WO2014079181A1 - 一种钢液表面附近流速的连续测量装置和方法 - Google Patents

一种钢液表面附近流速的连续测量装置和方法 Download PDF

Info

Publication number
WO2014079181A1
WO2014079181A1 PCT/CN2013/072950 CN2013072950W WO2014079181A1 WO 2014079181 A1 WO2014079181 A1 WO 2014079181A1 CN 2013072950 W CN2013072950 W CN 2013072950W WO 2014079181 A1 WO2014079181 A1 WO 2014079181A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed measuring
molten steel
measuring rod
rod
speed
Prior art date
Application number
PCT/CN2013/072950
Other languages
English (en)
French (fr)
Inventor
杨健
职建军
祝凯
朱健桦
范正洁
王睿之
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP13856075.0A priority Critical patent/EP2924442B1/en
Priority to US14/646,040 priority patent/US9630242B2/en
Publication of WO2014079181A1 publication Critical patent/WO2014079181A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/04Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using deflection of baffle-plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/06Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes

Definitions

  • the present invention relates to a measuring device and method for high-temperature molten steel flow parameters, and more particularly to a measuring device and method for measuring the flow velocity near the surface of molten steel. Background technique
  • the flow field of the molten steel in the crystallizer can be controlled, thereby effectively reducing the surface defects of the continuous casting blank caused by the slag, inclusions and bubbles of the protective slag, and further Reduce the incidence of surface defects on cold-rolled sheets such as automobile exterior panels and silicon steel. It is clear that the key to flow rate control near the surface of the crystallizer is the measurement of the flow rate near the surface of the molten steel in the mold.
  • the liquid flow rate measuring device is commonly used because the molten steel temperature is as high as 1600 ° C. Both the method and the method cannot function, so the measurement of the actual high-temperature molten steel flow rate becomes a technical problem in the steelmaking field.
  • the mold flux in the mold is to prevent the oxidation of the molten steel surface
  • the second is to lubricate between the crystallizer and the cast billet
  • the third is to catch the floating inclusions
  • the fourth is to play the steel.
  • the role of liquid insulation In order to improve the surface quality of the continuous casting slab, it is necessary to suppress the mold slag from being entangled in the molten steel.
  • the molten steel in the tundish 10 is sequentially injected into the crystallizer 5 through the tundish retaining wall 9, the sliding nozzle 11, and the immersion nozzle 1, from the immersion type.
  • the molten steel exiting the nozzle 3 hits the short side wall of the crystallizer, it forms an upward swirling flow 4 towards the surface of the crystallizer molten steel, and a downward swirling flow 6 towards the lower side of the crystallizer.
  • controlling the formation of suitable flow field forms and flow rate distributions in the mold is critical to the control of inclusions and surface quality in the slab, as well as the surface quality control of cold rolled products such as automotive outer panels.
  • Japanese Patent Laid-Open No. 4-178825 proposes to insert a ceramic rod into a molten steel. Under the impact of the flow of molten steel, the ceramic rod generates pressure against a pressure sensor disposed above the ceramic rod in the direction of flow, and pressure through the pressure sensor. The size can be converted to the flow rate of the near surface of the molten steel.
  • this measuring method device is complicated, and the harsh high temperature environment also affects the accuracy and stability of the pressure sensor, which causes a large error in the flow rate measurement.
  • the rotation fulcrum of the speed measuring pressure sensing rod is located near the upper end of the sensing rod, so that the sensing rod needs a large torque to rotate at a certain angle, and the speed measurement sensitivity is not high, which is low in the flow rate of the molten steel in the crystallizer. The impact is particularly pronounced in the case. Summary of the invention
  • An object of the present invention is to provide a continuous measuring apparatus and method for a flow velocity near a surface of a molten steel, which solves the problem of a large error caused by a complicated structure of the measuring device and a large influence of a high temperature environment existing in the prior art.
  • a continuous measuring apparatus for a flow velocity near a surface of a molten steel comprising a speed measuring rod and a speed measuring rod deflecting means.
  • one end of the speed measuring rod is a refractory tube, and the other end is a stainless steel rod, and the refractory tube is tightly coupled with the stainless steel rod.
  • the speed measuring rod is made of a refractory material of Al 2 O 3 , MgO, Si0 2 , CaO, Zr0 2 , SiC single compound or a composite refractory material of the above compounds.
  • the speed measuring rod has a length of 10 to 100 cm and a diameter of 5 to 50 mm.
  • the speed measuring rod deflection device comprises a speed measuring rod fixing screw, and the speed measuring rod is mounted on the speed measuring rod deflection device by a speed measuring rod fixing screw.
  • the speed bar deflection device comprises a speed bar weight, a deflection bearing housing, a deflection bearing, a deflection angle indicating plate, a deflection angle pointer and a speed bar fixing screw.
  • the yaw bearing outer casing and the yaw bearing are both ring members, and the yaw bearing is slidably fitted on the inner wall of the yaw bearing outer casing.
  • the outer surface of the yoke bearing jacket includes an outwardly extending weight bar, counterweight
  • the rod and the speed rod fixing screws are respectively mounted on the outer surface of the yoke bearing jacket, and the two are spaced apart by 180 degrees, and the speed bar weight is mounted on the weight rod.
  • the deflection angle indicating plate is fan-shaped, the fan-shaped apex angle is mounted on the end surface of the yaw bearing, and the surface of the scalloped arc includes a scale.
  • One end of the deflection angle pointer is mounted on the apex angle of the sector, and the other end is directed to the scale of the sector arc and parallel to the speed measuring rod, rotating as the speed measuring rod rotates.
  • the speed measuring rod is mounted on the outer surface of the yoke bearing jacket by a speed measuring rod fixing screw.
  • the speed bar weight includes an upper fixing screw, a balance piece, and a lower fixing screw.
  • the balance piece is a ring-shaped weight plate, which is placed on the weight bar.
  • the upper fixing screw and the lower fixing screw are respectively fixed on the weight bar from above and below, and the balance piece is limited.
  • a speed measuring device bracket a bracket base and a level adjusting screw are further included.
  • Four speed measuring device brackets are vertically mounted on the upper surface of the bracket base.
  • the lower surface of the bracket base extends four supporting legs in four directions.
  • a horizontal adjusting screw is vertically disposed on each supporting leg, and the horizontal adjusting screw can be adjusted in the vertical direction.
  • the speed measuring rod up and down moving device is further included.
  • the speed bar up and down moving device includes a moving rail, a moving pulley, a moving support plate, a moving support plate fixing screw, a position fixing device, and a position fixing link.
  • the moving rail is disposed on the speed measuring device bracket, and the supporting plate is provided with four moving pulleys.
  • the moving support plate fixing screws penetrate the upper and lower surfaces of the supporting plate, the moving pulley is fixed on the lower surface of the supporting plate, and the moving pulley is embedded in the moving rail.
  • the position fixing device is disposed on the speed measuring device bracket, and the moving support plate and the position fixing device are connected by the position fixing connecting rod.
  • a horizontal support rod and a support rod fixing screw are further included.
  • the horizontal support rod is horizontally arranged, one end is connected to the upper and lower moving device of the speed measuring rod, and the other end is inserted into the ring of the yaw bearing.
  • the support rod fixing screw is disposed at the top end of the horizontal support rod and is close to the end surface of the yaw bearing.
  • a method for measuring a flow velocity near a surface of a molten steel comprising the following steps: Step 1: Find a center of gravity, a rotation fulcrum, and an impact force point of the speed measuring rod; Step 2: Calculate the rotation fulcrum and The distance between the center of gravity and the distance between the rotating fulcrum and the impact force point; Step 3, measuring the gravity value of the speed measuring rod; Step 4, the high speed baking at 1000 ° C to 1500 ° C for about 10 minutes Step 5, insert the baked speed measuring rod In the molten steel, the rotation angle and the insertion depth are obtained; Step 6: Collecting the continuous value and the average value of the rotation angle for a period of time; Step 7: Calculating the impact force of the molten steel; Step 8: Measuring the speed measuring rod perpendicular to the molten steel The projected area of the flow velocity direction, the continuous value and the average value of the molten steel density and the flow resistance coefficient; Step IX, calculating
  • the speed measuring rod is inserted into the flowing molten steel, and is subjected to the action of gravity and flowing molten steel.
  • the speed measuring rod deviates from a certain angle and reaches equilibrium, the moment generated by gravity and the flowing molten steel The moment generated by the impact force is balanced.
  • step 1 further comprises setting a counterweight of the speed measuring rod, adjusting a center of gravity of the speed measuring rod to a position close to a rotating fulcrum of the speed measuring rod, so that the speed measuring rod and the weight are substantially in a gravity balance state. This maximizes the sensitivity of the speed bar deflection, especially at low steel flow rates, to improve the accuracy of flow rate measurements near the surface of the molten steel.
  • the measuring method of the invention is simple and intuitive, and the measurement result is reliable.
  • the flow rate of the molten steel surface is measured every time. Only the speed measuring rod can be replaced once. Since the speed measuring rod is cheap, the speed of the measuring speed is low. Therefore, the flow rate measuring device and method near the surface of the molten steel of the present invention have the advantages of high measurement accuracy, intuitive and reliable measurement results, convenient measurement, and low measurement cost.
  • Figure 1 is a front view of the flow field device in the crystallizer
  • Figure 2 is a side view of the flow field device in the crystallizer
  • Figure 3 is a schematic view showing the deflection of the speed measuring rod in the flowing molten steel of the present invention
  • Figure 4 is the force analysis of the speed measuring rod in the flowing steel liquid
  • Figure 5 is a schematic structural view of a molten steel flow rate measuring device of the present invention.
  • Figure 6 is a partial enlarged view of a portion B in Figure 5;
  • Figure 7 is a partial enlarged view of a portion A in Figure 5;
  • Figure 8 is a schematic view showing an embodiment of a yaw bearing and a center of gravity of a speed measuring rod
  • Figure 9 is a flow chart showing a continuous measurement method of the flow velocity near the surface of the molten steel of the present invention.
  • Figure 10 is a graph showing the change of the deflection angle of the speed measuring rod with time;
  • Figure 11 is a graph showing the change of the molten steel flow rate with time on the surface of the crystallizer
  • Figure 12 is a graph showing the change of the deflection angle of the speed measuring rod with time
  • Figure 13 is a graph showing changes in the flow rate of molten steel on the surface of the crystallizer
  • Fig. 14 is a comprehensive view of eight sets of measurement results of the deflection angle of the speed measuring rod with time;
  • Fig. 15 is a comprehensive view of eight sets of measurement results of the molten steel flow rate on the surface of the crystallizer as a function of time. detailed description
  • the invention provides a device and a measuring method for continuously measuring the flow velocity near the surface of the molten steel.
  • the device and the measuring method can conveniently measure the flow velocity near the surface of the molten steel continuously in the actual production of the steelmaking, and have high measurement precision.
  • the measurement results are intuitive and reliable, the measurement is convenient, the measurement cost is low, and the flow rate measurement can be continuously performed within 100 s.
  • It is especially suitable for measuring and controlling the flow velocity near the surface of molten steel in the mold.
  • the molten steel flow field in the crystallizer and the tundish is very important for the control of inclusions and surface quality in the steelmaking billet, since the molten steel temperature is as high as 1600 °C, the commonly used liquid flow measuring device cannot be used. The role of the actual flow rate of molten steel has become a technical problem in the field of steelmaking.
  • the invention carefully analyzes the measuring device and method for the high-temperature molten steel flow rate of the predecessors, and overcomes the above disadvantages, and proposes a new device and a new method for measuring the flow velocity near the surface of the molten steel.
  • the speed measuring rod is inserted into the flowing molten steel, and the speed measuring rod is deflected under the impact of the molten steel flow, and the corresponding relationship between the insertion depth of the speed measuring rod, the angle of the deflection and the flow rate of the molten steel is derived in advance, and the insertion depth and the deflection angle are measured.
  • the flow rate near the surface of the molten steel can be converted.
  • the speed measuring rod is at 1000. C to 1500 ° C for high temperature baking lOmin or so;
  • S905 inserting the baked speed measuring rod into the molten steel to obtain a rotation angle and an insertion depth
  • S906 collecting continuous values and average values of the rotation angles in a period of time
  • S908 measuring continuous values and average values of the projected area of the speed measuring rod in a direction perpendicular to the flow velocity of the molten steel, the density of the molten steel, and the coefficient of resistance around the flow;
  • S909 Calculate the peak value, the mean value and the continuous value of the molten steel flow rate according to the continuous value and the average value of the rotation angle, the projected area, the molten steel density and the flow resistance coefficient;
  • S910 Estimate the molten steel flow rate based on the peak, average, and continuous values of the molten steel flow rate.
  • Figure 3 is a diagram showing the deflection of the speed measuring rod into the flowing molten steel under the action of the molten steel flow impact force F D (the deflection angle is shown in Fig. 4.
  • Fig. 4 is a force analysis diagram of the speed measuring rod in the flowing molten steel. The rod is inserted into the flowing molten steel and is subjected to the action of gravity F G and the flowing steel impact force F D. When the speed measuring rod deviates from a certain angle S and reaches equilibrium, the moment generated by gravity and the impact of the flowing steel liquid are generated. The torque reaches equilibrium as shown in equation (1).
  • F G - L X - sin ⁇ F D - L 2 cos ⁇ ( 1 )
  • F G gravity ( N ) and k is the distance (m) between the center of gravity G of the speed measuring rod and the rotating fulcrum of the speed measuring rod
  • F D is The molten steel impact force (N)
  • L 2 is the distance (m) between the impact force point and the rotation point of the speed measuring rod
  • S is the rotation angle of the speed measuring rod. Since the impact force of the molten steel is equal to the turbulent resistance of the speed measuring rod, it can be calculated by the following formula (2).
  • U Q is the flow rate (m/s) of the molten steel
  • A is the projected area (m 2 ) of the speed measuring rod in the direction perpendicular to the flow rate of the molten steel
  • C D is the winding
  • the coefficient of flow resistance can be obtained by the relationship between the coefficient of flow resistance and the Reynolds number.
  • the simultaneous flow rate of molten steel can be obtained by the simultaneous (1) and (2) formulas:
  • Fe and Li are the intrinsic values of the speed measuring rod.
  • a value of 1_ 2 can be obtained, and when the speed measuring rod is measured in the steel
  • the projection area A of the speed measuring rod in the direction perpendicular to the flow velocity of the molten steel can be obtained, and the flow resistance coefficient C D can be obtained according to the range of the flow velocity, thereby obtaining the flow velocity near the surface of the molten steel.
  • the speed measuring rod and the weight are basically in a gravity balance state, and the speed measuring rod can be greatly improved.
  • the sensitivity of the rotation increases the sensitivity of the speed measuring rod to the flow of molten steel and the accuracy of the measurement of the flow rate of the molten steel. Since the velocity of the molten steel in the crystallizer is usually less than lm/s, which is a low flow rate range, the measuring device can effectively improve the accuracy of the flow velocity measurement near the molten steel surface in the crystallizer.
  • the measuring method of the present invention has a simple principle and the measurement result is intuitive and reliable.
  • the measured flow velocity near the surface of the molten steel is actually the average flow velocity of the molten steel surface at which the velocity measuring rod is inserted into the molten steel.
  • the speed measuring rod is made of a refractory material of a single compound such as Al 2 0 3 , MgO, Si0 2 , CaO, Zr0 2 , SiC or a composite refractory material of several compounds, and these refractory tubes are tightly coupled with the stainless steel rods.
  • a refractory speed measuring rod is used to measure the flow velocity near the surface of the molten steel, the refractory rod is melted in the molten steel at a high temperature by the action of the protective slag, and the refractory speed measuring rod can be kept from being blown for about 100 s.
  • the flow rate of the molten steel surface in the crystallizer can be measured continuously for 100 s, and the continuous change value of the surface flow rate of the molten steel can be obtained and the change trend can be understood.
  • the speed measuring rod should be quickly taken out to complete the speed measurement, and the refractory rod should be prevented from being melted by the protective slag and dropped into the molten steel.
  • the length of the speed measuring rod When used for measuring the flow rate near the surface of the molten steel in the crystallizer, the length of the speed measuring rod is 10 cm to 100 cm. When the length of the speed measuring rod is less than 10 cm, the speed measuring rod cannot be effectively inserted into the molten steel. When the length of the speed measuring rod is larger than 100 cm, since the spacing between the tundish and the crystallizer is small, the speed measuring rod is too long to be easily inserted into the molten steel in the crystallizer for speed measurement.
  • a suitable diameter for the speed measuring rod is 5 mm to 50 mm. When the diameter of the speed measuring rod is less than 5 mm, The speed measuring rod will be blown quickly in the molten steel, and an effective speed measurement cannot be achieved. When the diameter of the speed measuring rod is greater than
  • the actual speed measuring device consists of two parts: the speed measuring rod 18 and the speed measuring rod deflection device (part B in Fig. 5) and the speed measuring rod supporting structure, as shown in Fig. 5.
  • the speed measuring rod 18 can realize the free rotation in the flow direction of the molten steel by the speed measuring rod deflection device B, and the flow velocity near the surface of the high temperature molten steel can be converted by measuring the deflection angle of the speed measuring rod 18. At the same time, the speed measuring rod 18 can be moved up and down freely by the up and down moving device A, which facilitates the insertion of the speed measuring rod 18 into the molten steel and lifts off the molten steel. The movement of the speed measuring rod 18 in the front-rear direction can be achieved by the speed measuring rod horizontal support rod length adjuster 17.
  • the speed bar support structure mainly includes a speed measuring device bracket 13, a bracket base 14 and a horizontal adjusting screw 15.
  • Four speed measuring device brackets 13 are vertically mounted on the upper surface of the bracket base 14, and four lower supporting legs are respectively extended in four directions, and a horizontal adjusting screw 15 is vertically disposed on each supporting leg, and the horizontal adjusting screw 15 can be vertically
  • the direction adjustment can maintain the speed level support rod 16 in the horizontal position by the horizontal adjustment screw 15, thereby improving the accuracy of the flow rate measurement.
  • the speed measuring rod 18 and the speed measuring rod deflection unit (part B in Fig. 5) are composed of the following parts, as shown in Fig. 6.
  • the speed bar deflection device B includes a speed bar weight, a yaw bearing casing 23, a yaw bearing 24, a deflection angle indicating plate 25, a deflection angle hand 26, and a speed bar fixing screw 27.
  • the speed bar weight includes an upper fixing screw 19, a balance piece 20, and a lower fixing screw 21.
  • the yaw bearing outer casing 23 and the yaw bearing 24 are both annular members, and the yaw bearing 24 is slidably fitted over the inner wall of the yaw bearing outer casing 23.
  • the outer surface of the yaw bearing casing 23 includes an outwardly extending weight bar, and the weight bar and the speed bar fixing screw 27 are respectively mounted on the outer surface of the yaw bearing casing 24 at a distance of 180 degrees, and the speed bar weight is mounted on On the weight bar.
  • the deflection angle indicating plate 25 has a sector shape, and the apex angle of the sector is mounted on the end surface of the yaw bearing 24, and the sector-shaped arc
  • the surface includes scales.
  • the deflection angle pointer 26 is mounted at the apex angle of the sector, and the other end is directed to the scale of the sector arc and parallel to the speed measuring rod, rotating as the speed measuring rod rotates.
  • the speed measuring rod 18 is attached to the outer surface of the yaw bearing outer casing 23 by a speed measuring rod fixing screw 27.
  • the balance piece 20 is an annular weight plate which is fitted over the weight bar.
  • the upper fixing screw 19 and the lower fixing screw 21 are fixed to the weight bar from above and below, respectively, and the balance piece 20 is restrained.
  • the horizontal support rod 16 is horizontally disposed, one end is connected to the speed measuring rod up and down moving device A, and the other end is inserted into the ring of the yaw bearing 24, and the support rod fixing screw 22 is disposed at the top end of the horizontal support rod 16 so as to abut against the end surface of the yaw bearing 24.
  • the center of gravity G of the speed measuring rod 18 can be adjusted to a position close to the center of the speed measuring rod deflection bearing 24, so that the speed measuring rod 18 and the balance sheet 20 are substantially in a gravity equilibrium state, thereby maximizing the speed measurement.
  • the deflection angle of the speed measuring rod 18 can be conveniently obtained by the deflection angle indicating plate 25 and the deflection angle hand 26. Using the speed bar deflection bearing 24, the sensitivity of the speed bar 18 to deflection under the impact of flowing molten steel can be improved. In addition, the speed measuring rod 27 can be easily replaced by the speed measuring rod fixing screw 27 after each flow rate measurement is completed. All of the above materials are made of stainless steel or other non-magnetic metal materials to avoid interference from the electromagnetic field to the flow rate measurement.
  • the speed measuring rod up and down moving device (part A in FIG. 5) is composed of the following parts, as shown in FIG. 7, including the up and down moving rail 28, the up and down moving pulley 29, the up and down moving support plate 30, and the up and down moving support plate fixing screws 31, The position fixing device 32 and the vertical position fixing link 33 are moved up and down.
  • the up-and-down moving rails 28 are provided on the speed measuring device bracket 13, and the upper and lower moving support plates 30 are provided with four vertical moving pulleys 29, and the upper and lower surfaces of the supporting plate 30 are vertically moved by the vertical movement of the supporting plate fixing screws 31, and the upper and lower moving pulleys 29 are moved.
  • the lower surface of the support plate 30 is fixed to the upper and lower sides, and the up-and-down moving pulley 29 is fitted into the upper and lower moving rails 28.
  • the vertical movement position fixing device 32 is provided on the speed measuring device bracket 13, and the vertical movement support plate 30 and the vertical movement position fixing device 32 are connected by the vertical movement position fixing link 33.
  • FIG. 8 shows a schematic diagram of one embodiment of a speed measuring rod, a balance sheet and a yaw bearing.
  • the speed measuring rod of the Al 2 0 3 refractory tube tightly coupled with the stainless steel rod has a diameter of 20 mm and a length of 425 mm.
  • the total length of the speed measuring rod together with the balance piece is 537 mm, and its center of gravity G is located only from the center of the deflection bearing. 45.0mm.
  • the center of gravity is close to the center of the deflection bearing, which is beneficial to improve the sensitivity of the deflection of the speed measuring rod, especially in the case of low molten steel flow rate, to improve the sensitivity of the flow velocity measurement near the surface of the molten steel.
  • Figure 10 shows the deflection angle of the speed measuring rod as a function of time, measured for 88 s.
  • the speed measuring rod is set to be deflected toward the immersion nozzle to be positively deflected, and the flow velocity toward the immersion nozzle is positive, and the following settings are the same.
  • the deflection angle is positively deflected before 45 s, negative deflection from 45 s to 74 s, and positive deflection after 74 s.
  • the flow rate of the molten steel on the surface of the corresponding crystallizer is shown in Fig. 11. It flows to the immersion nozzle before 45 s, and flows to the short side wall of the crystallizer from 45 s to 74 s, and then flows to the immersion nozzle after more than 74 s.
  • the flow rate of the molten steel near the surface of the crystallizer is not constant, and its size and direction change with time. It is indicated that the flow field in the crystallizer is an unsteady flow field, so how to control the flow field in the crystallizer to the desired flow field becomes an important issue in the flow field control in the crystallizer.
  • Figure 12 shows another set of measurements of the deflection angle of the speed bar over time, measured for 88 s.
  • the molten steel flow rate of the corresponding crystallizer surface is shown in Fig. 13.
  • the results of this set of measurements show that although the flow direction of the molten steel near the surface of the crystallizer does not change, its size changes over time, again indicating that the flow field in the crystallizer is an unsteady flow field.
  • the flow velocity on the near surface of the crystallizer is 0.3-0.5 m/s, and the direction is flow to the immersion nozzle.
  • Figure 14 shows the combined results of eight sets of measurement data of the deflection angle of the speed measuring rod with time.
  • the measurement time of each set of data is 70-88 s.
  • the flow rate of the molten steel on the corresponding crystallizer surface is shown in Fig. 15.
  • the eight sets of data show that the proportion of time that molten steel flows into the immersion nozzle is 81.3%, and the proportion of time that molten steel flows to the short side wall of the crystallizer is 18.7%. This shows that measuring the flow rate at a location in the crystallizer requires not only the magnitude and direction of the velocity, but also the curve of the velocity versus time to be fully described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Continuous Casting (AREA)

Abstract

一种钢液表面附近流速的连续测量装置,包括测速棒(18)和测速棒偏转装置(B)。其中,测速棒(18)一端为耐火材料管,另一端为不锈钢棒,耐火材料管与所述不锈钢棒尺寸紧配合连接。测速棒(18)采用单种化合物的耐火材料或者所述几种化合物复合的耐火材料。测速棒(18)的长度为10-100cm,直径为5-50mm。测速棒偏:转装置(B)包括测速棒固定螺钉(27),测速棒(18)通过测速棒固定螺钉(27)安装于测速棒偏转装置(B)上。还提供了一种钢液表面附近流速的连续测量方法,主要根据测速棒(18)的重心、旋转支点和冲击力着力点,计算旋转支点和重心之间的距离,以及旋转支点和冲击力着力点之间的距离,测量测速棒(18)的重力值,将耐火测速棒(18)插入钢液中,得到旋转角度和插入深度,从而计算出钢液流速的连续变化。

Description

一种钢液表面附近流速的连续测量装置和方法 技术领域
本发明涉及一种高温钢液流动参数的测量装置及其方法,更具体地说, 涉及一种钢液表面附近流速的测量装置和方法。 背景技术
通过结晶器内钢液表面附近流速的直接测量, 可以对结晶器内钢液流 场进行控制, 从而可以有效地降低保护渣的卷渣、 夹杂物和气泡等导致的 连铸坯表面缺陷, 进而降低汽车外板、 硅钢等冷轧板的表面缺陷发生率。 很显然, 结晶器表面附近流速控制的关键是结晶器内钢液表面附近流速的 测量。
尽管结晶器、 中间包内的钢液流场对于炼钢过程中夹杂物的控制和铸 坯表面质量的控制具有十分重要的意义,由于钢液温度高达 1600° C左右, 常用的液态流速测量装置和方法都不能发挥作用, 因此实际高温钢液流速 的测量成为炼钢领域的技术难题。
结晶器中的保护渣在连铸过程中一是防止钢液表面的氧化, 二是在结 晶器和铸坯之间起润滑作用, 三是可以扑捉上浮的夹杂物, 四是可以起到 钢液保温的作用。 但是为了提高连铸坯的表面质量, 必须要抑制结晶器保 护渣卷入钢液。
如图 1和图 2所示, 在炼钢的连铸过程中, 中间包 10内的钢液依次 通过中间包挡墙 9、 滑动水口 11、 浸入式水口 1注入结晶器 5中, 从浸入 式水口出口 3出来的钢液在撞击结晶器短边壁之后, 形成朝向结晶器钢液 表面的向上回转流 4, 和朝向结晶器下方的向下回转流 6。
当向上的回转流 4的流速过大的时候,容易造成结晶器表面波动增大, 从而导致保护渣卷入钢液中。 当保护渣卷混发生之后, 将会导致冷轧钢板 表面缺陷的发生, 降低产品的成材率。 但是当向上的回转流 4的流速过小 的时候, 弯月面附近钢液的流动性降低, 该处钢液温度下降, 保护渣的熔 化变得不够充分, 这样将导致保护渣扑捉上浮夹杂物的功能弱化。 从而夹 杂物和保护渣在弯月面附近的凝固坯壳 7被扑捉, 同样导致最终产品冷轧 卷的缺陷发生率上升。
因此, 控制结晶器内形成合适的流场形式和流速分布对于连铸坯内的 夹杂物和表面质量控制, 以及汽车外板等冷轧产品的表面质量控制至关重 要。
专利文献(特开平 4-178525 )提出了将陶瓷棒插入钢液中, 陶瓷棒在 钢液流动的冲击下沿着流动的方向对于在陶瓷棒上部设置的压力传感器产 生压力, 通过压力传感器压力的大小, 可以换算得到钢液近表面的流速。 但是这种测量方法装置较复杂, 同时恶劣的高温环境也影响压力传感器的 精度和使用稳定性, 这样导致流速测量的误差较大。 另外, 该测速压力感 应棒的旋转支点位于感应棒的上部顶端附近位置, 这样感应棒旋转一定的 角度需要较大的力矩, 速度测量灵敏度不高, 这在结晶器内等钢液流速较 低的情况下影响尤其显著。 发明内容
本发明的目的 在提供一种钢液表面附近流速的连续测量装置和方 法, 来解决现有技术中存在的因测量装置结构复杂、 受高温环境影响大而 引起的误差大的不足。
根据本发明, 提供一种钢液表面附近流速的连续测量装置, 包括测速 棒和测速棒偏转装置。 其中, 测速棒一端为耐火材料管, 另一端为不锈钢 棒,耐火材料管与所述不锈钢棒尺寸紧配合连接。测速棒釆用 Al203、 MgO、 Si02、 CaO、 Zr02、 SiC单种化合物的耐火材料或者所述几种化合物复合的 耐火材料。 测速棒的长度为 10 ~ 100cm , 直径为 5 ~ 50mm。 测速棒偏转 装置包括测速棒固定螺钉, 测速棒通过测速棒固定螺钉安装于测速棒偏转 装置上。
根据本发明的一实施例, 测速棒偏转装置包括测速棒配重、 偏转轴承 外套、 偏转轴承、 偏转角度指示板、 偏转角度指针和测速棒固定螺钉。 偏 转轴承外套和偏转轴承均为圆环部件, 偏转轴承可滑动地套装在偏转轴承 外套的内壁上。 偏转轴承外套的外表面包括一个向外延伸的配重杆, 配重 杆和测速棒固定螺钉分别安装在偏转轴承外套的外表面上, 两者间隔 180 度, 测速棒配重安装于配重杆上。 偏转角度指示板呈扇形, 扇形的顶角安 装于偏转轴承的端面上, 扇形的弧的表面包括刻度。 偏转角度指针一端安 装于扇形的顶角, 另一端指向扇形的弧的刻度, 并且平行于所述测速棒, 随着测速棒的转动而转动。 测速棒通过测速棒固定螺钉安装于偏转轴承外 套的外表面。
根据本发明的一实施例, 测速棒配重包括上固定螺钉、 平衡片、 下固 定螺钉。 平衡片为圆环状配重片, 套在配重杆上, 上固定螺钉和下固定螺 钉分别从上方和下方固定在配重杆上, 限位平衡片。
根据本发明的一实施例, 还包括测速装置支架、 支架底座和水平调节 螺钉。 支架底座上表面垂直安装四根测速装置支架, 其下表面沿四个方向 分别延伸出四根支撑脚, 每根支撑脚上垂直设置一根水平调节螺钉, 水平 调节螺钉可沿垂直方向调节。
根据本发明的一实施例, 还包括测速棒上下移动装置。 测速棒上下移 动装置包括移动导轨、 移动滑轮、 移动支撑板、 移动支撑板固定螺钉、 位 置固定装置和位置固定用连杆。 移动导轨设置于测速装置支架上, 支撑板 设置 4个移动滑轮, 通过移动支撑板固定螺钉贯穿支撑板的上下表面, 将 移动滑轮固定在支撑板的下表面, 移动滑轮嵌入移动导轨中。 位置固定装 置设置于测速装置支架上, 移动支撑板和位置固定装置通过位置固定用连 杆来连接。
根据本发明的一实施例, 还包括水平支撑杆和支撑杆固定螺钉。 水平 支撑杆水平设置, 一端连接测速棒上下移动装置, 另一端插入到偏转轴承 的圆环中, 支撑杆固定螺钉设置在水平支撑杆的顶端, 紧贴偏转轴承的端 面。
根据本发明的另一方面, 还提供一种钢液表面附近流速的测量方法, 包括以下步骤: 步骤一, 找出测速棒的重心、 旋转支点和冲击力着力点; 步骤二, 计算旋转支点和重心之间的距离, 以及旋转支点和冲击力着力点 之间的距离; 步骤三, 测量测速棒的重力值; 步骤四, 将测速棒在 1000° C到 1500° C下进行高温烘烤 lOmin左右; 步骤五, 将烘烤好的测速棒插 入钢液中, 得到旋转角度和插入深度; 步骤六, 在一段时间内釆集旋转角 度的连续值和平均值; 步骤七, 计算钢液冲击力; 步骤八, 测量测速棒在 垂直于钢液流速方向的投影面积、 钢液密度和绕流阻力系数的连续值和平 均值; 步骤九, 根据所述旋转角度、 投影面积、 钢液密度和绕流阻力系数 的连续值和平均值, 计算钢液流速的峰值、 均值和连续值; 步骤十, 根据 钢液流速的峰值、 均值和连续值估计钢液流速。
根据本发明的一实施例, 将测速棒插入流动的钢液中, 受到重力和流 动钢液冲击力的作用, 当测速棒偏离一定的角度并达到平衡时, 重力所产 生的力矩和流动钢液冲击力所产生的力矩达到平衡。
根据本发明的一实施例, 步骤一还包括设定测速棒的配重, 将测速棒 的重心调整到接近测速棒的旋转支点的位置, 使测速棒和配重基本处于重 力平衡状态。 这样可以最大限度地增加测速棒偏转的灵敏度, 特别是在低 钢液流速条件下, 提高的钢液表面附近流速测量的准确性。
本发明测量方法简单直观, 测量结果可靠。 每测量一次钢液表面流速 仅更换一次测速棒就可以完成, 由于测速棒价廉, 所以测速的成本低廉。 因此本发明的钢液表面附近流速测量装置与方法具有测量精度高、 测量结 果直观可靠、 测量方便、 测量成本低等优点。 附图说明
在本发明中, 相同的附图标记始终表示相同的特征, 其中:
图 1是结晶器内流场装置正面示意图;
图 2是结晶器内流场装置侧面示意图;
图 3是本发明测速棒在流动钢液中的偏转示意图;
图 4是测速棒在流动钢液中的受力分析;
图 5是本发明钢液流速测量装置的结构示意图;
图 6是图 5中 B部分的局部放大图;
图 7是图 5中 A部分的局部放大图;
图 8是测速棒的偏转轴承与重心的实施例示意图;
图 9是本发明钢液表面附近流速的连续测量方法的流程图; 图 10是测速棒的偏转角度随时间变化图;
图 11是结晶器表面的钢液流速随时间变化图;
图 12是测速棒的偏转角度随时间变化图;
图 13是结晶器表面的钢液流速随时间变化图;
图 14是测速棒的偏转角度随时间变化的八组测量结果的综合图; 图 15是结晶器表面的钢液流速随时间变化的八组测量结果的综合图。 具体实施方式
下面结合附图和实施例进一步说明本发明的技术方案。
本发明提供了一种钢液表面附近流速的连续测量的装置和测量方法, 这种装置和测量方法可以方便地在炼钢实际生产中连续地测量钢液表面附 近的流速, 具有测量精度高、 测量结果直观可靠、 测量方便、 测量成本低, 并且可以在 100 s的时间内连续地进行流速测量等优点。 特别适合于结晶 器内钢液表面附近流速的测量与控制, 通过控制结晶器内钢液表面附近流 速在合理的范围内, 可以有效地控制连铸铸坯中的夹杂物, 提高铸坯表面 质量, 进而降低汽车外板等冷轧薄板的缺陷发生率。
尽管结晶器、 中间包内的钢液流场对于炼钢铸坯中夹杂物和表面质量 的控制具有十分重要的意义, 由于钢液温度高达 1600°C 左右, 常用的液 态流速测量装置都不能发挥作用, 钢液实际流速的测量成为炼钢领域的技 术难题。本发明对于前人高温钢液流速的测量装置与方法进行了仔细分析, 通过克服上述缺点,提出了一种测量钢液表面附近流速的新装置和新方法。
首先来说明本发明钢液表面附近流速的测量方法的原理及步骤。
将测速棒插入流动的钢液中, 测速棒在钢液流动的冲击下发生偏转, 事先推导得到测速棒插入深度、 偏转的角度与钢液流速的对应关系, 通过 插入深度和偏转角度的测量, 可以换算得到钢液表面附近流速。
鉴于以上的原理, 本发明的钢液表面附近流速的测量方法步骤如图 9 所示:
S901: 找出测速棒的重心、 旋转支点和冲击力着力点;
S902: 计算旋转支点和重心之间的距离, 以及旋转支点和冲击力着力 点之间的距离;
S903: 测量测速棒的重力值;
S904: 将测速棒在 1000。 C到 1500° C下进行高温烘烤 lOmin左右;
S905: 将烘烤好的测速棒插入钢液中, 得到旋转角度和插入深度; S906: 在一段时间内釆集旋转角度的连续值和平均值;
S907: 计算钢液冲击力;
S908: 测量测速棒在垂直于钢液流速方向的投影面积、 钢液密度和绕 流阻力系数的连续值和平均值;
S909: 根据旋转角度、 投影面积、 钢液密度和绕流阻力系数的连续值 和平均值, 计算钢液流速的峰值、 均值和连续值;
S910: 根据钢液流速的峰值、 均值和连续值估计钢液流速。
图 3是测速棒插入流动的钢液中, 在钢液流动冲击力 FD的作用下发生 偏转 (偏转角为 的示意图。 图 4是测速棒在流动钢液中的受力分析图。 当测速棒插入流动的钢液中, 受到重力 FG和流动钢液冲击力 FD的作用。 当测速棒偏离一定的角度 S并达到平衡时, 重力所产生的力矩和流动钢液 冲击力所产生的力矩达到平衡, 如式 ( 1 ) 所示。
FG - LX - sin θ = FD - L2 cos Θ ( 1 ) 其中, FG是重力 ( N ) , k是测速棒重心 G与测速棒旋转支点间的距 离(m), FD是钢液冲击力(N), L2是冲击力着力点距测速棒旋转支点间的距 离(m) , S是测速棒的旋转角度。 由于钢液冲击力与测速棒的扰流阻力相等, 故可以由下列公式 (2 ) 进行计算。
FD = CD ^A (2)
其中, UQ是钢液的流速(m/s) , A是测速棒在垂直于钢液流速方向的投 影面积(m2), 是钢液的密度 (kg/m3), CD是绕流阻力系数, 可以通过绕流 阻力系数和雷诺数之间的关系得到。联立式(1)和式(2)就可以得到钢液流速 的计 下:
Figure imgf000008_0001
通过钢液流速的计算公式 (3 ) 可知, Fe和 Li是测速棒的固有值, 通 过测量测速棒插入钢液的深度, 可以得到 1_2的值, 当测量得到测速棒在钢 液中的偏转角度 时, 就可以得到测速棒在垂直于钢液流速方向的投影面 积 A, 同时根据流速所在的范围可以得到绕流阻力系数 CD, 从而得到钢液 表面附近的流速。
另外, 在测速装置的设计中, 通过将测速棒的重心 G调整到非常接近 测速棒转动支点的位置,使所述测速棒和所述配重基本处于重力平衡状态, 可以大幅度地提高测速棒转动的灵敏度, 从而提高测速棒对于钢液流动的 感应灵敏度和对于钢液流速的测量精度。 因为结晶器内钢液流动的速度通 常小于 lm/s, 属于低流速范围, 因此本测量装置可以有效地提高结晶器内 钢液表面附近流速测量的准确性。
由上述说明可以知道, 本发明的测量方法原理简单, 测量结果直观可 靠。 所测得的钢液表面附近的流速实际上是测速棒插入钢液深度的钢液表 层的流速平均值。
在本发明的技术方案中, 当测量结晶器内钢液表面附近流速的时候, 由于连铸过程中经常使用电磁搅拌、 电磁制动等电磁相关的手段来调节结 晶器内的流场, 测速棒应尽量不使用磁性材质的金属, 以避免电磁场对于 流速测量结果的干扰。
测速棒釆用 Al203、 MgO、 Si02、 CaO、 Zr02、 SiC 等单种化合物的耐 火材料或者几种化合物复合的耐火材料, 这些耐火材料管与不锈钢棒釆用 尺寸紧配合连接。 使用耐火材料测速棒测量钢液表面附近流速的时候, 受 到保护渣熔蚀的作用, 耐火材料棒会高温熔断于钢水中, 可以保持耐火材 料测速棒不熔断的时间约为 100 s左右。 这样可以连续 100 s时间测量结 晶器中钢液表面的流速, 得到钢液表面流速的连续变化值和了解其变化趋 势。 在 100 s之内应迅速取出测速棒以完成测速, 避免耐火材料棒被保护 渣熔断, 掉入钢液中。
当用于结晶器内钢液表面附近流速测量的时候,测速棒的长度为 10cm 到 100cm。 当测速棒的长度小于 10cm时, 测速棒不能有效地插入钢液中。 当测速棒的长度大于 100cm时, 由于中间包和结晶器之间的间距较小, 测 速棒太长将不能方便地插入结晶器内的钢液中测速。
测速棒的合适直径为 5mm到 50mm。 当测速棒的直径小于 5mm时, 测速棒将很快在钢液中熔断, 不能实现有效的测速。 当测速棒的直径大于
50mm 时, 一是由于测速棒的直径较大, 干扰结晶器内的流场; 二是测速 点将变得过大, 不能准确测量某一位置的流速。 这样导致测速棒的偏转灵 敏度将降低, 从而降低测速的准确性。 还有测速棒的成本也会相应增高。
在实际的高温钢液表面附近流速测量过程中, 每测量一次流速, 就更 换一根测速棒。 这样可以保证流速测量的准确性。
实际的测速装置由测速棒 18及测速棒偏转装置 (图 5中的 B部分) 、 测速棒支撑结构两部分组成, 如图 5所示。
测速棒 18 可以通过测速棒偏转装置 B实现在钢液流动方向的自由旋 转, 通过测量测速棒 18 的偏转角度可以换算得到高温钢液表面附近的流 速。 同时, 测速棒 18可以通过上下移动装置 A实现上下自由移动, 便于 测速棒 18 插入钢液和提起离开钢液。 通过测速棒水平支撑杆长短调节器 17可以实现测速棒 18在前后方向的移动。
测速棒支撑结构主要包括测速装置支架 13、 支架底座 14和水平调节 螺钉 15。 支架底座 14上表面垂直安装四根测速装置支架 13 , 其下表面沿 四个方向分别延伸出四根支撑脚, 每根支撑脚上垂直设置一根水平调节螺 钉 15, 水平调节螺钉 15可沿垂直方向调节, 通过水平调节螺钉 15可以保 持测速水平支撑杆 16在水平位置, 提高流速测量的准确性。
下面通过图 6和图 7来详细说明测速棒偏转装置 B和上下移动装置 A 的具体结构。
测速棒 18及测速棒偏转装置 (图 5 中的 B部分) 由以下部分组成, 如图 6所示。 测速棒偏转装置 B包括测速棒配重、 偏转轴承外套 23、 偏转 轴承 24、 偏转角度指示板 25、 偏转角度指针 26和测速棒固定螺钉 27。 其 中测速棒配重包括上固定螺钉 19、 平衡片 20、 下固定螺钉 21。
偏转轴承外套 23和偏转轴承 24均为圆环部件, 偏转轴承 24可滑动 地套装在偏转轴承外套 23的内壁上。 偏转轴承外套 23的外表面包括一个 向外延伸的配重杆,配重杆和测速棒固定螺钉 27分别安装在偏转轴承外套 24的外表面上, 两者间隔 180度, 测速棒配重安装于配重杆上。 偏转角度 指示板 25呈扇形, 扇形的顶角安装于偏转轴承 24的端面上, 扇形的弧的 表面包括刻度。 偏转角度指针 26—端安装于扇形的顶角, 另一端指向扇形 的弧的刻度, 并且平行于测速棒, 随着测速棒的转动而转动。 测速棒 18 通过测速棒固定螺钉 27安装于偏转轴承外套 23的外表面。
在图 6 中, 平衡片 20为圆环状配重片, 套在配重杆上, 上固定螺钉 19和下固定螺钉 21分别从上方和下方固定在配重杆上, 限位平衡片 20。 水平支撑杆 16水平设置, 一端连接测速棒上下移动装置 A, 另一端插入到 偏转轴承 24的圆环中, 支撑杆固定螺钉 22设置在水平支撑杆 16的顶端, 紧贴偏转轴承 24的端面。
通过添加合适重量的平衡片 20, 可以将测速棒 18的重心 G调整到接 近测速棒偏转轴承 24 中心的位置, 使测速棒 18和平衡片 20基本处于重 力平衡状态, 这样可以最大限度地增加测速棒 18偏转的灵敏度, 特别是在 低钢液流速条件下, 提高钢液表面附近流速测量的准确性。
通过偏转角度指示板 25和偏转角度指针 26, 可以方便地得到测速棒 18的偏转角度。 使用测速棒偏转轴承 24, 可以提高测速棒 18在流动钢液 冲击下偏转的灵敏度。 另外, 通过测速棒固定螺钉 27可以方便地在每次流 速测量完成后更换测速棒 18。 上述所有材质均釆用不锈钢或其他非磁性金 属材质, 这样可以避免电磁场对于流速测量结果的干扰。
测速棒上下移动装置(图 5中的 A部分)由以下部分组成,如图 7所示, 包括上下移动导轨 28、 上下移动用滑轮 29、 上下移动支撑板 30、 上下移 动支撑板固定螺钉 31、 上下移动位置固定装置 32和上下移动位置固定用 连杆 33。
上下移动导轨 28设置于测速装置支架 13上, 上下移动支撑板 30设 置 4个上下移动用滑轮 29, 通过上下移动支撑板固定螺钉 31贯穿上下移 动支撑板 30的上下表面,将上下移动用滑轮 29固定在上下移动支撑板 30 的下表面, 上下移动用滑轮 29嵌入上下移动导轨 28中。 上下移动位置固 定装置 32设置于测速装置支架 13上, 上下移动支撑板 30和上下移动位 置固定装置 32通过上下移动位置固定用连杆 33来连接。 通过上下移动用 滑轮 29 , 上下移动导轨 28和上下移动位置固定装置 32 , 可以实现测速棒 上下方向的自由移动和固定。 图 8给出了测速棒、 平衡片和偏转轴承的一个实施例的示意图。 所使 用的 Al203耐火材料管与不锈钢棒紧配合连接的测速棒, 直径为 20mm , 长度为 425mm , 测速棒连同平衡片的总长度为 537mm , 它的重心 G位置 距离偏转轴承的中心仅 45.0mm。 重心距离偏转轴承中心很近有利于提高 测速棒偏转的灵敏度, 特别是在低钢液流速条件下, 提高钢液表面附近流 速测量的灵敏度。
图 10给出了测速棒的偏转角度随时间的变化, 测量的时间为 88 s。 其中设定测速棒朝向浸入式水口偏转为正偏转, 朝向浸入式水口的流速为 正, 以下设定相同。
偏转角度在 45 s之前为正偏转, 从 45 s到 74 s为负偏转, 大于 74 s 后为正偏转。 对应的结晶器表面的钢液流速如图 11所示, 在 45 s之前为 流向浸入式水口, 从 45 s到 74 s为流向结晶器短边壁, 大于 74 s后又流 向浸入式水口。 通过结晶器内流场的连续测量发现, 结晶器近表面钢液的 流速并不是稳定不变, 其大小和方向都随时间变化。 说明结晶器内的流场 是非稳态流场, 所以如何将结晶器内的流场控制为希望的流场成为结晶器 内流场控制的重要课题。
图 12给出了测速棒的偏转角度随时间变化的另外一组测量结果,测量 的时间也为 88 s。 对应的结晶器表面的钢液流速如图 13所示。 这组测量 结果表明, 虽然结晶器近表面钢液流动方向未发生变化, 但是其大小随时 间变化, 再次说明结晶器内的流场是非稳态流场。 结晶器近表面的流速大 小为 0.3-0.5 m/s, 其方向为流向浸入式水口。
图 14 给出了测速棒的偏转角度随时间变化的八组测量数据的综合结 果, 每组数据的测量时间为 70-88 s。 对应的结晶器表面的钢液流速如图 15所示。 这 8组数据显示, 其中钢水流向浸入式水口方向所占时间比例为 81.3%, 钢水流向结晶器短边壁方向所占时间比例为 18.7%。 这表明, 衡 量结晶器中某一位置的流速, 不仅需要用速度的大小和方向, 还需要用速 度随时间变化的曲线才能完整地进行描述。
本技术领域中的普通技术人员应当认识到, 以上的说明书仅是本发明 众多实施例中的一种或几种实施方式, 而并非用对本发明的限定。 任何对 于以上所述实施例的均等变化、 变型以及等同替代等技术方案, 只要符合 本发明的实质精神范围, 都将落在本发明的权利要求书所保护的范围内。

Claims

权利要求书
1. 一种钢液表面附近流速的连续测量装置,包括测速棒和测速棒偏转 装置, 其特征在于:
所述测速棒一端为耐火材料管, 另一端为不锈钢棒, 所述耐火材料管 与所述不锈钢棒尺寸紧配合连接;
所述测速棒釆用 Al203、 MgO、 Si02、 CaO、 Zr02、 SiC 单种化合物的 耐火材料或者所述几种化合物复合的耐火材料;
所述测速棒的长度为 10 ~ 100cm , 直径为 5 ~ 50mm;
所述测速棒偏转装置包括测速棒固定螺钉, 所述测速棒通过所述测速 棒固定螺钉安装于所述测速棒偏转装置上。
2. 如权利要求 1所述的钢液表面附近流速的连续测量装置,其特征在 于:
所述测速棒偏转装置包括测速棒配重、 偏转轴承外套、 偏转轴承、 偏 转角度指示板、 偏转角度指针和测速棒固定螺钉;
所述偏转轴承外套和所述偏转轴承均为圆环部件, 所述偏转轴承可滑 动地套装在所述偏转轴承外套的内壁上;
所述偏转轴承外套的外表面包括一个向外延伸的配重杆, 所述配重杆 和所述测速棒固定螺钉分别安装在所述偏转轴承外套的外表面上, 两者间 隔 180度, 所述测速棒配重安装于所述配重杆上;
所述偏转角度指示板呈扇形, 扇形的顶角安装于所述偏转轴承的端面 上, 扇形的弧的表面包括刻度;
所述偏转角度指针一端安装于所述扇形的顶角, 另一端指向所述扇形 的弧的刻度, 并且平行于所述测速棒, 随着所述测速棒的转动而转动; 所述测速棒通过所述测速棒固定螺钉安装于所述偏转轴承外套的外表 面。
3. 如权利要求 2所述的钢液表面附近流速的连续测量装置,其特征在 于: 所述测速棒配重包括上固定螺钉、 平衡片、 下固定螺钉; 所述平衡片为圆环状配重片, 套在所述配重杆上, 所述上固定螺钉和 所述下固定螺钉分别从上方和下方固定在所述配重杆上, 限位所述平衡片。
4. 如权利要求 2所述的钢液表面附近流速的连续测量装置,其特征在 于, 还包括:
测速装置支架、 支架底座和水平调节螺钉;
所述支架底座上表面垂直安装四根所述测速装置支架, 其下表面沿四 个方向分别延伸出四根支撑脚, 每根所述支撑脚上垂直设置一根所述水平 调节螺钉, 所述水平调节螺钉可沿垂直方向调节。
5. 如权利要求 4所述的钢液表面附近流速的连续测量装置,其特征在 于, 还包括:
测速棒上下移动装置;
所述测速棒上下移动装置包括移动导轨、 移动滑轮、 移动支撑板、 移 动支撑板固定螺钉、 位置固定装置和位置固定用连杆;
所述移动导轨设置于所述测速装置支架上, 所述支撑板设置 4个所述 移动滑轮, 通过所述移动支撑板固定螺钉贯穿所述支撑板的上下表面, 将 所述移动滑轮固定在所述支撑板的下表面, 所述移动滑轮嵌入所述移动导 轨中;
所述位置固定装置设置于所述测速装置支架上, 所述移动支撑板和所 述位置固定装置通过所述位置固定用连杆来连接。
6. 如权利要求 5所述的钢液表面附近流速的连续测量装置,其特征在 于, 还包括:
水平支撑杆和支撑杆固定螺钉;
所述水平支撑杆水平设置, 一端连接所述测速棒上下移动装置, 另一 端插入到所述偏转轴承的圆环中, 所述支撑杆固定螺钉设置在所述水平支 撑杆的顶端, 紧贴所述偏转轴承的端面。
7. 一种钢液表面附近流速的连续测量方法, 其特征在于, 包括以下步 骤:
步骤一, 找出测速棒的重心、 旋转支点和冲击力着力点;
步骤二, 计算旋转支点和重心之间的距离, 以及旋转支点和冲击力着 力点之间的距离;
步骤三, 测量测速棒的重力值;
步骤四, 将测速棒在 1000° C到 1500° C下进行高温烘烤 lOmin左 右;
步骤五, 将烘烤好的测速棒插入钢液中, 得到旋转角度和插入深度; 步骤六, 在一段时间内釆集旋转角度的连续值和平均值;
步骤七, 计算钢液冲击力;
步骤八, 测量测速棒在垂直于钢液流速方向的投影面积、 钢液密度和 绕流阻力系数的连续值和平均值;
步骤九, 根据所述旋转角度、 投影面积、 钢液密度和绕流阻力系数的 连续值和平均值, 计算钢液流速的峰值、 均值和连续值;
步骤十, 根据所述钢液流速的峰值、 均值和连续值估计钢液流速。
8. 如权利要求 7所述的钢液表面附近流速的连续测量方法,其特征在 于:
将测速棒插入流动的钢液中, 受到重力和流动钢液冲击力的作用, 当 测速棒偏离一定的角度并达到平衡时, 重力所产生的力矩和流动钢液冲击 力所产生的力矩达到平衡。
9. 如权利要求 7所述的钢液表面附近流速的连续测量方法,其特征在 于:
所述步骤一还包括设定所述测速棒的配重, 将所述测速棒的重心调整 到接近所述测速棒的旋转支点的位置, 使所述测速棒和所述配重基本处于 重力平衡状态。
PCT/CN2013/072950 2012-11-26 2013-03-20 一种钢液表面附近流速的连续测量装置和方法 WO2014079181A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13856075.0A EP2924442B1 (en) 2012-11-26 2013-03-20 Device and method for continuously measuring flow rate near liquid steel surface
US14/646,040 US9630242B2 (en) 2012-11-26 2013-03-20 Device and method for continuously measuring flow rate near liquid steel surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210487402.X 2012-11-26
CN201210487402.XA CN103837698B (zh) 2012-11-26 2012-11-26 一种钢液表面附近流速的连续测量装置和方法

Publications (1)

Publication Number Publication Date
WO2014079181A1 true WO2014079181A1 (zh) 2014-05-30

Family

ID=50775457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072950 WO2014079181A1 (zh) 2012-11-26 2013-03-20 一种钢液表面附近流速的连续测量装置和方法

Country Status (4)

Country Link
US (1) US9630242B2 (zh)
EP (1) EP2924442B1 (zh)
CN (1) CN103837698B (zh)
WO (1) WO2014079181A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837701B (zh) * 2012-11-26 2016-06-29 宝山钢铁股份有限公司 钢液表面附近流速的测量装置和方法
CN105880497B (zh) * 2016-05-25 2018-02-13 北京科技大学 一种连铸结晶器电磁搅拌器电磁力矩的测量方法及装置
CN109270292B (zh) * 2018-11-14 2023-09-01 深圳大学 一种电磁感应测水流速的测试装置及其测速方法
CN111812351A (zh) * 2020-06-28 2020-10-23 上海大学 结晶器表面附近钢液流速的测量方法
CN113172207B (zh) * 2021-04-09 2022-07-29 北京科技大学 一种基于电流变化的结晶器内钢液表面流场测量装置
CN113500173B (zh) * 2021-06-11 2022-10-11 上海大学 中等断面板坯结晶器钢液流场形态的控制方法
CN114354971B (zh) * 2022-01-14 2023-07-21 华北理工大学 一种连铸结晶器钢液流速测定设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178525A (ja) 1990-11-13 1992-06-25 Nkk Corp 溶鋼の流速計測装置
JPH0560774A (ja) * 1991-09-05 1993-03-12 Nkk Corp 溶鋼の流速計測装置
JPH0815293A (ja) * 1994-06-27 1996-01-19 Nippon Steel Corp 液体の流速測定装置
JP3449169B2 (ja) * 1997-05-20 2003-09-22 住友金属工業株式会社 鋳造鋳型内の溶鋼流速測定方法及びこの方法に用いる溶鋼流速測定用検知棒
CN201283416Y (zh) * 2008-10-22 2009-08-05 宝山钢铁股份有限公司 一种钢液流动状态检测装置
CN102019377A (zh) * 2009-09-21 2011-04-20 宝山钢铁股份有限公司 一种结晶器内钢液流动状态的检测装置及方法
CN202305554U (zh) * 2011-10-28 2012-07-04 唐山现代工控技术有限公司 一种流速仪结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602037A (en) * 1969-07-09 1971-08-31 Franklin D Neu Apparatus for measuring minute deflections
CN103837701B (zh) * 2012-11-26 2016-06-29 宝山钢铁股份有限公司 钢液表面附近流速的测量装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178525A (ja) 1990-11-13 1992-06-25 Nkk Corp 溶鋼の流速計測装置
JPH0560774A (ja) * 1991-09-05 1993-03-12 Nkk Corp 溶鋼の流速計測装置
JPH0815293A (ja) * 1994-06-27 1996-01-19 Nippon Steel Corp 液体の流速測定装置
JP3449169B2 (ja) * 1997-05-20 2003-09-22 住友金属工業株式会社 鋳造鋳型内の溶鋼流速測定方法及びこの方法に用いる溶鋼流速測定用検知棒
CN201283416Y (zh) * 2008-10-22 2009-08-05 宝山钢铁股份有限公司 一种钢液流动状态检测装置
CN102019377A (zh) * 2009-09-21 2011-04-20 宝山钢铁股份有限公司 一种结晶器内钢液流动状态的检测装置及方法
CN202305554U (zh) * 2011-10-28 2012-07-04 唐山现代工控技术有限公司 一种流速仪结构

Also Published As

Publication number Publication date
US20150316574A1 (en) 2015-11-05
US9630242B2 (en) 2017-04-25
CN103837698A (zh) 2014-06-04
EP2924442A1 (en) 2015-09-30
CN103837698B (zh) 2016-07-06
EP2924442A4 (en) 2016-09-28
EP2924442B1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2014079180A1 (zh) 钢液表面附近流速的测量装置和方法
WO2014079181A1 (zh) 一种钢液表面附近流速的连续测量装置和方法
WO2010048751A1 (zh) 熔融金属液位的测量装置及测量方法
CN109550906A (zh) 一种连铸结晶器内钢液流速的测量装置及其测量方法
CN111812351A (zh) 结晶器表面附近钢液流速的测量方法
CN110595419A (zh) 一种保护渣液渣层的厚度测量系统及方法
CN111872338B (zh) 板坯结晶器流场形态的判定方法
JP2007098400A (ja) 連続鋳造装置および流速測定方法
JP2010240687A (ja) 連続鋳造設備における鋳型内の溶鋼流動制御方法
JP4499016B2 (ja) スラブの連続鋳造方法
JP6206352B2 (ja) 溶鋼流速測定方法及び溶鋼流速測定装置
JP6809237B2 (ja) 鋼の連続鋳造方法および連続鋳造機
JP2014200816A (ja) 鋳片の凝固完了位置判定方法、鋳片の凝固完了位置判定装置、及び鋳片の製造方法
JP2012166209A (ja) 鋳片の製造方法及び表面品質の優れた鋳片
CN115125350B (zh) 一种转炉留渣量的精准控制方法和系统
JP5413054B2 (ja) 連続鋳造時における鋳片の表面手入れ判定方法及び装置
JP2002103009A (ja) 連続鋳造方法
CN207563705U (zh) 一种测量炼钢中间包浇注钢水余量的装置
CN207050657U (zh) 一种圆坯结晶器保护渣液渣层厚度测量装置
JP4414609B2 (ja) 鋼の連続鋳造における溶鋼の偏流検知方法ならびに偏流検知装置
KR101536441B1 (ko) 몰드의 유동 측정장치
JPH04262841A (ja) 連続鋳造鋳型内の溶鋼表面流速の測定装置および              測定方法
JP2014028399A (ja) 連続鋳造鋳片の凝固完了位置検出方法及び装置、連続鋳造方法及び装置
JPH07236958A (ja) 連続鋳造設備における湯面位置制御装置
CN117123741A (zh) 一种中间包钢水液位检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013856075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14646040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE