WO2014073676A1 - Patterned-film production device and production method - Google Patents

Patterned-film production device and production method Download PDF

Info

Publication number
WO2014073676A1
WO2014073676A1 PCT/JP2013/080376 JP2013080376W WO2014073676A1 WO 2014073676 A1 WO2014073676 A1 WO 2014073676A1 JP 2013080376 W JP2013080376 W JP 2013080376W WO 2014073676 A1 WO2014073676 A1 WO 2014073676A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mask
light
pattern
liquid crystal
Prior art date
Application number
PCT/JP2013/080376
Other languages
French (fr)
Japanese (ja)
Inventor
英章 香川
和宏 沖
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014073676A1 publication Critical patent/WO2014073676A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces

Definitions

  • the present invention relates to a manufacturing apparatus and a manufacturing method of a pattern film having a stripe pattern that requires high accuracy in individual line widths and intervals between lines.
  • a method of forming a stripe pattern extending in the film transport direction by continuously exposing a film having a photosensitive film formed on the surface while exposing through a mask plate For example, a mask plate known from Japanese Patent Application Laid-Open No. 9-274323 and International Publication No. 2010/090429 A2 has a light transmission slit that is elongated in the film transport direction on one side of a transparent glass substrate. And a mask layer arranged at a constant pitch. The mask plate is disposed as close as possible so that the mask layer does not contact the surface of the film, and the surface of the film is exposed to a stripe pattern by a so-called proximity method.
  • a pattern phase difference film (Film Patterned Retarder: hereinafter referred to as FPR) known from International Publication No. 2010/090429 A2 is used as an optical filter of a stereoscopic image display device using polarization glasses having different circular polarization directions on the left and right sides.
  • This pattern retardation film has a stripe pattern in which first and second retardation regions having a line width of 250 to 700 ⁇ m are alternately arranged horizontally. In the first phase difference region and the second phase difference region, rod-like liquid crystal layers oriented so that their optical axes are orthogonal to each other are formed.
  • the line widths of the first phase difference area and the second phase difference area are matched with the pixel pitch constituting the horizontal line of the display screen of the stereoscopic image display device with high accuracy.
  • a stereoscopic image is observed by observing the display light whose polarization direction is modulated for each horizontal pixel line through the corresponding first and second phase difference regions and polarizing glasses.
  • a liquid crystal layer (phase layer) containing rod-shaped liquid crystals (nematic liquid crystals) is formed, and the rod-shaped liquid crystals are aligned corresponding to the respective regions of the above-described film, so that the optical axes are orthogonal to each other.
  • An FPR in which stripe-like first and second phase difference regions are alternately arranged is obtained. Also in this International Publication No. 2010/090429 A2, exposure is performed by a proximity method using a mask plate in which a plurality of slits are formed at the time of ultraviolet irradiation.
  • the illumination light directed from the light source to the mask plate is made parallel light.
  • the illumination light is incident obliquely with respect to the width direction of the film and passes through the slit, depending on the direction of inclination of the illumination light, it is blocked by the edge of the slit and the line width of the stripe pattern becomes narrow, or illumination that has passed through the slit diagonally
  • the light enters the area that should be shielded, and the width of the shading band becomes narrow.
  • the boundary between the exposure area and the non-exposure area becomes an intermediate exposure area (hereinafter referred to as a blur area), which is an exposure amount at an intermediate level.
  • a blur area an intermediate exposure area
  • a non-oriented region that is not oriented in any direction.
  • the irradiation time is limited depending on the transport speed, so it is necessary to arrange a plurality of light sources in the width direction of the film so that a sufficient amount of light can be obtained. It is normal.
  • a light source device that combines a light source close to a point light source and a reflector having a parabolic surface as a reflecting surface so as to obtain illumination light close to parallel light toward the mask plate is used. They are also arranged in the direction.
  • the illumination light from one light source device is made to be completely parallel light. It is extremely difficult. For this reason, for example, when a plurality of slits arranged in parallel are passed, the exposure amount becomes an intermediate level at the boundary between the exposure region and the non-exposure region, resulting in a loss of pattern exposure accuracy.
  • a blur region is formed at the boundary between the exposure region and the non-exposure region, and the range in which the blur region is generated is likely to be widened.
  • the present invention provides a pattern film that can efficiently produce a pattern film having a stripe pattern that requires high accuracy in the individual line widths and the spacing between the lines without incurring high costs in the pattern exposure part.
  • An object is to provide a manufacturing apparatus and a manufacturing method.
  • the pattern film manufacturing apparatus of the present invention includes a transport mechanism unit, a light source device, a first mask, a second mask, and an optical property imparting unit.
  • a conveyance mechanism part conveys continuously the film which formed the reaction film which reacts with the light of a specific wavelength on the surface.
  • the light source device emits light of the specific wavelength in a non-parallel manner.
  • the first mask is disposed between the light source device and the film.
  • the first mask has a first mask pattern in which a plurality of first slits whose longitudinal directions coincide with the film transport direction are arranged at a constant pitch in the width direction of the film.
  • the first mask allows light out of the light emitted from the light source device to pass through the film, the light shaped into a plurality of lines by the plurality of first slits.
  • the second mask is disposed between the first mask and the light source device.
  • the second mask has a second mask pattern in which a plurality of second slits whose longitudinal directions coincide with the film transport direction are arranged at a constant pitch in the width direction of the film.
  • the second mask blocks light emitted from the light source device and passing through the first slit and obliquely entering between the light shielding portion between the first slits and the reaction film.
  • the optical property imparting unit imparts a function having different optical transmission characteristics to the exposed region and the non-exposed region of the reaction film that are pattern-exposed through the first and second masks.
  • the first mask and the second mask are formed of a light shielding film provided on the surface of a transparent quartz glass mask base material on which each slit pattern through which the light passes is formed.
  • the light shielding film is preferably formed of a heat resistant inorganic material.
  • the pattern film manufacturing apparatus preferably includes a backup roller. A part of the film is wound around the backup roller, and the back surface of the film is supported by the outer peripheral surface. The light that has passed through the first and second masks is irradiated onto the surface of the film supported by the backup roller.
  • the optical property imparting section is preferably a liquid crystal layer forming section that forms a liquid crystal layer by applying a coating liquid containing liquid crystal to the reaction film that has been pattern-exposed through the first and second masks.
  • the pattern film manufacturing method of the present invention includes a transport step and an irradiation step.
  • a film having a reaction film that reacts with light of a specific wavelength formed on the surface thereof is transported continuously.
  • the irradiation step the light having the specific wavelength emitted from the light source device is continuously transported after being shaped into a line through a pair of masks formed with a narrow slit in the film width direction at a constant pitch in the film transport direction. Irradiate the surface of the film inside.
  • the surface of the film whose back surface is supported by being wound around a backup roller is irradiated with light having the specific wavelength shaped in a line shape.
  • the manufacturing method of a pattern film includes the photoreactive film formation step which forms the said reaction film on the surface of a film before the said conveyance step. It is preferable to perform a rubbing treatment on the surface of the film before or after the irradiation step. It is preferable to have a liquid crystal layer forming step of forming a liquid crystal layer by applying a coating liquid containing liquid crystal on the surface of the film after performing both the irradiation step and the rubbing treatment.
  • the second mask While using illumination light emitted in a non-parallel manner from the light source device, the second mask masks light having a tilt in the width direction of the film that greatly enters the portion to be shielded by the first mask. This is advantageous in narrowing the region irradiated to the portion to be shielded and making the line width uniform.
  • a manufacturing apparatus 10 that implements the present invention processes a supplied film 18 to manufacture a pattern retardation film (hereinafter referred to as FPR) 19.
  • the manufacturing apparatus 10 includes a transport mechanism unit 12, a reaction film forming unit 14, an exposure device 15, a rubbing processing unit 16, a liquid crystal layer forming unit 17, and the like.
  • the film 18 is transparent and flexible, and is drawn from, for example, a film roll (not shown) and supplied to the manufacturing apparatus 10.
  • the film 18 is continuously conveyed at a constant speed by the conveyance mechanism unit 12.
  • the first retardation region 21 and the second retardation region 22 are alternately arranged in the width direction of the long film 18.
  • the first retardation region 21 and the second retardation region 22 extend in a stripe shape in the direction in which the film 18 is conveyed at the time of manufacture.
  • the optical axes for example, the slow axes are orthogonal to each other as indicated by arrows A1 and A2 in the drawing.
  • These first and second retardation regions 21 and 22 exhibit retardation characteristics by changing the alignment direction of the liquid crystal layer formed on the surface of the film 18.
  • Reference numeral 23 denotes a non-oriented region formed at each boundary portion between the first and second retardation regions 21 and 22 and extends in the transport direction of the film 18 when the FPR 19 is manufactured.
  • the first retardation region 21 is formed with a width W1
  • the second retardation region 22 is formed with a width W2.
  • the arrangement pitch in the width direction of the first and second phase difference regions 21 and 22 is P1.
  • the arrangement pitch P1 is “width W1”.
  • the width W2 is smaller than the width W1 by “the width Wa ⁇ 2 of the non-oriented region 23” and is “width W1 ⁇ width Wa ⁇ 2”.
  • the width W1 can be selected from various values, but is usually set to 300 to 700 ⁇ m.
  • the width Wa of the non-oriented region 23 is preferably uniform and small, but is 15 ⁇ m or less. In FIG. 2, the width of the non-oriented region 23 is exaggerated with respect to the width of each of the phase difference regions 21 and 22.
  • a coating liquid containing a photoacid generator is applied to the surface of the film 18, and further subjected to a drying process to form a reaction film 24 (see FIG. 5) having a constant film thickness.
  • the photoacid generator is decomposed by irradiation with ultraviolet rays to generate an acid.
  • the reaction film 24 reacts to light of a specific wavelength, in this example, ultraviolet light, by this photoacid generator.
  • a curing agent or a photoacid generator that cures in response to light of a specific wavelength other than ultraviolet light may be used for the reaction film.
  • a technique such as spraying other than coating may be used.
  • the film 18 on which the reaction film 24 is formed is sent from the reaction film forming unit 14 to the exposure device 15.
  • the exposure device 15 irradiates the film 18 being continuously conveyed with illumination light with a striped exposure pattern corresponding to the pattern of the first and second retardation regions 21 and 22 to be formed.
  • illumination light light corresponding to the type of photochemical reaction of the reaction film 24 is used, and in this example, ultraviolet light is used.
  • a striped pattern exposure is performed in which a portion that becomes the first retardation region 21 is a linear exposure region, and the other portion is a non-exposure region. Is called.
  • the exposure apparatus 15 includes a backup roller 27, a light source unit 28, a mask unit 31, and a mask holder 32 that holds the mask unit 31.
  • the backup roller 27 is wound around the film 18 and supports the back side of the film 18 with the peripheral surface 27a.
  • the backup roller 27 is rotatable and rotates following the conveyance of the film 18.
  • the backup roller 27 may be rotated by a motor or the like in synchronization with the conveyance of the film 18.
  • the light source unit 28 includes a light source device array 33 in which a plurality of light source devices 30 are arranged at a pitch P2 in the width direction of the film 18 as shown in FIG.
  • Each of the light source devices 30 includes an ultraviolet lamp 30a that emits ultraviolet light as illumination light, and an illumination optical system (not shown) that includes a reflector 30b that reflects the illumination light emitted from the ultraviolet lamp 30a toward the backup roller 27.
  • the illumination optical system is a well-known one that increases the utilization efficiency of the illumination light from the ultraviolet lamp 30a. For example, if the reflecting surface of the reflector 30b is shaped like a parabolic mirror, the illumination light parallel to the backup roller 27 is parallel. The degree can be kept high.
  • the ultraviolet lamp 30a is not regarded as a point light source, and illumination light radiated at a radiation angle of 7 to 8 ° or more even if a parabolic mirror is incorporated in each of the light source devices 30 to increase parallelism. It is normal to become. Accordingly, the illumination light is irradiated toward the backup roller 27 while being optically non-parallel.
  • the illuminance on the film 18 by illumination from the light source unit 28 is preferably, for example, 200 mW / cm 2 or more, and more preferably 500 mW / cm 2 or more.
  • a lens may be used instead of or in addition to the reflector 30b described above.
  • the mask holder 32 holds the mask unit 31 in which the first mask plate 41 and the second mask plate 42 are overlapped, and positions the mask unit 31 so that the first mask plate 41 is close to the film 18.
  • the first mask plate 41 shapes the illumination light from the light source unit 28 into a striped exposure pattern corresponding to the first and second phase difference regions 21 and 22 and passes it through the film 18 to be exposed by the proximity method. I do.
  • the second mask plate 42 positioned between the first mask plate 41 and the light source unit 28 is used for the purpose of uniformly limiting the width Wa of the non-oriented region 23 shown in FIG. 2 as narrowly as possible. .
  • the first mask plate 41 is formed by vapor-depositing a first mask 41a made of an inorganic material having excellent heat resistance and light shielding properties such as chromium on the surface of a transparent mask base material 41b. It is.
  • the first mask plate 41 is arranged so that the first mask 41a faces the surface of the film 18 with an interval of 300 ⁇ m.
  • the mask base material 41b is preferably made of a material that satisfies each condition of high spectral transmittance with respect to illumination light, high heat resistance, and low thermal expansion coefficient.
  • quartz glass for example, quartz glass.
  • quartz glasses ozoneless quartz glass, synthetic quartz glass, and natural quartz glass, which are excellent in ultraviolet transmittance and stable to heat from an ultraviolet light source, are preferable.
  • the first mask 41a has a pattern in which a large number of slits 41s having an opening width Ws1 and a length L are arranged at a pitch P3 in the width direction of the film 18, and the light shielding width Ws2 between adjacent slits 41s is also the same as the opening width Ws1. It is.
  • the second mask plate 42 is configured similarly to the first mask plate 41.
  • the second mask plate 42 is used with the second mask 42 a facing the light source unit 28.
  • the opening width Ws1, the light shielding width Ws2, and the pitch P3 of the slits 42s constituting the pattern of the second mask 42a are also made the same as the first mask plate 41.
  • the number of slits 41s and 42s is shown few.
  • the arrangement pitch P3 of the slit 41s is twice the arrangement pitch P1 of the first and second phase difference regions 21 and 22 shown in FIG. 2, and the opening width Ws1 of the slit 41s is equal to the width W1 of the first phase difference region 21. It is the same.
  • the light shielding width Ws2 between the slits is also set to be the same as the width W1 of the first phase difference region 21. Accordingly, the width W2 of the second phase difference region 22 corresponding to this should be equal to the width W1, but actually the width W2 of the second phase difference region 22 is “the width Wa ⁇ 2 of the non-oriented region 23”. It gets smaller by the minute.
  • the length L of the slit 41s takes into consideration the photosensitivity of the photoacid generator contained in the reaction film 24 that undergoes chemical reaction upon exposure, the transport speed of the film 18, the intensity of ultraviolet rays emitted from the light source unit 28, and the like.
  • the length L can be set to 20 mm. If the length L is too long, the surface of the film 18 that is curved and supported by the backup roller 27 is separated from the first mask 41a at both ends of the slit 41s, and the illumination light that has passed through the slit 41s is likely to spread in the width direction. Therefore, it is preferable to consider the outer diameter of the backup roller 27 in advance. If the length L is shortened too much, the exposure time is shortened. Therefore, it is necessary to consider the intensity of illumination light from the light source unit 28, the conveyance speed of the film 18, and the like.
  • the first and second mask plates 41 and 42 described above are brought into close contact with the surfaces opposite to the surfaces on which the first and second masks 41a and 42a are formed, so that the mask unit 31 is attached. It is configured and held by a mask holder 32.
  • the surfaces of the masks 41 a and 42 a are aligned in parallel with each other, and are arranged so as to cross the optical path between the light source unit 28 and the film 18 vertically.
  • the first mask 41a and the second mask 42a are separated by a distance D that is the sum of the thicknesses of the mask base materials 41b and 42b.
  • the distance D is 6000 ⁇ m.
  • the first and second mask plates 41 and 42 are combined so that the slits 41s and 42s formed in the respective masks 41a and 42a completely overlap in the optical path of the illumination light. Therefore, the light beam L0 radiated from the light source unit 28 substantially in parallel, passing through the vicinity of the edge of the slit 41a of the first mask plate 41 and perpendicularly incident on the reaction film 24 on the surface of the film 18 is reflected on the second mask plate 42. Similarly, when passing through the slit 42s, it passes through the vicinity of the edge.
  • the light ray L1 whose radiation angle ⁇ does not exceed 10 ° is the first of the light rays L0. 1 through the slit 41 s of the mask 41 a to reach the reaction film 24 and give an intermediate level exposure, which causes a blur region 46. If the radiation angle ⁇ is within a small range, the blur region 46 is Narrow. Further, like the light beam L2, a light beam that travels toward the slit 41s of the first mask 41a at a radiation angle ⁇ exceeding 10 ° is blocked by the second mask 42a, and the width of the blurred region 46 is not increased.
  • the light beam L3 that reaches the reaction film 24 through the slits 41s and 42s at different positions in the first mask 41a and the second mask 42a is irradiated on the exposure region corresponding to the first phase difference region 21, which is inconvenient. Absent.
  • the distance D By changing the distance D, it is possible to adjust the angle of the light beam allowed to reach the reaction film 24 through each slit 41s of the first mask 41a. If the interval D is increased, the radiation angle ⁇ of the illumination light allowed to enter the slit 41s of the corresponding first mask 41a through the slit 42s of the second mask 42a can be further reduced. If the distance D is too large, the illumination light having a large radiation angle ⁇ passes through the slit 42 s at a specific position of the second mask 42 a, but not the slit 41 s of the first mask 41 a immediately below it in FIG. 5.
  • the light shielding area immediately below the adjacent slits 41s is an area between the slits 41s and the reaction film 24.
  • the opening width Ws1 may be narrowed from both sides, and the light shielding width Ws2 (see FIG. 4) may be made larger than the opening width Ws1 by the width Wa of the non-oriented region.
  • the film 18 after the exposure processing by the exposure device 15 is conveyed to the rubbing processing unit 16.
  • the rubbing processing unit 16 is provided with a rubbing roller, a driving mechanism thereof, and the like, and performs an alignment process on the reaction film 24 after pattern exposure.
  • the rubbing processing unit 16 performs a rubbing process on the reaction film 24 on the film 18 in a rubbing direction of 45 ° with respect to the conveying direction of the film 18 by a rubbing roller.
  • the film 18 after the rubbing treatment is sent to the liquid crystal layer forming unit 17.
  • the liquid crystal layer forming unit 17 forms on the reaction film 24 a liquid crystal layer that exhibits retardation characteristics corresponding to the first and second retardation regions 21 and 22.
  • a coating liquid containing a vertical alignment agent, a discotic liquid crystal, and the like is applied to the surface of the reaction film 24 after the rubbing process.
  • processing such as heat aging and cooling is further performed, and further, the reaction film 24 is cured by irradiation of ultraviolet rays to perform alignment state fixing processing and the like.
  • liquid crystal layers having different optical transmission characteristics are formed in the exposed region and the non-exposed region of the reaction film 24 exposed in a stripe pattern through the first mask 41a and the second mask 42a, and as a result.
  • the liquid crystal layer forming unit 17 functions as an optical property providing unit.
  • the above-described vertical alignment agent has the function of vertically raising the discotic liquid crystal with respect to the surface of the reaction film 24 and the function of aligning the discotic liquid crystal in a direction perpendicular to the rubbing direction. Due to the pattern exposure process in the exposure apparatus 15, acid is generated in the exposure region of the reaction film 24, and the discotic liquid crystal is erected vertically, but the discotic liquid crystal is oriented in a direction perpendicular to the rubbing direction. The action of aligning the liquid crystal is lost. For this reason, the discotic liquid crystal in the exposure region stands upright and is oriented in the rubbing direction.
  • the action of the vertical alignment agent is still preserved in the non-exposed region of the reaction film 24.
  • the discotic liquid crystal stands vertically and has an orientation posture orthogonal to the rubbing direction.
  • a fixed width line is formed by the discotic liquid crystal layer in a posture that is erected and oriented in the rubbing direction, and a disc that is erected and orthogonal to the rubbing direction. Lines of a certain width by the tick liquid crystal layer are alternately arranged.
  • a striped pattern of the first retardation region 21 and the second retardation region 22 whose slow axes are orthogonal to each other is obtained on the film 18.
  • the film 18 is continuously transported at a constant speed by the transport mechanism 12.
  • the reaction film 24 is sequentially applied and dried by the reaction film forming unit 14 on the surface of the film 18 being conveyed.
  • the film 18 having the reaction film 24 on the surface is sent to the exposure device 15.
  • the film 18 is pattern-exposed with illumination light from the light source unit 28 while being supported by the backup roller 27. Illumination light from the light source unit 28 is applied to the reaction film 24 on the film 18 in a striped exposure pattern by the first mask plate 41 and the second mask plate 42.
  • the slits 41 s and 42 s provided in the first and second mask plates 41 and 42 are elongated in the transport direction of the film 18 and arranged at a constant pitch P3 in the width direction of the film 18.
  • the position of the film 18 exposed with the illumination light continuously moves.
  • region by irradiation of illumination light extends in the shape of a line in the conveyance direction according to conveyance of the film 18.
  • FIG. Further, a non-exposure region is formed between the exposure region and the exposure region, and as a result, the entire length of the film 18 is exposed with a striped exposure pattern.
  • the illumination light from the light source unit 28 is made to approach parallel light with respect to the width direction of the film 18, it is still inevitable that light having an angle in the width direction is included.
  • the second mask disposed at a distance D from the first mask plate 41 to the light source unit 28 side. Since the plate 42 is used, a light beam having a large inclination such as the light beam L2 shown in FIG. 5 is blocked by the second mask 42a and does not enter the slit 41s of the first mask 41a. Therefore, the blurred region 46 becomes narrow.
  • the photoacid generator is decomposed in the exposed region to generate acid, and no acid is generated in the non-exposed region.
  • acid is generated according to the exposure amount, but the amount of acid generated is small because the exposure amount is small.
  • the film 18 after the pattern exposure processing is rubbed in a predetermined rubbing direction by the rubbing processing section 16 and then sent to the liquid crystal layer forming section 17.
  • the reaction film 24 functions as a so-called alignment film that aligns the liquid crystal of the liquid crystal layer applied by the liquid crystal layer forming unit 17 in a predetermined direction.
  • a liquid crystal layer is formed on the reaction film 24 by the liquid crystal layer forming unit 17, and is heated and matured and cooled.
  • a stripe-like pattern is obtained in which vertically extending discotic liquid crystals are alternately arranged with a constant width in a line-like liquid crystal layer oriented perpendicular to the rubbing direction.
  • the rubbing process is performed after the exposure by the exposure apparatus 15.
  • a rubbing processing unit 16 may be provided on the upstream side of the exposure device 15 in the transport direction of the film 18, and the rubbing processing may be performed before exposure.
  • Each of the mask plates 41 and 42 used in the exposure apparatus 15 has first and second chromium formed on one surface of each of the first and second mask base materials 41b and 42b made of ozoneless quartz glass having a thickness of 3000 ⁇ m by sputtering. Masks 41a and 42a are formed.
  • the mask unit 31 was made with the surfaces of the first and second mask plates 41 and 42 opposite to the mask being in close contact with each other.
  • the mask unit 31 was held by a mask holder 32 and arranged to face the backup roller 27.
  • the width Ws1 of the slit 41s and the interval Ws2 between the slits are both 530 ⁇ m wide.
  • the distance D obtained by combining the thicknesses of the mask base materials 41b and 42b at this time was 6000 ⁇ m.
  • the mask unit 31 was disposed with a gap of 300 ⁇ m between the first mask 41 a and the surface of the film 18.
  • the long film 18 subjected to the saponification treatment was continuously guided to the production apparatus 10, and the FPR 19 was continuously produced as follows.
  • a film 18 made of cellulose acetate was first prepared.
  • ⁇ Preparation of film 18> In order to produce the film 18, the cellulose acetate solution A and the additive solution B were prepared, respectively.
  • the composition of the cellulose acetate solution A is shown below. The following components of the cellulose acetate solution A were put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution A.
  • Composition of Cellulose Acetate Solution A Cellulose acetate with a substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first component of the solvent) 300 parts by mass Methanol (second component of the solvent) 54 parts by mass 1-butanol 11 parts by mass
  • Additive solution B was prepared using another mixing tank.
  • the composition of the additive solution B is shown below.
  • Each of the following components of additive solution B was put into a mixing tank and stirred while heating to dissolve each component to prepare additive solution B.
  • the following “Re reducing agent” means a retardation reducing agent.
  • composition of additive solution B The following compound B1 (Re reducing agent) 40 parts by mass
  • Both ends in the width direction of the wet film are fixed with a plurality of pins of a pin tenter, and the stretching ratio in the width direction (direction perpendicular to the longitudinal direction of the wet film) is 3% with a solvent content of 3 to 5% by mass.
  • the wet film was dried while changing its width. Thereafter, the wet film was guided to a heat treatment apparatus in which a plurality of rollers were arranged along the conveyance path of the wet film. The wet film was further dried by transporting the inside of the heat treatment apparatus with a roller to obtain a film 18 having a thickness of 60 ⁇ m.
  • This film 18 did not contain an ultraviolet absorber, Re (measurement wavelength was 550 nm) was 0 nm, and Rth (measurement wavelength was 550 nm) was 12.3 nm.
  • Alkaline saponification treatment >> The obtained film 18 was passed while contacting a dielectric heating roller having a temperature of 60 ° C., and the surface temperature of the film 18 was raised to 40 ° C. Then, the alkali solution of the composition shown below was apply
  • the film 18 subjected to the saponification treatment as described above was sent to the reaction film forming unit 14, and the coating solution for forming the reaction film 24 was continuously applied to the surface of the film 18 subjected to the saponification treatment.
  • the coating solution has the following composition.
  • the application was performed with a # 8 wire bar.
  • the coating liquid applied on the film 18 was dried with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds, thereby forming a reaction film 24.
  • composition of coating solution for forming reaction film 24 3.9 parts by mass of polymer material for forming reaction film 24 (PVA103, Kuraray Co., Ltd. polyvinyl alcohol)
  • Photoacid generator (S-2) 0.1 part by weight Methanol 36 parts by weight Water 60 parts by weight
  • the film 18 was irradiated with ultraviolet rays from the light source unit 28 through the mask unit 31.
  • two air-cooled mercury lamps made by HOYA Co., Ltd .: UL750
  • the interval P2 between the ultraviolet lamps 30a was set to 60 mm, and the ultraviolet rays were irradiated so as to be 50 mJ / cm 2 .
  • the region for the first retardation region was formed by decomposing the photoacid generator of the reaction film 24 by ultraviolet irradiation to generate an acidic compound.
  • the parallelism of the illumination light output from the light source unit 28 (in the width direction of the film 18) was 10 °. Since the interval Ws2 between the slits is 530 ⁇ m and the interval D between the masks 41a and 42a is 6000 ⁇ m, the mask unit 31 satisfies the conditional expression “0 ° ⁇ tan ⁇ 1 (Ws2 / D) ⁇ ⁇ ”.
  • the rubbing treatment unit 16 performed rubbing treatment on the film 18.
  • rubbing was performed in one direction at 500 rpm while maintaining a 45 ° angle in the transport direction.
  • a film 18 in which the reaction film 24 was oriented in one direction was obtained.
  • the thickness of the reaction film 24 was 0.5 ⁇ m.
  • the following liquid crystal layer coating solution was applied by the liquid crystal layer forming unit 17 at a coating amount of 4 ml / m 2 using a bar coater.
  • the film was cooled to 80 ° C., and was irradiated with ultraviolet rays at 50 mJ / cm 2 using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 200 mW / cm 2 in the air. Irradiation fixed the orientation state.
  • the first and second phase difference regions 21 and 22 whose slow axes are orthogonal to each other are FPR19 arranged in the width direction.
  • the discotic liquid crystal is vertically aligned, but the slow axis of the first phase difference region 21 irradiated with ultraviolet rays is parallel to the rubbing direction, and the second non-irradiated second phase is also present.
  • the slow axis of the phase difference region 22 was orthogonal to the rubbing direction.
  • the film thickness of the liquid crystal layer was 0.9 ⁇ m.
  • composition of coating liquid for optically anisotropic layer Discotic liquid crystal E-1 100 parts by mass Alignment film interface alignment agent (II-1) 3.0 parts by mass Air interface alignment agent (P-1) 0.4 part by mass Photopolymerization 3.0 parts by weight of initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals) Sensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.) 1.0 part by weight Methyl ethyl ketone 400 parts by weight
  • the width Wa of the non-oriented region 23 was sufficiently thin as 8 ⁇ m at the maximum.
  • the pattern film manufacturing apparatus and method of the present invention have been described above according to the illustrated embodiment and specific examples. However, if it is a pattern film manufacturing apparatus or manufacturing method that uses a non-parallel illumination light from a light source unit and performs a patterned pattern exposure in a proximity manner through two mask plates that are combined to face each other, exposure is possible. It is not limited to forming a liquid crystal layer in which the directions of the slow axes are orthogonal to each other in the region and the non-exposed region. For example, by using a photo-curable film as the reaction layer and performing stripe pattern exposure, a stripe pattern in which cured portions and uncured portions are alternately arranged in a line can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided are a patterned-film production device and method, with which a patterned film having a striped pattern exhibiting highly precise individual line width and highly precise spacing between each line can be efficiently produced. This production device produces a patterned phase-difference film. A light exposure device provided to the production device irradiates, with illumination light from a light source unit, via a mask unit, a film being continuously conveyed. The mask unit is provided with a first mask and a second mask which are disposed with a distance (D) therebetween. A plurality of slits arranged in the width direction of the film are formed respectively in the first mask and the second mask. The first mask and the second mask are assembled such that the respective slits thereof completely overlap each other in the light path of the illumination light.

Description

パターンフィルムの製造装置及び製造方法Pattern film manufacturing apparatus and manufacturing method
 本発明は、個々のライン幅及びライン相互の間隔に高い精度が要求されるストライプ状のパターンをもったパターンフィルムの製造装置及び製造方法に関するものである。 The present invention relates to a manufacturing apparatus and a manufacturing method of a pattern film having a stripe pattern that requires high accuracy in individual line widths and intervals between lines.
 表面に感光性の膜を形成したフィルムを連続搬送しながら、マスクプレートを通して露光を与えることによって、フィルムの搬送方向に延びたストライプパターンを形成する手法が知られている。例えば特開平9-274323号公報,国際公開第2010/090429号A2で知られるマスクプレートは、透明なガラス基板の一方の面に、フィルムの搬送方向に細長い光透過用のスリットがフィルムの幅方向に一定ピッチで並んだマスク層を形成したものである。マスクプレートは、マスク層がフィルムの表面に接触しない程度に近接して配置され、フィルムの表面にいわゆるプロキシミティ方式でストライプパターンの露光を与える。 There is known a method of forming a stripe pattern extending in the film transport direction by continuously exposing a film having a photosensitive film formed on the surface while exposing through a mask plate. For example, a mask plate known from Japanese Patent Application Laid-Open No. 9-274323 and International Publication No. 2010/090429 A2 has a light transmission slit that is elongated in the film transport direction on one side of a transparent glass substrate. And a mask layer arranged at a constant pitch. The mask plate is disposed as close as possible so that the mask layer does not contact the surface of the film, and the surface of the film is exposed to a stripe pattern by a so-called proximity method.
 国際公開第2010/090429号A2で知られるパターン位相差フィルム(Film Patterned Retarder:以下、FPRという)は、左右で円偏光の向きが異なる偏光メガネを併用する立体画像表示装置の光学フィルタとして用いられる。このパターン位相差フィルムは、ライン幅が250~700μmの第1,第2位相差領域を交互に横長に配列したストライプパターンをもつ。第1位相差領域と第2位相差領域には、互いに光学軸が直交するように配向した棒状液晶層が形成されている。第1位相差領域と第2位相差領域とのライン幅は、立体画像表示装置の表示画面の横ラインを構成する画素ピッチに高い精度で一致させている。そして、横画素ラインごとに偏光方向が変調された表示光を、それぞれ対応する第1,第2位相差領域及び偏光メガネを通して観察することにより、立体画像が観察される。 A pattern phase difference film (Film Patterned Retarder: hereinafter referred to as FPR) known from International Publication No. 2010/090429 A2 is used as an optical filter of a stereoscopic image display device using polarization glasses having different circular polarization directions on the left and right sides. . This pattern retardation film has a stripe pattern in which first and second retardation regions having a line width of 250 to 700 μm are alternately arranged horizontally. In the first phase difference region and the second phase difference region, rod-like liquid crystal layers oriented so that their optical axes are orthogonal to each other are formed. The line widths of the first phase difference area and the second phase difference area are matched with the pixel pitch constituting the horizontal line of the display screen of the stereoscopic image display device with high accuracy. A stereoscopic image is observed by observing the display light whose polarization direction is modulated for each horizontal pixel line through the corresponding first and second phase difference regions and polarizing glasses.
 国際公開第2010/090429号A2には、上記FPRを製造するにあたり、スリットと遮光部とを幅方向に関して入れ替えて配列した2種類のマスクプレートを用いている。そして、これらのマスクプレートはフィルムの搬送方向に並べられ、フィルムを搬送しながら各々のマスクプレートを通して互いに偏光方向が異なる紫外線が順次に照射される。これによりフィルムのポリマー層は、照射された紫外線の偏光方向に応じたストライプ状の配向特性を発現するための膜となる。こうして得られた膜上に、棒状液晶(ネマチック液晶)を含む液晶層(位相層)を形成し、前述の膜の各領域に対応して棒状液晶を配向させることにより、互いに光学軸が直交するストライプ状の第1,第2位相差領域を交互に配列したFPRを得るようにしている。この国際公開第2010/090429号A2においても、紫外線の照射時には複数のスリットを形成したマスクプレートを用いたプロキシミティ方式で露光が行われている。 In the International Publication No. 2010/090429 A2, two types of mask plates are used in which the slit and the light-shielding part are exchanged in the width direction when the FPR is manufactured. These mask plates are arranged in the film transport direction, and ultraviolet rays having different polarization directions are sequentially irradiated through the respective mask plates while transporting the film. As a result, the polymer layer of the film becomes a film for expressing stripe-like orientation characteristics corresponding to the polarization direction of the irradiated ultraviolet rays. On the film thus obtained, a liquid crystal layer (phase layer) containing rod-shaped liquid crystals (nematic liquid crystals) is formed, and the rod-shaped liquid crystals are aligned corresponding to the respective regions of the above-described film, so that the optical axes are orthogonal to each other. An FPR in which stripe-like first and second phase difference regions are alternately arranged is obtained. Also in this International Publication No. 2010/090429 A2, exposure is performed by a proximity method using a mask plate in which a plurality of slits are formed at the time of ultraviolet irradiation.
 国際公開第2010/090429号A2に記載されたFPRの製造方法では、互いに偏光方向の異なる2種類の紫外線を用い、フィルムの搬送経路上の2箇所でそれぞれパターン露光しなければならない。ここで、単に紫外線などの照明光の照射の有無に応じて配向特性を異ならせることが可能な膜を用いてFPRをより効率的に製造する試みがなされている。この製造方法にあっては、フィルム上にストライプパターンで一回の露光を行えば、第1,第2位相差領域に対応した露光領域と非露光領域とが得られる。しかし、やはりマスクプレートを利用したプロキシミティ方式で高精度の露光を行う必要がある。このFPRの製造では、フィルムの搬送方向に細長くしたスリットを、フィルムの幅方向に一定ピッチで配列したマスクプレートが用いられる。 In the FPR manufacturing method described in International Publication No. 2010/090429 A2, pattern exposure must be performed at two locations on the film conveyance path using two types of ultraviolet rays having different polarization directions. Here, an attempt has been made to more efficiently manufacture an FPR using a film whose orientation characteristics can be varied depending on whether or not illumination light such as ultraviolet rays is irradiated. In this manufacturing method, an exposure region and a non-exposure region corresponding to the first and second retardation regions can be obtained by performing a single exposure with a stripe pattern on the film. However, it is necessary to perform high-accuracy exposure by a proximity method using a mask plate. In manufacturing this FPR, a mask plate is used in which slits elongated in the film transport direction are arranged at a constant pitch in the film width direction.
 搬送中のフィルムにプロキシミティ方式で露光を行う際の露光パターンの精度を高めるには、光源からマスクプレートに向かう照明光を平行光にするとよい。フィルムの幅方向に関して照明光が斜めに入射してスリットを通過すると、照明光の傾きの方向によってはスリットのエッジ部分で遮られストライプパターンのライン幅が狭くなり、あるいはスリットを斜めに通過した照明光が遮光すべき領域にまで入り込んで遮光帯の幅が狭くなる。 In order to increase the accuracy of the exposure pattern when the film being conveyed is exposed by the proximity method, it is preferable that the illumination light directed from the light source to the mask plate is made parallel light. When the illumination light is incident obliquely with respect to the width direction of the film and passes through the slit, depending on the direction of inclination of the illumination light, it is blocked by the edge of the slit and the line width of the stripe pattern becomes narrow, or illumination that has passed through the slit diagonally The light enters the area that should be shielded, and the width of the shading band becomes narrow.
 このように、露光領域と非露光領域との境界部分では中間レベルの露光量である中間露光領域(以下、ぼけ領域)となり、露光後の後処理で液晶層を形成しても液晶の配向がいずれの方向にも配向しない無配向領域になる。こうして第1,第2位相差領域の境界部分に生じる無配向領域のライン幅が十分に細ければ、液晶カラーフィルターのブラックマトリクスで隠されるなどの理由から実用上問題ないが、無配向領域が太くなると大きな問題となる。 In this way, the boundary between the exposure area and the non-exposure area becomes an intermediate exposure area (hereinafter referred to as a blur area), which is an exposure amount at an intermediate level. A non-oriented region that is not oriented in any direction. Thus, if the line width of the non-oriented region generated at the boundary between the first and second retardation regions is sufficiently narrow, there is no practical problem because it is hidden by the black matrix of the liquid crystal color filter. When it gets thick, it becomes a big problem.
 また、連続搬送するフィルムに照明光を照射する場合には、搬送速度に応じて照射時間が制約されるため、十分な照射光量が得られるようにフィルムの幅方向に複数の光源を並べるのが通常である。さらに、前述したようにマスクプレートに向かって平行光に近い照明光が得られるように、点光源に近い発光源と、反射面を放物面にしたリフレクタとを組み合わせた光源装置をフィルムの幅方向に並べることも行われている。 In addition, when illuminating the film that is continuously transported with illumination light, the irradiation time is limited depending on the transport speed, so it is necessary to arrange a plurality of light sources in the width direction of the film so that a sufficient amount of light can be obtained. It is normal. Furthermore, as described above, a light source device that combines a light source close to a point light source and a reflector having a parabolic surface as a reflecting surface so as to obtain illumination light close to parallel light toward the mask plate is used. They are also arranged in the direction.
 しかし、点光源に近い発光源と放物反射面をもつリフレクタとを組み合わせた複数の光源装置をフィルムの幅方向に配列したとしても、一の光源装置からの照明光を完全な平行光にすることは極めて困難である。このため、例えば平行に並んだ複数のスリットを通過させたときには露光領域と非露光領域との境界部分では中間レベルの露光量になり、パターン露光の精度が損なわれる結果となる。また、隣り合う光源装置からの照明光が重なり合ってマスクプレートに達するフィルム上の領域では、露光領域と非露光領域との境界にぼけ領域ができるとともに、ぼけ領域が生じる範囲が広がりやすい。 However, even if a plurality of light source devices that combine a light source close to a point light source and a reflector having a parabolic reflecting surface are arranged in the width direction of the film, the illumination light from one light source device is made to be completely parallel light. It is extremely difficult. For this reason, for example, when a plurality of slits arranged in parallel are passed, the exposure amount becomes an intermediate level at the boundary between the exposure region and the non-exposure region, resulting in a loss of pattern exposure accuracy. Further, in the region on the film where the illumination light from adjacent light source devices overlaps and reaches the mask plate, a blur region is formed at the boundary between the exposure region and the non-exposure region, and the range in which the blur region is generated is likely to be widened.
 この問題を軽減するには、フィルムの幅方向に配列される光源装置の数を増やし、しかも十分に点光源とみなせる発光源を用い、さらに高精度に加工された放物面鏡あるいはコリメートレンズを組み合わせることで対応可能ではある。しかし、いずれも設備コストを大幅に引き上げる原因になる。 To alleviate this problem, increase the number of light source devices arranged in the width direction of the film, and use a light source that can be considered as a point light source, and install a parabolic mirror or collimator lens processed with high precision. It can be handled by combining them. However, both cause a significant increase in equipment costs.
 本発明は、パターン露光部に高いコストをかけることなく、個々のライン幅及びライン相互間の間隔に高精度が要求されるストライプパターンをもつパターンフィルムを効率的に製造することができるパターンフィルムの製造装置及び製造方法を提供することを目的とする。 The present invention provides a pattern film that can efficiently produce a pattern film having a stripe pattern that requires high accuracy in the individual line widths and the spacing between the lines without incurring high costs in the pattern exposure part. An object is to provide a manufacturing apparatus and a manufacturing method.
 本発明のパターンフィルムの製造装置は、搬送機構部と、光源装置と、第1のマスクと、第2のマスクと、光学特性付与部とを備える。搬送機構部は、特定波長の光に反応する反応膜を表面に形成したフィルムを連続搬送する。光源装置は、前記特定波長の光を非平行で放射する。第1のマスクは、前記光源装置と前記フィルムとの間に配される。第1のマスクは、前記フィルムの搬送方向に長手方向を一致させた複数の第1のスリットが前記フィルムの幅方向に一定ピッチで並んだ第1のマスクパターンを有する。第1のマスクは、前記光源装置から放射された光のうち、前記複数の第1のスリットによって複数本のライン状に整形された光を前記フィルムへと通過させる。第2のマスクは、前記第1のマスクと前記光源装置との間に配される。第2のマスクは、前記フィルムの搬送方向に長手方向を一致させた複数の第2のスリットが前記フィルムの幅方向に一定ピッチで並んだ第2のマスクパターンを有する。第2のマスクは、前記光源装置から放射され前記第1のスリットを通って前記第1のスリット相互間の遮光部と前記反応膜との間に斜めに入り込む光を遮断する。光学特性付与部は、前記第1及び第2のマスクを通してパターン露光された前記反応膜の露光領域と非露光領域とに、互いに光学透過特性が異なる機能を付与する。 The pattern film manufacturing apparatus of the present invention includes a transport mechanism unit, a light source device, a first mask, a second mask, and an optical property imparting unit. A conveyance mechanism part conveys continuously the film which formed the reaction film which reacts with the light of a specific wavelength on the surface. The light source device emits light of the specific wavelength in a non-parallel manner. The first mask is disposed between the light source device and the film. The first mask has a first mask pattern in which a plurality of first slits whose longitudinal directions coincide with the film transport direction are arranged at a constant pitch in the width direction of the film. The first mask allows light out of the light emitted from the light source device to pass through the film, the light shaped into a plurality of lines by the plurality of first slits. The second mask is disposed between the first mask and the light source device. The second mask has a second mask pattern in which a plurality of second slits whose longitudinal directions coincide with the film transport direction are arranged at a constant pitch in the width direction of the film. The second mask blocks light emitted from the light source device and passing through the first slit and obliquely entering between the light shielding portion between the first slits and the reaction film. The optical property imparting unit imparts a function having different optical transmission characteristics to the exposed region and the non-exposed region of the reaction film that are pattern-exposed through the first and second masks.
 前記第1のマスク及び第2のマスクは、透明な石英ガラス製のマスク基材の表面に設けられ、前記光を通過させる各々のスリットパターンが形成された遮光膜で構成されることが好ましい。遮光膜は耐熱性の無機材料で形成されていることが好ましい。 It is preferable that the first mask and the second mask are formed of a light shielding film provided on the surface of a transparent quartz glass mask base material on which each slit pattern through which the light passes is formed. The light shielding film is preferably formed of a heat resistant inorganic material.
 パターンフィルムの製造装置は、バックアップローラを備えることが好ましい。バックアップローラは、前記フィルムの一部が巻き掛けられ、前記フィルムの裏面を外周面で支持する。前記第1及び第2のマスクを通過した光は前記バックアップローラで支持された前記フィルムの表面に照射される。 The pattern film manufacturing apparatus preferably includes a backup roller. A part of the film is wound around the backup roller, and the back surface of the film is supported by the outer peripheral surface. The light that has passed through the first and second masks is irradiated onto the surface of the film supported by the backup roller.
 前記光学特性付与部は、前記第1及び第2のマスクを通してパターン露光された前記反応膜に液晶を含む塗布液を塗布して液晶層を形成する液晶層形成部であることが好ましい。 The optical property imparting section is preferably a liquid crystal layer forming section that forms a liquid crystal layer by applying a coating liquid containing liquid crystal to the reaction film that has been pattern-exposed through the first and second masks.
 また、本発明のパターンフィルムの製造方法は、搬送ステップと、照射ステップとを備える。搬送ステップは、特定波長の光に反応する反応膜を表面に形成したフィルムを連続搬送する。照射ステップは、光源装置から放射された前記特定波長の光を、前記フィルムの搬送方向に細長いスリットを前記フィルムの幅方向に一定ピッチで形成した一対のマスクを通してライン状に整形してから連続搬送中の前記フィルムの表面に照射する。 The pattern film manufacturing method of the present invention includes a transport step and an irradiation step. In the transport step, a film having a reaction film that reacts with light of a specific wavelength formed on the surface thereof is transported continuously. In the irradiation step, the light having the specific wavelength emitted from the light source device is continuously transported after being shaped into a line through a pair of masks formed with a narrow slit in the film width direction at a constant pitch in the film transport direction. Irradiate the surface of the film inside.
 前記照射ステップでは、バックアップローラへの巻き掛けにより裏面が支持された前記フィルムの表面に、ライン状に整形された前記特定波長の光が照射されることが好ましい。 In the irradiation step, it is preferable that the surface of the film whose back surface is supported by being wound around a backup roller is irradiated with light having the specific wavelength shaped in a line shape.
 パターンフィルムの製造方法は、前記搬送ステップの前に、フィルムの表面に前記反応膜を形成する光反応膜形成ステップを含むことが好ましい。前記照射ステップよりも前又は後の段階に、前記フィルムの表面にラビング処理を行うことが好ましい。前記照射ステップと前記ラビング処理との両方を行った後の前記フィルムの表面に、液晶を含む塗布液を塗布して液晶層を形成する液晶層形成ステップを有することが好ましい。 It is preferable that the manufacturing method of a pattern film includes the photoreactive film formation step which forms the said reaction film on the surface of a film before the said conveyance step. It is preferable to perform a rubbing treatment on the surface of the film before or after the irradiation step. It is preferable to have a liquid crystal layer forming step of forming a liquid crystal layer by applying a coating liquid containing liquid crystal on the surface of the film after performing both the irradiation step and the rubbing treatment.
 光源装置から非平行のままで放射される照明光を用いながらも、第1のマスクで遮光されるべき部分に大きく入り込むフィルムの幅方向に傾きをもつ光を第2のマスクで遮光することができ、遮光されるべき部分に照射される領域を狭めてライン幅の均一化を図る上で有利である。 While using illumination light emitted in a non-parallel manner from the light source device, the second mask masks light having a tilt in the width direction of the film that greatly enters the portion to be shielded by the first mask. This is advantageous in narrowing the region irradiated to the portion to be shielded and making the line width uniform.
パターン位相差フィルムの製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of a pattern phase difference film. パターン位相差フィルムを示す説明図である。It is explanatory drawing which shows a pattern phase difference film. ランプアレイの各ランプの配列を示す説明図である。It is explanatory drawing which shows the arrangement | sequence of each lamp | ramp of a lamp array. 各マスク板の構成を示す斜視図である。It is a perspective view which shows the structure of each mask board. 各マスク板及びフィルムへの光線の入射状態を示す説明図である。It is explanatory drawing which shows the incident state of the light ray to each mask board and a film. ラビング処理部を露光装置の前に設けたパターン位相差フィルムの製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of the pattern phase difference film which provided the rubbing process part in front of the exposure apparatus.
 図1において、本発明を実施した製造装置10は、供給されるフィルム18に各種処理を行ってパターン位相差フィルム(以下、FPRと称する)19を製造する。製造装置10は、搬送機構部12,反応膜形成部14,露光装置15,ラビング処理部16、及び液晶層形成部17などで構成される。フィルム18は透明で可撓性を有し、例えばフィルムロール(図示省略)から引き出されて製造装置10に供給される。フィルム18は、搬送機構部12によって一定の速度で連続搬送される。 In FIG. 1, a manufacturing apparatus 10 that implements the present invention processes a supplied film 18 to manufacture a pattern retardation film (hereinafter referred to as FPR) 19. The manufacturing apparatus 10 includes a transport mechanism unit 12, a reaction film forming unit 14, an exposure device 15, a rubbing processing unit 16, a liquid crystal layer forming unit 17, and the like. The film 18 is transparent and flexible, and is drawn from, for example, a film roll (not shown) and supplied to the manufacturing apparatus 10. The film 18 is continuously conveyed at a constant speed by the conveyance mechanism unit 12.
 この製造装置10によって製造されるFPR19は、図2に示すように、第1位相差領域21と第2位相差領域22とが長尺のフィルム18の幅方向に交互配列されている。第1位相差領域21と第2位相差領域22とは、製造時にフィルム18が搬送された方向にストライプ状に延びている。第1,第2位相差領域21,22は、図中に矢印A1,A2で示すように、光学軸、例えば遅相軸が互いに直交している。これらの第1,第2位相差領域21,22は、フィルム18の表面に形成された液晶層の配向方向を変えることによって位相差特性を発現させている。符号23は、第1,第2位相差領域21,22の各境界部分に形成された無配向領域であり、FPR19の製造時におけるフィルム18の搬送方向に延びている。 In the FPR 19 manufactured by the manufacturing apparatus 10, as shown in FIG. 2, the first retardation region 21 and the second retardation region 22 are alternately arranged in the width direction of the long film 18. The first retardation region 21 and the second retardation region 22 extend in a stripe shape in the direction in which the film 18 is conveyed at the time of manufacture. In the first and second phase difference regions 21 and 22, the optical axes, for example, the slow axes are orthogonal to each other as indicated by arrows A1 and A2 in the drawing. These first and second retardation regions 21 and 22 exhibit retardation characteristics by changing the alignment direction of the liquid crystal layer formed on the surface of the film 18. Reference numeral 23 denotes a non-oriented region formed at each boundary portion between the first and second retardation regions 21 and 22 and extends in the transport direction of the film 18 when the FPR 19 is manufactured.
 第1位相差領域21は幅W1で形成され、第2位相差領域22は幅W2で形成されている。第1,第2位相差領域21,22の幅方向における配列ピッチはP1である。配列ピッチP1は、「幅W1」である。幅W2は、幅W1よりも「無配向領域23の幅Wa×2」分だけ小さく、「幅W1-幅Wa×2」である。幅W1は、種々の値を選択することができるが通常300~700μmに設定される。また、無配向領域23の幅Waは均一で小さいほどよいが、15μm以下にしている。なお、図2では、各位相差領域21,22の幅に対して無配向領域23の幅を誇張して大きく描いてある。 The first retardation region 21 is formed with a width W1, and the second retardation region 22 is formed with a width W2. The arrangement pitch in the width direction of the first and second phase difference regions 21 and 22 is P1. The arrangement pitch P1 is “width W1”. The width W2 is smaller than the width W1 by “the width Wa × 2 of the non-oriented region 23” and is “width W1−width Wa × 2”. The width W1 can be selected from various values, but is usually set to 300 to 700 μm. The width Wa of the non-oriented region 23 is preferably uniform and small, but is 15 μm or less. In FIG. 2, the width of the non-oriented region 23 is exaggerated with respect to the width of each of the phase difference regions 21 and 22.
 反応膜形成部14では、光酸発生剤を含む塗布液がフィルム18の表面に塗布され、さらに乾燥処理が施されて一定膜厚の反応膜24(図5参照)が形成される。光酸発生剤は、紫外線の照射により分解して酸を発生する。反応膜24は、この光酸発生剤により特定波長の光、この例では紫外線に反応する。しかし、紫外線以外の特定波長の光に反応して硬化する硬化剤や光酸発生剤を反応膜に用いてもよい。また、反応膜24の形成に関しても、塗布以外の、例えば吹付けなどの手法を用いてもよい。反応膜24が形成されたフィルム18は反応膜形成部14から露光装置15に送られる。 In the reaction film forming unit 14, a coating liquid containing a photoacid generator is applied to the surface of the film 18, and further subjected to a drying process to form a reaction film 24 (see FIG. 5) having a constant film thickness. The photoacid generator is decomposed by irradiation with ultraviolet rays to generate an acid. The reaction film 24 reacts to light of a specific wavelength, in this example, ultraviolet light, by this photoacid generator. However, a curing agent or a photoacid generator that cures in response to light of a specific wavelength other than ultraviolet light may be used for the reaction film. Further, regarding the formation of the reaction film 24, a technique such as spraying other than coating may be used. The film 18 on which the reaction film 24 is formed is sent from the reaction film forming unit 14 to the exposure device 15.
 露光装置15は、形成すべき第1,第2位相差領域21,22のパターンに対応したストライプ状の露光パターンで、連続搬送中のフィルム18に照明光を照射する。照明光としては反応膜24の光化学反応の種類に応じた光が用いられるが、この例では紫外線が用いられる。そして、フィルム18の表面に形成された反応膜24のうち、例えば第1位相差領域21となる部分がライン状の露光域、それ以外の部分が非露光域となるストライプ状のパターン露光が行われる。 The exposure device 15 irradiates the film 18 being continuously conveyed with illumination light with a striped exposure pattern corresponding to the pattern of the first and second retardation regions 21 and 22 to be formed. As illumination light, light corresponding to the type of photochemical reaction of the reaction film 24 is used, and in this example, ultraviolet light is used. Of the reaction film 24 formed on the surface of the film 18, for example, a striped pattern exposure is performed in which a portion that becomes the first retardation region 21 is a linear exposure region, and the other portion is a non-exposure region. Is called.
 露光装置15は、バックアップローラ27,光源部28、マスクユニット31及びこのマスクユニット31を保持するマスクホルダ32などで構成される。バックアップローラ27は、フィルム18が巻き掛けられて、その周面27aでフィルム18の裏面側を支持する。このバックアップローラ27は回動自在でフィルム18の搬送に従動して回転する。なお、バックアップローラ27をフィルム18の搬送に同期してモータ等で回転させてもよい。 The exposure apparatus 15 includes a backup roller 27, a light source unit 28, a mask unit 31, and a mask holder 32 that holds the mask unit 31. The backup roller 27 is wound around the film 18 and supports the back side of the film 18 with the peripheral surface 27a. The backup roller 27 is rotatable and rotates following the conveyance of the film 18. The backup roller 27 may be rotated by a motor or the like in synchronization with the conveyance of the film 18.
 光源部28は、図3に示すようにフィルム18の幅方向に複数の光源装置30をピッチP2で配列した光源装置アレイ33を備えている。光源装置30の各々は、照明光として紫外線を放射する紫外線ランプ30aと、紫外線ランプ30aから放射される照明光をバックアップローラ27に向けて反射するリフレクタ30bを含む照明光学系(図示省略)とを有する。照明光学系は紫外線ランプ30aからの照明光の利用効率を高める周知のものであるが、例えばリフレクタ30bの反射面を放物面鏡に近い形状にしておけばバックアップローラ27に向かう照明光の平行度を高めておくことができる。ただし、一般に紫外線ランプ30aは点光源とはみなせず、そして光源装置30の各々に放物面鏡を組み込んで平行度を高めたとしても、7~8°以上の放射角で放射される照明光になるのが通常である。したがって、照明光は光学的には非平行のままバックアップローラ27に向けて照射される。 The light source unit 28 includes a light source device array 33 in which a plurality of light source devices 30 are arranged at a pitch P2 in the width direction of the film 18 as shown in FIG. Each of the light source devices 30 includes an ultraviolet lamp 30a that emits ultraviolet light as illumination light, and an illumination optical system (not shown) that includes a reflector 30b that reflects the illumination light emitted from the ultraviolet lamp 30a toward the backup roller 27. Have. The illumination optical system is a well-known one that increases the utilization efficiency of the illumination light from the ultraviolet lamp 30a. For example, if the reflecting surface of the reflector 30b is shaped like a parabolic mirror, the illumination light parallel to the backup roller 27 is parallel. The degree can be kept high. However, in general, the ultraviolet lamp 30a is not regarded as a point light source, and illumination light radiated at a radiation angle of 7 to 8 ° or more even if a parabolic mirror is incorporated in each of the light source devices 30 to increase parallelism. It is normal to become. Accordingly, the illumination light is irradiated toward the backup roller 27 while being optically non-parallel.
 光源部28からの照明によるフィルム18上の照度は、例えば200mW/cm以上が好ましく、500mW/cm以上がさらに好ましい。照明光の利用効率を高め、かつパターン露光の精度を高めるには、各々の光源装置30から放射される照明光の放射角を少なくともフィルム18の幅方向に関しては10°以下に抑えておくことが望ましい。放射角を小さく抑えるには、上述したリフレクタ30bに代え、あるいは加えてレンズを用いることも可能である。 The illuminance on the film 18 by illumination from the light source unit 28 is preferably, for example, 200 mW / cm 2 or more, and more preferably 500 mW / cm 2 or more. In order to increase the use efficiency of illumination light and increase the accuracy of pattern exposure, it is necessary to suppress the radiation angle of illumination light emitted from each light source device 30 to 10 ° or less in at least the width direction of the film 18. desirable. In order to keep the radiation angle small, a lens may be used instead of or in addition to the reflector 30b described above.
 マスクホルダ32は、第1マスク板41と第2マスク板42とが重ねられたマスクユニット31を保持し、第1マスク板41がフィルム18に近接するようにマスクユニット31を位置決めしている。第1マスク板41は、光源部28からの照明光を第1,第2位相差領域21,22に対応するストライプ状の露光パターンに整形してフィルム18へと通過させ、プロキシミティ方式で露光を行う。この第1マスク板41と光源部28との間に位置決めされた第2マスク板42は、図2に示す無配向領域23の幅Waを一律に、しかもできるだけ狭く制限する目的で用いられている。 The mask holder 32 holds the mask unit 31 in which the first mask plate 41 and the second mask plate 42 are overlapped, and positions the mask unit 31 so that the first mask plate 41 is close to the film 18. The first mask plate 41 shapes the illumination light from the light source unit 28 into a striped exposure pattern corresponding to the first and second phase difference regions 21 and 22 and passes it through the film 18 to be exposed by the proximity method. I do. The second mask plate 42 positioned between the first mask plate 41 and the light source unit 28 is used for the purpose of uniformly limiting the width Wa of the non-oriented region 23 shown in FIG. 2 as narrowly as possible. .
 図4に示すように、第1マスク板41は、透明なマスク基材41bの表面に、クロムなどの耐熱性、遮光性に優れた無機材料製の第1マスク41aを蒸着などにより形成したものである。第1マスク板41は、第1マスク41aがフィルム18の表面に間隔300μmで対面するように配置される。なお、マスク基材41bとしては、照明光に対する分光透過率が高いこと、耐熱性が高いこと、熱膨張率が低いことの各条件を満たす材料で作製されることが好ましい。例えば石英ガラスである。石英ガラスのうちでも、紫外線の透過率に優れ、紫外線光源からの熱に安定なオゾンレス石英ガラス、合成石英ガラス、天然石英ガラスが好ましい。 As shown in FIG. 4, the first mask plate 41 is formed by vapor-depositing a first mask 41a made of an inorganic material having excellent heat resistance and light shielding properties such as chromium on the surface of a transparent mask base material 41b. It is. The first mask plate 41 is arranged so that the first mask 41a faces the surface of the film 18 with an interval of 300 μm. The mask base material 41b is preferably made of a material that satisfies each condition of high spectral transmittance with respect to illumination light, high heat resistance, and low thermal expansion coefficient. For example, quartz glass. Among quartz glasses, ozoneless quartz glass, synthetic quartz glass, and natural quartz glass, which are excellent in ultraviolet transmittance and stable to heat from an ultraviolet light source, are preferable.
 第1マスク41aは、開口幅Ws1,長さLのスリット41sをピッチP3でフィルム18の幅方向に多数配列したパターンをもち、隣接するスリット41s相互間の遮光幅Ws2も開口幅Ws1と同じにしてある。第2マスク板42も第1マスク板41と同様に構成される。第2マスク板42は、第2マスク42aを光源部28に対面させて用いられる。第2マスク42aのパターンを構成するスリット42sの開口幅Ws1、遮光幅Ws2,ピッチP3も第1マスク板41と同一にしている。なお、図の煩雑化を避けるためにスリット41s,42sの本数は少なく表している。 The first mask 41a has a pattern in which a large number of slits 41s having an opening width Ws1 and a length L are arranged at a pitch P3 in the width direction of the film 18, and the light shielding width Ws2 between adjacent slits 41s is also the same as the opening width Ws1. It is. The second mask plate 42 is configured similarly to the first mask plate 41. The second mask plate 42 is used with the second mask 42 a facing the light source unit 28. The opening width Ws1, the light shielding width Ws2, and the pitch P3 of the slits 42s constituting the pattern of the second mask 42a are also made the same as the first mask plate 41. In addition, in order to avoid complication of a figure, the number of slits 41s and 42s is shown few.
 スリット41sの配列ピッチP3は、図2に示す第1,第2位相差領域21,22の配列ピッチP1の2倍であり、スリット41sの開口幅Ws1は第1位相差領域21の幅W1と同じにしている。また、スリット相互間の遮光幅Ws2も第1位相差領域21の幅W1と同じにしている。したがって、これに対応する第2位相差領域22の幅W2も幅W1に等しくなるはずであるが、実際には第2位相差領域22の幅W2は「無配向領域23の幅Wa×2」分だけ小さくなる。 The arrangement pitch P3 of the slit 41s is twice the arrangement pitch P1 of the first and second phase difference regions 21 and 22 shown in FIG. 2, and the opening width Ws1 of the slit 41s is equal to the width W1 of the first phase difference region 21. It is the same. The light shielding width Ws2 between the slits is also set to be the same as the width W1 of the first phase difference region 21. Accordingly, the width W2 of the second phase difference region 22 corresponding to this should be equal to the width W1, but actually the width W2 of the second phase difference region 22 is “the width Wa × 2 of the non-oriented region 23”. It gets smaller by the minute.
 スリット41sの長さLは、露光を受けて化学反応する反応膜24に含まれる光酸発生剤の光感度、フィルム18の搬送速度、光源部28から放射される紫外線の強度などを考慮して決められ、例えば長さLを20mmに設定することができる。長さLを長くし過ぎると、バックアップローラ27で湾曲して支持されたフィルム18の表面がスリット41sの両端側で第1マスク41aから離れ、スリット41sを通過した照明光が幅方向で広がりやすくなるので、バックアップローラ27の外径なども予め考慮しておくとよい。長さLを短くし過ぎると露光時間が短くなるから、光源部28からの照明光の強度やフィルム18の搬送速度などを考慮しておく必要がある。 The length L of the slit 41s takes into consideration the photosensitivity of the photoacid generator contained in the reaction film 24 that undergoes chemical reaction upon exposure, the transport speed of the film 18, the intensity of ultraviolet rays emitted from the light source unit 28, and the like. For example, the length L can be set to 20 mm. If the length L is too long, the surface of the film 18 that is curved and supported by the backup roller 27 is separated from the first mask 41a at both ends of the slit 41s, and the illumination light that has passed through the slit 41s is likely to spread in the width direction. Therefore, it is preferable to consider the outer diameter of the backup roller 27 in advance. If the length L is shortened too much, the exposure time is shortened. Therefore, it is necessary to consider the intensity of illumination light from the light source unit 28, the conveyance speed of the film 18, and the like.
 図5に示すように、上述した第1,第2マスク板41,42は、第1,第2マスク41a,42aが形成された面とは反対側の面を互い密着させてマスクユニット31を構成し、マスクホルダ32によって保持されている。各マスク41a,42aの面は互いに平行にそろえられ、光源部28とフィルム18との間の光路を垂直に横切るように配置される。そして、第1マスク41aと第2マスク42aは、それぞれのマスク基材41b,42bの厚みを合わせた間隔Dだけ離される。この例では、マスク基材41b,42bの厚みがそれぞれ3000μmであるから間隔Dは6000μmとなる。 As shown in FIG. 5, the first and second mask plates 41 and 42 described above are brought into close contact with the surfaces opposite to the surfaces on which the first and second masks 41a and 42a are formed, so that the mask unit 31 is attached. It is configured and held by a mask holder 32. The surfaces of the masks 41 a and 42 a are aligned in parallel with each other, and are arranged so as to cross the optical path between the light source unit 28 and the film 18 vertically. Then, the first mask 41a and the second mask 42a are separated by a distance D that is the sum of the thicknesses of the mask base materials 41b and 42b. In this example, since the thickness of the mask base materials 41b and 42b is 3000 μm, the distance D is 6000 μm.
 第1,第2マスク板41,42は、図5に示すように、それぞれのマスク41a,42aに形成されたスリット41s,42sが照明光の光路内で完全に重なり合うように組み合わされている。したがって、光源部28からほぼ平行に放射され、第1マスク板41のスリット41aのエッジ近傍を通過してフィルム18の表面の反応膜24に垂直に入射する光線L0は、第2マスク板42のスリット42sを通過する際も同じようにエッジ近傍を通過する。 As shown in FIG. 5, the first and second mask plates 41 and 42 are combined so that the slits 41s and 42s formed in the respective masks 41a and 42a completely overlap in the optical path of the illumination light. Therefore, the light beam L0 radiated from the light source unit 28 substantially in parallel, passing through the vicinity of the edge of the slit 41a of the first mask plate 41 and perpendicularly incident on the reaction film 24 on the surface of the film 18 is reflected on the second mask plate 42. Similarly, when passing through the slit 42s, it passes through the vicinity of the edge.
 上記光線L0に対し、光源部28から7~8°以上の放射角θをもって放射された照明光に含まれる光線L1~L3のうち、放射角θが10°を越えないような光線L1は第1マスク41aのスリット41sを通って反応膜24に達して中間レベルの露光を与え、ぼけ領域46を発生させる原因になるが、このように放射角θが小さい範囲内であればぼけ領域46は狭幅になる。また、光線L2のように、10°を超える放射角θで第1マスク41aのスリット41sに向かうような光線は第2マスク42aで遮断され、ぼけ領域46の幅を広げることはない。第1マスク41aと第2マスク42aとで、異なる位置のスリット41s,42sを通過して反応膜24に達する光線L3は、第1位相差領域21に対応する露光領域に照射されるから不都合はない。 Of the light rays L1 to L3 included in the illumination light emitted from the light source unit 28 with a radiation angle θ of 7 to 8 ° or more, the light ray L1 whose radiation angle θ does not exceed 10 ° is the first of the light rays L0. 1 through the slit 41 s of the mask 41 a to reach the reaction film 24 and give an intermediate level exposure, which causes a blur region 46. If the radiation angle θ is within a small range, the blur region 46 is Narrow. Further, like the light beam L2, a light beam that travels toward the slit 41s of the first mask 41a at a radiation angle θ exceeding 10 ° is blocked by the second mask 42a, and the width of the blurred region 46 is not increased. The light beam L3 that reaches the reaction film 24 through the slits 41s and 42s at different positions in the first mask 41a and the second mask 42a is irradiated on the exposure region corresponding to the first phase difference region 21, which is inconvenient. Absent.
 間隔Dを変えることにより、第1マスク41aの各スリット41sを通って反応膜24に達することが許容される光線の角度を調整することができる。間隔Dを大きくすれば、第2マスク42aのスリット42sを通って対応する第1マスク41aのスリット41sに入射が許容される照明光の放射角θをより小さく制限することができる。間隔Dを大きくし過ぎると、逆に、放射角θの大きい照明光が第2マスク42aの特定位置のスリット42sを通過した後、図5におけるその真下にある第1マスク41aのスリット41sではなく、それに隣接するスリット41sのエッジ近傍を斜めに通過してスリット相互間直下の遮光域にまで入り込むおそれがあるので、大きくし過ぎない方が好ましい。なお、隣接するスリット41s相互間直下の遮光域とは、スリット41s相互間と反応膜24との間の領域である。 By changing the distance D, it is possible to adjust the angle of the light beam allowed to reach the reaction film 24 through each slit 41s of the first mask 41a. If the interval D is increased, the radiation angle θ of the illumination light allowed to enter the slit 41s of the corresponding first mask 41a through the slit 42s of the second mask 42a can be further reduced. If the distance D is too large, the illumination light having a large radiation angle θ passes through the slit 42 s at a specific position of the second mask 42 a, but not the slit 41 s of the first mask 41 a immediately below it in FIG. 5. It is preferable not to make it too large because there is a risk of passing through the vicinity of the edge of the slit 41s adjacent to the slit 41s and entering the light shielding area immediately below the slits. In addition, the light shielding area immediately below the adjacent slits 41s is an area between the slits 41s and the reaction film 24.
 なお、図2における第2位相差領域22の幅W2が第1位相差領域21の幅W1と同じになるように、第1,第2マスク板41,42に形成されるスリット41s,42sの開口幅Ws1(図4参照)を両側から狭め、遮光幅Ws2(図4参照)を開口幅Ws1よりも無配向領域の幅Wa分だけ大きくしてもよい。 Note that the slits 41 s and 42 s formed in the first and second mask plates 41 and 42 so that the width W 2 of the second retardation region 22 in FIG. 2 is the same as the width W 1 of the first retardation region 21. The opening width Ws1 (see FIG. 4) may be narrowed from both sides, and the light shielding width Ws2 (see FIG. 4) may be made larger than the opening width Ws1 by the width Wa of the non-oriented region.
 ラビング処理部16には、露光装置15による露光処理後のフィルム18が搬送される。ラビング処理部16には、ラビングローラやその駆動機構などが設けられ、パターン露光済みの反応膜24に配向処理を施す。ラビング処理部16は、ラビングローラによりフィルム18の搬送方向に対して45°のラビング方向でフィルム18上の反応膜24にラビング処理を行う。ラビング処理後のフィルム18は液晶層形成部17に送られる。 The film 18 after the exposure processing by the exposure device 15 is conveyed to the rubbing processing unit 16. The rubbing processing unit 16 is provided with a rubbing roller, a driving mechanism thereof, and the like, and performs an alignment process on the reaction film 24 after pattern exposure. The rubbing processing unit 16 performs a rubbing process on the reaction film 24 on the film 18 in a rubbing direction of 45 ° with respect to the conveying direction of the film 18 by a rubbing roller. The film 18 after the rubbing treatment is sent to the liquid crystal layer forming unit 17.
 液晶層形成部17は、反応膜24上に第1,第2位相差領域21,22に応じた位相差特性を発現する液晶層を形成する。この液晶層形成部17では、ラビング処理後の反応膜24の表面に垂直配向剤、ディスコティック液晶などを含む塗布液を塗布する。液晶層形成部17では、さらに加熱熟成、冷却などの処理が行われ、さらには紫外線の照射により反応膜24を硬化させて配向状態の固定処理などが行われる。これらの処理によって、第1マスク41aと第2マスク42aとを通してストライプパターンで露光された反応膜24の露光領域と非露光領域とに、互いに光学透過特性が異なる液晶層が形成され、結果的に液晶層形成部17が光学特性付与部として機能することになる。 The liquid crystal layer forming unit 17 forms on the reaction film 24 a liquid crystal layer that exhibits retardation characteristics corresponding to the first and second retardation regions 21 and 22. In the liquid crystal layer forming unit 17, a coating liquid containing a vertical alignment agent, a discotic liquid crystal, and the like is applied to the surface of the reaction film 24 after the rubbing process. In the liquid crystal layer forming unit 17, processing such as heat aging and cooling is further performed, and further, the reaction film 24 is cured by irradiation of ultraviolet rays to perform alignment state fixing processing and the like. By these processes, liquid crystal layers having different optical transmission characteristics are formed in the exposed region and the non-exposed region of the reaction film 24 exposed in a stripe pattern through the first mask 41a and the second mask 42a, and as a result. The liquid crystal layer forming unit 17 functions as an optical property providing unit.
 上述した垂直配向剤は、反応膜24の表面に対してディスコティック液晶を垂直に起立させる作用と、ディスコティック液晶をラビング方向に対して直交する方向に配向させる作用とを有している。露光装置15でのパターン露光処理により、反応膜24の露光領域では酸が発生しており、ディスコティック液晶を垂直に起立させる作用は備えているが、ラビング方向に対して直交させる向きにディスコティック液晶を配向させる作用は失われている。このため、露光領域のディスコティック液晶は起立してラビング方向に配向する姿勢となる。 The above-described vertical alignment agent has the function of vertically raising the discotic liquid crystal with respect to the surface of the reaction film 24 and the function of aligning the discotic liquid crystal in a direction perpendicular to the rubbing direction. Due to the pattern exposure process in the exposure apparatus 15, acid is generated in the exposure region of the reaction film 24, and the discotic liquid crystal is erected vertically, but the discotic liquid crystal is oriented in a direction perpendicular to the rubbing direction. The action of aligning the liquid crystal is lost. For this reason, the discotic liquid crystal in the exposure region stands upright and is oriented in the rubbing direction.
 また、反応膜24の非露光領域では依然として垂直配向剤による作用が保存されている。このため、反応膜24の非露光領域との界面をもって接する液晶層内ではディスコティック液晶が垂直に起立し、かつラビング方向に直交する配向姿勢となっている。この結果、フィルム18の表面に形成された反応膜24上には、起立してラビング方向に配向した姿勢のディスクティック液晶層による一定幅のラインと、起立してラビング方向と直交した姿勢のディスクティック液晶層による一定幅のラインとが交互に並ぶ。こうしてフィルム18上には遅相軸が互いに直交した第1位相差領域21と第2位相差領域22とのストライプ状パターンが得られる。 Further, the action of the vertical alignment agent is still preserved in the non-exposed region of the reaction film 24. For this reason, in the liquid crystal layer in contact with the interface with the non-exposed region of the reaction film 24, the discotic liquid crystal stands vertically and has an orientation posture orthogonal to the rubbing direction. As a result, on the reaction film 24 formed on the surface of the film 18, a fixed width line is formed by the discotic liquid crystal layer in a posture that is erected and oriented in the rubbing direction, and a disc that is erected and orthogonal to the rubbing direction. Lines of a certain width by the tick liquid crystal layer are alternately arranged. Thus, a striped pattern of the first retardation region 21 and the second retardation region 22 whose slow axes are orthogonal to each other is obtained on the film 18.
 次に上記構成の作用について説明する。フィルム18は搬送機構部12によって一定の速度で連続的に搬送される。この搬送中のフィルム18の表面に反応膜形成部14によって順次に反応膜24が塗布・乾燥されて形成される。表面に反応膜24が設けられたフィルム18は露光装置15に送られる。 Next, the operation of the above configuration will be described. The film 18 is continuously transported at a constant speed by the transport mechanism 12. The reaction film 24 is sequentially applied and dried by the reaction film forming unit 14 on the surface of the film 18 being conveyed. The film 18 having the reaction film 24 on the surface is sent to the exposure device 15.
 露光装置15では、フィルム18が、バックアップローラ27で支持された状態で光源部28からの照明光によりパターン露光される。光源部28からの照明光は、第1マスク板41と第2マスク板42によってストライプ状の露光パターンで、フィルム18上の反応膜24に照射される。第1,第2マスク板41,42に設けられたスリット41s,42sは、フィルム18の搬送方向に細長くフィルム18の幅方向に一定のピッチP3で配列されている。 In the exposure device 15, the film 18 is pattern-exposed with illumination light from the light source unit 28 while being supported by the backup roller 27. Illumination light from the light source unit 28 is applied to the reaction film 24 on the film 18 in a striped exposure pattern by the first mask plate 41 and the second mask plate 42. The slits 41 s and 42 s provided in the first and second mask plates 41 and 42 are elongated in the transport direction of the film 18 and arranged at a constant pitch P3 in the width direction of the film 18.
 フィルム18の搬送にともない、照明光で露光されるフィルム18の位置が連続的に移動する。これにより、照明光の照射による露光領域がフィルム18の搬送にしたがって搬送方向にライン状に伸びる。また、露光領域と露光領域との間は非露光領域となり、結果的にストライプ状の露光パターンでフィルム18の全長分に露光が与えられる。 As the film 18 is transported, the position of the film 18 exposed with the illumination light continuously moves. Thereby, the exposure area | region by irradiation of illumination light extends in the shape of a line in the conveyance direction according to conveyance of the film 18. FIG. Further, a non-exposure region is formed between the exposure region and the exposure region, and as a result, the entire length of the film 18 is exposed with a striped exposure pattern.
 光源部28からの照明光は、フィルム18の幅方向に対して平行光に近づけるようにしているが、それでもなお幅方向に角度をもった光が含まれることは避けられない。しかしながら、露光装置15では、フィルム18に近接させてプロキシミティ露光に寄与する第1マスク板41に加えて、第1マスク板41から光源部28側に間隔Dだけ離して配置された第2マスク板42を使用しているから、図5に示す光線L2のような傾きの大きな光線は第2マスク42aで遮断され第1マスク41aのスリット41sに入射することがない。したがって、ぼけ領域46が狭幅になる。 Although the illumination light from the light source unit 28 is made to approach parallel light with respect to the width direction of the film 18, it is still inevitable that light having an angle in the width direction is included. However, in the exposure apparatus 15, in addition to the first mask plate 41 that is close to the film 18 and contributes to the proximity exposure, the second mask disposed at a distance D from the first mask plate 41 to the light source unit 28 side. Since the plate 42 is used, a light beam having a large inclination such as the light beam L2 shown in FIG. 5 is blocked by the second mask 42a and does not enter the slit 41s of the first mask 41a. Therefore, the blurred region 46 becomes narrow.
 以上のように反応膜24にパターン露光を行うことにより、露光を受けた領域では光酸発生剤が分解して酸が発生し、非露光領域では酸は発生しない。また、中間レベルで露光されたぼけ領域46では露光量に応じて酸が発生するが、露光量が小さいので発生する酸の量も少ないものとなっている。 By performing pattern exposure on the reaction film 24 as described above, the photoacid generator is decomposed in the exposed region to generate acid, and no acid is generated in the non-exposed region. In the blurred area 46 exposed at the intermediate level, acid is generated according to the exposure amount, but the amount of acid generated is small because the exposure amount is small.
 パターン露光処理後のフィルム18は、ラビング処理部16によって所定のラビング方向にラビングされてから液晶層形成部17に送られる。ラビング処理によって、反応膜24は、液晶層形成部17で付与される液晶層の液晶を所定の向きに配向させるいわゆる配向膜として機能するようになる。そして、液晶層形成部17によって、反応膜24上に液晶層が形成され、加熱熟成、冷却される。こうしてフィルム18上には、ライン状の露光領域と非露光領域とが一定幅で交互に並んだ露光パターンに対応して、垂直に起立したディスコティック液晶がラビング方向に配向したライン状の液晶層と、垂直に起立したディスコティック液晶がラビング方向に直交して配向したライン状の液晶層とがそれぞれ一定幅で交互に配列されたストライプ状のパターンが得られる。 The film 18 after the pattern exposure processing is rubbed in a predetermined rubbing direction by the rubbing processing section 16 and then sent to the liquid crystal layer forming section 17. By the rubbing treatment, the reaction film 24 functions as a so-called alignment film that aligns the liquid crystal of the liquid crystal layer applied by the liquid crystal layer forming unit 17 in a predetermined direction. Then, a liquid crystal layer is formed on the reaction film 24 by the liquid crystal layer forming unit 17, and is heated and matured and cooled. Thus, on the film 18, a line-shaped liquid crystal layer in which vertically extending discotic liquid crystals are aligned in the rubbing direction in correspondence with an exposure pattern in which line-shaped exposed areas and non-exposed areas are alternately arranged at a constant width. As a result, a stripe-like pattern is obtained in which vertically extending discotic liquid crystals are alternately arranged with a constant width in a line-like liquid crystal layer oriented perpendicular to the rubbing direction.
 そして、これらの液晶層は、互いに遅相軸が直交した第1位相差領域21と第2位相差領域22となる。また、ぼけ領域46では、発生した酸の量が少ないためディスコティック液晶は、ラビング方向に対して特定の方向に配向されることがなく、無配向領域23となる。この後に、紫外線の照射により反応膜24の硬化処理が行われ、これとともに液晶層の配向状態が固定されFPR19が得られる。 These liquid crystal layers become a first retardation region 21 and a second retardation region 22 whose slow axes are orthogonal to each other. In the blurred region 46, since the amount of the generated acid is small, the discotic liquid crystal is not aligned in a specific direction with respect to the rubbing direction, and becomes the non-oriented region 23. Thereafter, the curing process of the reaction film 24 is performed by irradiation of ultraviolet rays, and the alignment state of the liquid crystal layer is fixed together with this to obtain FPR19.
 上記実施形態では、露光装置15による露光の後にラビング処理を行っている。しかし、図6に示すように、露光装置15よりもフィルム18の搬送方向上流側にラビング処理部16を設け、露光を行う前にラビング処理を行ってもよい。 In the above embodiment, the rubbing process is performed after the exposure by the exposure apparatus 15. However, as shown in FIG. 6, a rubbing processing unit 16 may be provided on the upstream side of the exposure device 15 in the transport direction of the film 18, and the rubbing processing may be performed before exposure.
 製造装置10により、FPR19を製造した。露光装置15に用いた各マスク板41,42は、厚み3000μmのオゾンレス石英ガラスからなる第1,第2マスク基材41b,42bのそれぞれの一方の表面に、クロムをスパッタリングによって第1,第2マスク41a,42aを形成したものである。 FPR19 was manufactured with the manufacturing apparatus 10. Each of the mask plates 41 and 42 used in the exposure apparatus 15 has first and second chromium formed on one surface of each of the first and second mask base materials 41b and 42b made of ozoneless quartz glass having a thickness of 3000 μm by sputtering. Masks 41a and 42a are formed.
 これら第1,第2マスク板41,42のマスクと反対側の面を互い密着させた状態にしてマスクユニット31とした。このマスクユニット31をマスクホルダ32に保持しバックアップローラ27に対向して配した。なお、スリット41sの幅Ws1、スリット間の間隔Ws2は、いずれも幅530μmである。また、このときの各マスク基材41b,42bの厚みを合わせた間隔Dは6000μmであった。マスクユニット31は、第1マスク41aとフィルム18の表面との間に間隔300μmあけて配した。 The mask unit 31 was made with the surfaces of the first and second mask plates 41 and 42 opposite to the mask being in close contact with each other. The mask unit 31 was held by a mask holder 32 and arranged to face the backup roller 27. The width Ws1 of the slit 41s and the interval Ws2 between the slits are both 530 μm wide. In addition, the distance D obtained by combining the thicknesses of the mask base materials 41b and 42b at this time was 6000 μm. The mask unit 31 was disposed with a gap of 300 μm between the first mask 41 a and the surface of the film 18.
 鹸化処理した長尺のフィルム18を製造装置10へ連続的に案内し、以下のようにしてFPR19を連続的に製造した。この製造にあたり、まずセルロースアセテート製のフィルム18を作製した。 The long film 18 subjected to the saponification treatment was continuously guided to the production apparatus 10, and the FPR 19 was continuously produced as follows. In this production, a film 18 made of cellulose acetate was first prepared.
 <フィルム18の作製>
 フィルム18を作製するために、セルロースアセテート溶液Aと添加剤溶液Bとをそれぞれ調製した。セルロースアセテート溶液Aの組成は以下に示す。セルロースアセテート溶液Aの下記の各成分をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液Aを調製した。
<Preparation of film 18>
In order to produce the film 18, the cellulose acetate solution A and the additive solution B were prepared, respectively. The composition of the cellulose acetate solution A is shown below. The following components of the cellulose acetate solution A were put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution A.
 セルロースアセテート溶液Aの組成
 置換度2.86のセルロースアセテート       100  質量部
 トリフェニルホスフェート(可塑剤)          7.8質量部
 ビフェニルジフェニルホスフェート(可塑剤)      3.9質量部
 メチレンクロライド(溶媒の第1成分)       300  質量部
 メタノール(溶媒の第2成分)            54  質量部
 1-ブタノール                   11  質量部
Composition of Cellulose Acetate Solution A Cellulose acetate with a substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first component of the solvent) 300 parts by mass Methanol (second component of the solvent) 54 parts by mass 1-butanol 11 parts by mass
 別のミキシングタンクを用いて添加剤溶液Bを調製した。添加剤溶液Bの組成は以下に示す。添加剤溶液Bの下記の各成分をそれぞれミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液Bを調製した。なお、下記の「Re低下剤」とはレタデーション低下剤を意味する。 Additive solution B was prepared using another mixing tank. The composition of the additive solution B is shown below. Each of the following components of additive solution B was put into a mixing tank and stirred while heating to dissolve each component to prepare additive solution B. In addition, the following “Re reducing agent” means a retardation reducing agent.
 添加剤溶液Bの組成
 下記化合物B1(Re低下剤)            40  質量部
 下記化合物B2(波長分散制御剤)           4  質量部
 メチレンクロライド(溶媒の第1成分)        80  質量部
 メタノール(溶媒の第2成分)            20  質量部
Composition of additive solution B The following compound B1 (Re reducing agent) 40 parts by mass The following compound B2 (wavelength dispersion controlling agent) 4 parts by mass Methylene chloride (first component of solvent) 80 parts by mass Methanol (second component of solvent) 20 Parts by mass
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 <<セルロースアセテート製のフィルム18の作製>>
 477質量部のセルロースアセテート溶液Aに、40質量部の添加剤溶液Bを添加し、充分に攪拌して、ドープを調製した。ドープを流延ダイ(図示無し)に供給し、この流延ダイの流延口から、0℃に冷却した回転中のドラムの周面にドープを流出した。この流出によりドラムの周面で流延されて形成された流延膜を、溶媒含有率70質量%の状態でドラムから剥ぎ取った。剥ぎ取られた流延膜、すなわち湿潤フィルムをピンテンター(特開平4-1009号の図3に記載のピンテンター)に案内した。湿潤フィルムの幅方向の両端をピンテンターの複数のピンで固定し、溶媒含有率が3乃至5質量%の状態で、幅方向(湿潤フィルムの長手方向に垂直な方向)の延伸率が3%となるように湿潤フィルムの幅を変化させながら乾燥した。その後、複数のローラが湿潤フィルムの搬送路に沿って並べて配されている熱処理装置に、湿潤フィルムを案内した。この熱処理装置の内部をローラで搬送して通過させることにより、湿潤フィルムをさらに乾燥し、厚み60μmのフィルム18を得た。このフィルム18は紫外線吸収剤を含有しておらず、Re(測定波長は550nm)は0nmであり、Rth(測定波長は550nm)は12.3nmであった。
<< Preparation of film 18 made of cellulose acetate >>
40 parts by mass of additive solution B was added to 477 parts by mass of cellulose acetate solution A, and the mixture was sufficiently stirred to prepare a dope. The dope was supplied to a casting die (not shown), and the dope was discharged from the casting port of the casting die onto the peripheral surface of the rotating drum cooled to 0 ° C. The cast film formed by casting on the peripheral surface of the drum by this outflow was peeled off from the drum in a state where the solvent content was 70% by mass. The cast film, that is, the wet film peeled off, was guided to a pin tenter (a pin tenter described in FIG. 3 of JP-A-4-1009). Both ends in the width direction of the wet film are fixed with a plurality of pins of a pin tenter, and the stretching ratio in the width direction (direction perpendicular to the longitudinal direction of the wet film) is 3% with a solvent content of 3 to 5% by mass. The wet film was dried while changing its width. Thereafter, the wet film was guided to a heat treatment apparatus in which a plurality of rollers were arranged along the conveyance path of the wet film. The wet film was further dried by transporting the inside of the heat treatment apparatus with a roller to obtain a film 18 having a thickness of 60 μm. This film 18 did not contain an ultraviolet absorber, Re (measurement wavelength was 550 nm) was 0 nm, and Rth (measurement wavelength was 550 nm) was 12.3 nm.
 <<アルカリ鹸化処理>>
 得られたフィルム18を、温度60℃の誘電式加熱ローラに接触しながら通過させ、フィルム18の表面温度を40℃に昇温した。この後、フィルム18の片面に、下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布した。アルカリ溶液が塗布されたフィルム18を、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下で10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/mの塗布量で塗布した。次いで、洗浄工程を3回繰り返した。洗浄工程は、ファウンテンコーターによる水洗とエアナイフによる水切りとからなる。この洗浄工程の後、70℃の乾燥ゾーンを10秒間かけて搬送することによりフィルム18を乾燥し、アルカリ鹸化処理したフィルム18を得た。
<< Alkaline saponification treatment >>
The obtained film 18 was passed while contacting a dielectric heating roller having a temperature of 60 ° C., and the surface temperature of the film 18 was raised to 40 ° C. Then, the alkali solution of the composition shown below was apply | coated to the single side | surface of the film 18 by the coating amount of 14 ml / m < 2 > using the bar coater. The film 18 coated with the alkaline solution was heated to 110 ° C. and conveyed for 10 seconds under a steam far-infrared heater manufactured by Noritake Co., Limited. Subsequently, pure water was applied at a coating amount of 3 ml / m 2 using the same bar coater. The washing process was then repeated 3 times. The washing process consists of washing with a fountain coater and draining with an air knife. After this washing step, the film 18 was dried by being conveyed through a drying zone at 70 ° C. for 10 seconds to obtain an alkali saponified film 18.
 アルカリ溶液の組成
 水酸化カリウム                    4.7質量部
 水                         15.8質量部
 イソプロパノール                  63.7質量部
 界面活性剤(SF-1:C1429O(CHCHO)20H)1.0質量部
 プロピレングリコール                14.8質量部
Composition of alkaline solution Potassium hydroxide 4.7 parts by weight Water 15.8 parts by weight Isopropanol 63.7 parts by weight Surfactant (SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H) 1.0 Parts by weight propylene glycol 14.8 parts by weight
 <FPR19の製造>
 上記のように鹸化処理を経たフィルム18を反応膜形成部14へ送り、フィルム18の鹸化処理を施した面に、反応膜24を形成する塗布液を連続的に塗布した。塗布液は下記の組成である。また、塗布は#8のワイヤーバーで行った。フィルム18上に塗布された塗布液を、60℃の温風で60秒、さらに100℃の温風で120秒乾燥することにより、反応膜24を形成した。
<Manufacture of FPR19>
The film 18 subjected to the saponification treatment as described above was sent to the reaction film forming unit 14, and the coating solution for forming the reaction film 24 was continuously applied to the surface of the film 18 subjected to the saponification treatment. The coating solution has the following composition. The application was performed with a # 8 wire bar. The coating liquid applied on the film 18 was dried with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds, thereby forming a reaction film 24.
 反応膜24を形成する塗布液の組成
 反応膜24を形成するポリマー材料           3.9質量部
  (PVA103、クラレ(株)製ポリビニルアルコール)
 光酸発生剤(S-2)                 0.1質量部
 メタノール                     36  質量部
 水                         60  質量部
Composition of coating solution for forming reaction film 24 3.9 parts by mass of polymer material for forming reaction film 24 (PVA103, Kuraray Co., Ltd. polyvinyl alcohol)
Photoacid generator (S-2) 0.1 part by weight Methanol 36 parts by weight Water 60 parts by weight
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 次に、マスクユニット31を介して、光源部28からフィルム18に紫外線を照射した。光源部28からは、室温空気下にて、UV-A領域におけるフィルム18上の照度200mW/cmの2台の空冷水銀ランプ(HOYA(株)製:UL750)をそれぞれ紫外線ランプ30aとして用い、紫外線ランプ30aの間隔P2を60mmに配置して、紫外線を50mJ/cmとなるように照射した。紫外線照射により反応膜24の光酸発生剤を分解し酸性化合物を発生させることにより第1位相差領域用の領域を形成した。 Next, the film 18 was irradiated with ultraviolet rays from the light source unit 28 through the mask unit 31. From the light source unit 28, two air-cooled mercury lamps (made by HOYA Co., Ltd .: UL750) having an illuminance of 200 mW / cm 2 on the film 18 in the UV-A region at room temperature air are used as the ultraviolet lamps 30a. The interval P2 between the ultraviolet lamps 30a was set to 60 mm, and the ultraviolet rays were irradiated so as to be 50 mJ / cm 2 . The region for the first retardation region was formed by decomposing the photoacid generator of the reaction film 24 by ultraviolet irradiation to generate an acidic compound.
 光源部28から出力される照明光の平行度(フイルム18の幅方向のもの)は、10°であった。スリット間の間隔Ws2が530μm、各マスク41a,42aの間隔Dが6000μmなので、マスクユニット31は、条件式「0°<tan-1(Ws2/D)≦θ」を満たしている。 The parallelism of the illumination light output from the light source unit 28 (in the width direction of the film 18) was 10 °. Since the interval Ws2 between the slits is 530 μm and the interval D between the masks 41a and 42a is 6000 μm, the mask unit 31 satisfies the conditional expression “0 ° <tan −1 (Ws2 / D) ≦ θ”.
 その後に、このフィルム18に対して、ラビング処理部16でラビング処理を行った。ラビング処理では、搬送方向に45°の角度を保持して500rpmで一方向にラビングを行った。こうして反応膜24に一方向に配向処理されたフィルム18を得た。なお、反応膜24の膜厚は、0.5μmであった。 Thereafter, the rubbing treatment unit 16 performed rubbing treatment on the film 18. In the rubbing treatment, rubbing was performed in one direction at 500 rpm while maintaining a 45 ° angle in the transport direction. Thus, a film 18 in which the reaction film 24 was oriented in one direction was obtained. The thickness of the reaction film 24 was 0.5 μm.
 ラビング処理後、液晶層形成部17により、下記の液晶層用塗布液を、バーコーターを用いて塗布量4ml/mで塗布した。次いで、膜面温度110℃で2分間加熱熟成した後、80℃まで冷却し空気下にて200mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を50mJ/cm照射して、その配向状態を固定化した。これにより、遅相軸が互いに直交している第1,第2位相差領域21,22が幅方向に並んだFPR19とした。各位相差領域21,22は、いずれもディスコティック液晶が垂直配向しているが、紫外線が照射された第1位相差領域21の遅相軸がラビング方向に対し平行に、また未照射の第2位相差領域22遅相軸がラビング方向に直交していた。なお、液晶層層の膜厚は、0.9μmであった。 After the rubbing treatment, the following liquid crystal layer coating solution was applied by the liquid crystal layer forming unit 17 at a coating amount of 4 ml / m 2 using a bar coater. Next, after aging at a film surface temperature of 110 ° C. for 2 minutes, the film was cooled to 80 ° C., and was irradiated with ultraviolet rays at 50 mJ / cm 2 using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 200 mW / cm 2 in the air. Irradiation fixed the orientation state. Thus, the first and second phase difference regions 21 and 22 whose slow axes are orthogonal to each other are FPR19 arranged in the width direction. In each of the phase difference regions 21 and 22, the discotic liquid crystal is vertically aligned, but the slow axis of the first phase difference region 21 irradiated with ultraviolet rays is parallel to the rubbing direction, and the second non-irradiated second phase is also present. The slow axis of the phase difference region 22 was orthogonal to the rubbing direction. The film thickness of the liquid crystal layer was 0.9 μm.
 光学異方性層用塗布液の組成
 ディスコティック液晶E-1            100  質量部
 配向膜界面配向剤(II-1)             3.0質量部
 空気界面配向剤(P-1)               0.4質量部
 光重合開始剤                     3.0質量部
  (イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
 増感剤(カヤキュア-DETX、日本化薬(株)製)   1.0質量部
 メチルエチルケトン                400  質量部
Composition of coating liquid for optically anisotropic layer Discotic liquid crystal E-1 100 parts by mass Alignment film interface alignment agent (II-1) 3.0 parts by mass Air interface alignment agent (P-1) 0.4 part by mass Photopolymerization 3.0 parts by weight of initiator (Irgacure 907, manufactured by Ciba Specialty Chemicals)
Sensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.) 1.0 part by weight Methyl ethyl ketone 400 parts by weight
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記のように作成されたFPR19の、光源部28の隣り合うランプからの各照明光が重なり合う領域においても、実用上支障が生じる幅広な無配向領域23は発生せず、それが分布する故障エリアはなかった。無配向領域23の幅Waは、最大でも8μmと十分細いものであった。 Even in the region where the illumination lights from the adjacent lamps of the light source unit 28 of the FPR 19 created as described above overlap, a wide non-orientation region 23 that causes a practical problem does not occur, and a failure area where it is distributed There was no. The width Wa of the non-oriented region 23 was sufficiently thin as 8 μm at the maximum.
 以上、本発明のパターンフィルムの製造装置及び製造方法について、図示の実施形態及び具体的な実施例にしたがって説明している。しかし、光源部からの非平行な照明光を用い、互いに対面させて組み合わせた2枚のマスク板を通してプロキシミティ方式でストライプ状のパターン露光を行うパターンフィルムの製造装置あるいは製造方法であれば、露光領域と非露光領域に遅相軸の向きを互いに直交させた液晶層を形成するものに限られない。例えば反応層として光硬化性の膜を用い、ストライプ状のパターン露光を行うことによって硬化が進んだ部分と未硬化の部分とが交互にライン状に並んだストライプパターンを得ることができる。そして、未硬化の部分を除去した後に、全体的に特定の光学透過特性をもつカラーフィルター層あるいは遮光層を形成してから硬化が進んだ部分を除去すれば、ストライプ状のカラーフィルター層あるいは遮光層と、ストライプ状の素通し領域とが交互に並んだパターンフィルムを製造することも可能となる。 The pattern film manufacturing apparatus and method of the present invention have been described above according to the illustrated embodiment and specific examples. However, if it is a pattern film manufacturing apparatus or manufacturing method that uses a non-parallel illumination light from a light source unit and performs a patterned pattern exposure in a proximity manner through two mask plates that are combined to face each other, exposure is possible. It is not limited to forming a liquid crystal layer in which the directions of the slow axes are orthogonal to each other in the region and the non-exposed region. For example, by using a photo-curable film as the reaction layer and performing stripe pattern exposure, a stripe pattern in which cured portions and uncured portions are alternately arranged in a line can be obtained. After removing the uncured portion, after forming a color filter layer or light shielding layer having specific optical transmission characteristics as a whole and then removing the cured portion, striped color filter layer or light shielding It is also possible to manufacture a pattern film in which layers and stripe-shaped threading regions are alternately arranged.

Claims (10)

  1.  特定波長の光に反応する反応膜を表面に形成したフィルムを連続搬送する搬送機構部と、
     前記特定波長の光を非平行で放射する光源装置と、
     前記光源装置と前記フィルムとの間に配され、前記フィルムの搬送方向に長手方向を一致させた複数の第1のスリットが前記フィルムの幅方向に一定ピッチで並んだ第1のマスクパターンを有し、前記光源装置から放射された光のうち、前記複数の第1のスリットによって複数本のライン状に整形された光を前記フィルムへと通過させる第1のマスクと、
     前記第1のマスクと前記光源装置との間に配され、前記フィルムの搬送方向に長手方向を一致させた複数の第2のスリットが前記フィルムの幅方向に一定ピッチで並んだ第2のマスクパターンを有し、前記光源装置から放射され前記第1のスリットを通って前記第1のスリット相互間の遮光部と前記反応膜との間に斜めに入り込む光を遮断する第2のマスクと、
     前記第1及び第2のマスクを通してパターン露光された前記反応膜の露光領域と非露光領域とに、互いに光学透過特性が異なる機能を付与する光学特性付与部と、
     を備えたことを特徴とするパターンフィルムの製造装置。
    A transport mechanism for continuously transporting a film having a reaction film that reacts to light of a specific wavelength on the surface;
    A light source device that emits light of the specific wavelength in a non-parallel manner;
    A plurality of first slits arranged between the light source device and the film and having the longitudinal direction coincided with the transport direction of the film have a first mask pattern arranged at a constant pitch in the width direction of the film. And a first mask for passing light shaped from the light source device shaped into a plurality of lines by the plurality of first slits to the film,
    A second mask arranged between the first mask and the light source device, wherein a plurality of second slits whose longitudinal directions coincide with the film transport direction are arranged at a constant pitch in the width direction of the film. A second mask having a pattern and blocking light that is radiated from the light source device and obliquely enters between the light shielding portion between the first slits and the reaction film through the first slit;
    An optical property imparting unit that imparts a function of different optical transmission properties to the exposed region and the non-exposed region of the reaction film that are pattern-exposed through the first and second masks;
    An apparatus for producing a pattern film, comprising:
  2.  前記第1のマスク及び第2のマスクは、透明な石英ガラス製のマスク基材の表面に設けられ、前記光を通過させる各々のスリットパターンが形成された遮光膜で構成されたことを特徴とする請求項1記載のパターンフィルムの製造装置。 The first mask and the second mask are provided on the surface of a transparent quartz glass mask base material, and are formed of a light shielding film in which each slit pattern through which the light passes is formed. The pattern film manufacturing apparatus according to claim 1.
  3.  前記遮光膜は耐熱性の無機材料で形成されていることを特徴とする請求項2記載のパターンフィルムの製造装置。 3. The pattern film manufacturing apparatus according to claim 2, wherein the light-shielding film is formed of a heat-resistant inorganic material.
  4.  前記フィルムの一部が巻き掛けられ、前記フィルムの裏面を外周面で支持するバックアップローラを備え、前記第1及び第2のマスクを通過した光が前記バックアップローラで支持された前記フィルムの表面に照射されることを特徴とする請求項1~3のいずれか記載のパターンフィルムの製造装置。 A portion of the film is wound around and includes a backup roller that supports the back surface of the film on the outer peripheral surface, and light that has passed through the first and second masks is applied to the surface of the film supported by the backup roller. 4. The pattern film manufacturing apparatus according to claim 1, wherein the pattern film manufacturing apparatus is irradiated.
  5.  前記光学特性付与部は、前記第1及び第2のマスクを通してパターン露光された前記反応膜に液晶を含む塗布液を塗布して液晶層を形成する液晶層形成部であることを特徴とする請求項4記載のパターンフィルムの製造装置。 The optical property imparting section is a liquid crystal layer forming section that forms a liquid crystal layer by applying a coating liquid containing liquid crystal to the reaction film that has been pattern-exposed through the first and second masks. Item 5. A pattern film manufacturing apparatus according to Item 4.
  6.  特定波長の光に反応する反応膜を表面に形成したフィルムを連続搬送する搬送ステップと、
     光源装置から放射された前記特定波長の光を、前記フィルムの搬送方向に細長いスリットを前記フィルムの幅方向に一定ピッチで形成した一対のマスクを通してライン状に整形してから連続搬送中の前記フィルムの表面に照射する照射ステップと、
     を有することを特徴とするパターンフィルムの製造方法。
    A transport step for continuously transporting a film having a reaction film that reacts with light of a specific wavelength formed on the surface;
    The film being continuously conveyed after the light of the specific wavelength radiated from the light source device is shaped into a line through a pair of masks formed with a narrow slit in the film width direction at a constant pitch in the film conveyance direction. An irradiation step for irradiating the surface of
    A process for producing a patterned film, comprising:
  7.  前記照射ステップでは、バックアップローラへの巻き掛けにより裏面が支持された前記フィルムの表面に、ライン状に整形された前記特定波長の光が照射されることを特徴とする請求項6記載のパターンフィルムの製造方法。 7. The pattern film according to claim 6, wherein, in the irradiation step, the surface of the film whose back surface is supported by being wound around a backup roller is irradiated with the light having the specific wavelength shaped in a line shape. Manufacturing method.
  8.  前記搬送ステップの前に、フィルムの表面に前記反応膜を形成する光反応膜形成ステップを含むことを特徴とする請求項6又は7記載のパターンフィルムの製造方法。 The method for producing a patterned film according to claim 6 or 7, further comprising a photoreactive film forming step of forming the reactive film on the surface of the film before the transporting step.
  9.  前記照射ステップよりも前又は後の段階に、前記フィルムの表面にラビング処理を行うことを特徴とする請求項8記載のパターンフィルムの製造方法。 The pattern film manufacturing method according to claim 8, wherein a rubbing treatment is performed on the surface of the film before or after the irradiation step.
  10.  前記照射ステップと前記ラビング処理との両方を行った後の前記フィルムの表面に、液晶を含む塗布液を塗布して液晶層を形成する液晶層形成ステップを有することを特徴とする請求項9記載のパターンフィルムの製造方法。 10. A liquid crystal layer forming step of forming a liquid crystal layer by applying a coating liquid containing liquid crystal on the surface of the film after performing both the irradiation step and the rubbing treatment. Manufacturing method of pattern film.
PCT/JP2013/080376 2012-11-12 2013-11-11 Patterned-film production device and production method WO2014073676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248069A JP2014095845A (en) 2012-11-12 2012-11-12 Manufacturing installation and manufacturing method of pattern film
JP2012-248069 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073676A1 true WO2014073676A1 (en) 2014-05-15

Family

ID=50684767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080376 WO2014073676A1 (en) 2012-11-12 2013-11-11 Patterned-film production device and production method

Country Status (2)

Country Link
JP (1) JP2014095845A (en)
WO (1) WO2014073676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425472A (en) * 2015-12-31 2016-03-23 武汉华星光电技术有限公司 Liquid crystal display panel and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897119A (en) * 1994-09-26 1996-04-12 Fujitsu Ltd Aligner
JP2005148354A (en) * 2003-11-14 2005-06-09 Dainippon Printing Co Ltd Photomask, aligner, liquid crystal panel member, device and method for manufacturing liquid crystal panel member
JP2011069994A (en) * 2009-09-25 2011-04-07 Toppan Printing Co Ltd Polarized exposure apparatus
JP2011174966A (en) * 2010-02-23 2011-09-08 Seiko Epson Corp Method for manufacturing liquid crystal display device
WO2012046541A1 (en) * 2010-10-06 2012-04-12 株式会社ブイ・テクノロジー Exposure apparatus
JP2012103361A (en) * 2010-11-08 2012-05-31 V Technology Co Ltd Exposure device
JP2012198522A (en) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd Method for manufacturing pattern alignment film, method for manufacturing pattern phase difference film using the same, and manufacturing device thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029461A (en) * 2002-06-26 2004-01-29 Toshiba Corp Photomask, exposing method and manufacturing method of semiconductor device
JP2006285122A (en) * 2005-04-05 2006-10-19 Toppan Printing Co Ltd Method for manufacturing both-sided mask

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897119A (en) * 1994-09-26 1996-04-12 Fujitsu Ltd Aligner
JP2005148354A (en) * 2003-11-14 2005-06-09 Dainippon Printing Co Ltd Photomask, aligner, liquid crystal panel member, device and method for manufacturing liquid crystal panel member
JP2011069994A (en) * 2009-09-25 2011-04-07 Toppan Printing Co Ltd Polarized exposure apparatus
JP2011174966A (en) * 2010-02-23 2011-09-08 Seiko Epson Corp Method for manufacturing liquid crystal display device
WO2012046541A1 (en) * 2010-10-06 2012-04-12 株式会社ブイ・テクノロジー Exposure apparatus
JP2012103361A (en) * 2010-11-08 2012-05-31 V Technology Co Ltd Exposure device
JP2012198522A (en) * 2011-03-04 2012-10-18 Dainippon Printing Co Ltd Method for manufacturing pattern alignment film, method for manufacturing pattern phase difference film using the same, and manufacturing device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425472A (en) * 2015-12-31 2016-03-23 武汉华星光电技术有限公司 Liquid crystal display panel and manufacturing method thereof
CN105425472B (en) * 2015-12-31 2019-09-17 武汉华星光电技术有限公司 Liquid crystal display panel and preparation method thereof

Also Published As

Publication number Publication date
JP2014095845A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP3146998B2 (en) Polarized light irradiator for photo-alignment of alignment film of liquid crystal display device
WO2013102981A1 (en) Optical-film-manufacturing apparatus, optical-film-manufacturing method, and optical film
JP2012145938A (en) Manufacturing method of patterned retarder
JPS6060624A (en) Liquid crystal display panel and its production
KR20140061227A (en) Method for producing phase difference plate and phase difference plate produced thereby
TWI541574B (en) Exposing device, mask, and optical film
KR20130023087A (en) Polarizing element unit, light irradiation apparatus using same and transmittance setting method of polarizing element unit
JP3603758B2 (en) Polarizing element of polarized light irradiation device for photo-alignment of liquid crystal alignment film
JP5451707B2 (en) Exposure apparatus and method for forming cured film
JP2013228684A (en) Device and method for exposure, and pattern film manufacturing method
WO2014073676A1 (en) Patterned-film production device and production method
JPH11194344A (en) Polarized light radiation device to orient film for liquid crystal display element
JP2014164248A (en) Method and device for manufacturing pattern film
JP2014199321A (en) Method for manufacturing patterned retardation film
TWI472852B (en) Method of manufacturing a patterned retarder
JP6064627B2 (en) Manufacturing method of optical film
JP2014026203A (en) Exposure device, method therefor and method for producing pattern film
US20130164661A1 (en) Method for making a retardation film
JP2014219596A (en) Production method of optical film
JP2004347668A (en) Polarized light irradiation device for optical alignment
JP6154750B2 (en) Manufacturing method of optical film
JP2018169480A (en) Method for manufacturing retardation film
JPH1010482A (en) Thermostatic chamber
JP2015049389A (en) Production method of optical film, exposure apparatus, and mask
JP2022013060A (en) System and method of forming optical pattern information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853010

Country of ref document: EP

Kind code of ref document: A1