WO2014075249A1 - 新型的单向筒子纱染色机 - Google Patents
新型的单向筒子纱染色机 Download PDFInfo
- Publication number
- WO2014075249A1 WO2014075249A1 PCT/CN2012/084616 CN2012084616W WO2014075249A1 WO 2014075249 A1 WO2014075249 A1 WO 2014075249A1 CN 2012084616 W CN2012084616 W CN 2012084616W WO 2014075249 A1 WO2014075249 A1 WO 2014075249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- centrifugal pump
- dyeing machine
- impeller
- new type
- machine according
- Prior art date
Links
- 238000004043 dyeing Methods 0.000 title claims abstract description 94
- 235000013351 cheese Nutrition 0.000 title claims abstract description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000002347 injection Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 12
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims abstract description 9
- 235000017491 Bambusa tulda Nutrition 0.000 claims abstract description 9
- 241001330002 Bambuseae Species 0.000 claims abstract description 9
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims abstract description 9
- 239000011425 bamboo Substances 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 7
- 238000009970 yarn dyeing Methods 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract description 9
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000975 dye Substances 0.000 description 66
- 238000013461 design Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 239000000243 solution Substances 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B23/00—Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B23/00—Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
- D06B23/14—Containers, e.g. vats
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B5/00—Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating
- D06B5/12—Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through materials of definite length
- D06B5/16—Forcing liquids, gases or vapours through textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing impregnating through materials of definite length through yarns, threads or filaments
Definitions
- the invention relates to a dyeing and finishing machine, in particular to a cheese dyeing machine. Background technique
- FIG. 1 shows the design of the cheese dyeing machine, which includes the cylinder body and the bottom of the cylinder body, wherein the bottom of the cylinder body is connected to the centrifugal pump.
- the bottom of the cylinder of the dyeing machine is mainly composed of basic support frames such as ribs.
- the function of the centrifugal pump is to promote the circulation of the dye liquor during the dyeing process.
- the prior art has generally adopted the design of cylinder and pump separation, and the centrifugal pump components are not part of the master cylinder structure.
- the centrifugal pump assembly includes a transmission (i.e., a motor and a bearing housing, etc.), a drive shaft, an impeller, and the like.
- a transmission i.e., a motor and a bearing housing, etc.
- the transmission and impeller of the centrifugal pump are separated from the cylinder by removing the docking of the pump cover and the pump casing, but at the same time, the entire liquid flow operating system is also removed from the original The working position makes it impossible for the maintenance personnel to detect when the system is placed in the operating position, and when the removed motor is returned to the original position, the positional deviation will occur, and the efficiency will be lost, which has long plagued the production. And users.
- the dyeing machine master cylinder is separated from the centrifugal pump (1) by a heat exchanger (2).
- the heat exchanger needs to be removed to view the inside of the housing from the emptied position.
- the heat exchanger is sealed with leak-proof design on both sides of the heat exchanger, forcibly heat Removing the exchanger from it will destroy the leak-proof structure. Therefore, if the centrifugal pump is to be inspected without damage to the machine, the centrifugal pump and its connected motor must be removed outwards to move away from the original position.
- two-way dyeing is commonly used in the technology of cheese dyeing machines.
- a cheese dyeing machine with a two-way dyeing function widely uses a dye liquid reversing device (see the above patent) to adjust the flow direction of the dye liquor in the master cylinder.
- the dye liquor in the cylinder needs to completely saturate all the cheese yarns, and the water consumption is very high.
- the main cylinder is pressurized to prevent the pump body from being damaged by cavitation.
- the pressure requirements of the cylinder body are greatly increased, and the design of the cylinder body requires the use of a thicker and harder material.
- the object of the present invention is to provide a novel unidirectional cheese dyeing machine, which realizes the integration of the cylinder body, the centrifugal pump and the heat exchanger, and achieves low-material, low-water ratio and low-cost dyeing and finishing.
- the mechanical design realizes the removal of a part of the centrifugal pump casing of the centrifugal pump casing without moving the centrifugal pump transmission for solid position monitoring.
- the present invention provides a novel cheese dyeing machine comprising a cylinder body (5), a creel (15), a yam (16) and a drive motor (26), the creel (15) and the yam (16) are mounted on
- the cylinder body (5) further comprises a centrifugal pump (27) and a heat exchange coil (18), and the heat exchange coil (18) is installed at the bottom of the cylinder body (5), the centrifugal pump (27) Installed under the heat exchange coil (18), the centrifugal pump (27) inlet (6) communicates with the space outside the creel (15), and the centrifugal pump outlet (4) communicates with the space inside the creel (15).
- the centrifugal pump (27) becomes part of the cylinder (5).
- the invention provides a novel cheese dyeing machine, wherein the creel (15) has a hollow shape, a bottom has a notch, and a space in the creel (15) communicates with the centrifugal pump outlet (4), and the space extends to the yam ( 16), the yam is hollow, connected to the space inside the creel, and the surface of the yam has perforations, allowing the dye to overflow from it.
- the overflowed fluid falls into the bottom of the cylinder (5) and flows through the surface of the heat exchanger.
- the fluid flows through the heat exchange coil (18) and falls into the centrifugal pump inlet (6).
- the present invention employs a novel centrifugal pump design.
- the invention provides a novel cheese dyeing machine, wherein the casing of the centrifugal pump is vertically divided into two parts by a radial surface of an axial line of an impeller (9) of a centrifugal pump, and is flanged to each other. , half of the housing is integrated with the bottom of the cylinder (3), and the other half of the housing (11) is detachable. After half of the housing has been removed, the entire drive assembly is clearly visible.
- the invention provides a novel cheese dyeing machine, wherein the centrifugal pump device has a pair of supporting flanges (12), the supporting flange is semicircular, the section is inclined, the impeller shaft (28) and the impeller ( 9) Place on the support flange.
- the invention provides a novel cheese dyeing machine, wherein the bottom of the casing (11) of the centrifugal pump is fixed on the platform (10), and the platform (10) is equipped with an axle, placed on the guide rail, and rotated by the platform ( 10)
- the upper handle separates and engages the housing (11) from the bottom of the cylinder (3) and adjusts the distance between them to allow accurate alignment with the connecting flange on the master cylinder during reinstallation.
- the invention provides a novel cheese dyeing machine, wherein the centrifugal pump has double suction ports (25a, b), two suction ports are respectively located at two ends of the rotation axis of the impeller (9), and the dye liquid passes through the double suction ports (25a, b) ) Enter the centrifugal pump.
- the invention provides a novel cheese dyeing machine, wherein the centrifugal pump is provided with an outlet (4) and an inlet (6), and the centrifugal pump inlet (6) is a passage for the dye liquor to enter the centrifugal pump, and the centrifugal pump outlet (4) Is the passage of the dye solution leaving the centrifugal pump, the centrifugal pump inlet (6) and the centrifugal pump outlet (4) are oriented upwards, the centrifugal pump inlet (6) is connected to the return chamber (7) on both sides of the centrifugal pump, and then connected to the impeller port (8).
- the dye liquor collected from the return of the cylinder (5) is returned to the centrifugal pump through the return chamber (7) and rotated through the impeller (9) to bring the dye liquor back to the cylinder (5).
- the centrifugal pump has been designed to have axial and radial inlets and discharge ports, respectively.
- the centrifugal pump body of the present invention is such that the suction port and the discharge port are designed in the same direction, the dye liquid inlet of the centrifugal pump inlet (6) and the centrifugal pump outlet (4) The dye outlet is facing up.
- the dye liquor discharged from the centrifugal pump outlet (4) directly enters the space inside the creel.
- the dye liquor flowing back from the cylinder body passes through the heat exchange coil and directly enters the centrifugal pump inlet. This design can make the recovered dye liquor faster.
- the pump body with double suction port configuration and the same entrance and exit is a brand new design in the industry.
- the invention provides a novel cheese dyeing machine, wherein the impeller (9) in the centrifugal pump is placed in the impeller chamber (14), located in the center of the centrifugal pump, and the impeller chamber and the return chamber are taken by the centrifugal pump outlet (4) The walls are separated, and the opening between the impeller chamber and the return chamber forms a impeller port (8) that abuts the suction port of the impeller (9).
- the impeller design of the present invention is also more efficient than the one-way centrifugal pump of the same diameter, accelerating the circulation of the dye liquor, and the water consumption is less, the frequency of exchange of the spindle and the dye liquor is increased, and a better dyeing effect is obtained.
- an increase in frequency means that the same process can be completed in a shorter period of time. The shortening of the process time makes the energy consumption of the whole machine relatively reduced, and achieves the purpose of energy saving.
- the present invention abandons the original two-way dyeing technique and uses one-way dyeing.
- There are numerous tiny holes in the package of the package yarn the purpose of which is to allow the dye solution to penetrate into the yarn through the pores as it is pumped from the center of the winding to the center of the winding.
- the way in which the dye liquor is oozing out from the center of the winding is called the outflow.
- the design of the dyeing and finishing machine allows the dye liquor to flow in the opposite direction, that is, the dye liquor penetrates from the package yarn to the center of the winding drum and is then pumped back to the centrifugal pump. This method is called inflow. Regardless of whether it is dyed by means of outflow or inflow, the direction of the dye solution designed by the present invention is single, which is called unidirectional dyeing.
- the advantage of the unidirectional dyeing of the present invention is that the design is simple, and the dye liquor is pumped from the centrifugal pump into the creel of the cylinder body (5) and then split into the windings of the respective yarns, and is infiltrated into the yarn by the outflow.
- the water level in the master cylinder does not need to rise to the height of the submerged cheese yarn.
- the water consumption is only enough to prevent the centrifugal pump from cavitation, which is more economical than the two-way cheese dyeing machine. section.
- the invention provides a novel cheese dyeing machine, which is equipped with an electronic speed control system, controls the rotation speed of the centrifugal pump with a specific frequency of change, and makes a pulse flow through a constantly changing dye flow rate (impulsive Flow) to increase the penetration of the dye liquor.
- an electronic speed control system controls the rotation speed of the centrifugal pump with a specific frequency of change, and makes a pulse flow through a constantly changing dye flow rate (impulsive Flow) to increase the penetration of the dye liquor.
- the invention provides a novel cheese dyeing machine, wherein the bottom of the cylinder body (5) is provided with a heat exchange coil (18), which is composed of a metal hollow annular pipe, is fixed under the creel, and the pipes are connected to each other. Connect to the water source and steam source.
- a heat exchange coil (18) which is composed of a metal hollow annular pipe, is fixed under the creel, and the pipes are connected to each other. Connect to the water source and steam source.
- the bottom of the master cylinder is provided with a heat exchange coil (18) connected to a water source and a steam source other than the dyeing machine.
- the heat exchange coil (18) is located where the dye liquor is often immersed, usually below the lowest operating water level in the cylinder.
- the valve that controls the steam inlet is opened as needed to allow steam to enter the heat exchange coil (18).
- the steam in the coil heats the pipe and makes a temperature difference with the dye flowing through the outer wall of the pipe. At this time, the heat is conducted to the dyeing liquid to achieve the effect of increasing the temperature of the dyeing liquid.
- the coil is filled with tap water at room temperature, so that the heat in the dye solution is taken away from it.
- the flow of water and steam in the coil is controlled by a computer to make a relative rate of temperature rise and a rate of temperature drop.
- the heat exchanger is placed in the master cylinder to replace the old external heat exchanger to fill the water space, directly reduce the water consumption, and achieve higher heat exchange efficiency.
- the water consumption is reduced and the flow rate of the heat exchange medium is constant, a higher temperature rise or a temperature drop can be achieved from the viewpoint of control, and even a part of the cost of using the heat exchange medium can be saved. If only the same heating rate is required in the process, the amount of steam can be relatively deducted, and the amount of water can be greatly reduced.
- the invention provides a novel cheese dyeing machine, wherein the working door (21) of the cylinder body (5) is provided with a sealed leakage device.
- the invention provides a novel cheese dyeing machine, wherein the fuselage is provided with a pressurized hole (24) for connecting a compressed air source.
- compressed air is injected into the fuselage to increase the in-cylinder pressure in order to bring the dye solution in the machine to a temperature above its boiling point.
- an additional pressure causes the temperature of the liquid to rise.
- the pressure relief valve on the fuselage will open, releasing the pressure inside the cylinder, returning the environment inside the dyeing machine to normal atmospheric pressure, and providing sufficient conditions for the dye solution to cool further.
- the invention provides a novel cheese dyeing machine, wherein the cylinder body (5) is connected with a filling system, and the feeding system comprises a throat road other than the main pump circulation, which can pump the dye liquor from the master cylinder to the injection material.
- the barrel or the dyed pigment is drawn from the injection tank into the dye liquor cycle of the master cylinder.
- the injection tank will also be connected to the water source and steam source to dilute the chemicals in the tank and lift the dye to the appropriate temperature before being pumped into the master cylinder.
- the water source can also be used as a cleaning injection tank and drained through the drainage system.
- the injection tank also includes a blender to mix the pigments.
- the invention provides a novel cheese dyeing machine, wherein the dyeing machine is provided with a liquid flow control system for controlling the one-way flow of the dye liquor, and the reversing device is omitted, and the dyeing machine is also provided with supercharging and pressure discharging. System, injection system and temperature rise and fall system.
- the invention adopts one-way dyeing, replaces the existing two-way dyeing, and can eliminate the reversing device, and the heat exchange system also replaces the external heat exchanger with the heat exchange coil (18).
- the structure of the new dyeing machine is better than the old one. Design saves more space. Because there is no commutation, the pressure differential for the centrifugal pump covers a small range. In the case where the maximum working pressure is reduced, it is advantageous to reduce the material for the cylinder casing.
- the minimum water consumption will be significantly different due to the difference between the outflow and the inflow of the influent.
- the dye liquid flows from the outer portion of the cheese yarn through the entire package yarn, the bobbin and the yam, and then flows back to the heat exchanger through the commutator.
- the main pump, the water level in the master cylinder must be over-the-top lock, otherwise the negative pressure in the cheese yarn will pump the cheese yarn above the water surface into the air from the surface, resulting in pressure difference and flow instability, which will affect the dyeing quality.
- the dyeing liquid flows through the opposite direction.
- the dyeing liquid is pumped into the creel and the yam by the main pump through the heat exchanger and the commutator, and then passes through the inner tube of the tube and the cheese, and finally flows.
- the main pump pressure can be kept stable, so as to ensure the pressure difference and the flow rate are stable, and it is not necessary for all the package yarns to be covered by the dye liquor.
- the minimum bath ratio required to soak all the cheese yarns on an existing dyeing machine is approximately 1:4 to 1:6 (in the dyeing and finishing industry, the bath ratio is used as an indicator to measure the weight ratio of the package yarn to the water in the dyeing process) ).
- the present invention dyes a cheese yarn by means of a one-way outflow.
- the dyeing liquid enters the inner layer of the cheese yarn through the main pump through the creel and the yarn, and then oozes out, and finally collects back to the main pump to form a one-way cycle.
- the main pump pressure can be maintained and the flow rate is stabilized. It is not necessary to have all the packages in the cylinder not be dyed.
- the dyeing bath ratio of the novel cheese dyeing machine of the present invention can be reduced to 1:3.
- each unit of cheese can save the same amount of water.
- a new one-way package yarn dyeing machine with a capacity of one ton can save at least one ton of water compared to the old one. Therefore, the present invention saves at least one ton of water per ton of package yarn dyeing compared to the conventional cheese yarn dyeing machine.
- the current annual output of Chinese yarn is 25 million tons. If the dyeing machine of the invention is used for dyeing, it can save 25 million tons of water per year, which is equivalent to the water storage of two and a half West Lakes. It is amazing, and it has greatly reduced pollution emissions.
- the advantages of the six provinces can be achieved: power saving, high and low frequency alternating is applied. Water saving, just the right amount of water to ensure that the main pump will not be evacuated. The steam is saved, and the bath ratio is reduced. province auxiliaries, the bath ratio is reduced, the corresponding additives are also reduced. The province's process time, the temperature rise and fall time is increased, and the process time is shortened. Compressed air, no pressurization is required in some process situations.
- Fig. 1 is a schematic view showing the basic structure of an old cheese dyeing machine.
- Figure 2 is a cross-sectional view showing the structure of the present invention.
- Figure 3 is a side elevational view of the bottom of the cylinder block in the present invention when the detachable housing is closed.
- Figure 4 is a schematic view showing the bottom of the cylinder body separated from the above casing in the present invention.
- Figure 5 is a schematic view of a centrifugal pump casting having an inlet and outlet in the present invention.
- Figure 6 is a cross-sectional view of the centrifugal pump assembly at both ends.
- Figure 7 is a perspective view of the centrifugal pump assembly at both ends after connection.
- Fig. 8 is a perspective view showing the structure of a double suction type impeller.
- Figure 9 is a schematic cross-sectional view of a double suction impeller.
- Figure 10 is the dye stroke of the outflow.
- Figure 11 is a dye stroke during inflow.
- the present embodiment provides a novel cheese dyeing machine, which comprises a master cylinder, a creel, a centrifugal pump, and a heat exchange coil (18).
- the creel is fixed in the dyeing cylinder, and the creel is The upper yarn is hollow, and the main pump outlet is mutually Connected.
- the heat exchange coil (18) is located at the bottom of the master cylinder, and is connected to a water source and a steam source.
- the centrifugal pump device is located in the bottom support frame of the dyeing machine.
- FIG. 2 shows a side view of the bottom of the cylinder block of the present embodiment.
- the centrifugal pump outlet (4) is connected to the outlet of the centrifugal pump in the bottom of the cylinder body so that the dye liquor can be delivered from the centrifugal pump outlet to the cylinder body (5) via the centrifugal pump outlet.
- the gap defined between the centrifugal pump inlet (6) and the centrifugal pump outlet is defined as the return line, which is connected to the return chamber (7) on both sides of the centrifugal pump in the bottom of the cylinder to the impeller port (8).
- the dye liquor collected from the return of the cylinder (5) passes through the chamber and returns to the centrifugal pump, and is rotated back through the impeller (9) to bring the dye liquor back to the cylinder body (5).
- the clutch design of the main pump housing can also be combined with existing axles and guide rails to make installation or disassembly easier.
- an axle mounting platform (10) is attached to the housing to assemble the machine. By rotating the handle on the platform, the operator can separate the housing (11) from the bottom of the cylinder (3).
- the axle and rail design ensures seamless engagement when the housing is reloaded, as shown in Figure 3.
- the other half of the centrifugal pump housing also includes the portion of the return chamber, the impeller port, the impeller chamber, and the bearing support.
- the features necessary for these pump casings are designed to be split into two. Since the cross section of the pump casing overlaps with the shaft center, in order to prevent the transmission device from being detached when the casing is removed, the bottom of the main engine body body includes a pair of support flanges (12) on both sides of the centrifugal pump shaft center.
- the flange body is also divided into two halves, the other half being on the other side of the housing.
- the cross section of the support flange is inclined so that the half flange on the bottom side of the cylinder can fully support the entire drive shaft.
- Figure 4 further illustrates the dyeing operation in the cylinder (5).
- a part of the centrifugal pump casing including the inlet and outlet and the surrounding rib material constitute a part of the support of the cylinder body (5), and the other half of the casing is also connected with the main cylinder body by screws and sealing rings, which is different from the conventional design.
- the casing (11) is taken out, the entire dye liquor conveying system will not be removed at the same time. On the contrary, it can stay in the original position.
- the casing is taken out transversely with respect to the axis, so that the shaft and the impeller are not affected. The location on the machine. The motor can be removed from this design, eliminating the need to calibrate with the shaft for reinstallation.
- the operator puts the cheese yarn (17) on the yarn bamboo (16) and uses the lifting ring (20) on the creel (15) to lift the entire creel and hang it into the master cylinder.
- the creel is hollow with a notch at the bottom.
- the empty space is connected to the centrifugal pump outlet.
- the surface of the yam has perforations to allow the dye solution to escape from it.
- the dye liquor will be injected into the water level not higher than the cylinder yarn in the cylinder while ensuring that the main pump will not cavitation.
- the water level is set in the dyeing process and mechanical design. This is not limited to this.
- the working door (21) of the master cylinder has a sealed leak-proof design to prevent the dyeing machine from leaking in the dyeing process.
- the dye liquor entering the cylinder body (5) from the outlet of the centrifugal pump is diverted to the yam (16) through the creel (15), and permeates through the perforations in the yam bamboo into the cheese yarn (17), as shown by the arrow A. .
- the dye liquor oozes from the cheese yarn and flows back to the bottom of the master cylinder.
- the bottom of the master cylinder is provided with a heat exchange coil (18), and the heat exchange coil (18) is composed of one or more sets of circular metal hollow pipes.
- the pipes are connected to each other and connected to the water source and the steam source.
- the pipe is mounted below the creel in the master cylinder and on the main passage through which the dye liquor flows.
- the heat exchange coil (18) is infused with steam or The cold water floods the heat exchange coil (18) to heat or cool the dye liquor flowing through the cylinder (5). It is also possible to add any means to control the flow of water or steam into the pipeline before the water or steam source enters the pipeline to achieve the desired rate of temperature rise or decrease.
- a discharge passage is connected to the other end of the pipe to drain the condensed water.
- the creel is provided with a dyeing liquid overflow hole (19) for allowing the dye liquor to pass through the creel.
- the dye solution is finally led back to the main pump and flows as indicated by arrow B. The dye solution flows through the heat exchange coil (18) and falls into the centrifugal pump inlet (6).
- the inlet of the centrifugal pump is connected to the return chamber (7) in the centrifugal pump, so that the dye solution flows into the return chamber through the inlet of the centrifugal pump. Finally, to the impeller port (8), after pressing, to the centrifugal pump outlet (4), repeat the entire dyeing cycle.
- the operator pours the dye into the drum (22) and starts the shot motor (23) to inject the dye into the dye cycle through the injection throat.
- the pump casings of both sides of the double suction centrifugal pump can be made by means of forging, so that the casing including the end of the inlet and outlet of the centrifugal pump has a flange which is connected with the pipe structure in the bottom pipe of the cylinder body (5).
- the steel material can also be welded to make a two-sided housing. As seen from Fig.
- the outlet wall of the centrifugal pump extends toward the butt flange, and the space contained in the inlet of the centrifugal pump is divided into three chambers of left, center, and right, wherein the left and right chambers are connected in the casing, and are defined as a return chamber (7). ).
- the middle chamber is defined as the impeller chamber (14), and the two walls separating the three chambers have two semi-circular notches near the mating flange, as shown in FIG.
- the centrifugal pump casing on the other side also has the semicircular notches on the two sides, so that when the two side casings are closed, the two walls separating the return chamber and the impeller chamber in the centrifugal pump are combined into two circular holes concentric with the transmission shaft. Two circular holes are defined as the inlet (8) of the double suction centrifugal pump.
- Figure 6 is a cross-sectional view of the return chamber (7) on one side of the centrifugal pump assembly at both ends.
- the dye liquor returning from the cylinder (5) to the inlet of the centrifugal pump is directed to the inlet of the double suction centrifugal pump, as indicated by the arrows in the figure.
- FIG. 7 shows the structure of the centrifugal pump assembly at both ends, wherein the housing (11) is partially cut away to better illustrate its internal structure.
- the impeller and its transmission shaft are mounted in a complete impeller chamber (14) which is formed by combining the two end casings, wherein the impeller has a suction port (25) on both sides thereof, and is connected concentrically with the circular hole during installation to rotate the impeller
- the suction port can suck the dye liquor from the return chamber into the impeller through the circular hole, and pressurize the dye liquor by the centrifugal force of the impeller to be sent to the centrifugal pump outlet along the impeller chamber.
- Figure 8 is a double suction impeller used in the present invention.
- the design of the impeller is basically a pressurized water design used in a general centrifugal pump. In this embodiment, a total of five vanes are used, but the number is not limited thereto.
- the impeller of this impeller is located at both ends of the axis, in other words the sides of the impeller are symmetrical. The dye liquor can enter from both ends of the impeller and is forced by the same vane to create fluid pressure.
- Figure 9 is a radial cross-sectional view of the double suction impeller.
- the impeller rotates clockwise as shown in the figure, the dye liquid in the impeller is pushed out of the impeller by the guide vanes and centrifugal force, and the flow direction is as indicated by the arrow.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
一种新型筒子纱染色机,包括有缸身(5)、纱架(15)、纱竹(16)及驱动马达(26),纱架(15)和纱竹(16)安装在缸身(5)内,缸身(5)内还包括离心泵(27)与热交换盘管(18),热交换盘管(18)安装在缸身(5)的底部。离心泵的壳体分为两部分,一半壳体与缸身底部(3)为一体,另一半壳体(11)可以与缸身底部(3)分离和接合。离心泵具有双吸口(25a、b),还装有电子调速控制系统,控制离心泵(27)的转速。热交换盘管(18)固定于纱架(15)下方,向外连接至水及蒸汽源。液流控制系统控制染液单向流动,还设有增压、排压系统、注料系统及升降温系统。该染色机可广泛使用于染整行业。
Description
说 明 书
新型的单向筒子纱染色机
技术领域
本发明涉及一种染整机械, 特别是涉及一种筒子纱染色机。 背景技术
在染整机械行业中,有一种已有技术的筒子纱的染色机。 图 1显示了这种筒子纱染 色机的设计, 包括有缸身及其缸身底部, 其中缸身底部连接至离心泵。 染色机缸身底部 主要由筋板等基本支撑框架构成。离心泵的作用是在染色的过程中促使染液的循环。 已 有技术普遍采用缸、 泵分离的设计, 离心泵部件不作为主缸结构的一部分。
在专利号 CN1427111A的双向筒子纱染色机中, 离心泵组件, 包括传动装置 (即马 达及轴承座等)、 传动轴、 叶轮等。 如图 1中所示, 在维护与检查时, 离心泵的传动装 置及叶轮藉由拆除泵盖与泵壳的对接而与缸身分离,但同时也将整个液流操作系统抽离 了原来的工作位置,使维修人员无法在该系统放于操作位置的情况下进行检测, 而且拆 除后的马达装回原来位置上的时候, 会产生位置的偏差, 降低效率造成损失, 这一问题 长期困扰生产和使用者。
同时, 染色机主缸与离心泵 (1 ) 之间隔着热交换器 (2)。 若要检查离心泵壳体内 的结构,则需移除该热交换器以从腾空的位置检视壳体内的情况, 然而该热交换器附有 密封防漏设计于热交换器两侧, 强行将热交换器从中移走会破坏该防漏结构。故此, 若 须检查离心泵的同时不使机器受损, 也不得不将离心泵与其连接的马达向外移走, 使其 搬离原位置。
同时, 目前在筒子纱染色机的技术中, 普遍采用双向染色。但具有双向染色功能的 筒子纱染色机, 广泛使用一种染液换向装置 (参见上述专利), 用以调整染液于主缸内 的流向。 为达此效果, 缸内的染液需完全浸透所有筒子纱, 耗水量十分高。 与此同时, 为解决泵内的流体压力不停变换时所产生的负荷, 替主缸内增压以防止泵体因气蚀损 坏。然而使缸身的承压要求大大增加, 缸体的设计均需要使用更厚重坚硬的材料。加上 用水量高, 这种具有液体换向设计的筒子纱染色机不得不大大提高生产成本。如何在不 移动离心泵位置的情况下剖开机身壳体以进行维护与检查流体研究、以及调低缸身工作 压力及耗水量乃业界长久以来的棘手难题, 极需技术发明为解决这些问题实现重大突 破。 发明内容
本发明的目的是, 提供一种新型的单向筒子纱染色机, 前所未有的实现将缸身、 离 心泵与热交换器一体化的设计, 实现低用料、低水比以至低成本的染整机械设计, 实现 了在不移动离心泵传动装置的情况下拆除一部分的离心泵壳体的便拆式离心泵壳体以 进行实位监测。
本发明提供了一种新型筒子纱染色机包括有缸身 (5)、 纱架 (15)、 纱竹 (16) 及 驱动马达 (26), 纱架 (15)和纱竹 (16) 安装在缸身内, 其特征是缸身 (5) 内还包括 有离心泵 (27) 与热交换盘管 (18), 热交换盘管 (18) 安装在缸身 (5) 的底部, 离心 泵 (27) 安装在热交换盘管 (18) 下方, 离心泵 (27) 入口 (6) 连通纱架 (15) 外的 空间, 离心泵出口 (4)连通纱架 (15) 内的空间。 离心泵 (27)成为缸身 (5) 的一部 分。
本发明提供的一种新型筒子纱染色机, 所述纱架 (15) 呈中空状, 底部有一缺口, 纱架 (15) 内的空间与离心泵出口 (4) 相通, 该空间延至纱竹 (16), 纱竹呈中空状, 连接至纱架内的空间, 纱竹表面有穿孔, 可让染液从中溢出。
纱竹上有细孔让流体从所述空间溢出。溢出后的流体落入所述缸身 (5) 内的底部, 期间流经热交换器的表面。 流体流经热交换盘管 (18) 后落入离心泵入口 (6)。
本发明采用了一种新型的离心泵设计。本发明提供的一种新型筒子纱染色机, 所述 的离心泵的壳体是以通过离心泵的叶轮 (9) 的轴心线的径向面垂直地分为两部分, 互 相以法兰连接, 一半壳体与缸身底部 (3) 为一体, 另一半壳体 (11) 可以拆卸。 一半 壳体被移除后, 整套传动组件便清晰可见。
本发明提供的一种新型筒子纱染色机, 所述的离心泵装置有一对承托法兰 (12), 承托法兰呈半圆形, 剖面倾斜状安装, 叶轮轴 (28) 及叶轮 (9) 置于承托法兰上。
本发明提供的一种新型筒子纱染色机, 所述的离心泵的壳体(11)的底部固定在平 台 (10) 上, 平台 (10) 装配有轮轴, 放置在导轨上, 通过转动平台 (10) 上的手柄, 可将壳体 (11) 与缸身底部 (3) 分离和接合, 并可籍调整其间的距离, 以使重新安装 时可与主缸上的连接法兰准确对位。
本发明提供的一种新型筒子纱染色机, 所述的离心泵具有双吸口 (25a、 b), 两个 吸口分别位于叶轮 (9) 转动轴线的两端, 染液经双吸口 (25a、 b) 进入离心泵。
本发明提供的一种新型筒子纱染色机, 所述的离心泵设置有出口 (4)和入口 (6), 离心泵入口(6)是染液进入离心泵的通道, 离心泵出口(4)是染液离开离心泵的通道, 离心泵入口 (6) 和离心泵出口 (4) 的方向朝上, 离心泵入口 (6) 连通离心泵两侧的 回流腔 (7), 再连通至叶轮口 (8)。 从缸身 (5) 回流收集的染液通过回流腔 (7) 回到 离心泵, 并透过叶轮 (9) 转动将染液以循环的方式带回缸身 (5)。
已有设计的离心泵其吸入口及排放口分别是轴向及径向的。本发明的离心泵泵体则 是吸口及排放口于设计上置于同一方向,离心泵入口(6)的染液进口和离心泵出口(4)
的染液出口朝上。 结构上从离心泵出口 (4) 排出的染液直接进入纱架内的空间, 从缸 身回流的染液经过热交换盘管后直接进入离心泵入口,此设计可令回收的染液更快被循 环, 除却不必要的引流管道, 节省空间, 而且泵体本身正位于主缸底部, 可直接提供重 心支撑。 双吸口配置与及出入口均在同一平面上的泵体是行业中全新的设计。
本发明提供的一种新型筒子纱染色机,所述的离心泵内的叶轮(9)置于叶轮腔( 14) 内, 位于离心泵的中心, 叶轮腔与回流腔被离心泵出口 (4) 的壁分隔开, 叶轮腔与回 流腔之间的开孔形成叶轮口 (8), 与叶轮 (9) 的吸入口对接。
本发明中的叶轮设计也比同一直径的单向离心泵更高效,加速了染液的循环, 用水 量少更使纱锭与染液交换的频率提高, 获得更佳的染色效果。于某些工艺上, 若既定了 染液交换的次数,频率上的提高意味着相同的工艺能于更短的时间内完成。工艺时间上 縮短使整机耗能亦相对减少, 达到节能的目的。
本发明的目的还在于降低筒子纱染色机总体的生产成本。本发明摒弃原有双向染色 的技术, 使用单向染色。筒子纱的络筒上有无数细小的孔, 目的是让染液从离心泵送至 络筒中心时, 穿过这些细孔而渗入纱线内。 从络筒中心往外渗出染液的方式称为外流。 染整机械上的设计可使染液沿相反的方向流动,亦即是染液从筒子纱周围渗入至络筒中 心, 再被抽回离心泵。 此方式称为内流。 无论以外流或内流的方式处染, 本发明设计的 染液流动的方向都是单一的, 称为单向染色。
本发明采用单向染色的优点是设计简单, 染液从离心泵被泵进缸身 (5 ) 的纱架内 再分流至各纱竹上的络筒, 以外流的方式渗入纱线中。
透过使用 「单向外流」 的染色工艺, 主缸内的水位不用升至淹没筒子纱的高度, 用 水量只需足够让离心泵不至于出现气蚀即可, 比双向筒子纱染色机节省大部分。
本发明提供的一种新型筒子纱染色机,所述的离心泵装有电子调速控制系统, 以特 定变换的频率控制离心泵的转速, 透过恒常变化的染液流速做成脉流(impulsive flow) , 提升染液的渗透力。
本发明提供的一种新型筒子纱染色机,所述的缸身(5 )的底部置有热交换盘管(18), 由金属中空环形管道构成, 固定于纱架下方, 管道间彼此相通, 向外连接至水源及蒸 汽源。
主缸的底部置有热交换盘管 (18), 连接至染色机以外的水源及蒸汽源。 热交换盘 管(18 )位置于染液经常浸泡的地方, 通常于缸身内最低的操作水位以下。 当缸内的设 定温度被提升时, 控制入蒸汽的阀门会酌量开启, 使蒸汽走进热交换盘管(18 ) 内。 盘 管内的蒸汽使管道变热, 与流经管道外壁的染液做成温差。 此时热量被传导至染液中, 达到提高染液温度的效果。相反地当染液需要冷却时, 盘管内被注入室温的自来水, 使 染液中的热量从中被带走。盘管中水和蒸汽的流量均由计算机控制以做出相对所设定的 升温率和降温率。
在机器的设计上, 换热装置放于主缸内, 取代旧式外置的热交换器, 以填掉用水的 空间, 直接降低用水量, 并达致更高的换热效率。在用水减少而换热介质流量不变的情 况下, 于控制的角度上可以做到更高的升温或降温幅度, 甚至可节省一部分使用换热介 质的成本。若工艺上只要求做出相同的升温率, 蒸汽用量亦能相对扣减, 用水量能大量 减低。
本发明提供的一种新型筒子纱染色机, 所述的缸身 (5 ) 的工作门 (21 ) 设有密封 漏压装置。
在染色的过程中,有热水清洗筒子纱的步骤。然而将清水注入主缸内再进行加热是 十分浪费时间的。部分筒子纱染色机会额外安装一个预备缸于主缸旁, 容量相当于主缸 注满染液后的水量。 安装预备缸的好处是, 将清水预先注入预备缸加热, 于筒子纱需要 清洗时便直接注入主缸内, 节省时间。
本发明提供的一种新型筒子纱染色机, 所述的机身设有增压孔(24) 以连接压縮空 气源。
在染色过程中, 为使机内的染液达至其沸点以上的温度, 压縮空气被注入机身内以 增加缸内压力。在密封操作的环境下, 额外增加的压力使液体的温度随之上升。 待设定 温度下降时, 机身上的排压阀会打开, 将缸内的压力释出, 使染色机内的环境回复至正 常的大气压力, 提供足够的条件让染液进一步降温。
本发明提供的一种新型筒子纱染色机, 所述的缸身 (5 ) 连接有注料系统, 注料系 统包括一条主泵循环以外的喉路,可以将染液从主缸抽到注料桶或将染色颜料从注料桶 抽进主缸的染液循环内。注料桶亦会往外连接水源及蒸汽源以用作稀释桶内化学物及将 染料于抽进主缸前提升至适当温度。水源亦可用作清洗注料桶, 并透过排水系统将污水 排走。 注料桶亦包括搅拌器将颜料拌匀。
本发明提供的一种新型筒子纱染色机,所述的染色机设置有液流控制系统, 控制染 液单向流动, 省却换向装置, 同时所述的染色机还设置有增压、 排压系统、 注料系统及 升降温系统。
本发明采用单向染色, 取代已有的双向染色, 可省却换向装置, 而且换热系统亦以 热交换盘管(18 )取代外置的热交换器, 此新型染色机的结构比同类旧式设计节省更多 空间。 因为不用换向, 故此对离心泵的压差涵盖范围较小。在最高工作压力减低的情况 下, 有利减少缸身壳体用料。
筒子纱染色时, 因外流与内流染液的行程有所分别, 最低的耗水量亦会有明显的不 同。 如图 11所示, 已有的筒子纱染色机染色行内流时, 因染液是由筒子纱外层流经整 个筒子纱、 纱管和纱竹, 继而经换向器回流至热交换器和主泵, 主缸内的水位必须盖过 顶锁, 否则筒子纱内之负压就会将水面以上的筒子纱从表面抽入空气, 造成压差和流量 不稳, 影晌染色品质。
如图 10所示, 行外流时, 染液流经行程刚好相反, 染液由主泵经热交换器和换向 器迸入纱架及纱竹, 再经纱管和筒子纱内层, 最后流经整个筒子纱回到主缸, 只要缸底 维持一定水量, 就可以保持主泵压力稳定, 以而保证压差和流量稳定, 没必要所有筒子 纱都被染液覆盖。
已有染色机需要行走内流 (即染液从筒子纱外渗入), 必先确保整个过程中筒子纱 浸泡于染液中, 否则部分空气会被抽入纱竹以至主泵内, 产生气蚀的现象, 损害主泵结 构。 在已有染色机上浸泡所有筒子纱所需的最低浴比大约是 1 : 4至 1 : 6 (在染整行业中 用浴比作为指标, 衡量处染工艺中机器内筒子纱与用水的重量比例)。
本发明使用单向外流的方式处染筒子纱。 染液由主泵经纱架及纱竹进入筒子纱内 层, 再往外渗出, 最后被收集回主泵, 形成一单向循环。 只要缸底维持一定水量, 就可 以保持主泵压力以至流量稳定, 没必要将缸内所有筒子纱以染液没顶。
将两种机型比较下, 本发明的新型筒子纱染色机, 染色浴比可降低至 1 : 3。 换句话 说,每一单位的筒子纱可节省同一重量的用水。一个载量达一吨的新型单向筒子纱染色 机比旧式载量相同的机型至少可节省一吨以上用水。因此, 本发明相比传统的筒子纱染 色机, 处染每一吨筒子纱至少节省一吨以上用水。 单以中国纱线目前每年产量达 2500 万吨计, 若全使用本发明的染色机染色, 每年便可节省 2500万吨的用水, 相当于两个 半西湖的储水量, 其节约用水的效益是十分惊人的, 还大大减少了污染排放。
使用本发明产品, 可达到六省优势: 省电, 应用了高低频交替。 省水, 只需合适的 水量确保主泵不会抽空即可。 省蒸汽, 浴比降低相应蒸汽用量亦减少。 省助剂, 浴比降 低相应助剂用量亦减少。 省工艺时间, 升降温时间加怏, 縮短工艺时间。 省压縮空气, 在某些工艺情况下无需加压行机。
附图说明
图 1是旧式筒子纱染色机的基本结构示意图。
图 2是本发明的结构剖面图。
图 3是本发明中缸身底部跟可分离式壳体闭合时的侧视图。
图 4是本发明中缸身底部跟上述壳体分离的示意图。
图 5是本发明中包含出入口的一端离心泵铸件示意图。
图 6是两端离心泵组件的剖面图。
图 7是两端离心泵组件连接后的立体示意图。
图 8是双吸口式叶轮的立体结构示意图。
图 9是双吸口式叶轮的剖面示意图。
图 10是外流时的染液行程。
图 11是内流时的染液行程。
附图中
1. 离心泵
2. 热交换器
3. 缸身底部
4. 离心泵出口
5. 缸身
6. 离心泵入口
7. 回流腔
8. 叶轮口
9. 叶轮
10.轮轴安装平台
11.壳体
12.承托法兰
13.对接法兰
14.叶轮腔
15.纱架
16.纱竹
17.筒子纱
18.热交换盘管
19.染液过流孔
20. 吊环
21.工作门
22.料桶
23.注料马达
24.增压孔
25.吸口
26.驱动马达
27.离心泵
28.叶轮轴 具体实施方式
下面通过实施例, 对本发明作进一步的阐述:
如图 2所示, 本实施例提供一种新型的筒子纱染色机, 包括主缸、 纱架、 离心泵、 热交换盘管 (18), 所述纱架固定在染缸内, 所述纱架上的纱竹中空, 与主泵出口相互
连通。 热交换盘管(18)位于主缸底部, 往外连接水源及蒸气源, 离心泵装置在该染色 机的缸身底部支撑架内。
图 2显示了本实施缸身底部的侧面图, 离心泵出口 (4) 连接至缸身底部内离心泵 的出口, 使染液可从离心泵出口经离心泵出口输送至缸身 (5)。
离心泵入口 (6) 与离心泵出口之间界定的间隙被定义为回流管道, 此室连接至缸 身底部内离心泵两侧的回流腔(7) 以至叶轮口 (8)。 从缸身 (5) 回流收集的染液通过 此室回到离心泵, 并透过叶轮 (9) 转动将染液以循环的方式带回缸身 (5)。
主泵壳体的离合设计上亦可配合已有轮轴及导轨等技术使安装或拆装时更方便。在 此实施例中,壳体上附有轮轴安装平台(10)以装配所述机械。通过转动平台上的手柄, 操作员可将壳体 (11 ) 与缸身底部 (3 ) 分离, 轮轴及导轨设计可确保该壳体返装时无 缝接合, 如图 3所示。
离心泵壳体的另一半亦包含所述部分的回流腔、 叶轮口、 叶轮腔及轴承支撑。 于设 计上这些泵壳必具的特征被分割成两份。 由于泵壳的剖面与轴心重迭, 为避免传动装置 于移除壳体时脱离, 主机缸身底部包含一对承托法兰(12)于离心泵轴心两侧。 其法兰 本体亦被分成两半, 另一半于壳体另一侧上。 不同于壳体对接法兰(13) 的是, 承托法 兰的剖面是倾斜的, 使位于缸身底部一侧的半边法兰能完全承托整支传动轴。
图 4进一步说明缸身 (5) 内的染色操作情况。 包含出入口的一部分离心泵壳体与 其周边的筋板物料构成缸身 (5) 支撑的一部分, 壳体的另一半同样以螺丝及密封圈等 与主缸体对接, 与传统设计不同的是, 该壳体(11 )被取出的时候, 整个染液传输系统 不会同时被移除, 相反地可停留在原来的位置上, 壳体相对轴心是横向取出的, 故此并 没影响转轴及叶轮等在机器上的位置。马达于此设计下能免被拆除, 省却因重新安装而 需要与轴心校准的时间。
于实际操作时, 操作员将筒子纱 (17 ) 套上纱竹 (16), 并使用纱架 (15) 上的吊 环(20)将整个纱架吊起并吊进主缸内。 所述纱架是中空的, 底部有一缺口。 纱架被放 进主缸后其中空的空间与离心泵出口相连。纱架上有至少一纱竹, 纱竹是中空的而且连 接至纱架内的空间。 纱竹表面有穿孔让染液从中溢出。纱架于主缸内固定后, 在确保主 泵不会发生气蚀现象的情况下, 染液会被注入至不高于缸内筒子纱的水位, 然而水位的 设定于染色过程以至机械设计中不限于此。 主缸的工作门(21 )具有密封防漏压设计以 避免染色机于染色过程中有染液渗漏出现。
从离心泵出口进入缸身 (5) 的染液通过纱架(15)被分流至纱竹 (16), 经过纱竹 上的穿孔渗透入筒子纱(17) 中, 流向如箭嘴 A所示。 染液从筒子纱渗出后流回主缸底 部, 主缸底部设有热交换盘管 (18), 所述热交换盘管 (18) 由一组或多组圆环形的金 属中空管道组成, 管道间彼此相连, 并往外连接水源及蒸气源。所述管道被安装于主缸 内纱架的下方, 并处于染液流经的主要通道上。 所述热交换盘管(18)透过注入蒸气或
冷水充斥该热交换盘管 (18) 以将缸身 (5) 内流经的染液加热或冷却。 亦可以在水源 或蒸汽源进入所述管道前加上任何装置以控制水或蒸汽注入管道的流量,以达致理想的 升温或降温速度。于所述管道另一端往外连接排放通道以将冷凝水排走。纱架设有染液 过流孔(19)让染液穿过纱架。 染液最后被导回主泵, 流向如箭嘴 B所示。 染液流经热 交换盘管 (18) 后落入离心泵入口 (6), 离心泵入口与所述离心泵内的回流腔 (7 ) 相 接, 使染液经离心泵入口流入回流腔, 最后到叶轮口 (8), 受压后到离心泵出口 (4), 重复整个染液循环。
在注入染料的时候, 操作员将染料倒入料桶 (22) 内, 并开动注料马达(23)将染 料经注料喉路注入染液循环内。
按此实施例,双吸式离心泵的两边泵壳皆可以锻铸件的方式做成, 使包含离心泵出 入口一端的壳体具有与缸身 (5)底部管中管结构相接的法兰, 包含离心泵出口 (4)和 离心泵入口 (6), 如图 5 所示。 结构上亦可以钢材物料焊接以做出两边壳体。 从图 5 所见, 离心泵出口壁往对接法兰延伸, 将离心泵入口包含的空间分隔成左中右三个室, 其中左右两室于壳体内是连通的,被定义为回流腔(7)。中间的室被定义为叶轮腔(14), 分隔三室的两壁靠近对接法兰的位置有两个半圆形的缺口, 如图 5所示。另一边的离心 泵壳体亦具备所述两侧半圆缺口, 以致当两边壳体合上时, 离心泵内分隔回流腔与叶轮 腔的两壁组合成两个与传动轴同心的圆孔, 此两个圆孔被定义为双吸式离心泵的入口 (8)。
图 6是两端离心泵组件于其中一侧的回流腔(7) 的剖面图。 从缸身 (5) 回流到离 心泵入口的染液被引导至双吸式离心泵的入口, 如图中箭头所示。
图 7显示了两端离心泵组件连接后的结构, 其中壳体(11 )是局部剖开的以更佳地 展示其内部结构。 叶轮及其传动轴安装在由两端壳体合并成的完整叶轮腔(14) 中, 其 中叶轮两侧都有吸口 (25), 安装时与所述的圆孔同心地相接, 使叶轮转动时, 其吸口 能透过所述的圆孔将染液从回流腔吸进叶轮内,利用叶轮转动的离心力将染液增压并沿 叶轮腔送至离心泵出口。
图 8是本发明中使用的的双吸式叶轮。叶轮的设计基本采用一般离心泵使用的压水 式设计, 在此实施例总共使用五块导叶, 然而数量上不在此限。 与传统叶轮不同的是此 叶轮的吸口位于轴线的两端, 换言之叶轮两侧是对称的。染液可从叶轮两端进入, 并受 同一块导叶推动而产生流体压力。
图 9是双吸式叶轮的径向剖面图。当叶轮按图所示以顺时针转动时, 于叶轮内的染 液便受导叶及离心力的推动被引出叶轮, 其流向如箭头所示。
Claims
1、 一种新型筒子纱染色机,包括有缸身(5)、纱架(15)、纱竹(16) 及驱动马达 (26), 纱架 (15) 和纱竹 (16) 安装在缸身内, 其特征是缸 身 (5) 内还包括有离心泵 (27) 与热交换盘管 (18), 热交换盘管 (18) 安装在缸身 (5) 的底部, 离心泵 (27) 安装在热交换盘管 (18) 下方, 离心泵 (27) 入口 (6) 连通纱架 (15) 外的空间, 离心泵出口 (4) 连通 纱架 (15) 内的空间。
2、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 所述纱架 (15) 呈中空状, 底部有一缺口, 纱架 (15) 内的空间与离心泵 出口 (4) 相通, 该空间延至纱竹 (16), 纱竹呈中空状, 连接至纱架内的 空间, 纱竹表面有穿孔。
3、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵的壳体是以通过离心泵的叶轮(9 )的轴心线的径向面垂直地分为两 部分,互相以法兰连接,一半壳体与缸身底部(3)为一体,另一半壳体(11 ) 可以拆卸。
4、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵装置有一对承托法兰 (12), 承托法兰呈半圆形, 剖面倾斜状安装, 叶轮轴 (28) 及叶轮 (9) 置于承托法兰上。
5、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵的一半壳体 (11 ) 的底部固定在平台 (10 ) 上, 平台 (10 ) 装配有 轮轴, 放置在导轨上, 通过转动平台 (10) 上的手柄, 可将壳体 (11 ) 与 缸身底部 (3) 分离和接合。
6、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵具有双吸口 (25a、 b), 两个吸口分别位于叶轮 (9) 转动轴线的两 端, 染液经双吸口 (25a、 b) 进入离心泵。
7、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵设置有出口 (4) 和入口 (6), 离心泵入口 (6) 是染液进入离心泵 的通道, 离心泵出口 (4) 是染液离开离心泵的通道, 离心泵入口 (6) 和 离心泵出口 (4) 的方向朝上, 离心泵入口 (6) 连通离心泵两侧的回流腔 (7), 再连通至叶轮口 (8)。
8、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵内的叶轮(9 )置于叶轮腔(14) 内, 位于离心泵的中心, 叶轮腔与 回流腔被内管(4)的壁分隔开,叶轮腔与回流腔之间的开孔形成叶轮口(8),
与叶轮 (9 ) 的吸入口对接。
9、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 离心泵装有电子调速控制系统, 以特定变换的频率控制离心泵的转速。
10、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 热交换盘管(18), 由金属中空环形管道构成, 固定于纱架下方, 管道间彼 此相通, 向外连接至水源及蒸汽源。
1 1、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 缸身 (5) 的工作门 (21 ) 设有有密封漏压装置。
12、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 缸身设有增压孔 (24) 以连接压缩空气源。
13、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是所述的 缸身 (5) 连接有注料系统, 注料系统包括一条主泵循环以外的喉路。
14、 根据权利要求 1所述的一种新型筒子纱染色机,其特征是设置有 液流控制系统, 控制染液单向流动。
15、根据权利要求 1所述的一种新型筒子纱染色机,其特征是设置有 增压、 排压系统、 注料系统及升降温系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/084616 WO2014075249A1 (zh) | 2012-11-14 | 2012-11-14 | 新型的单向筒子纱染色机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/084616 WO2014075249A1 (zh) | 2012-11-14 | 2012-11-14 | 新型的单向筒子纱染色机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014075249A1 true WO2014075249A1 (zh) | 2014-05-22 |
Family
ID=50730483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/084616 WO2014075249A1 (zh) | 2012-11-14 | 2012-11-14 | 新型的单向筒子纱染色机 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014075249A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ304933B6 (cs) * | 2014-08-19 | 2015-01-28 | VĂšTS, a.s. | Způsob třídění cívek podle tuhosti návinu příze a zařízení k zjišťování prodyšnosti návinu příze |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE796389A (fr) * | 1973-03-07 | 1973-07-02 | Callebaut De Blicquy Sa Ets | Cuve de traitement de matieres textiles |
CN1078641C (zh) * | 1996-06-27 | 2002-01-30 | 科万商标投资有限公司 | 安装在筒子纱染色机中的泵 |
CN202055028U (zh) * | 2011-04-15 | 2011-11-30 | 广州番禺高勋染整设备制造有限公司 | 超低浴比高温脉流染纱机 |
CN202055029U (zh) * | 2011-04-15 | 2011-11-30 | 广州番禺高勋染整设备制造有限公司 | 超低浴比三级叶轮泵染纱机 |
CN102140743B (zh) * | 2011-04-15 | 2012-05-23 | 广州番禺高勋染整设备制造有限公司 | 超低浴比高温脉流染纱机及其控制方法 |
CN102134793B (zh) * | 2011-04-15 | 2012-05-23 | 广州番禺高勋染整设备制造有限公司 | 超低浴比三级叶轮泵染纱机 |
CN202936629U (zh) * | 2012-11-14 | 2013-05-15 | 立信染整机械(深圳)有限公司 | 新型的单向筒子纱染色机 |
-
2012
- 2012-11-14 WO PCT/CN2012/084616 patent/WO2014075249A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE796389A (fr) * | 1973-03-07 | 1973-07-02 | Callebaut De Blicquy Sa Ets | Cuve de traitement de matieres textiles |
CN1078641C (zh) * | 1996-06-27 | 2002-01-30 | 科万商标投资有限公司 | 安装在筒子纱染色机中的泵 |
CN202055028U (zh) * | 2011-04-15 | 2011-11-30 | 广州番禺高勋染整设备制造有限公司 | 超低浴比高温脉流染纱机 |
CN202055029U (zh) * | 2011-04-15 | 2011-11-30 | 广州番禺高勋染整设备制造有限公司 | 超低浴比三级叶轮泵染纱机 |
CN102140743B (zh) * | 2011-04-15 | 2012-05-23 | 广州番禺高勋染整设备制造有限公司 | 超低浴比高温脉流染纱机及其控制方法 |
CN102134793B (zh) * | 2011-04-15 | 2012-05-23 | 广州番禺高勋染整设备制造有限公司 | 超低浴比三级叶轮泵染纱机 |
CN202936629U (zh) * | 2012-11-14 | 2013-05-15 | 立信染整机械(深圳)有限公司 | 新型的单向筒子纱染色机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ304933B6 (cs) * | 2014-08-19 | 2015-01-28 | VĂšTS, a.s. | Způsob třídění cívek podle tuhosti návinu příze a zařízení k zjišťování prodyšnosti návinu příze |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202936629U (zh) | 新型的单向筒子纱染色机 | |
CN103088574B (zh) | 超低浴比拉链染色机及其染色工艺 | |
CN103806233B (zh) | 筒子纱染色机 | |
KR100791044B1 (ko) | 진공강자흡식펌프 | |
CN102296436B (zh) | 一种超低浴比染纱机的纱架装置 | |
CN203174342U (zh) | 超低浴比拉链染色机 | |
CN108915985A (zh) | 一种泵用自吸装置及方法 | |
CN208743638U (zh) | 一种直驱式电液伺服结晶器振动控制装置的冷却系统 | |
WO2014075249A1 (zh) | 新型的单向筒子纱染色机 | |
TWI555895B (zh) | Unidirectional cheese yarn dyeing machine | |
CN103195738A (zh) | 一种余热排出泵 | |
CN203360834U (zh) | 一种新型低浴比染色机用循环泵装置 | |
CN111486091B (zh) | 单缸转子式液体高频换向装置及其压缩机 | |
ITMI20111553A1 (it) | Macchina per il trattamento di tessuti, reti, garze, feltri, tessuti-non-tessuti o altri materiali in pezza o foglio | |
CN108869306A (zh) | 双密封水平中开卧式双吸泵 | |
CN212479551U (zh) | 一种泵站闸门控制装置 | |
CN211116755U (zh) | 一种带有电磁轴向力平衡装置的核主泵 | |
WO2012139518A1 (zh) | 超低浴比三级叶轮泵染纱机及其高温脉流染纱控制方法 | |
CN108202042A (zh) | 汽车零件检修漂洗器 | |
CN203257723U (zh) | 一种余热排出泵 | |
CN201701817U (zh) | 旁路式活性炭过滤机 | |
CN108869315A (zh) | 一种无泄漏防堵塞油冷循环式高效同步智能自吸泵 | |
CN207864186U (zh) | 一种螺旋变频轴流泵 | |
CN215719548U (zh) | 一种带有引水机构的耐腐耐磨合金泵 | |
CN213899421U (zh) | 一种机械密封冲洗装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12888420 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12888420 Country of ref document: EP Kind code of ref document: A1 |