko) 형광체 수지 필름 제조방법 및 이에 의해 제조된 형광체 수지 필름
WO2017156902A1 (zh) 量子点背光模组及液晶电视
JP2022502832A (ja) 発光素子の製造プロセス及び発光素子
WO2018139687A1 (ko) Led 모듈
CN105911768A (zh) 液晶显示器及其制作方法
CN108767100A (zh) 背光模组及其制作方法
WO2018086196A1 (zh) 一种电致发光膜及其制备方法
CN111162156A (zh) 一种led芯片封装方法及led灯珠
WO2014150263A1 (en) Printing phosphor on led wafer using dry film lithography
US9029879B2 (en) Phosphor cap for LED die top and lateral surfaces
CN2821874Y (zh) 装置有荧光体薄片的光源模板
CN103972368A (zh) 一种基于光刻技术的led荧光粉的图形化方法
KR20100044401A (ko) 발광다이오드 패키지 및 이의 제조 방법
KR20110024034A (ko) 백색 발광 다이오드의 제조 방법 및 이 방법으로 제조된 백색 발광 다이오드
WO2021145470A1 (ko) 조명 장치 및 이의 제조 방법
CN111162151A (zh) 一种led芯片封装方法及led灯珠

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857312

Country of ref document: EP

Kind code of ref document: A1