WO2014076849A1 - 蓄熱発電装置及びその制御方法 - Google Patents

蓄熱発電装置及びその制御方法 Download PDF

Info

Publication number
WO2014076849A1
WO2014076849A1 PCT/JP2012/082919 JP2012082919W WO2014076849A1 WO 2014076849 A1 WO2014076849 A1 WO 2014076849A1 JP 2012082919 W JP2012082919 W JP 2012082919W WO 2014076849 A1 WO2014076849 A1 WO 2014076849A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power generation
heat storage
heat medium
storage tank
Prior art date
Application number
PCT/JP2012/082919
Other languages
English (en)
French (fr)
Inventor
純直 友保
伸幸 筒井
章次 酒井
康光 佐藤
一明 江澤
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Publication of WO2014076849A1 publication Critical patent/WO2014076849A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Definitions

  • the present invention relates to a heat storage power generation apparatus having a heat medium circuit for circulating a heat medium from a heat source to the power generation apparatus, and a control method thereof.
  • FIG. 7 shows an example of a system in which a heat storage tank is added to a fuel cell used in a general household.
  • a system 1X using this heat storage tank is connected with a heat source 2X such as a fuel cell, a load device 21 such as an electric appliance connected to the fuel cell or the like with an electric wire, and a pipe or the like so as to receive heat supply from the heat source 2X.
  • a heater 22 such as a domestic water heater configured to receive heat supply from the heat storage tank 6X.
  • valves 23a and 23b for controlling the movement of the heat medium are respectively installed on the heat source 2X side and the heater 22 side of the heat storage tank 6X.
  • the heat stored in the heat storage tank 6X is supplied to a heater 22 such as a domestic water heater as necessary.
  • a heater 22 such as a domestic water heater
  • the valve 23b on the heater 22 side of the heat storage tank 6X is opened, and the valve 23a on the opposite side is closed (heat radiation control).
  • Fig. 8 shows an example of a system in which a heat storage tank is added to a power generation device such as a factory.
  • a heat storage power generation apparatus 1Y to which this heat storage tank is added receives a heat source from a heat source 2Y such as a boiler or a diesel generator, a heat storage tank 6Y connected so as to receive a heat supply from the heat source 2Y, and a heat supply from the heat storage tank 6Y. It has the steam turbine 11Y comprised in this way.
  • the heat generated from the heat source 2Y such as a boiler is stored in the heat storage tank 6Y.
  • the valve 23a on the heat source 2Y side of the heat storage tank 6Y is opened, and the opposite valve 23b is closed (heat storage control).
  • the heat stored in the heat storage tank 6Y is supplied to the steam turbine 11Y as necessary.
  • the valve 23b on the steam turbine 11Y side of the heat storage tank 6Y is opened, and the valve 23a on the opposite side is closed (heat radiation control).
  • the waste heat from the factory is efficiently used to generate power with the steam turbine 11Y, and power can be supplied to the factory.
  • the heat storage power generation apparatus 1Y can be used in any factory.
  • the heat storage power generation apparatus 1Y having the heat storage tank has several problems. 1stly, when using a thermal storage tank in a factory etc., there exists a problem that a steam turbine cannot be used as a main independent power supply. This is because the factory exhaust heat is secondary and the amount of energy is not stable. Moreover, it is because a heat storage tank cannot perform heat storage control and heat dissipation control simultaneously. Therefore, the steam turbine cannot receive the supply of water vapor, and a time during which power generation cannot be performed occurs.
  • the present invention has been made in view of the above problems, and its purpose is to improve the power generation efficiency while suppressing the manufacturing cost in a heat storage power generation apparatus having a heat storage tank, and use it as a main independent power supply.
  • An object of the present invention is to provide a possible heat storage power generation apparatus and a control method thereof.
  • a heat storage power generation apparatus includes a heat storage tank that stores heat of a heat source, and a heat storage circuit that circulates a heat medium from the heat source to the power generation apparatus.
  • the power generation device has a power generation heat medium circuit and a heat storage heat medium circuit that are independent of each other, and the power generation heat medium circuit is configured so that the power generation heat medium circulates;
  • a heat-generating device that converts heat energy of the heat-generating heat medium into electricity, and the heat-storage heat-medium circuit is configured to circulate the heat-storage heat medium; It has at least 1 heat storage tank which supplies a heat medium and transfers heat.
  • This configuration allows the heat storage power generation device to be used as a main independent power source. This is because even when heat energy such as sufficient factory exhaust heat cannot be obtained, power can be stably generated using the heat energy of the heat storage tank.
  • the power generation efficiency of the heat storage power generation device can be improved. This is because the heat energy that has conventionally been discarded as surplus heat energy can be supplied to the power generation device and the heat storage tank, respectively, and can be used in parallel.
  • the heat storage heat medium circuit is formed on the upstream side of the heat exchanger that moves the heat energy of the heat storage heat medium to the heat generation medium, and the heat storage tank and the heat exchanger.
  • a low temperature side circuit formed on the downstream side of the heat storage tank and the heat exchanger, and the low temperature side circuit is provided on the downstream side of the heat storage tank and the heat exchanger, respectively. It has a flow control valve.
  • This configuration can reduce the manufacturing cost of the heat storage power generation device. This is because the flow rate of the heat storage heat medium passing through the heat storage tank can be controlled by the flow rate control valve. If this flow control valve is not installed, a large and high-cost switching valve or flow control valve for controlling the flow of the heat storage heat medium must be installed in the high-temperature circuit. This high temperature side valve is costly due to severe requirements such as heat resistance.
  • the low temperature side circuit has a three-way valve installed on the downstream side of the heat storage tank, and the three-way valve flows through the low temperature side circuit by switching control.
  • the medium is configured to flow from the downstream side to the upstream side of the heat storage tank.
  • This configuration can reduce the manufacturing cost of the heat storage power generation device. This is because the three-way valve can easily extract heat energy from the heat storage tank and transfer the heat energy to the heat exchanger via the high temperature side circuit. Moreover, the structure which installs a three-way valve for every heat storage tank can perform control which selects arbitrarily the heat storage tank which performs heat storage, and the heat storage tank which performs heat dissipation.
  • the heat storage heat medium is air.
  • the manufacturing cost of the heat storage power generation device can be suppressed. This is because, for example, the internal pressure of the heat storage heat medium circuit and the heat storage tank can be reduced to a low pressure (about atmospheric pressure) as compared with the case where the heat medium is steam.
  • the power generation device is a steam turbine, it is desirable that the heat generating medium be steam. This is because, with this configuration, the steam generated by the heat of the heat receiving portion for power generation and the heat storage tank can be directly supplied to the power generation device, and the thermal efficiency can be maintained.
  • the heat storage power generation device has a control device, and the control device transfers the heat storage medium from the heat storage tank to the heat generation medium via the heat storage heat medium and the heat exchanger. It has the structure which performs the thermal storage electric power generation control which transmits thermal energy and generates electric power with the said electric power generating apparatus using the said thermal energy.
  • This configuration can reduce the manufacturing cost of the heat storage power generation device. This is because the power generation device connected to the power generation heat medium circuit can be used when generating power with the heat energy of the heat storage tank. Moreover, even if it is a case where thermal energy such as sufficient factory exhaust heat cannot be obtained, the heat storage power generation apparatus can stably generate power. This is because power generation can be performed using the thermal energy of the heat storage tank by the heat storage power generation control.
  • a method for controlling a heat storage power generator includes a heat storage tank that stores heat from a heat source, and a heat storage power generator that includes a heat medium circuit that circulates a heat medium from the heat source to the power generator.
  • the heat storage power generation device has a power generation heat medium circuit and a heat storage heat medium circuit independent from each other, and the power generation heat medium circuit is configured to circulate the power generation heat medium.
  • the heat storage power generation step is executed simultaneously so that at least one of the plurality of heat storage tanks dissipates heat.
  • the power generation amount can be kept constant. This is because the heat energy radiated from the heat storage tank functions as a buffer and is supplied to the heat generating medium so as to compensate for the insufficient heat energy.
  • thermal storage power generation apparatus and the control method thereof according to the present invention, it is possible to provide a thermal storage power generation apparatus that can be used as a main independent power source and a control method thereof that improve power generation efficiency while suppressing manufacturing costs. .
  • FIG. 1 is a diagram showing an outline of a heat storage power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an outline of the heat storage power generation apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between the amount of change in energy and time in the heat storage power generation apparatus.
  • FIG. 4 is a diagram showing an outline of different control of the heat storage power generation apparatus according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an outline of different control of the heat storage power generation apparatus according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an example in which the relationship between the amount of change in energy and the time in the heat storage power generation apparatus is different.
  • FIG. 7 is a diagram showing an example of a system to which a conventional heat storage tank is added.
  • FIG. 8 is a diagram showing a different example of a system to which a conventional heat storage tank is added.
  • the heat storage power generation device 1 includes a power generation heat medium circuit 4S and a heat storage heat medium circuit 4A that are independent of each other.
  • the power generation heat medium circuit 4S receives heat from the heat source 2 and converts the heat energy of the power generation heat medium into electricity, and the heat generation heat receiving part 3S configured to circulate the power generation heat medium (for example, water vapor).
  • a power generation device 5 is provided.
  • the power generation device 5 includes a steam turbine 11 and a generator 12.
  • the power generation heat medium circuit 4S is configured to circulate a power generation heat medium such as steam heated by the power generation heat receiving unit 3S through the power generation device 5 and return it to the power generation heat receiving unit 3S again.
  • the heat storage heat medium circuit 4A receives heat from the heat source 2 and supplies a heat storage heat receiving part 3A configured to circulate a heat storage heat medium (for example, air), and transfers heat by supplying the heat storage heat medium. It has the 1st heat storage tank 6a, the 2nd heat storage tank 6b, and the 3rd heat storage tank 6c (henceforth the heat storage tank 6 is named generically) to perform.
  • the heat storage heat medium circuit 4A includes a heat exchanger 7 that moves the heat energy of the heat storage heat medium such as air to the power generation heat medium.
  • the heat storage heat medium is a gas such as air
  • the heat storage heat medium circuit 4A is configured to circulate a heat storage heat medium such as air heated by the heat storage heat receiving section 3A through the heat storage tank 6 and the heat exchanger 7 and return it to the heat storage heat receiving section 3A again.
  • a heat storage heat medium such as air heated by the heat storage heat receiving section 3A through the heat storage tank 6 and the heat exchanger 7 and return it to the heat storage heat receiving section 3A again.
  • the upstream circuit of the heat storage tank 6 and the heat exchanger 7 is particularly called a high-temperature circuit
  • the downstream circuit of the heat storage tank 6 and the heat exchanger 7 is particularly a low-temperature circuit. I will call it.
  • This low temperature side circuit has flow control valves 14 installed on the downstream sides of the respective heat storage tanks 6 and the heat exchanger 7.
  • the low temperature side circuit has the three-way valve 15 installed in the downstream of each heat storage tank 6, respectively.
  • the thermal storage power generation apparatus 1 has a control device 8 for controlling the flow rate control valve 14, the three-way valve 15, and the like.
  • the alternate long and short dash line indicates a signal line.
  • the flow control valve 14 and the three-way valve 15, those that are closed are shown in black.
  • the operation of the heat storage power generator 1 will be described.
  • a power generation heat medium (which will be described below using steam as an example) is heated to, for example, about 100 to 850 ° C. by the power generation heat receiving portion 3S and sent to the steam turbine 11.
  • the water vapor that has passed through the steam turbine 11 is sent again to the heat receiving portion 3S for power generation. While repeating the above, the power generating heat medium circuit 4S performs power generation (power generation control or power generation step).
  • the heat storage heat medium circuit 4A the heat storage heat medium (which will be described below using air as an example) is heated to, for example, about 100 to 850 ° C. in the heat storage heat receiving portion 3A and sent to the heat storage tank 6. The air that has been deprived of heat in the heat storage tank 6 and has reached about 60 to 200 ° C. is sent again to the heat storage heat receiving portion 3A. At this time, since the heat exchanger 7 is not used, the flow control valve 14 installed in the low temperature side circuit (downstream side) of the heat exchanger 7 is closed. While repeating the above, the heat storage heat medium circuit 4A accumulates thermal energy in the heat storage tank 6 (heat storage control or heat storage step). Here, the heat storage power generation apparatus 1 performs power generation control and heat storage control simultaneously.
  • the heat receiving portion 3 ⁇ / b> S for power generation and the heat receiving portion 3 ⁇ / b> A for heat storage cannot receive sufficient heat energy from the heat source 2.
  • the heat storage heat medium circuit 4 ⁇ / b> A air is sent from the downstream side (downward in FIG. 2) to the upstream side of the heat storage tank 6 by switching the three-way valve 15.
  • the air heated to about 100 to 850 ° C. by receiving heat from the heat storage tank 6 is sent to the heat exchanger 7.
  • the air deprived of heat by the heat exchanger 7 is sent to the heat storage tank 6 again.
  • the flow control valve 14 installed between the blower 13 and the heat receiving heat receiving part 3A is closed.
  • the flow control valve 14 and the three-way valve 15 are controlled to be opened and closed by the control device 8.
  • the steam is heated to about 100 to 850 ° C. by the heat exchanger 7 and sent to the steam turbine 11.
  • the steam that has passed through the steam turbine 11 is sent to the heat exchanger 7 again.
  • the power generation heat medium circuit 4S generates power with the power generation device 5 using the thermal energy of the heat storage tank 6 (heat storage power generation control or heat storage power generation step).
  • FIG. 3 shows the relationship between the amount of change in energy and time in the heat storage power generation apparatus 1.
  • E IN indicates the total amount of heat energy of the heat source 2 received by the heat receiving unit 3S for power generation and the heat receiving unit 3A for heat storage.
  • the input energy E IN is thermal energy, for example, opening starts in a factory or the like is heat starts from (8:00) from a boiler or the like which is a heat source 2, once reduced waste heat during the day off (at around 12), After that, exhaust heat is stopped from the end of work (17:00 to 19:00).
  • E0 indicates the amount of output energy when the heat energy received by the heat receiving unit 3S for power generation is converted into electric power by power generation control.
  • This output energy amount E0 is determined by the rated output of a power generator such as a steam turbine.
  • E1, E2, E3 have shown the energy amount at the time of heat-storing in the heat storage tank 6 the thermal energy received to 3A of heat storage parts by heat storage control.
  • E1 and E2 are thermal energy exceeding the rated output of the power generation device, and are heat energy that cannot be converted into electric power even if sent to the power generation device.
  • E3 is thermal energy that is less than the rated output of the power generation device, and is thermal energy that cannot be efficiently converted into electric power even if it is sent to the power generation device.
  • E4 indicates the amount of output energy when the heat energy stored in the heat storage tank 6 is converted into electric power by heat storage power generation control.
  • the heat storage power generation device 1 can be used independently as a main power plant. Even in a time zone where sufficient exhaust heat (heat energy) cannot be obtained (for example, from 12 to 13 o'clock and after 17 o'clock), it is possible to generate power stably using the heat energy stored in the heat storage tank 6. It is. Depending on the capacity of the heat storage tank 6, the heat energy stored in the heat storage tank 6 is used to stop the operation of the heat source 2 such as a boiler, but at night when power consumption is required in a factory or the like. Even if it exists, it becomes possible to supply electric power stably.
  • the heat energy stored in the heat storage tank 6 is used to stop the operation of the heat source 2 such as a boiler, but at night when power consumption is required in a factory or the like. Even if it exists, it becomes possible to supply electric power stably.
  • the power generation efficiency of the heat storage power generation apparatus 1 can be dramatically improved. This is because heat energy (equivalent to E1 to E3) that has not conventionally contributed to power generation can be stored in the heat storage tank 6 and used for power generation.
  • the power generation heat medium circuit 4S for performing power generation control and the heat storage heat medium circuit 4A for performing heat storage control are formed as independent circuits, so that only the surplus energy E1, E2 is exerted without affecting the power generation control. It becomes possible to execute heat storage control using.
  • heat storage tank 6 may be a small 17 o'clock of the input energy E IN of the heat source 2, it can be accumulated to recover the energy E3.
  • the manufacturing cost of the heat storage power generation device 1 can be suppressed. This is because the flow rate of air passing through the heat storage tank 6 can be controlled by the configuration in which the flow rate control valve 14 is installed.
  • this flow control valve 14 is not installed, it is necessary to install a switching valve such as a large and high cost damper or a flow control valve for controlling the flow of the heat storage heat medium in the high temperature side circuit. .
  • the heat storage heat medium is gas
  • the volume expands greatly depending on the temperature. Therefore, the tube diameter of the high-temperature circuit is larger than the tube diameter of the low-temperature circuit, and the required valve It becomes large and expensive.
  • the structure which does not install the heat exchanger 7 between the heat medium circuit 4S for electric power generation, and the heat medium circuit 4A for heat storage can also be set as the structure which does not install the heat exchanger 7 between the heat medium circuit 4S for electric power generation, and the heat medium circuit 4A for heat storage.
  • the power from the input energy (equivalent to E1 to E3) of the heat source 2 that did not contribute to power generation, such as heat energy exceeding the rating of the power generation device such as a steam turbine or heat energy that is not sufficient for the rating Can be recovered.
  • the heat storage tank 6 may be filled with a liquid such as water as a heat storage material, but it is desirable to use a solid heat storage material. Specifically, ceramic, concrete, or the like can be formed into a spherical shape, a particle shape, or a lump shape, and filled into the heat storage tank 6.
  • the heat storage heat medium can use existing liquids and gases, but is preferably air. This is because the internal pressure of the heat storage heat medium circuit 4A and the heat storage tank 6 can be set to a low pressure (about atmospheric pressure) by this configuration, and the manufacturing cost of the heat storage power generation apparatus 1 can be suppressed.
  • the heat medium for power generation can use existing liquid and gas, but is preferably water vapor. This is because, with this configuration, the steam generated by the power generation heat receiving portion 3S and the heat exchanger 7 can be directly supplied to the steam turbine 11 of the power generation device 5 to maintain thermal efficiency.
  • the power generation device 5 can be appropriately selected in consideration of the properties of the heat generating medium. Specifically, in addition to the steam turbine, a micro turbine, a water turbine, or the like may be used.
  • FIG. 4 shows an outline of different control methods when sufficient heat energy is supplied from the heat source 2 to the heat storage power generation apparatus 1.
  • the heat storage heat medium circuit 4 ⁇ / b> A sends air heated by the heat storage heat receiving part 3 ⁇ / b> A to some of the heat storage tanks 6 a and 6 b to perform heat storage control, and at the same time, some of the heat storage tanks 6 c.
  • the heated air is sent to the heat exchanger 7, and the heat storage power generation control for performing power generation is performed by heating the water vapor of the heat generating medium circuit 4S with this heat (buffer control).
  • the heat storage power generation apparatus 1 that performs this buffer control has at least two heat storage tanks 6.
  • the power generation heat medium circuit 4 ⁇ / b> S sends the steam heated by the power generation heat receiving portion 3 ⁇ / b> S to the power generation device 5 to perform power generation control.
  • the flow control valve 14 and the three-way valve 15 are controlled by the control device 8 as shown in FIG. Do.
  • the flow rate control valve 14 may be closed so that the heat storage heat medium does not flow into the heat storage tank 6c that has released the heat energy. desirable.
  • FIG. 6 shows the relationship between the amount of change in energy and time in the heat storage power generation apparatus 1 using the above-described buffer control.
  • E IN indicates the total amount of heat energy of the heat source 2 received by the heat receiving unit 3S for power generation and the heat receiving unit 3A for heat storage.
  • the input energy E IN depending the operating conditions of a plurality of heating appliances as 2, can vary sharply in a short time.
  • output energy amount E0 by the power generation device 5 may vary.
  • the buffer control described above when the amount of energy such as water vapor in the heat generating medium circuit 4S is insufficient, heat energy can be supplied from the heat storage tank 6 to water vapor or the like. That is, the amount of power generated by the power generation device 5 can be kept constant by the buffer control even if there is a change in the operating status of the equipment that is the heat source 2.
  • the heat energy released from the heat storage tank 6 is not particularly controlled in its release timing or the like, and is configured to be always released to the heat storage heat medium circuit 4A. With this configuration, even momentary fluctuations in the input energy E IN occurs, power generating apparatus 5 can maintain the power generation amount constant.
  • buffer control it is possible to adopt a device with a large rated output when selecting the power generation device 5. This is because stable heat energy can be supplied to the power generation device 5.
  • the thermal storage power generation apparatus 1 that performs buffer control can easily extract thermal energy from the thermal storage tank 6 and transmit the thermal energy to the heat exchanger 7 through the high-temperature circuit by the configuration in which the three-way valve 15 is installed. it can.
  • the structure which installs the three-way valve 15 for every heat storage tank 6 can perform control which arbitrarily selects the heat storage tank 6 which stores heat, and the heat storage tank 6 which performs heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 蓄熱槽を有する蓄熱発電装置において、製造コストを抑制しながら発電効率を向上し、メインの独立電源として使用することが可能な蓄熱発電装置及びその制御方法を提供する。蓄熱発電装置1において、蓄熱発電装置1が、それぞれ独立した発電用熱媒回路4Sと蓄熱用熱媒回路4Aを有しており、発電用熱媒回路4Sが、発電用熱媒が循環するように構成された発電用受熱部3Sと、発電用熱媒の熱エネルギを電気に変換する発電装置5を有しており、蓄熱用熱媒回路4Aが、蓄熱用熱媒が循環するように構成された蓄熱用受熱部3Aと、蓄熱用熱媒を供給して熱の授受を行う少なくとも1つの蓄熱槽6を有している。

Description

蓄熱発電装置及びその制御方法
 本発明は、熱源から発電装置に熱媒を循環させる熱媒回路を有する蓄熱発電装置及びその制御方法に関する。
 従来、燃料電池等の熱源の排熱を蓄熱する蓄熱槽が利用されている(例えば特許文献1参照)。図7に、一般家庭で使用される燃料電池に、蓄熱槽を付加したシステムの1例を示す。この蓄熱槽を利用したシステム1Xは、燃料電池等の熱源2Xと、燃料電池等に電線で接続された電化製品等の負荷機器21と、熱源2Xから熱の供給を受けるようにパイプ等で連結された蓄熱槽6Xと、蓄熱槽6Xから熱の供給を受けるように構成された家庭用温水器等の加熱器22を有している。また、蓄熱槽6Xの熱源2X側及び加熱器22側には、それぞれ熱媒の移動を制御するバルブ23a、23bが設置されている。
 次に、このシステム1Xの作動について説明する。まず、燃料電池等により発電された電気は、電化製品等の負荷機器21に供給される。同時に、燃料電池等の熱源2Xから発生した熱は、蓄熱槽6Xに蓄熱される。このとき、蓄熱槽6Xの熱源2X側のバルブ23aが開放され、逆側のバルブ23bは閉止される(蓄熱制御)。
 また、蓄熱槽6Xに蓄熱された熱は、必要に応じて、家庭用温水器等の加熱器22に供給される。このとき、蓄熱槽6Xの加熱器22側のバルブ23bが開放され、逆側のバルブ23aは閉止されている(放熱制御)。この構成により、燃料電池等から発電の際に発生する熱を回収し、効率的に利用することが可能となる。
 図8に、工場等の発電装置に蓄熱槽を付加したシステムの1例を示す。ここで、工場等においては、ボイラー等から発生する熱や、ボイラー及びエンジンの排気ガス等の工場排熱を熱源として利用することができる。この蓄熱槽を付加した蓄熱発電装置1Yは、ボイラー又はディーゼル発電機等の熱源2Yと、熱源2Yから熱の供給を受けるように連結された蓄熱槽6Yと、蓄熱槽6Yから熱の供給を受けるように構成された蒸気タービン11Yを有している。
 次に、この蓄熱発電装置1Yの作動について説明する。ボイラー等の熱源2Yから発生した熱は、蓄熱槽6Yに蓄熱される。このとき、蓄熱槽6Yの熱源2Y側のバルブ23aが開放され、逆のバルブ23bは閉止されている(蓄熱制御)。
 また、蓄熱槽6Yに蓄熱された熱は、必要に応じて、蒸気タービン11Yに供給される。このとき、蓄熱槽6Yの蒸気タービン11Y側のバルブ23bが開放され、逆側のバルブ23aは閉止される(放熱制御)。この構成により、工場排熱を効率的に利用して蒸気タービン11Yで発電を行い、工場への電力供給が可能となる。特に、蓄熱槽6Yに蓄積された熱を電力に変換することができるため、あらゆる工場でこの蓄熱発電装置1Yを利用することができる。
 しかし、上記の蓄熱槽を有する蓄熱発電装置1Yは、いくつかの問題点を有している。第1に、蓄熱槽を工場等で利用する場合には、蒸気タービンをメインの独立電源として使用できないという問題を有している。これは、工場排熱が副次的なものであり、エネルギ量が安定しないからである。また、蓄熱槽が、蓄熱制御と放熱制御を同時に行えないからである。そのため、蒸気タービンが水蒸気の供給を受けられず、発電を行えない時間が発生してしまう。
 第2に、蒸気タービンの発電効率を向上することが困難であるという問題を有している。これは、工場排熱のエネルギ量が安定せず、このエネルギ量に最適な蒸気タービンの発電容量を選定することが困難だからである。また、熱源から発生する熱の急激な変動等により、蓄熱槽の容量を超えるような余剰な熱エネルギが発生した場合は、この熱エネルギを廃棄しなければならないからである。
 第3に、蒸気タービンの対費用効果が低いという問題を有している。これは、蒸気タービンの稼働率が低いからである。
 以上より、従来は工場排熱等を利用したメインの独立電源を実現することは困難であった。つまり、商用電源や、ディーゼル発電機等をメインの発電装置とし、排熱利用等は付加的な位置付けとしかなりえなかった。
特開2004-150773号公報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、蓄熱槽を有する蓄熱発電装置において、製造コストを抑制しながら発電効率を向上し、メインの独立電源として使用することが可能な蓄熱発電装置及びその制御方法を提供することにある。
 上記の目的を達成するための本発明に係る蓄熱発電装置は、熱源の熱を蓄熱する蓄熱槽と、前記熱源から発電装置に熱媒を循環させる熱媒回路を有する蓄熱発電装置において、前記蓄熱発電装置が、それぞれ独立した発電用熱媒回路と蓄熱用熱媒回路を有しており、前記発電用熱媒回路が、発電用熱媒が循環するように構成された発電用受熱部と、前記発電用熱媒の熱エネルギを電気に変換する発電装置を有しており、前記蓄熱用熱媒回路が、蓄熱用熱媒が循環するように構成された蓄熱用受熱部と、前記蓄熱用熱媒を供給して熱の授受を行う少なくとも1つの蓄熱槽を有していることを特徴とする。
 この構成により、蓄熱発電装置は、メインの独立電源として使用することができる。これは、十分な工場排熱等の熱エネルギを得られない場合であっても、蓄熱槽の熱エネルギを利用して安定して発電を行えるからである。
 また、蓄熱発電装置の発電効率を向上することができる。これは、従来、余剰な熱エネルギとして廃棄されていた熱エネルギを、発電装置及び蓄熱槽にそれぞれ供給し、同時並行的に利用できるからである。
 上記の蓄熱発電装置において、前記蓄熱用熱媒回路が、前記蓄熱用熱媒の熱エネルギを前記発電用熱媒に移動させる熱交換器と、前記蓄熱槽及び前記熱交換器の上流側に形成された高温側回路と、前記蓄熱槽及び前記熱交換器の下流側に形成された低温側回路を有しており、前記低温側回路が、前記蓄熱槽及び前記熱交換器の下流側にそれぞれ流量制御弁を有していることを特徴とする。
 この構成により、蓄熱発電装置の製造コストを抑制することができる。これは、流量制御弁により、蓄熱槽を通過する蓄熱用熱媒の流量を制御できるからである。この流量制御弁を設置しない場合は、高温側回路に蓄熱用熱媒の流れを制御する大型且つ高コストの切り替え弁や流量制御弁を設置しなくてはならない。この高温側の弁は、耐熱性等の要求が厳しいため高コストとなってしまう。
 上記の蓄熱発電装置において、前記低温側回路が、前記蓄熱槽の下流側にそれぞれ設置された三方弁を有しており、前記三方弁が、切り替え制御により前記低温側回路を流れる前記蓄熱用熱媒を前記蓄熱槽の下流側から上流側に向けて流すように構成されたことを特徴とする。
 この構成により、蓄熱発電装置の製造コストを抑制することができる。これは、三方弁により、蓄熱槽から熱エネルギを取り出し、高温側回路を介して熱交換器に熱エネルギを伝達することが容易にできるからである。また、蓄熱槽ごとに三方弁を設置する構成により、蓄熱を行う蓄熱槽と、放熱を行う蓄熱槽を任意に選択する制御を行うことができる。
 上記の蓄熱発電装置において、前記蓄熱用熱媒が、空気であることを特徴とする。この構成により、蓄熱発電装置の製造コストを抑制することができる。これは、例えば熱媒を水蒸気とした場合と比べて、蓄熱用熱媒回路及び蓄熱槽の内部の圧力を低圧(大気圧程度)にできるからである。なお、発電装置を蒸気タービンとした場合、発電用熱媒は水蒸気とすることが望ましい。この構成により、発電用受熱部や蓄熱槽の熱で生成された水蒸気を直接発電装置に供給し、熱効率を維持できるからである。
 上記の蓄熱発電装置において、前記蓄熱発電装置が、制御装置を有しており、前記制御装置が、前記蓄熱槽から前記蓄熱用熱媒及び前記熱交換器を介して、前記発電用熱媒に熱エネルギを伝達し、前記熱エネルギを利用して前記発電装置で発電する蓄熱発電制御を行う構成を有していることを特徴とする。
 この構成により、蓄熱発電装置の製造コストを抑制できる。これは、蓄熱槽の熱エネルギで発電を行う際、発電用熱媒回路に連結された発電装置を利用できるからである。また、蓄熱発電装置は、十分な工場排熱等の熱エネルギを得られない場合であっても、安定して発電を行えるからである。これは、蓄熱発電制御により、蓄熱槽の熱エネルギを利用して発電を行えるからである。
 上記の目的を達成するための本発明に係る蓄熱発電装置の制御方法は、熱源の熱を蓄熱する蓄熱槽と、前記熱源から発電装置に熱媒を循環させる熱媒回路を有する蓄熱発電装置であり、前記蓄熱発電装置が、それぞれ独立した発電用熱媒回路と蓄熱用熱媒回路を有しており、前記発電用熱媒回路が、発電用熱媒が循環するように構成された発電用受熱部と、前記発電用熱媒の熱エネルギを電気に変換する発電装置を有しており、前記蓄熱用熱媒回路が、蓄熱用熱媒が循環するように構成された蓄熱用受熱部と、前記蓄熱用熱媒を供給して熱の授受を行う少なくとも1つの蓄熱槽を有した蓄熱発電装置の制御方法であって、前記熱源から前記発電用熱媒回路を介して前記発電装置に前記発電用熱媒を供給して発電制御を行う発電ステップと、前記熱源から前記蓄熱用熱媒回路を介して前記蓄熱槽に前記蓄熱用熱媒を供給して蓄熱制御を行う蓄熱ステップと、前記蓄熱槽から前記蓄熱用熱媒を介して前記発電用熱媒に熱エネルギを伝達し、前記熱エネルギを利用して前記発電装置で発電する蓄熱発電制御を行う蓄熱発電ステップを有することを特徴とする。この構成により、前述と同様の作用効果を得ることができる。
 上記の蓄熱発電装置の制御方法において、前記発電ステップを実行する際に、複数の前記蓄熱槽のうち少なくとも1つが放熱するように前記蓄熱発電ステップを同時に実行することを特徴とする。
 この構成により、工場排熱等の熱源から供給される熱エネルギの量が変動したとしても、発電量を一定に維持することができる。これは、蓄熱槽から放熱される熱エネルギが、バッファとして働き、不足する熱エネルギを補うように発電用熱媒に供給されるからである。
 本発明による蓄熱発電装置及びその制御方法によれば、製造コストを抑制しながら発電効率を向上し、メインの独立電源として使用することが可能な蓄熱発電装置及びその制御方法を提供することができる。
図1は、本発明に係る実施の形態の蓄熱発電装置の概略を示した図である。 図2は、本発明に係る実施の形態の蓄熱発電装置の概略を示した図である。 図3は、蓄熱発電装置におけるエネルギの変化量と時刻の関係を示した図である。 図4は、本発明に係る実施の形態の蓄熱発電装置の異なる制御の概略を示した図である。 図5は、本発明に係る実施の形態の蓄熱発電装置の異なる制御の概略を示した図である。 図6は、蓄熱発電装置におけるエネルギの変化量と時刻の関係の異なる例を示した図である。 図7は、従来の蓄熱槽を付加したシステムの一例を示した図である。 図8は、従来の蓄熱槽を付加したシステムの異なる例を示した図である。
 以下、本発明に係る実施の形態の蓄熱発電装置及びその制御方法について、図面を参照しながら説明する。図1に、本発明に係る実施の形態の蓄熱発電装置の概略を示す。蓄熱発電装置1は、それぞれ独立した発電用熱媒回路4Sと蓄熱用熱媒回路4Aを有している。
 発電用熱媒回路4Sは、熱源2から熱を受け且つ発電用熱媒(例えば水蒸気)が循環するように構成された発電用受熱部3Sと、発電用熱媒の熱エネルギを電気に変換する発電装置5を有している。発電用熱媒を水蒸気とした場合、この発電装置5は、蒸気タービン11及び発電機12で構成される。発電用熱媒回路4Sは、発電用受熱部3Sで加熱された水蒸気等の発電用熱媒を、発電装置5に循環させ、再び発電用受熱部3Sに戻すように構成されている。
 蓄熱用熱媒回路4Aは、熱源2から熱を受け且つ蓄熱用熱媒(例えば空気)が循環するように構成された蓄熱用受熱部3Aと、蓄熱用熱媒を供給して熱の授受を行う第1蓄熱槽6a、第2蓄熱槽6b、第3蓄熱槽6c(以下、総称する場合は蓄熱槽6とする)を有している。また、蓄熱用熱媒回路4Aは、空気等の蓄熱用熱媒の熱エネルギを発電用熱媒に移動させる熱交換器7を有している。ここで、蓄熱用熱媒を空気等の気体とした場合、この空気等を蓄熱用受熱部3Aに送り込むためのブロア13を設置することが望ましい。
 蓄熱用熱媒回路4Aは、蓄熱用受熱部3Aで加熱された空気等の蓄熱用熱媒を、蓄熱槽6及び熱交換器7に循環させ、再び蓄熱用受熱部3Aに戻すように構成されている。ここで、蓄熱用熱媒回路4Aにおいて、蓄熱槽6及び熱交換器7の上流側の回路を特に高温側回路と呼び、蓄熱槽6及び熱交換器7の下流側の回路を特に低温側回路と呼ぶこととする。この低温側回路は、各蓄熱槽6及び熱交換器7の下流側にそれぞれ設置された流量制御弁14を有している。また、低温側回路は、各蓄熱槽6の下流側にそれぞれ設置された三方弁15を有している。更に、蓄熱発電装置1は、この流量制御弁14や三方弁15等を制御するための制御装置8を有している。なお、一点鎖線は信号線を示している。また、流量制御弁14及び三方弁15のうち、閉止しているものは、黒で塗りつぶして示している。
 次に、蓄熱発電装置1の作動について説明する。まず、蓄熱発電装置1に、工場排熱等の熱源から熱エネルギが十分に供給されている場合の作動について説明する。発電用熱媒回路4Sでは、発電用熱媒(以下、水蒸気を例に説明する)が、発電用受熱部3Sで例えば約100~850℃に加熱され、蒸気タービン11に送られる。蒸気タービン11を通過した水蒸気は、再び発電用受熱部3Sに送られる。以上を繰り返しながら、発電用熱媒回路4Sは、発電を行う(発電制御、又は発電ステップ)。
 他方、蓄熱用熱媒回路4Aでは、蓄熱用熱媒(以下、空気を例に説明する)が、蓄熱用受熱部3Aで例えば約100~850℃に加熱され、蓄熱槽6に送られる。蓄熱槽6で熱を奪われ約60~200℃となった空気は、再び蓄熱用受熱部3Aに送られる。このとき、熱交換器7は使用しないので、熱交換器7の低温側回路(下流側)に設置した流量制御弁14は閉止している。以上を繰り返しながら、蓄熱用熱媒回路4Aは、蓄熱槽6に熱エネルギを蓄積していく(蓄熱制御、又は蓄熱ステップ)。ここで、蓄熱発電装置1は、発電制御及び蓄熱制御を同時並行的に行っている。
 次に、蓄熱発電装置1に、工場排熱等の熱源から熱エネルギが十分に供給されない場合の作動について、図2を参照しながら説明する。このとき、発電用受熱部3S及び蓄熱用受熱部3Aは、熱源2から十分な熱エネルギを受けることができない。蓄熱用熱媒回路4Aでは、三方弁15の切り替えにより、空気が蓄熱槽6の下流側(図2下方)から上流側に送られる。蓄熱槽6から熱を受け約100~850℃に加熱された空気は、熱交換器7に送られる。熱交換器7で熱を奪われた空気は、再び蓄熱槽6に送られる。なお、ブロア13と蓄熱用受熱部3Aの間に設置した流量制御弁14は閉止している。また、流量制御弁14や三方弁15は、制御装置8により開閉を制御される。
 他方、発電用熱媒回路4Sでは、水蒸気が、熱交換器7で約100~850℃に加熱され、蒸気タービン11に送られる。蒸気タービン11を通過した水蒸気は、再び熱交換器7に送られる。以上を繰り返しながら、発電用熱媒回路4Sは、蓄熱槽6の熱エネルギを利用して発電装置5で発電を行う(蓄熱発電制御、又は蓄熱発電ステップ)。
 図3に、蓄熱発電装置1におけるエネルギの変化量と時刻の関係を示す。図3のグラフにおいて、EINは、発電用受熱部3S及び蓄熱用受熱部3Aに受けた熱源2の熱エネルギの合計量を示している。この熱エネルギである入力エネルギEINは、例えば工場等において始業開始(8時)から熱源2であるボイラー等から排熱が開始され、昼間休み(12時ごろ)に一旦排熱が低減し、その後終業(17時から19時)にかけて排熱が停止されていく様子を示している。
 また、E0は、発電制御により、発電用受熱部3Sに受けた熱エネルギを、電力に変換した際の出力エネルギ量を示している。この出力エネルギ量E0は、蒸気タービン等の発電装置の定格出力により決定される。更に、E1、E2、E3は、蓄熱制御により、蓄熱用受熱部3Aに受けた熱エネルギを、蓄熱槽6に蓄熱した際のエネルギ量を示している。ここで、E1及びE2は、発電装置の定格出力を超える熱エネルギであり、発電装置に送っても電力に変換できない熱エネルギである。また、E3は、発電装置の定格出力に満たない熱エネルギであり、発電装置に送っても効率よく電力に変換できない熱エネルギである。加えて、E4は、蓄熱発電制御により、蓄熱槽6に溜めた熱エネルギを、電力に変換した際の出力エネルギ量を示している。
 なお、工場等においては、複数の機器からの排熱等を組み合わせて、熱源2として利用することもできる。
 上記の構成により、以下の作用効果を得ることができる。第1に、蓄熱発電装置1を、メインの発電プラントとして独立して使用することができる。十分な排熱(熱エネルギ)を得られない時間帯(例えば12~13時、及び17時以降)であっても、蓄熱槽6に溜めた熱エネルギを利用して安定して発電を行えるからである。なお、蓄熱槽6の容量次第では、蓄熱槽6に溜めた熱エネルギを利用して、例えばボイラー等の熱源2の稼動は停止しているが、工場等での電力消費が必要となる夜間であっても、電力を安定して供給することが可能となる。
 第2に、蓄熱発電装置1の発電効率を飛躍的に向上することができる。これは、従来、発電に寄与しなかった熱エネルギ(E1~E3に相当)を、蓄熱槽6に蓄熱し、発電に利用できるからである。特に、発電制御を行う発電用熱媒回路4Sと、蓄熱制御を行う蓄熱用熱媒回路4Aをそれぞれ独立した回路として形成した構成により、発電制御に影響を与えることなく、余剰エネルギE1、E2のみを利用して蓄熱制御を実行することが可能となる。また、蓄熱槽6は、熱源2からの入力エネルギEINの小さい17時以降であっても、エネルギE3を回収して溜めることができる。
 第3に、蓄熱発電装置1の製造コストを抑制することができる。これは、流量制御弁14を設置する構成により、蓄熱槽6を通過する空気の流量を制御できるからである。この流量制御弁14を設置しない場合は、高温側回路に蓄熱用熱媒の流れを制御するための大型且つ高コストのダンパー等の切り替え弁や流量制御弁を設置しなくてはならないからである。具体的には、蓄熱用熱媒を気体とした場合は、温度により体積が大幅に膨張するため、高温側回路の管径は、低温側回路の管径に比べ大きくなり、必要となる弁が大きくなり、高コストとなる。
 なお、発電用熱媒回路4Sと蓄熱用熱媒回路4Aの間に熱交換器7を設置しない構成とすることもできる。この構成であっても、蒸気タービン等の発電装置の定格を超える熱エネルギや、定格に足りない熱エネルギ等、発電に寄与しなかった熱源2の入力エネルギ(E1~E3に相当)から、電力を回収することができる。ただし、この場合は、蓄熱用熱媒回路4Aに別途発電装置を設置する必要があり、蓄熱発電装置1の製造コストが上昇する。
 また、蓄熱槽6は、少なくとも1つ設置されていればよい。この蓄熱槽6には、蓄熱材として水等の液体を充填してもよいが、固体の蓄熱材を利用することが望ましい。具体的には、セラミックやコンクリート等を、球状、粒子状又は塊状に形成して蓄熱槽6に充填することができる。
 更に、蓄熱用熱媒は、既存の液体及び気体を利用することができるが、望ましくは空気とする。この構成により、蓄熱用熱媒回路4A及び蓄熱槽6の内部の圧力を低圧(大気圧程度)とすることができ、蓄熱発電装置1の製造コストを抑制できるからである。
 加えて、発電用熱媒は、既存の液体及び気体を利用することができるが、望ましくは水蒸気とする。この構成により、発電用受熱部3Sや熱交換器7で生成された水蒸気を直接発電装置5の蒸気タービン11に供給し、熱効率を維持できるからである。
 加えて、発電装置5は、発電用熱媒の性質等を考慮し、適宜選択することができる。具体的には、蒸気タービンの他、マイクロタービンや水車等を利用してもよい。
 図4に、蓄熱発電装置1に、熱源2から熱エネルギが十分に供給される場合の異なる制御方法の概略を示す。図4に示すように、蓄熱用熱媒回路4Aは、一部の蓄熱槽6a、6bに蓄熱用受熱部3Aで加熱された空気を送り、蓄熱制御を行うと同時に、一部の蓄熱槽6cで加熱された空気を熱交換器7に送り、この熱で発電用熱媒回路4Sの水蒸気を加熱し、発電を行う蓄熱発電制御を行っている(バッファ制御)。このバッファ制御を行う蓄熱発電装置1は、少なくとも2つの蓄熱槽6を有している。なお、発電用熱媒回路4Sは、図1に示した場合と同様に、発電装置5に、発電用受熱部3Sで加熱された水蒸気を送り、発電制御を行っている。
 また、蓄熱発電装置1に、熱源2から熱エネルギが十分に供給されない場合は、図5に示すように、各流量制御弁14及び三方弁15を、制御装置8により制御し、蓄熱発電制御を行う。このとき、熱源2からの熱エネルギが十分に供給される場合に、熱エネルギを放出していた蓄熱槽6cには、蓄熱用熱媒が流れないように、流量制御弁14を閉止することが望ましい。
 図6に、前述のバッファ制御を利用した蓄熱発電装置1におけるエネルギの変化量と時刻の関係を示す。図6のグラフにおいて、EINは、発電用受熱部3S及び蓄熱用受熱部3Aに受けた熱源2の熱エネルギの合計量を示している。この入力エネルギEINは、熱源2となる複数の機器の運転状況によって、短時間で急激に変動する可能性がある。
 この入力エネルギEINの変動により、発電用熱媒回路4Sを流れる水蒸気等のエネルギ量が変動し、発電装置5による出力エネルギ量E0が変動する可能性がある。しかし、前述のバッファ制御を行うことにより、発電用熱媒回路4Sの水蒸気等のエネルギ量が不足した場合は、蓄熱槽6から水蒸気等に熱エネルギを供給することができる。つまり、バッファ制御により、たとえ、熱源2となる機器の運転状況に変化があったとしても、発電装置5による発電量を一定に維持することが可能となる。ここで、バッファ制御により、蓄熱槽6から放出される熱エネルギは、その放出タイミング等を特に制御されておらず、蓄熱用熱媒回路4Aに常時放出されるように構成している。この構成により、入力エネルギEINに瞬間的な変動が生じたとしても、発電装置5は、発電量を一定に維持することができる。
 また、バッファ制御の採用により、発電装置5を選定する際に定格出力の大きいものを採用することが可能となる。これは、発電装置5に、安定した熱エネルギを供給することができるからである。
 なお、バッファ制御を行う蓄熱発電装置1は、三方弁15を設置する構成により、蓄熱槽6から熱エネルギを取り出し、高温側回路を介して熱交換器7に熱エネルギを伝達することが容易にできる。また、蓄熱槽6ごとに三方弁15を設置する構成により、蓄熱を行う蓄熱槽6と、放熱を行う蓄熱槽6を任意に選択する制御を行うことができる。
1     蓄熱発電装置
2     熱源
3S   発電用受熱部
3A   蓄熱用受熱部
4S   発電用熱媒回路
4A   蓄熱用熱媒回路
5     発電装置
6、6a、6b、6c 蓄熱槽
7     熱交換器
8     制御装置
11   蒸気タービン
12   発電機
14   流量制御弁
15   三方弁

Claims (7)

  1.  熱源の熱を蓄熱する蓄熱槽と、前記熱源から発電装置に熱媒を循環させる熱媒回路を有する蓄熱発電装置において、
     前記蓄熱発電装置が、それぞれ独立した発電用熱媒回路と蓄熱用熱媒回路を有しており、
     前記発電用熱媒回路が、発電用熱媒が循環するように構成された発電用受熱部と、前記発電用熱媒の熱エネルギを電気に変換する発電装置を有しており、
     前記蓄熱用熱媒回路が、蓄熱用熱媒が循環するように構成された蓄熱用受熱部と、前記蓄熱用熱媒を供給して熱の授受を行う少なくとも1つの蓄熱槽を有していることを特徴とする蓄熱発電装置。
  2.  前記蓄熱用熱媒回路が、前記蓄熱用熱媒の熱エネルギを前記発電用熱媒に移動させる熱交換器と、前記蓄熱槽及び前記熱交換器の上流側に形成された高温側回路と、前記蓄熱槽及び前記熱交換器の下流側に形成された低温側回路を有しており、
     前記低温側回路が、前記蓄熱槽及び前記熱交換器の下流側にそれぞれ流量制御弁を有していることを特徴とする請求項1に記載の蓄熱発電装置。
  3.  前記低温側回路が、前記蓄熱槽の下流側にそれぞれ設置された三方弁を有しており、
     前記三方弁が、切り替え制御により前記低温側回路を流れる前記蓄熱用熱媒を前記蓄熱槽の下流側から上流側に向けて流すように構成されたことを特徴とする請求項2に記載の蓄熱発電装置。
  4.  前記蓄熱用熱媒が、空気であることを特徴とする請求項1乃至3のいずれか1項に記載の蓄熱発電装置。
  5.  前記蓄熱発電装置が、制御装置を有しており、
     前記制御装置が、前記蓄熱槽から前記蓄熱用熱媒及び前記熱交換器を介して、前記発電用熱媒に熱エネルギを伝達し、前記熱エネルギを利用して前記発電装置で発電する蓄熱発電制御を行う構成を有していることを特徴とする請求項2乃至4のいずれか1項に記載の蓄熱発電装置。
  6.  熱源の熱を蓄熱する蓄熱槽と、前記熱源から発電装置に熱媒を循環させる熱媒回路を有する蓄熱発電装置であり、
     前記蓄熱発電装置が、それぞれ独立した発電用熱媒回路と蓄熱用熱媒回路を有しており、前記発電用熱媒回路が、発電用熱媒が循環するように構成された発電用受熱部と、前記発電用熱媒の熱エネルギを電気に変換する発電装置を有しており、前記蓄熱用熱媒回路が、蓄熱用熱媒が循環するように構成された蓄熱用受熱部と、前記蓄熱用熱媒を供給して熱の授受を行う少なくとも1つの蓄熱槽を有した蓄熱発電装置の制御方法であって、
     前記熱源から前記発電用熱媒回路を介して前記発電装置に前記発電用熱媒を供給して発電制御を行う発電ステップと、
     前記熱源から前記蓄熱用熱媒回路を介して前記蓄熱槽に前記蓄熱用熱媒を供給して蓄熱制御を行う蓄熱ステップと、
     前記蓄熱槽から前記蓄熱用熱媒を介して前記発電用熱媒に熱エネルギを伝達し、前記熱エネルギを利用して前記発電装置で発電する蓄熱発電制御を行う蓄熱発電ステップを有することを特徴とする制御方法。
  7.  前記発電ステップを実行する際に、複数の前記蓄熱槽のうち少なくとも1つが放熱するように前記蓄熱発電ステップを同時に実行することを特徴とする請求項6に記載の制御方法。
PCT/JP2012/082919 2012-11-15 2012-12-19 蓄熱発電装置及びその制御方法 WO2014076849A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-251553 2012-11-15
JP2012251553A JP5461666B1 (ja) 2012-11-15 2012-11-15 蓄熱発電装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2014076849A1 true WO2014076849A1 (ja) 2014-05-22

Family

ID=50619336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082919 WO2014076849A1 (ja) 2012-11-15 2012-12-19 蓄熱発電装置及びその制御方法

Country Status (2)

Country Link
JP (1) JP5461666B1 (ja)
WO (1) WO2014076849A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078817A1 (en) * 2015-04-08 2016-10-12 Siemens Aktiengesellschaft Energy storage system and method
AT518186A4 (de) * 2016-06-10 2017-08-15 Technische Universität Wien Wärmekraftwerk und Verfahren zum Speichern von Wärme
JP2017155667A (ja) * 2016-03-02 2017-09-07 三菱日立パワーシステムズ株式会社 太陽熱発電システム及び太陽熱発電方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405461B (zh) * 2014-10-13 2016-02-03 中信重工机械股份有限公司 一种有机工质朗肯循环余热发电系统
DE102014115449A1 (de) * 2014-10-23 2016-04-28 Technische Universität München Thermischer Pufferspeicher zur Beschleunigung des Hoch- bzw. Anfahrvorgangs in Kraftwerken mit Abhitzedampferzeuger
JP6373794B2 (ja) * 2015-05-08 2018-08-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
EP3730749A1 (en) * 2019-04-24 2020-10-28 Siemens Gamesa Renewable Energy GmbH & Co. KG Effective charging process of an energy conversion system
KR102252675B1 (ko) * 2019-09-19 2021-05-21 한국에너지기술연구원 일정온도의 열매체를 제공하는 열공급시스템 및 열공급방법
JP2021088977A (ja) * 2019-12-05 2021-06-10 株式会社Ihi 排熱蓄熱システム
JP2023146726A (ja) * 2022-03-29 2023-10-12 東芝エネルギーシステムズ株式会社 蓄熱発電システムおよび蓄熱装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762395A (en) * 1980-06-16 1982-04-15 Didier Werke Ag Method of utilizing as well as accumulating energy from environment
JPS6134301U (ja) * 1984-07-27 1986-03-03 三菱重工業株式会社 蓄熱発電装置
JPS61138018A (ja) * 1984-12-06 1986-06-25 Sasakura Eng Co Ltd 高温ガスより熱を回収する方法
JPS61151008U (ja) * 1985-03-12 1986-09-18
JPS6153524B2 (ja) * 1980-03-28 1986-11-18 Sumitomo Heavy Industries
JPS6488001A (en) * 1987-06-17 1989-04-03 Mitsubishi Heavy Ind Ltd Heat accumulator
JPH0443802A (ja) * 1990-06-08 1992-02-13 Zenshin Denryoku Eng:Kk 廃熱を利用した蒸気タービン型・エネルギー・システム
JPH0571603U (ja) * 1992-02-26 1993-09-28 東京電機工業株式會社 固体蓄熱式蒸気発生装置
JPH0821263A (ja) * 1994-07-05 1996-01-23 Hitachi Ltd 蓄熱型電力・熱併給システムとその運用方法
JPH08260912A (ja) * 1995-03-20 1996-10-08 Toshiba Corp コンバインドサイクル発電プラント
JP2001193415A (ja) * 1999-11-05 2001-07-17 Mitsui Eng & Shipbuild Co Ltd 発電におけるリパワリング方法
JP2010151432A (ja) * 2008-12-26 2010-07-08 Kobelco Eco-Solutions Co Ltd 廃棄物焼却施設の排熱を利用するための焼却排熱利用システム
JP2012137247A (ja) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd 熱回収利用システム
WO2012120556A1 (ja) * 2011-03-07 2012-09-13 株式会社 日立製作所 太陽熱蒸気サイクルシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943797C2 (de) * 1979-10-30 1984-05-17 Otmar Dipl.-Ing. 8000 München Schäfer Verfahren und Vorrichtung zum abwechselnden Heizen und Kühlen eines Wärmetauschers
JP2001133060A (ja) * 1999-11-04 2001-05-18 Ishikawajima Harima Heavy Ind Co Ltd バッチプラント用熱回収装置
JP4119851B2 (ja) * 2004-01-27 2008-07-16 大阪瓦斯株式会社 コジェネレーションシステム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153524B2 (ja) * 1980-03-28 1986-11-18 Sumitomo Heavy Industries
JPS5762395A (en) * 1980-06-16 1982-04-15 Didier Werke Ag Method of utilizing as well as accumulating energy from environment
JPS6134301U (ja) * 1984-07-27 1986-03-03 三菱重工業株式会社 蓄熱発電装置
JPS61138018A (ja) * 1984-12-06 1986-06-25 Sasakura Eng Co Ltd 高温ガスより熱を回収する方法
JPS61151008U (ja) * 1985-03-12 1986-09-18
JPS6488001A (en) * 1987-06-17 1989-04-03 Mitsubishi Heavy Ind Ltd Heat accumulator
JPH0443802A (ja) * 1990-06-08 1992-02-13 Zenshin Denryoku Eng:Kk 廃熱を利用した蒸気タービン型・エネルギー・システム
JPH0571603U (ja) * 1992-02-26 1993-09-28 東京電機工業株式會社 固体蓄熱式蒸気発生装置
JPH0821263A (ja) * 1994-07-05 1996-01-23 Hitachi Ltd 蓄熱型電力・熱併給システムとその運用方法
JPH08260912A (ja) * 1995-03-20 1996-10-08 Toshiba Corp コンバインドサイクル発電プラント
JP2001193415A (ja) * 1999-11-05 2001-07-17 Mitsui Eng & Shipbuild Co Ltd 発電におけるリパワリング方法
JP2010151432A (ja) * 2008-12-26 2010-07-08 Kobelco Eco-Solutions Co Ltd 廃棄物焼却施設の排熱を利用するための焼却排熱利用システム
JP2012137247A (ja) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd 熱回収利用システム
WO2012120556A1 (ja) * 2011-03-07 2012-09-13 株式会社 日立製作所 太陽熱蒸気サイクルシステム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078817A1 (en) * 2015-04-08 2016-10-12 Siemens Aktiengesellschaft Energy storage system and method
WO2016162205A1 (en) * 2015-04-08 2016-10-13 Siemens Aktiengesellschaft Energy storage system and method
JP2017155667A (ja) * 2016-03-02 2017-09-07 三菱日立パワーシステムズ株式会社 太陽熱発電システム及び太陽熱発電方法
AT518186A4 (de) * 2016-06-10 2017-08-15 Technische Universität Wien Wärmekraftwerk und Verfahren zum Speichern von Wärme
AT518186B1 (de) * 2016-06-10 2017-08-15 Technische Universität Wien Wärmekraftwerk und Verfahren zum Speichern von Wärme

Also Published As

Publication number Publication date
JP5461666B1 (ja) 2014-04-02
JP2014098366A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5461666B1 (ja) 蓄熱発電装置及びその制御方法
Rinalde et al. Development of thermoelectric generators for electrification of isolated rural homes
US10371013B2 (en) Thermal energy storage plant
JP2022515261A (ja) 熱の形態でエネルギーを蓄積するプラントと方法
Ding et al. Thermoelectric power generation from waste heat of natural gas water heater
WO2014068797A1 (ja) 太陽熱発電プラント及びその制御方法
GB2457139A (en) Water heating system comprising an immersion heater supplied with electricity generated by an alternative energy source
CN103618479A (zh) 基于南极天文观测站柴油发电机组余热的发电及蓄能系统
JP4824098B2 (ja) 高湿分ガスタービン設備
KR101753152B1 (ko) 액체금속 열교환부를 포함한 열전 발전장치
US9222360B2 (en) Combined power and heating station
JP7260352B2 (ja) エネルギー供給システム
JP2014098384A (ja) 蓄熱発電装置及びその制御方法
CN107407533B (zh) 热能存储设备
US20220120217A1 (en) Power cells and heat transfer systems for combined heat and power, and related systems and methods
JP2021509167A (ja) ボイラー用のコジェネレーションシステム
JP5647315B2 (ja) 太陽熱発電プラント及びその制御方法
WO2014064673A2 (en) Hybrid combined cycle system for generating electical power
JP3173408U (ja) 電気グリッドに供給される電力の調整範囲が広げられたエネルギー・システム
JP2010270942A (ja) コジェネレーションシステム
JP2005134014A (ja) 温水熱源給湯装置およびエネルギ供給システム
JP2006189192A (ja) 温水熱源給湯装置および温水供給配管
KR200449354Y1 (ko) 개별난방 및 온수공급 시스템
CN116481039A (zh) 燃煤发电机组及其运行方法
WO2010102634A2 (en) Combustion system for generating heat and power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888455

Country of ref document: EP

Kind code of ref document: A1