WO2014075396A1 - 一种医用多孔植入合金材料及其制备方法 - Google Patents

一种医用多孔植入合金材料及其制备方法 Download PDF

Info

Publication number
WO2014075396A1
WO2014075396A1 PCT/CN2013/070207 CN2013070207W WO2014075396A1 WO 2014075396 A1 WO2014075396 A1 WO 2014075396A1 CN 2013070207 W CN2013070207 W CN 2013070207W WO 2014075396 A1 WO2014075396 A1 WO 2014075396A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical
electron beam
alloy material
porous
powder
Prior art date
Application number
PCT/CN2013/070207
Other languages
English (en)
French (fr)
Inventor
汤慧萍
贾文鹏
杨广宇
Original Assignee
西北有色金属研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西北有色金属研究院 filed Critical 西北有色金属研究院
Publication of WO2014075396A1 publication Critical patent/WO2014075396A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the invention relates to the field of biomedical materials, in particular to a medical porous implanted alloy material and a preparation method thereof. Background technique
  • Titanium alloy has good corrosion resistance and mechanical properties. It is an ideal biomedical metal material. Currently, it is widely used in clinical bio-implanted titanium alloys mainly Ti-6A1-4V alloy, but V is a toxic element to human body. In the human body, it accumulates in organs such as bone, liver, kidney, and spleen. It is more toxic than Ni and Cr, and A1 causes bone softening, anemia, and nervous system disorders. Therefore, since the 1990s, ⁇ -type titanium alloys with no toxicity, better biocompatibility and lower modulus of elasticity have been studied, and non-toxic elements such as Nb, Ta, Zr, Sn and Mo have gradually become the main additions of alloys. element.
  • the Ti-Ta-Nb-Zr alloy system represented by the US Ti-35Nb-5Ta-7Zr alloy and the Japanese Ti-29Nb-13Ta-4.6Zr alloy has better biocompatibility and lower modulus. Volume has become the most promising biomedical alloy.
  • the lowest modulus of the bio-alloy Ti-29Nb-13Ta-4.6Zr: 55GPa
  • the implant and the human bone there is a "stress shielding" between the implant and the human bone, resulting in an implant.
  • the surrounding bone stress is absorbed, and the metal implanted object is loosened and detached.
  • the interconnected and appropriately sized pore structure facilitates the growth of surrounding cells and the growth of new bone, thereby enhancing the metal implant and human tissue.
  • the combination extends the life of the metal implant and provides a channel for the transfer of body fluids.
  • the methods for preparing the porous metal material mainly include: powder metallurgy method, foaming method, fiber sintering method, plasma spraying method, and the like.
  • powder metallurgy method foaming method
  • fiber sintering method fiber sintering method
  • plasma spraying method plasma spraying method
  • the object of the present invention is to provide a medical porous implant alloy material and a preparation method thereof.
  • the invention provides a medical porous implant alloy material, which is composed of an alloy containing four elements of Ti, Ta, Nb and Zr, and comprises a plurality of porous bodies having a pore diameter of 200 to 500 ⁇ m, and the pores of the large pores.
  • the wall has a plurality of small pores having a pore size of 5 to 30 ⁇ m; the porous body has a porosity of > 30%.
  • the mass percentages of the four elements Ti, Ta, Nb, and Zr are 7 to 10% of Ta, 28 to 32% of Nb, and 5 to 10% of Zr, and the balance is Ti.
  • the present invention also provides a method of preparing a medical porous implanted alloy material comprising the steps of:
  • the three-dimensional model of the medical porous implanted alloy material is converted into a series of two-dimensional layered structure model, and the obtained model is introduced into the electron beam rapid prototyping equipment to set the processing parameters (preheating stage temperature, preheating stage beam intensity) , forming stage temperature, forming stage beam intensity, electron beam scanning speed, powder thickness, etc.);
  • pre-alloyed powder containing four elements of Ti, Ta, Nb and Zr is melted and formed under the bombardment of electron beam under vacuum environment. After cooling, the remaining powder in the hole is filled with high pressure gas. Blow out to obtain a medical porous implant alloy material.
  • step 1) designing a three-dimensional model of the medical porous implanted alloy material obtaining a three-dimensional model obtained by digitizing the medical photographic figure of the patient by CT and MIR scanning technology, or using a three-dimensional drawing software (such as Auto CAD, etc.)
  • a three-dimensional model of the implant is designed; the three-dimensional model contains settings for macropore pore size and porosity.
  • step 1) is converted into a series of two-dimensional layered structure models, for performing surface mesh processing on the three-dimensional model, and the three-dimensional model is discretely transformed into a series of two-dimensional layered models, usually discrete along the Z-direction into a series Level.
  • step 1) sets the processing parameters, preferably sets the temperature of the forming base plate in the preheating stage to 700-800 ° C, the beam intensity in the preheating stage is 15-25 mA, the forming bottom plate temperature in the forming stage is 750-850 ° C, and the forming stage bundle
  • the flow intensity is 30-40 mA, the electron beam scanning speed is 6000-8000 mm/s, and the paving thickness is 0.05 mm.
  • step 2) the prealloyed powder containing four elements of Ti, Ta, Nb and Zr is melt-formed under electron beam bombardment, and the pre-alloyed powder is charged into the electron beam rapid-forming equipment powder box, leveling Forming the bottom plate, calibrating the electron beam, turning on the electron beam rapid prototyping device, the pre-alloyed powder flows out of the powder box under the action of gravity, the scraper moves on the paving plane, spreads a layer of powder, and the electron beam is provided according to the model under program control The information is sintered, and the prealloyed powder is sintered together under the electron beam bombardment and bonded to the formed portion below, and the process is repeated, layer stacking, until the entire implant is completely sintered.
  • the intensity of the beam is reduced as much as possible, and the scanning speed is increased, so as to reduce the molten pool, increase the solidification speed, and form a fine microporous structure in the pore wall.
  • the particle diameter of the prealloyed powder is preferably from 80 ⁇ m to 100 ⁇ m.
  • the invention also encompasses the use of the medical porous implant alloy material.
  • the medical porous implant material of the present invention does not contain any toxic elements, has a low modulus and good biocompatibility.
  • the medical porous implant material of the present invention has an adjustable large hole of 200 to 500 ⁇ m and a small hole of 50 to 100 ⁇ m on the wall of the hole, and the hole structure is similar to a human bone structure, and the large pore structure can effectively reduce the modulus of the metal.
  • the small holes in the wall increase the surface area, making it easy for cells and bone growth factors to reach, adhere to the surface, and grow along the surface or void of the small holes.
  • This method does not require a mold during the design process, reducing manufacturing costs.
  • the pore size, porosity and penetration inside the pore are the decisive factors for the way and amount of bone growth after the bone material is implanted in the body.
  • the electron beam rapid prototyping method can adjust the macroporosity and the large pores freely.
  • the penetration of the bone tissue promotes the growth of the bone tissue and adjusts the mechanical properties such as strength and modulus of the implant.
  • Forming is carried out under a vacuum environment, which is advantageous for utilizing an active metal such as a titanium alloy.
  • Fig. 1 is a macro photograph of a medical porous Ti-28Nb-10Ta-5Zr alloy having a large pore diameter of 1 mm.
  • Fig. 2 is a 1000-fold scanning electron microscope photograph of a medical porous Ti-28Nb-10Ta-5Zr alloy having a large pore diameter of 1 mm.
  • Fig. 3 is a macro photograph of a medical porous Ti-32Nb-7Ta-5Zr alloy having a large pore diameter of 2 mm.
  • Fig. 4 is a 1000-fold scanning electron microscope photograph of a medical porous Ti-32Nb-7Ta-5Zr alloy having a large pore diameter of 2 mm. detailed description
  • Example 1 Preparation of a medical porous Ti-28Nb-10Ta-5Zr alloy having a large pore diameter of 1 mm
  • a medical porous Ti-28Nb-10Ta-5Zr alloy having a large pore diameter of 1 mm is prepared by an electron beam rapid prototyping method, and the specific steps are as follows:
  • the CAD software Firstly, use the CAD software to build a 3 ⁇ model of 20 X 20 X 20mm.
  • the inside is a large hole structure with a hole diameter of lmm.
  • the surface mesh is processed by the 3D model to form an STL format file.
  • the 3D model is discretized into a series according to the process requirements.
  • the unit, the CAD model is divided into 400 layers along the Z direction, that is, each layer has a thickness of 0.05 mm.
  • the layered model is introduced into the electron beam forming equipment, and the processing parameters (preheating stage temperature, beam intensity, forming stage temperature, beam intensity, electron beam scanning speed, and powder thickness) are input. See step 2 for specific requirements.
  • the final medical porous Ti-28Nb-10Ta-5Zr alloy implant has a large pore diameter of 1 mm, a pore size of about 10 ⁇ 30 ⁇ ⁇ on the pore wall, an overall porosity of 82%, and an elastic modulus of 5.36 GPa.
  • the macroscopic structure of the macropores is shown in Fig. 1.
  • the microstructure of the small holes in the walls of the large pores is shown in Fig. 2.
  • Example 2 Preparation of a medical porous Ti-32Nb-7Ta-5Zr alloy having a macropore diameter of 2 mm.
  • a medical porous Ti-32Nb-7Ta-5Zr alloy having a large pore diameter of 2 mm was prepared by an electron beam rapid prototyping method. The specific steps are as follows: :
  • the CAD software uses the CAD software to build a 3 ⁇ model of 20 X 20 X 20mm.
  • the internal structure is a 2mm large hole structure.
  • the surface mesh is processed on the 3D model to form the STL format file.
  • the 3D model is separated into one by software.
  • the series of units, the CAD model is divided into 400 layers along the Z direction, that is, each layer has a thickness of 0.05 mm.
  • the layered model is introduced into the electron beam forming apparatus, and the processing parameters are input.
  • the temperature of the forming base plate in the preheating process is Ray C
  • the beam intensity is 25 mA
  • the forming base temperature in the forming process is 800 ° C
  • the beam intensity is 35 mA
  • the electron beam scanning speed is 8000 mm/ s
  • the thickness of the powder is 0.05 mm
  • the finally obtained medical porous Ti-32Nb-7Ta-5Zr alloy has a large pore diameter of 2 mm, a pore size on the pore wall of 5 to 10 ⁇ m, an overall porosity of 90%, and an elastic modulus of 3.53 GPa.
  • the macroscopic structure of the macropores is shown in Fig. 3.
  • the microstructure of the small holes in the walls of the large pores is shown in Fig. 4.
  • the medical porous implant alloy material disclosed by the invention comprises an alloy comprising four elements of Ti, Ta, Nb and Zr, and comprises a plurality of porous bodies having a pore size of 200-500 ⁇ m, and the pore walls of the large pores have a plurality of a pore having a pore diameter of 5 to 30 ⁇ m; the porosity of the porous body is > 30%.
  • the medical porous implant material of the present invention does not contain any toxic elements, has a low modulus and good biocompatibility.
  • the invention also proposes a method of preparing a medical porous implanted alloy material.
  • the invention does not require a mode
  • the utility model can be personalized for different patients, has the characteristics of rapidity, accuracy and good at making complex shape entities, and can freely adjust the macroporosity and the penetration between the macropores, the medical porous implant of the invention
  • the formation of the alloy material is carried out under a vacuum environment, which facilitates the preparation of the porous implant alloy material from the active metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种医用多孔植入合金材料,由包含Ti、Ta、Nb、Zr四种元素的合金构成含有若干个孔径为200〜500μm大孔的多孔体,所述大孔的孔壁上具有若干个5〜30μm孔径的小孔;所述多孔体的孔隙度≥30%。该医用多孔植入材料不含任何有毒元素,具有较低的模量和较好的生物相容性。所述医用多孔植入合金材料的制备方法,具有如下优点:1)可针对不同患者进行个性化设计;2)具有快速性、准确性及擅长制作复杂形状实体的特性;3)不需要模具,降低制造成本;4)可自由地调整大孔孔隙率及大孔之间的贯通性,促进骨组织的长入并调整植入体的强度、模量等力学性能;5)成形在真空环境下进行,有利于利用活性金属。

Description

一种医用多孔植入合金材料及其制备方法
技术领域
本发明涉及生物医用材料领域, 具体是一种医用多孔植入合金材料及其 制备方法。 背景技术
钛合金具有 好的抗腐蚀性和机械性能, 是比较理想的生物医用金属材 料, 目前广泛应用于临床的生物植入钛合金主要是 Ti-6A1-4V合金, 但是 V 是对人体有毒的元素, 在人体内聚集在骨、 肝、 肾、 脾等器官, 毒性超过 Ni 和 Cr, 同时 A1元素会导致骨软化、 贫血、 神经系统紊乱等。 因此, 自九十 年代便开始研究无毒、生物相容性更好、弹性模量更低的 β型钛合金,而 Nb, Ta, Zr, Sn和 Mo等无毒元素逐渐成为合金的主要添加元素。 其中以美国的 Ti-35Nb-5Ta-7Zr 合金和 日 本的 Ti-29Nb-13Ta-4.6Zr 合金为代表的 Ti-Ta-Nb-Zr合金体系以其较好的生物相容性和较低的模量成为最有前景的 生物医用合金。 但是即使是目前模量最低的生物合金(Ti-29Nb-13Ta-4.6Zr: 55GPa )模量仍高出人体皮质骨很多, 植入物与人体骨骼之间出现 "应力屏 蔽" , 造成植入体周围骨应力吸收, 金属植入物体松动脱落。 要解决植入体 的 "应力屏蔽" 问题主要有两种方法, 一是研发新的合金成分, 使其具有更 好的生物相容性和更低的模量, 二是釆用多孔结构, 因为多孔结构可以进一 步降低合金的模量, 使其与真实人骨更加接近, 同时, 相互连通及适当大小 的孔结构有利于周围细胞的长入和新骨的生长, 从而增强金属植入体与人体 组织的结合, 延长金属植入物的使用寿命, 又可为体液的传输提供通道。
目前, 制备金属多孔材料的方法主要包括: 粉末冶金法、 发泡法、 纤维 烧结法、 等离子喷涂法等。 但利用这些方法制备生物医用金属多孔植入材料 时均存在着不能针对个体进行植入体的个性化设计、不能灵活的控制孔结构、 无法保证空隙间的导通性以及无法较好地模拟与人体骨组织结构相似的孔隙 结构特征等问题。 发明内容
针对现有生物医用金属植入材料存在添加元素毒性大和弹性模量高等问 题, 本发明的目的在于提供一种医用多孔植入合金材料及其制备方法。
本发明提供的一种医用多孔植入合金材料, 由包含 Ti、 Ta、 Nb、 Zr四种 元素的合金构成含有若干个孔径为 200 ~ 500 μ ιη大孔的多孔体, 所述大孔的 孔壁上具有若干个 5 ~ 30 μ m孔径的小孔; 所述多孔体的孔隙度 > 30%。
其中, Ti、 Ta、 Nb、 Zr四种元素的质量百分比为 7~10%的 Ta、 28~32%的 Nb、 5~10%的 Zr, 余量为 Ti。
本发明还提供制备由所述医用多孔植入合金材料的方法,包括如下步骤:
1 殳计医用多孔植入合金材料的三维模型,转为系列二维层状结构模型, 并将所得模型导入电子束快速成形设备, 设定加工参数 (预热阶段温度、 预 热阶段束流强度、 成形阶段温度、 成形阶段束流强度、 电子束扫描速度、 铺 粉厚度等);
2 )利用电子束快速成形设备, 在真空环境下, 将包含 Ti、 Ta、 Nb、 Zr 四种元素的预合金粉末在电子束的轰击下熔化成形, 冷却后, 用高压气体将 孔内剩余粉末吹出, 得到医用多孔植入合金材料。
其中, 步骤 1 )所述设计医用多孔植入合金材料的三维模型, 为通过 CT、 MIR扫描技术获得患者的医学摄影图形进行数据化得到的三维模型, 或利用 三维绘图软件(如 Auto CAD等)设计出植入体的三维模型; 所述三维模型含 对大孔孔径和孔隙度的设置。
其中, 步骤 1 )所述转为系列二维层状结构模型, 为对三维模型进行表面 网格处理,将三维模型离散为一系列的二维层状模型, 通常是沿 Z向离散为一 系列层面。
其中, 步骤 1 ) 所述设定加工参数, 优选设置预热阶段成形底板温度 700-800 °C , 预热阶段束流强度 15-25mA、 成形阶段成形底板温度 750-850°C、 成形阶段束流强度 30-40mA、 电子束扫描速度 6000-8000mm/s、 铺粉厚度 0.05mm。
其中, 步骤 2 )所述包含 Ti、 Ta、 Nb、 Zr四种元素的预合金粉末的在电子 束的轰击下熔化成形, 为将预合金粉末装入电子束快速成形设备粉箱, 调平 成形底板, 校准电子束, 开启电子束快速成形设备, 预合金粉末在重力作用 下从粉箱中流出, 刮板运动在铺粉平面上, 铺展一层粉末, 电子束在程序控 制下根据模型提供的信息进行烧结, 预合金粉末在电子束的轰击下被烧结在 一起, 并与下面已成形的部分粘接, 此过程重复进行, 层层堆积, 直至整个 植入体全部烧结完成。 成形过程中在保证不吹粉的前提下, 尽量降低束流的 强度并增大扫描速度, 以便缩小熔池, 增大凝固速度, 使孔壁形成细小微孔 结构。
其中, 预合金粉末的粒径优选 80μιη~ 100μιη。
本发明还包含所述医用多孔植入合金材料的应用。
本发明所述医用多孔植入材料具有如下优点:
( 1 )本发明的医用多孔植入材料不含任何有毒元素, 具有较低的模量和 较好的生物相容性。
( 2 ) 本发明的医用多孔植入材料具有 200 ~ 500 μ m可调大孔及孔壁上 50~100μιη小孔, 这种孔结构类似于人骨结构, 大孔结构可以有效降低金属 模量, 壁上的小孔使表面积增大, 使细胞和骨生长因子容易到达、 固着于表 面上, 并沿小孔的表面或空隙攀附生长。
本发明供制备由所述医用多孔植入合金材料的方法, 为电子束快速成形 方法, 具有如下优点:
(1) 可利用 CT、 MIR医学图像或 Auto CAD等三维绘图软件针对不同病 患进行植入材料的个性化设计, 由此可得到与替代骨的形状基本一致的植入 体, 有利于保持与原有器官的匹配。
(2)具有快速性、 准确性及擅长制作复杂形状实体的特性。
(3) 此方法在设计过程中不需要模具, 降低制造成本。
(4)孔径、 孔隙率及孔内部的贯通性是仿骨材料植入体内后骨长入方式 和数量的决定性因素, 电子束快速成形法可以很自由地调整大孔孔隙率及大 孔之间的贯通性, 进而促进骨组织的长入并调整植入体的强度、 模量等力学 性能。
(5)成形在真空环境下进行, 有利于利用活性金属, 如钛合金。 附图说明
图 1为大孔孔径 1mm的医用多孔 Ti-28Nb-10Ta-5Zr合金宏观照片。
图 2为大孔孔径 lmm的医用多孔 Ti-28Nb-10Ta-5Zr合金 1000倍扫描电镜照 片。
图 3为大孔孔径 2mm的医用多孔 Ti-32Nb-7Ta-5Zr合金宏观照片。
图 4为大孔孔径 2mm的医用多孔 Ti-32Nb-7Ta-5Zr合金 1000倍扫描电镜照 片。 具体实施方式
以下实施例用于说明本发明, 但不用来限制本发明的范围。
实施例 1 制备大孔孔径为 lmm的医用多孔 Ti-28Nb-10Ta-5Zr合金
本实施例利用电子束快速成形方法制备大孔孔径为 lmm 的医用多孔 Ti-28Nb-10Ta-5Zr合金, 具体步骤如下:
1 )首先利用 CAD软件建立 20 X 20 X 20mm三维模型, 内部为孔径 lmm 大孔结构, 对三维模型进行表面网格处理, 形成 STL格式文件, 根据工艺要 求,利用软件将三维模型离散为一系列的单元, 沿 Z向将 CAD模型分为 400 层, 即每层厚度为 0.05mm。 将分层后的模型导入电子束成形设备, 输入加 工参数 (预热阶段温度、 束流强度、 成形阶段温度、 束流强度、 电子束扫描 速度、 铺粉厚度等, 具体要求见步骤 2 )。
2 )筛选粉末粒径为 80 μ m ~ 100 μ m的气雾化球形Ti-28Nb-10Ta-5Zr预 合金粉末。 将预合金粉末装入粉箱内, 在电子束成形设备底板调平, 电子束 校准后, 抽真空至 5 x 10- 2Pa, 开始按步骤 1 ) 中设定的模型成形样品。 成形 束流强度为 15mA, 成形阶段成形底板温度为 750°C , 成形阶段束流强度为 30mA, 电子束扫描速度为 6000mm/s, 铺粉厚度为 0.05mm。 成形后样品在 成形腔内冷却至室温取出, 用高压气体将孔内剩余粉末吹出。
最终得到的医用多孔 Ti-28Nb-10Ta-5Zr合金植入体, 大孔孔径 lmm, 孔 壁上小孔孔径约为 10 ~ 30 μ ιη, 整体孔隙度 82%, 弹性模量 5.36GPa。 大孔 宏观结构如图 1所示, 大孔孔壁上小孔的微观结构如图 2所示。 实施例 2制备大孔孔径为 2mm的医用多孔 Ti-32Nb-7Ta-5Zr合金 本实施例利用电子束快速成形方法制备大孔孔径为 2mm 的医用多孔 Ti-32Nb-7Ta-5Zr合金, 具体步骤如下:
1 )首先利用 CAD软件建立 20 X 20 X 20mm三维模型,内部为孔径为 2mm 大孔结构, 对三维模型进行表面网格处理, 形成 STL格式文件, 根据工艺要 求,利用软件将三维模型离散为一系列的单元, 沿 Z向将 CAD模型分为 400 层, 即每层厚度为 0.05mm。 将分层后的模型导入电子束成形设备, 输入加 工参数。
2) 筛选粉末粒径为 80μιη~ 100μιη的气雾化球形 Ti-32Nb-7Ta-5Zr预 合金粉。 将电子束成形设备底板调平, 电子束校准后, 将金属粉末装入粉箱 内, 抽真空至 5 x lO-2Pa后开始按步骤 1 )中设定的模型成形样品。 成形过程 分为预热阶段和成形阶段, 预热过程成形底板温度为 雷 C, 束流强度为 25mA, 成形过程成形底板温度为 800°C, 束流强度为 35mA, 电子束扫描速 度为 8000mm/s, 铺粉厚度为 0.05mm, 成形结构后在成形腔内冷却至室温取 出, 用高压气体将孔内剩余粉末吹出。
最终得到的医用多孔 Ti-32Nb-7Ta-5Zr合金大孔孔径 2mm, 孔壁上小孔 孔径为 5 ~ 10μιη, 整体孔隙度在 90%, 弹性模量 3.53GPa。 大孔宏观结构如 图 3所示, 大孔孔壁上小孔微观结构如图 4所示。
虽然, 上文中已经用一般性说明及具体实施方案对本发明作了详尽的描 述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本领域技术人员 而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些修改或 改进, 均属于本发明要求保护的范围。 工业实用性
本发明公开的医用多孔植入合金材料, 由包含 Ti、 Ta、 Nb、 Zr 四种元 素的合金构成含有若干个孔径为 200~500μιη大孔的多孔体,所述大孔的孔 壁上具有若干个 5 ~30μιη孔径的小孔; 所述多孔体的孔隙度 > 30%。 本发 明的医用多孔植入材料不含任何有毒元素, 具有较低的模量和较好的生物相 容性。 本发明还提出了制备医用多孔植入合金材料的方法。 本发明不需要模 具, 可针对不同患者进行个性化设计, 具有快速性、 准确性及擅长制作复杂 形状实体的特性, 且能自由地调整大孔孔隙率及大孔之间的贯通性, 本发明 医用多孔植入合金材料的成形在真空环境下进行, 有利于以活性金属制备多 孔植入合金材料。

Claims

权 利 要 求 书
1、 一种医用多孔植入合金材料, 由包含 Ti、 Ta、 Nb、 Zr四种元素的合金 构成含有若干个孔径为 200 ~ 500 μ ιη大孔的多孔体, 所述大孔的孔壁上具有 若干个 5 ~ 30 μ ιη孔径的小孔; 所述多孔体的孔隙度 > 30%。
2、 根据权利要求 1所述的医用多孔植入合金材料, 其特征在于, 所述 Ti、 Ta、 Nb、 Zr四种元素的质量百分含量为: 7~10%的 Ta、 28~32%的 Nb、 5-10% 的 Zr, 余量为 Ti。
3、 制备权利要求 1-2任一项所述医用多孔植入合金材料的方法, 包括如 下步骤:
1 殳计医用多孔植入合金材料的三维模型,转为系列二维层状结构模型, 并将所得模型导入电子束快速成形设备, 设定加工参数;
2 )利用电子束快速成形设备, 在真空环境下, 将包含 Ti、 Ta、 Nb、 Zr 四种元素的预合金粉末在电子束的轰击下熔化成形, 冷却后, 用高压气体将 孔内剩余粉末吹出, 得到由所述医用多孔植入合金材料。
4、 如权利要求 3所述的医用多孔植入合金材料制备方法, 其特征在于, 步骤 1 )所述设计医用多孔植入合金材料的三维模型, 为通过 CT、 MIR扫描技 术获得患者的医学摄影图形进行数据化得的三维模型, 或利用三维绘图软件 设计出的三维模型; 所述三维模型含对大孔孔径和孔隙度的设置。
5、 如权利要求 3所述的医用多孔植入合金材料制备方法, 其特征在于, 步骤 1 )所述转为系列二维层状结构模型, 为对三维模型进行表面网格处理, 将三维模型沿 Z向离散为一系列的二维层状模型。
6、 如权利要求 3所述的医用多孔植入合金材料制备方法, 其特征在于, 步骤 1 )所述加工参数包含预热阶段温度、 束流强度、 成形阶段温度、 束流强 度、 电子束扫描速度、 铺粉厚度。
7、 如权利要求 6所述的医用多孔植入合金材料制备方法, 其特征在于, 设置预热阶段成形底板温度 700-800°C、 预热阶段束流强度 15-25mA、 成形阶 段成形底板温度 750-850°C、 成形阶段束流强度 30-40mA、 电子束扫描速度 6000-8000mm/s、 铺粉厚度 0.05mm。
8、 如权利要求 3所述的医用多孔植入合金材料制备方法, 其特征在于, 步骤 2 )所述包含 Ti、 Ta、 Nb、 Zr四种元素的预合金粉末的在电子束的轰击 下熔化成形,为将预合金粉末装入电子束快速成形设备粉箱,调平成形底板, 校准电子束, 开启电子束快速成形设备, 预合金粉末在重力作用下从粉箱中 流出, 刮板运动在铺粉平面上, 铺展一层粉末, 电子束在程序控制下根据模 型提供的信息进行烧结, 预合金粉末在电子束的轰击下被烧结在一起, 并与 下面已成形的部分粘接, 此过程重复进行, 层层堆积, 直至整个植入体全部 烧结完成。
9、 如权利要求 8所述的医用多孔植入合金材料制备方法, 其特征在于, Ti、 Ta、 Nb、 Zr四种元素的预合金粉末的粒径为 80 ~ 100 μ ιη。
10、 权利要求 1 -2任一项所述医用多孔植入合金材料的应用。
PCT/CN2013/070207 2012-11-13 2013-01-08 一种医用多孔植入合金材料及其制备方法 WO2014075396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210455114.6 2012-11-13
CN201210455114 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014075396A1 true WO2014075396A1 (zh) 2014-05-22

Family

ID=48151204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070207 WO2014075396A1 (zh) 2012-11-13 2013-01-08 一种医用多孔植入合金材料及其制备方法

Country Status (2)

Country Link
CN (1) CN103074511B (zh)
WO (1) WO2014075396A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075396A1 (zh) * 2012-11-13 2014-05-22 西北有色金属研究院 一种医用多孔植入合金材料及其制备方法
CN103273065B (zh) * 2013-05-31 2015-04-01 西北有色金属研究院 一种无焊缝金属蜂窝构件的电子束选区熔化成型方法
CN105581860A (zh) * 2016-01-11 2016-05-18 李鹏 3d打印仿生骨小梁结构颈椎融合装置、制备方法及应用
CN105662660A (zh) * 2016-01-13 2016-06-15 李鹏 3d打印仿生骨小梁结构腰椎融合装置、制作方法及应用
CN108014375A (zh) * 2016-10-31 2018-05-11 重庆润泽医药有限公司 一种医用植入多孔材料
CN108014374A (zh) * 2016-10-31 2018-05-11 重庆润泽医药有限公司 一种医用植入多孔材料
CN107998457A (zh) * 2016-10-31 2018-05-08 重庆润泽医药有限公司 一种医用植入多孔材料
CN108079379B (zh) * 2016-11-22 2020-05-15 重庆润泽医药有限公司 一种多孔钽
CN108079380B (zh) * 2016-11-22 2020-05-15 重庆润泽医药有限公司 一种多孔铌
CN108096640A (zh) * 2016-11-24 2018-06-01 重庆润泽医药有限公司 一种多孔材料
CN108236742A (zh) * 2016-12-26 2018-07-03 重庆润泽医药有限公司 一种多孔钽
CN106756239B (zh) * 2017-01-11 2019-03-19 东南大学 一种医用植入多孔钛合金及制备方法
CN108251694B (zh) * 2018-03-20 2023-04-18 山东建筑大学 一种制备纳米级医用Ti-Ni-Cr多孔牙齿材料的方法
CN110791681A (zh) * 2019-10-29 2020-02-14 华中科技大学 一种生物活性Ti-Ta-Nb合金骨植入体及其成形方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081311A (zh) * 2007-07-05 2007-12-05 中南大学 一种生物医用β-钛合金材料
CN101249028A (zh) * 2008-03-03 2008-08-27 北京吉马飞科技发展有限公司 个性化钛制材料颅颌面骨修复体的电子束熔融制备方法
CN101301230A (zh) * 2008-06-26 2008-11-12 上海交通大学 局部可控多孔结构人工关节假体的制备方法
WO2008143661A1 (en) * 2006-05-10 2008-11-27 Medicinelodge, Inc. Laser based metal deposition (lbmd) of implant structures
CN102146534A (zh) * 2011-03-09 2011-08-10 东南大学 低弹高强近β型Ti-Nb-Ta-Zr合金及其制备方法
CN102715960A (zh) * 2012-06-01 2012-10-10 上海交通大学 一种牙种植体及其制备方法
CN103074511A (zh) * 2012-11-13 2013-05-01 西北有色金属研究院 一种医用多孔植入合金材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU705336B2 (en) * 1994-10-14 1999-05-20 Osteonics Corp. Low modulus, biocompatible titanium base alloys for medical devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143661A1 (en) * 2006-05-10 2008-11-27 Medicinelodge, Inc. Laser based metal deposition (lbmd) of implant structures
CN101081311A (zh) * 2007-07-05 2007-12-05 中南大学 一种生物医用β-钛合金材料
CN101249028A (zh) * 2008-03-03 2008-08-27 北京吉马飞科技发展有限公司 个性化钛制材料颅颌面骨修复体的电子束熔融制备方法
CN101301230A (zh) * 2008-06-26 2008-11-12 上海交通大学 局部可控多孔结构人工关节假体的制备方法
CN102146534A (zh) * 2011-03-09 2011-08-10 东南大学 低弹高强近β型Ti-Nb-Ta-Zr合金及其制备方法
CN102715960A (zh) * 2012-06-01 2012-10-10 上海交通大学 一种牙种植体及其制备方法
CN103074511A (zh) * 2012-11-13 2013-05-01 西北有色金属研究院 一种医用多孔植入合金材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OBBARD, E.G. ET AL.,: "Mechanics of superrelasticity in Ti-30Nb-(8-10)Ta-52r alloy", vol. 58, no. 10, June 2010 (2010-06-01), pages 3557 - 3567 *

Also Published As

Publication number Publication date
CN103074511B (zh) 2015-07-22
CN103074511A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2014075396A1 (zh) 一种医用多孔植入合金材料及其制备方法
Ni et al. Three-dimensional printing of metals for biomedical applications
Hao et al. Biomedical titanium alloys and their additive manufacturing
AU2012283107B2 (en) Rapid manufacturing of porous metal prostheses
Shi et al. Design and fabrication of graduated porous Ti-based alloy implants for biomedical applications
Li et al. Fabrication and compressive properties of Ti6Al4V implant with honeycomb‐like structure for biomedical applications
CN101418392B (zh) 生物医用多孔钛材及其制备方法
Munir et al. Metallic scaffolds manufactured by selective laser melting for biomedical applications
CN107598166A (zh) 基于电子束选区熔化技术制备多孔钽医用植入材料的方法
CN105877874A (zh) 仿生设计类骨多孔骨制品及其制备方法和用途
CN108273126B (zh) 一种径向梯度医用复合材料的制备方法
CN110340359A (zh) 多孔钽植入物及多孔钽增材制备方法
Xu et al. Design and performance evaluation of additively manufactured composite lattice structures of commercially pure Ti (CP–Ti)
CN109172049A (zh) 一种基于分层片状杆连接的多孔网状结构骨科修复植入体的设计制作方法及植入体
CN109513050A (zh) 渐变梯度多孔结构个性化钽植入体及其制备方法与应用
Liu et al. Additive manufacturing techniques and their biomedical applications
CN106148749B (zh) 一种兼具高强度和高吸收能梯度多孔Ti-6Al-4V块体材料及其制备方法
JPWO2007122783A1 (ja) 人工骨の製造方法
Wu et al. A critical review of additive manufacturing techniques and associated biomaterials used in bone tissue engineering
CN109620475A (zh) 一种基于ct数据个体化多孔钛合金胫骨植入体制备方法
CN105256160B (zh) 一种陶瓷基镍合金复合材料的3d打印方法
Chen et al. Manufacturing of graded titanium scaffolds using a novel space holder technique
Lipowiecki et al. Design of bone scaffolds structures for rapid prototyping with increased strength and osteoconductivity
Lim et al. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure
CN108309512A (zh) 一种金属骨小梁及包含所述金属骨小梁的骨骼植入物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855691

Country of ref document: EP

Kind code of ref document: A1