WO2014073248A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2014073248A1
WO2014073248A1 PCT/JP2013/071161 JP2013071161W WO2014073248A1 WO 2014073248 A1 WO2014073248 A1 WO 2014073248A1 JP 2013071161 W JP2013071161 W JP 2013071161W WO 2014073248 A1 WO2014073248 A1 WO 2014073248A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
accumulator
valve
hydraulic oil
Prior art date
Application number
PCT/JP2013/071161
Other languages
English (en)
French (fr)
Inventor
春男 呉
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201380058446.3A priority Critical patent/CN104769193B/zh
Priority to KR1020157011996A priority patent/KR102043707B1/ko
Priority to JP2014545594A priority patent/JP6054414B2/ja
Priority to EP13853432.6A priority patent/EP2918734B1/en
Publication of WO2014073248A1 publication Critical patent/WO2014073248A1/ja
Priority to US14/697,713 priority patent/US10000906B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/41Liquid ports
    • F15B2201/411Liquid ports having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/715Output members, e.g. hydraulic motors or cylinders or control therefor having braking means

Definitions

  • the present invention relates to an excavator provided with a swing hydraulic motor.
  • a hydraulic excavator equipped with a swing hydraulic motor includes a relief valve in each of two pipe lines between the two ports of the swing hydraulic motor and the two ports of the flow control valve for swing.
  • the relief valve discharges the hydraulic oil in the pipe to the tank when the pressure of the hydraulic oil in the pipe becomes equal to or higher than a predetermined turning relief pressure.
  • the pressure of the hydraulic oil in the pipe line is often set to a predetermined value when the hydraulic oil discharged from the main pump at the time of turning acceleration is supplied to the drive side (suction side) of the turning hydraulic motor through one of the two pipe lines. Beyond the relief valve.
  • an object of the present invention is to provide an excavator that enables more efficient use of hydraulic oil in a swing hydraulic motor.
  • an excavator includes a swing hydraulic motor, a relief valve provided in the swing hydraulic motor, and hydraulic oil having a pressure lower than the relief pressure of the relief valve.
  • a hydraulic oil supply source that supplies the hydraulic motor.
  • the present invention can provide a shovel that enables more efficient use of hydraulic oil in a swing hydraulic motor.
  • FIG. 1 is a side view of a hydraulic excavator according to an embodiment of the present invention. It is a block diagram which shows the structure of the drive system of the hydraulic shovel of FIG. It is a figure which shows the principal part structural example of the hydraulic circuit mounted in the hydraulic shovel of FIG. It is a flowchart which shows the flow of a pressure accumulation / release pressure process. 4 is a correspondence table showing the correspondence between the state of the hydraulic circuit in FIG. 3 and the state of each switching valve. It is a figure which shows an example of the time transition of the various pressures in the case of the pressure release of the accumulator of FIG. It is a figure which shows another example of the time transition of the various pressures in the case of the pressure release of the accumulator of FIG.
  • FIG. 1 is a side view showing a hydraulic excavator according to an embodiment of the present invention.
  • the upper traveling body 3 is mounted on the lower traveling body 1 of the hydraulic excavator via the turning mechanism 2.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 constitute an attachment, and are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, which are hydraulic cylinders.
  • the upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as an engine.
  • FIG. 2 is a block diagram showing the configuration of the drive system of the hydraulic excavator shown in FIG.
  • the mechanical power system is indicated by a double line
  • the high-pressure hydraulic line is indicated by a thick solid line
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a thin solid line.
  • a main pump 14 and a pilot pump 15 as hydraulic pumps are connected to an output shaft of the engine 11 as a mechanical drive unit.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16 and a pressure release switching unit 43.
  • An operation device 26 is connected to the pilot pump 15 via a pilot line 25.
  • the control valve 17 is a device that controls the hydraulic system in the hydraulic excavator.
  • the hydraulic actuators 1A (for right) and 1B (for left), the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the swing hydraulic motor 21 and the like for the lower traveling body 1 are connected to the control valve 17 via a high pressure hydraulic line. It is connected to the.
  • the operating device 26 includes a lever 26A, a lever 26B, and a pedal 26C.
  • the lever 26A, the lever 26B, and the pedal 26C are connected to the control valve 17 and the pressure sensor 29 via hydraulic lines 27 and 28, respectively.
  • the pressure sensor 29 is a sensor for detecting the operation content of the operator using the operation device 26.
  • the pressure sensor 29 determines the operation direction and the operation amount of the lever or pedal of the operation device 26 corresponding to each of the hydraulic actuator.
  • the detected value is output to the controller 30.
  • the operation content of the operation device 26 may be detected using a sensor other than the pressure sensor.
  • the controller 30 is a controller as a main control unit that performs drive control of the hydraulic excavator.
  • the controller 30 includes a CPU (Central Processing Unit) and an arithmetic processing device including an internal memory, and is realized by the CPU executing a drive control program stored in the internal memory.
  • CPU Central Processing Unit
  • arithmetic processing device including an internal memory, and is realized by the CPU executing a drive control program stored in the internal memory.
  • the pressure sensor S1 is a sensor that detects the discharge pressure of the main pump 14, and outputs the detected value to the controller 30.
  • the pressure sensor S2L is a sensor that detects the pressure of the hydraulic oil on the first port side of the swing hydraulic motor 21, and outputs the detected value to the controller 30.
  • the pressure sensor S ⁇ b> 2 ⁇ / b> R is a sensor that detects the pressure of hydraulic oil on the second port side of the swing hydraulic motor 21, and outputs the detected value to the controller 30.
  • the pressure sensor S3 is a sensor that detects the pressure of the hydraulic oil in the accumulator unit 42, and outputs the detected value to the controller 30.
  • the first pressure release / accumulation switching unit 41 is a hydraulic circuit element that controls the flow of hydraulic oil between the swing hydraulic motor 21 and the accumulator unit 42.
  • the accumulator unit 42 is a hydraulic circuit element as a hydraulic oil supply source that accumulates excess hydraulic oil in the hydraulic circuit and releases the accumulated hydraulic oil as necessary.
  • the pressure release switching unit 43 is a hydraulic circuit element that controls the flow of hydraulic oil among the main pump 14, the control valve 17, and the accumulator unit 42.
  • FIG. 3 shows a configuration example of a main part of a hydraulic circuit mounted on the hydraulic excavator shown in FIG.
  • 3 mainly includes a turning control unit 40, a first pressure release / accumulation switching unit 41, an accumulator unit 42, and a pressure release switching unit 43.
  • the turning control unit 40 mainly includes a turning hydraulic motor 21, relief valves 400L and 400R, and check valves 401L and 401R.
  • the relief valve 400L is a valve for preventing the hydraulic oil pressure on the first port 21L side of the swing hydraulic motor 21 from exceeding a predetermined swing relief pressure. Specifically, when the pressure of the hydraulic oil on the first port 21L side reaches a predetermined turning relief pressure, the hydraulic oil on the first port 21L side is discharged to the tank.
  • the relief valve 400R is a valve for preventing the hydraulic oil pressure on the second port 21R side of the swing hydraulic motor 21 from exceeding a predetermined swing relief pressure. Specifically, when the pressure of the hydraulic oil on the second port 21R side reaches a predetermined turning relief pressure, the hydraulic oil on the second port 21R side is discharged to the tank.
  • the check valve 401L is a valve for preventing the hydraulic oil pressure on the first port 21L side from becoming less than the tank pressure. Specifically, when the pressure of the hydraulic oil on the first port 21L side decreases to the tank pressure, the hydraulic oil in the tank is supplied to the first port 21L side.
  • the check valve 401R is a valve for preventing the hydraulic oil pressure on the second port 21R side from becoming less than the tank pressure. Specifically, when the pressure of the hydraulic oil on the second port 21R side decreases to the tank pressure, the hydraulic oil in the tank is supplied to the second port 21R side.
  • the first pressure release / accumulation switching unit 41 is a hydraulic circuit element that controls the flow of hydraulic fluid between the turning control unit 40 (the turning hydraulic motor 21) and the accumulator unit 42.
  • the first pressure release / accumulation switching unit 41 mainly includes a first switching valve 410R, a second switching valve 410D, and check valves 411R, 411D.
  • the first switching valve 410R is a valve that controls the flow of hydraulic oil from the turning control unit 40 to the accumulator unit 42 during the pressure accumulation (regeneration) operation of the accumulator unit 42.
  • the first switching valve 410R is a three-port three-position switching valve, and an electromagnetic valve that switches the valve position in accordance with a control signal from the controller 30 can be used. Further, a proportional valve using a pilot pressure may be used.
  • the first switching valve 410R has a first position, a second position, and a third position as valve positions.
  • the first position is a valve position at which the first port 21L communicates with the accumulator unit 42.
  • the second position is a valve position that shuts off the turning control unit 40 and the accumulator unit 42.
  • the third position is a valve position for communicating the second port 21R and the accumulator unit 42.
  • the second switching valve 410D is a valve that controls the flow of hydraulic oil from the accumulator unit 42 to the turning control unit 40 during the pressure release (powering) operation of the accumulator unit 42.
  • the second switching valve 410D is a three-port three-position switching valve, and an electromagnetic valve that switches the valve position in accordance with a control signal from the controller 30 can be used. Further, a proportional valve using a pilot pressure may be used.
  • the second switching valve 410D has a first position, a second position, and a third position as valve positions.
  • the first position is a valve position at which the accumulator unit 42 and the first port 21L communicate with each other.
  • the second position is a valve position that blocks the accumulator unit 42 and the turning control unit 40.
  • the third position is a valve position that allows the accumulator unit 42 and the second port 21R to communicate with each other.
  • the check valve 411R is a valve that prevents hydraulic fluid from flowing from the accumulator unit 42 to the turning control unit 40.
  • the check valve 411 ⁇ / b> D is a valve that prevents hydraulic oil from flowing from the turning control unit 40 to the accumulator unit 42.
  • first pressure accumulation (regeneration) circuit the combination of the first switching valve 410R and the check valve 411R
  • first pressure release (power running) circuit the combination of the second switching valve 410D and the check valve 411D
  • the accumulator unit 42 is a hydraulic circuit element that accumulates excess hydraulic oil in the hydraulic circuit and releases the accumulated hydraulic oil as necessary. Specifically, the accumulator unit 42 accumulates the hydraulic fluid on the braking side (discharge side) of the swing hydraulic motor 21 during turning deceleration and the hydraulic oil on the drive side (suction side) of the swing hydraulic motor 21 during turning acceleration. Release. The accumulator unit 42 can also release the accumulated hydraulic oil to the hydraulic actuator during the operation of the hydraulic actuator other than the swing hydraulic motor 21.
  • the accumulator unit 42 mainly includes a first accumulator 420A, a second accumulator 420B, a third accumulator 420C, a first on-off valve 421A, a second on-off valve 421B, and a third on-off valve 421C.
  • the first accumulator 420A, the second accumulator 420B, and the third accumulator 420C are devices that accumulate excess hydraulic oil in the hydraulic circuit and release the accumulated hydraulic oil as necessary.
  • each accumulator is a bladder type accumulator that uses nitrogen gas, and accumulates or discharges hydraulic oil using the compressibility of nitrogen gas and the incompressibility of hydraulic oil.
  • the capacity of each accumulator is arbitrary and may be the same capacity or different capacity.
  • the maximum discharge pressure of the first accumulator 420A is larger than the maximum discharge pressure of the second accumulator 420B, and the maximum discharge pressure of the second accumulator 420B is larger than the maximum discharge pressure of the third accumulator 420C.
  • the “maximum discharge pressure” is the maximum pressure that can be discharged by the accumulator, and is the pressure determined by the maximum pressure of the accumulator during the pressure accumulation (regeneration) operation.
  • the maximum discharge pressure of the first accumulator 420A is adjusted to a predetermined value by opening / closing control of the first opening / closing valve 421A. The same applies to the second accumulator 420B and the third accumulator 420C.
  • the first on-off valve 421A, the second on-off valve 421B, and the third on-off valve 421C are valves that open and close in response to control signals from the controller 30, respectively. Controls pressure accumulation / release.
  • the controller 30 can open the first on-off valve 421A when the brake-side (discharge side) pressure of the swing hydraulic motor 21 is higher than the pressure of the first accumulator 420A during the swing deceleration.
  • the first on-off valve 421A is closed. Thereby, the controller 30 can prevent the hydraulic oil of the first accumulator 420A from flowing to the braking side (discharge side) of the turning hydraulic motor 21 during the turning deceleration.
  • the controller 30 enables the first on-off valve 421A to be opened when the pressure of the first accumulator 420A is higher than the pressure on the drive side (suction side) of the swing hydraulic motor 21 during the turning acceleration, and the first accumulator 420A When the pressure is lower than the pressure on the drive side (suction side) of the swing hydraulic motor 21, the first on-off valve 421A is closed. Thereby, the controller 30 can prevent the hydraulic fluid on the drive side (suction side) of the swing hydraulic motor 21 from flowing to the first accumulator 420A during the swing acceleration.
  • the opening / closing control of the second opening / closing valve 421B relating to the second accumulator 420B
  • the opening / closing control of the third opening / closing valve 421C relating to the third accumulator 420C.
  • the pressure release switching unit 43 is a hydraulic circuit element that controls the flow of hydraulic oil among the main pump 14, the control valve 17, and the accumulator unit 42.
  • the pressure release switching unit 43 mainly includes a third switching valve 430, a fourth switching valve 431, and a check valve 432.
  • the third switching valve 430 is a valve that controls the flow of hydraulic oil to the swing hydraulic motor 21 via the control valve 17.
  • the third switching valve 430 is a 2-port 2-position switching valve, and an electromagnetic valve that switches the valve position in accordance with a control signal from the controller 30 can be used. Further, a proportional valve using a pilot pressure may be used.
  • the third switching valve 430 has a first position and a second position as valve positions. The first position is a valve position at which the main pump 14 and the accumulator unit 42 communicate with the swing hydraulic motor flow control valve 17 ⁇ / b> A in the control valve 17. The second position is a valve position that shuts off the main pump 14, the accumulator unit 42, and the flow control valve 17A for the swing hydraulic motor.
  • the fourth switching valve 431 is a valve that controls the flow of hydraulic oil from the accumulator unit 42 to the control valve 17 when the accumulator unit 42 is released (powered).
  • the fourth switching valve 431 is a 2-port 2-position switching valve, and switches the valve position in accordance with a control signal from the controller 30.
  • the fourth switching valve 431 has a first position and a second position as valve positions.
  • the first position is a valve position at which the main pump 14 and the control valve 17 communicate with the accumulator unit 42.
  • the second position is a valve position at which the main pump 14 and the control valve 17 are disconnected from the accumulator unit 42.
  • the check valve 432 is a valve for preventing the hydraulic oil discharged from the main pump 14 from flowing into the accumulator unit 42.
  • the combination of the fourth switching valve 431 and the check valve 432 is referred to as a second pressure release (powering) circuit.
  • FIG. 4 is a flowchart showing the flow of the pressure accumulation / release pressure process, and the controller 30 repeatedly executes this pressure accumulation / release pressure process at a predetermined cycle.
  • FIG. 5 is a correspondence table showing the correspondence between the state of the hydraulic circuit in FIG. 3 and the state of each switching valve.
  • the controller 30 determines whether or not the turning operation is being performed based on the outputs of various sensors for detecting the state of the excavator (step ST1). In the present embodiment, the controller 30 determines whether or not the turning operation is being performed based on the operation amount of the turning operation lever.
  • step ST1 the controller 30 determines whether the vehicle is accelerating or decelerating based on the output of various sensors (step ST2). In the present embodiment, the controller 30 determines whether the turning acceleration or turning deceleration is being performed based on the operation amount of the turning operation lever.
  • step ST2 If it is determined that the vehicle is turning and decelerating (step ST2 is decelerating), the controller 30 changes the state of the hydraulic circuit to the “turning regeneration” state (step ST3).
  • the controller 30 outputs a control signal to the first switching valve 410R to set the first switching valve 410R to the first position or the third position, and to the first switching valve 410R.
  • the turning control unit 40 and the accumulator unit 42 are communicated with each other through a pressure accumulation (regeneration) circuit.
  • the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position so that the main pump 14 and the control valve 17 communicate with each other.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the second position, thereby blocking communication between the control valve 17 and the accumulator unit 42.
  • the swing hydraulic motor flow control valve 17A in the control valve 17 is in the shut-off state, that is, the communication between the swing hydraulic motor 21 and the main pump 14 and the tank is shut off. . Therefore, even if the third switching valve 430 is in the first position, the return oil from the swing hydraulic motor 21 is not discharged to the tank through the swing hydraulic motor flow control valve 17A.
  • the hydraulic fluid on the brake side (discharge side) of the swing hydraulic motor 21 flows to the accumulator unit 42 through the first pressure accumulation (regeneration) circuit and flows into the accumulator unit 42 (for example, the first accumulator 420A). Is accumulated). Further, since the fourth switching valve 431 is in the shut-off state (second position), the hydraulic oil on the brake side (discharge side) of the swing hydraulic motor 21 does not flow into the control valve 17 through the fourth switching valve 431. Absent.
  • step ST4 the controller 30 determines whether or not the pressure accumulation state of the accumulator unit 42 is appropriate (step ST4).
  • the controller 30 determines that the hydraulic oil pressure accumulated in the first accumulator 420A is higher than the drive side (suction side) pressure of the swing hydraulic motor 21 based on the outputs of the pressure sensors S2L, S2R, and S3. It is determined whether or not.
  • the controller 30 may determine whether or not the pressure accumulation state of the accumulator unit 42 is appropriate based on whether or not the pressure of the hydraulic oil accumulated in the first accumulator 420A is equal to or higher than a predetermined pressure.
  • the controller 30 changes the state of the hydraulic circuit to the “turning power running” state (step ST5).
  • the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the turning control unit 40 and the accumulator.
  • the communication with the unit 42 is blocked.
  • the controller 30 outputs a control signal to the second switching valve 410D to set the second switching valve 410D to the first position or the third position, and the turning control unit 40 and the accumulator through the first pressure release (power running) circuit.
  • the part 42 is communicated.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the second position, and disconnects the communication between the main pump 14 and the control valve 17.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the second position, thereby blocking communication between the control valve 17 and the accumulator unit 42.
  • the hydraulic oil in the first accumulator 420A is discharged to the drive side (suction side) of the turning hydraulic motor 21 through the first pressure release (power running) circuit, and the turning hydraulic motor 21 is driven to turn. Is done. Further, since the fourth switching valve 431 is in the shut-off state (second position), the hydraulic oil in the first accumulator 420A does not flow into the control valve 17 through the fourth switching valve 431.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position, and the main pump 14 and the flow control valve for the turning hydraulic motor. You may communicate between 17A. In this case, in addition to the hydraulic oil discharged from the first accumulator 420A, the hydraulic oil discharged from the main pump 14 is supplied to the drive side (suction side) of the swing hydraulic motor 21.
  • step ST4 when it is determined that the pressure accumulation state is not appropriate, for example, when it is determined that the pressure of the hydraulic oil accumulated in the first accumulator 420A is lower than the pressure on the drive side (suction side) of the swing hydraulic motor 21 (step)
  • the controller 30 sets the state of the hydraulic circuit to the “pump supply” state (NO in ST4) (step ST6).
  • the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the turning control unit 40 and the accumulator. The communication with the unit 42 is blocked.
  • the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position, thereby communicating between the main pump 14 and the flow control valve 17A for the swing hydraulic motor.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the second position, thereby blocking communication between the control valve 17 and the accumulator unit 42.
  • step ST7 the controller 30 determines whether or not the other hydraulic actuator is operating based on the operation amount of the operation lever of the other hydraulic actuator.
  • step ST7 the controller 30 determines whether or not the pressure accumulation state of the accumulator unit 42 is appropriate (step ST8).
  • the controller 30 determines the pressure of the hydraulic oil accumulated in the first accumulator 420A based on the output of a pressure sensor (not shown) for detecting the pressure of the hydraulic oil in the boom cylinder 7. It is determined whether or not the pressure on the drive side of the boom cylinder 7 is higher.
  • the drive side of the boom cylinder 7 means the oil chamber whose volume increases among the bottom side oil chamber and the rod side oil chamber. The same applies to the arm cylinder 8 and the bucket cylinder 9.
  • step ST8 When it is determined that the pressure accumulation state is appropriate, for example, when it is determined that the pressure of the hydraulic oil accumulated in the first accumulator 420A is higher than the pressure on the drive side of the boom cylinder 7 (YES in step ST8), the controller 30 Then, the state of the hydraulic circuit is changed to the “cylinder driving” state (step ST9).
  • the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the turning control unit 40 and the accumulator. The communication with the unit 42 is blocked.
  • the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position, thereby communicating between the main pump 14 and the flow control valve 17A for the swing hydraulic motor.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the first position, and between the control valve 17 and the accumulator unit 42 through the second pressure release (powering) circuit. To communicate.
  • step ST8 when it is determined that the pressure accumulation state is not appropriate, for example, when it is determined that the pressure of the hydraulic oil accumulated in the first accumulator 420A is lower than the pressure on the drive side of the boom cylinder 7 (NO in step ST8).
  • the controller 30 changes the state of the hydraulic circuit to the “pump supply” state (step ST10).
  • the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the turning control unit 40 and the accumulator. The communication with the unit 42 is blocked.
  • the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position, thereby communicating between the main pump 14 and the flow control valve 17A for the swing hydraulic motor.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the second position, thereby blocking communication between the control valve 17 and the accumulator unit 42.
  • step ST7 If it is determined in step ST7 that no other hydraulic actuator is operating (NO in step ST7), the controller 30 sets the state of the hydraulic circuit to the “no load” state (step ST11).
  • the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the turning control unit 40 and the accumulator. The communication with the unit 42 is blocked.
  • the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42.
  • the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position, thereby communicating between the main pump 14 and the flow control valve 17A for the swing hydraulic motor.
  • the controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the second position, thereby blocking communication between the control valve 17 and the accumulator unit 42.
  • FIG. 6 shows an example of temporal transitions of the operating lever pressure Pi, the accumulator pressure Pa, and the swing motor pressure Ps during the pressure releasing (powering) operation of the accumulator unit 42.
  • the transition of the operation lever pressure Pi in the upper part of FIG. 6 represents the transition of the pilot pressure that varies according to the operation of the turning operation lever.
  • the transition of the accumulator pressure Pa in the middle of FIG. 6 represents the transition of the pressure of the accumulator unit 42 derived from the detection value of the pressure sensor S3.
  • the pressure of the accumulator unit 42 is one of the three accumulators.
  • the transition of the swing motor pressure Ps in the lower part of FIG. 6 represents the transition of the detected value of the pressure sensor S2L that is the pressure on the drive side (suction side) of the swing hydraulic motor 21.
  • the operation lever pressure Pi increases to a pressure corresponding to the lever inclination amount. Then, the controller 30 changes the state of the hydraulic circuit to the “turning power running” state.
  • the third switching valve 430 since the third switching valve 430 is in the shut-off state (second position), the hydraulic oil discharged from the main pump 14 passes through the swing hydraulic motor flow control valve 17A and is on the drive side (suction side) of the swing hydraulic motor 21. Will not flow into.
  • the controller 30 releases the hydraulic oil of the accumulator unit 42 to the drive side of the swing hydraulic motor 21 in response to the operation of the swing operation lever at time t1, the hydraulic oil is unnecessarily discharged through the relief valve 400L. Can be prevented.
  • the accumulator pressure Pa does not exceed a predetermined turning relief pressure.
  • the accumulator unit 42 accumulates only the hydraulic fluid on the braking side (discharge side) of the swing hydraulic motor 21, that is, the hydraulic fluid having a predetermined swing relief pressure or less.
  • the controller 30 changes the state of the hydraulic circuit to the “pump supply” state.
  • the second switching valve 410D enters the cutoff state (second position), and the operation from the accumulator unit 42 to the swing hydraulic motor 21 through the first pressure release (power running) circuit. Oil release is blocked. Therefore, the accumulator pressure Pa changes with the minimum discharge pressure as shown in the middle part of FIG.
  • the third switching valve 430 is in the open state (first position), and the supply of hydraulic oil from the main pump 14 to the swing hydraulic motor 21 through the swing hydraulic motor flow control valve 17A is continued.
  • the main pump 14 increases the discharge flow rate by a flow rate corresponding to the flow rate of the hydraulic oil from the accumulator unit 42 while maintaining the discharge pressure.
  • the controller 30 can drive the swing hydraulic motor 21 using the hydraulic oil from the main pump 14 while preventing the hydraulic oil from being discharged unnecessarily through the relief valve 400L.
  • FIG. 7 shows an example of temporal transition of the pump pressure Pp, the accumulator pressure Pa, and the swing motor pressure Ps during the pressure release (power running) operation of the accumulator unit 42.
  • the transition of the pump pressure Pp in the upper part of FIG. 7 represents the transition of the discharge pressure of the main pump 14 (detected value of the pressure sensor S1).
  • the transition of the accumulator pressure Pa in the middle of FIG. 7 represents the transition of the pressure of the accumulator unit 42 derived from the detection value of the pressure sensor S3.
  • the transition of the swing motor pressure Ps in the lower part of FIG. 7 represents the transition of the detected value of the pressure sensor S2L that is the pressure on the drive side (suction side) of the swing hydraulic motor 21.
  • the controller 30 changes the state of the hydraulic circuit to “when the load of the main pump 14 is larger than the threshold (for example, when the pump pressure Pp is higher than the turning relief pressure). "Swivel power running" state.
  • the state of the hydraulic circuit is “turning power running”.
  • the pump pressure Pp is, for example, equal to or higher than the swing relief pressure when a hydraulic actuator other than the swing hydraulic motor 21 receives a high load.
  • the third switching valve 430 since the third switching valve 430 is in the shut-off state (second position), the hydraulic oil discharged from the main pump 14 passes through the swing hydraulic motor flow control valve 17A and is on the drive side (suction side) of the swing hydraulic motor 21. Will not flow into. Therefore, as shown in the lower part of FIG. 7, the swing motor pressure Ps follows the same transition as the accumulator pressure Pa while maintaining a state lower than a predetermined swing relief pressure.
  • the controller 30 releases the hydraulic oil of the accumulator part 42 to the drive side of the swing hydraulic motor 21 according to the operation of the swing operation lever at time t11, the hydraulic oil is discharged wastefully through the relief valve 400L. Can be prevented.
  • the accumulator pressure Pa does not exceed a predetermined turning relief pressure.
  • the accumulator unit 42 accumulates only the hydraulic fluid on the braking side (discharge side) of the swing hydraulic motor 21, that is, the hydraulic fluid having a predetermined swing relief pressure or less.
  • the controller 30 changes the state of the hydraulic circuit to the “turning regeneration” state.
  • the swing hydraulic motor flow control valve 17A in the control valve 17 is in the shut-off state, that is, the communication between the swing hydraulic motor 21 and the main pump 14 and the tank is shut off. . Therefore, the pump pressure Pp remains unchanged as shown in the upper part of FIG. 7 without being affected at all.
  • the controller 30 can prevent hydraulic oil higher than a predetermined swing relief pressure from being supplied to the swing hydraulic motor 21 by the main pump 14.
  • the controller 30 supplies the hydraulic oil in the accumulator portion 42 to the turning hydraulic motor 21 instead of the hydraulic oil discharged from the main pump 14. To do. As a result, it is possible to prevent the hydraulic oil discharged from the main pump 14 from being discharged wastefully through the relief valve 400L.
  • controller 30 supplies the hydraulic oil of the accumulator unit 42 to the swing hydraulic motor 21 instead of the hydraulic oil discharged from the main pump 14 even when the pump pressure Pp is higher than the swing relief pressure and the swing fine operation is performed. To do. As a result, it is possible to prevent the hydraulic oil discharged from the main pump 14 from causing pressure loss at the swing hydraulic motor flow control valve 17A.
  • the swing hydraulic motor 21 can be driven by the accumulator unit 42, all the hydraulic oil discharged from the main pump 14 can be supplied to another hydraulic actuator (for example, the boom cylinder 7). Thereby, the operability of the other hydraulic actuators can be maintained while the operability of the swing hydraulic motor 21 is maintained.
  • another hydraulic actuator for example, the boom cylinder 7
  • the controller 30 uses the hydraulic oil of the accumulator portion 42 to operate the swing hydraulic motor 21 in any of the swing full operation and the swing fine operation. By rotating the, the hydraulic energy can be prevented from being wasted and energy saving can be achieved.
  • FIG. 8 is a diagram corresponding to FIG. 3 and shows the flow of hydraulic oil from the accumulator portion 42 to the hydraulic cylinders 7, 8, 9 during the pressure release process at the time of turning stop.
  • FIG. 8 shows the flow of hydraulic oil from the first accumulator 420A to the hydraulic cylinders 7, 8, and 9, but from one, two, or three of the three accumulators, the hydraulic cylinders 7, 8, The hydraulic oil may be supplied to 9.
  • the controller 30 changes the state of the hydraulic circuit to the “cylinder drive” state if the accumulator unit 42 is in an appropriate pressure accumulation state.
  • the controller 30 In the “cylinder drive” state, the controller 30 outputs a control signal to the first switching valve 410R to place the first switching valve 410R in the second position, and the communication between the turning control unit 40 and the accumulator unit 42. Shut off. In addition, the controller 30 outputs a control signal to the second switching valve 410D to place the second switching valve 410D in the second position, and disconnects the communication between the turning control unit 40 and the accumulator unit 42. In addition, the controller 30 outputs a control signal to the third switching valve 430 to place the third switching valve 430 in the first position so that the main pump 14 and the control valve 17 communicate with each other. The controller 30 outputs a control signal to the fourth switching valve 431 to place the fourth switching valve 431 in the first position, and between the control valve 17 and the accumulator unit 42 through the second pressure release (powering) circuit. To communicate.
  • the hydraulic oil in the accumulator portion 42 is discharged to the drive side of the boom cylinder 7 through the second pressure release (powering) circuit and the boom cylinder flow control valve 17B, and the boom cylinder 7 is driven. Is done. Further, since the second switching valve 410D is in the shut-off state (second position), the hydraulic oil in the accumulator unit 42 does not flow into the turning control unit 40 (the turning hydraulic motor 21) through the second switching valve 410D. .
  • the controller 30 discharges the hydraulic oil in the accumulator section 42 from the main pump 14. To join. Accordingly, the controller 30 can reduce the pump output of the main pump 14 and save energy.
  • FIG. 9 shows another configuration example of a main part of a hydraulic circuit mounted on the hydraulic excavator shown in FIG.
  • FIG. 9 differs from the hydraulic circuit of FIG. 3 in that it includes a pressure release switching unit 43A having a fifth switching valve 433 and a sixth switching valve 434 instead of the fourth switching valve 431.
  • the hydraulic circuit of FIG. 9 is common to the hydraulic circuit of FIG. 3 in other points. Therefore, description of common points is omitted, and differences are described in detail.
  • the pressure release switching unit 43A as a second pressure release (powering) circuit is a hydraulic circuit component that connects the accumulator unit 42 to the upstream side (suction side) or the downstream side (discharge side) of the main pump 14.
  • the pressure release switching unit 43A mainly includes a fifth switching valve 433 and a sixth switching valve 434.
  • the fifth switching valve 433 is a valve that controls the flow of hydraulic oil from the accumulator unit 42 to the control valve 17 through the junction on the downstream side of the main pump 14 during the pressure release (powering) operation of the accumulator unit 42. is there.
  • the fifth switching valve 433 is a 2-port 2-position switching valve, and an electromagnetic valve that switches the valve position in accordance with a control signal from the controller 30 can be used. Further, a proportional valve using a pilot pressure may be used.
  • the fifth switching valve 433 has a first position and a second position as valve positions. The first position is a valve position at which the accumulator unit 42 and the control valve 17 are communicated with each other via a junction on the downstream side of the main pump 14. The second position is a valve position that shuts off the accumulator unit 42 and the control valve 17.
  • the sixth switching valve 434 is a valve that controls the flow of hydraulic oil from the accumulator section 42 to the control valve 17 through the confluence on the upstream side of the main pump 14 during the pressure release (powering) operation of the accumulator section 42. is there.
  • the sixth switching valve 434 is a 2-port 2-position switching valve, and an electromagnetic valve that switches the valve position in accordance with a control signal from the controller 30 can be used. Further, a proportional valve using a pilot pressure may be used.
  • the sixth switching valve 434 has a first position and a second position as valve positions. The first position is a valve position at which the accumulator unit 42 and the control valve 17 are communicated with each other via a junction on the upstream side of the main pump 14. The second position is a valve position that shuts off the accumulator unit 42 and the control valve 17.
  • the main pump 14 When the sixth switching valve 434 is in the first position, the communication between the main pump 14 and the tank is blocked on the upstream side of the main pump 14, and the main pump 14 and the accumulator unit 42 are communicated.
  • the main pump 14 sucks in the hydraulic oil having a relatively high pressure released from the accumulator unit 42 and discharges the hydraulic oil toward the control valve 17.
  • the main pump 14 can reduce the absorption horsepower (torque required to discharge a predetermined amount of hydraulic oil) and save energy compared to the case where the hydraulic oil having a relatively low pressure is sucked and discharged from the tank. Can be promoted.
  • the main pump 14 can improve the responsiveness of discharge amount control.
  • the sixth switching valve 434 when the sixth switching valve 434 is in the second position, the main pump 14 and the tank are communicated upstream of the main pump 14, and the communication between the main pump 14 and the accumulator unit 42 is blocked.
  • the main pump 14 sucks the hydraulic oil having a relatively low pressure from the tank and discharges the hydraulic oil toward the control valve 17.
  • the controller 30 closes the first pressure release (power running) circuit and opens the second pressure release (power running) circuit 43 ⁇ / b> A to supply the hydraulic oil of the accumulator unit 42 to the control valve 17 during the pressure release (power running) operation.
  • the controller 30 opens the first pressure release (power running) circuit and closes the second pressure release (power running) circuit 43 ⁇ / b> A during the pressure release (power running) operation so that the hydraulic oil in the accumulator unit 42 is supplied to the swing hydraulic motor 21. Supply.
  • controller 30 opens both the first pressure release (power running) circuit and the second pressure release (power running) circuit 43A during the pressure release (power running) operation so that the hydraulic oil in the accumulator section 42 is supplied to the turning hydraulic motor 21 and It may be supplied to both control valves 17.
  • the controller 30 sets one of the fifth switching valve 433 and the sixth switching valve 434 to the first position and sets the other to the second position.
  • the controller 30 sets the fifth switching valve 433 to the first position and switches the sixth switching valve. Valve 434 is in the second position. Then, the controller 30 discharges the hydraulic oil in the accumulator portion 42 toward the control valve 17 through the junction on the downstream side of the main pump 14.
  • the controller 30 sets the fifth switching valve 433 to the second position and sets the sixth switching valve 434 to the second position if the pressure of the accumulator unit 42 is lower than the pressure on the driving side of the hydraulic actuator. Set to the first position. Then, the controller 30 causes the hydraulic oil in the accumulator portion 42 to be discharged toward the main pump 14 through the junction on the upstream side of the main pump 14. The main pump 14 sucks the hydraulic oil discharged from the accumulator part 42 and discharges it downstream, instead of sucking the hydraulic oil from the tank. As a result, the main pump 14 can reduce the absorption horsepower as compared with the case where the hydraulic oil having a relatively low pressure is sucked from the tank and discharged.
  • the hydraulic circuit of FIG. 9 has the effect of the accumulator 42 even when the pressure of the accumulator 42 is lower than the pressure on the drive side of the hydraulic actuator to be operated, in addition to the effects of the hydraulic circuit of FIG.
  • the pressure release (power running) operation of the unit 42 can be executed.
  • the second pressure release (power running) circuit 43 ⁇ / b> A has a configuration in which the hydraulic oil from the accumulator unit 42 is joined at the upstream junction or downstream junction of the main pump 14.
  • the present invention is not limited to this configuration.
  • the second pressure release (power running) circuit 43A omits the pipe line including the check valve 432 and the fifth switching valve 433, and the hydraulic oil from the accumulator unit 42 is supplied only at the merging point on the upstream side of the main pump 14.
  • the structure which can be made to merge may be sufficient.
  • the swing hydraulic motor 21 It is good also as a structure which joins the return oil from the side at the confluence
  • FIG. 10 is a view corresponding to FIG. 9 and shows the flow of hydraulic oil from the accumulator unit 42 to the hydraulic cylinders 7, 8, 9 during the low pressure release process.
  • FIG. 10 shows the flow of hydraulic oil from the first accumulator 420A to the hydraulic cylinders 7, 8, and 9, but from one, two, or three of the three accumulators, the hydraulic cylinders 7, 8, The hydraulic oil may be supplied to 9.
  • the controller 30 When the boom operation lever is operated, the controller 30 outputs a control signal to the fifth switching valve 433 and outputs the control signal to the fifth switching valve 433 when the pressure of the accumulator portion 42 is lower than the pressure on the drive side of the boom cylinder 7. Is the second position, and the communication between the downstream side of the main pump 14 and the accumulator unit 42 is blocked. Further, the controller 30 outputs a control signal to the sixth switching valve 434 to place the sixth switching valve 434 in the first position, and to communicate between the upstream side of the main pump 14 and the accumulator unit 42.
  • the hydraulic oil in the accumulator unit 42 is discharged to the drive side of the boom cylinder 7 through the sixth switching valve 434, the main pump 14, and the boom cylinder flow control valve 17B, and the boom cylinder 7 is driven.
  • the controller 30 joins the hydraulic oil in the accumulator section 42 to the upstream side of the main pump 14. Accordingly, the controller 30 can reduce the absorption horsepower of the main pump 14 and save energy. The same applies when a hydraulic actuator other than the boom cylinder 7 is driven.
  • the hydraulic circuit according to the above-described embodiment suppresses or prevents the hydraulic oil from being discharged through the relief valves 400L and 400R at the time of turning acceleration. Therefore, the hydraulic oil in the swing hydraulic motor can be used more efficiently.
  • the hydraulic circuit according to the above-described embodiment can discharge the hydraulic oil accumulated in the accumulator unit 42 not only to the swing hydraulic motor 21 but also to one or more hydraulic actuators other than the swing hydraulic motor 21. Therefore, the hydraulic circuit according to the above-described embodiment can efficiently use the hydraulic energy accumulated in the accumulator unit 42.
  • the controller 30 controls the flow of hydraulic oil to the swing hydraulic motor 21 via the control valve 17 by switching between communication and blocking of the third switching valve 430.
  • the controller 30 adjusts the pilot pressure of the flow control valve 17A for the swing hydraulic motor in the control valve 17 with a proportional valve (not shown), thereby supplying hydraulic oil to the swing hydraulic motor 21 via the control valve 17.
  • the flow may be controlled.
  • the controller 30 adjusts the pilot pressure with a proportional valve as necessary even when the swing operation lever is operated, and the swing hydraulic motor via the swing hydraulic motor flow control valve 17A. The flow of hydraulic oil to 21 is shut off.
  • the controller 30 determines whether or not the boom cylinder 7 is operating after determining whether or not the turning operation is being performed. Then, when the pressure in the accumulator unit 42 is higher than the pressure on the drive side of the boom cylinder 7 in operation, the controller 30 releases the hydraulic oil in the accumulator unit 42 to the drive side of the boom cylinder 7.
  • the controller 30 may determine whether or not the boom cylinder 7 is operating before determining whether or not the turning operation is being performed. In this case, when the pressure in the accumulator unit 42 is higher than the pressure on the drive side of the boom cylinder 7 in operation, the controller 30 releases the hydraulic oil in the accumulator unit 42 to the drive side of the boom cylinder 7.
  • the controller 30 is higher than the pressure on the drive side of the swing hydraulic motor 21 in operation.
  • the hydraulic oil in the accumulator unit 42 is discharged to the drive side of the swing hydraulic motor 21.
  • the controller 30 does not change the pressure on the driving side of the boom cylinder 7 in operation. Then, the hydraulic oil in the accumulator unit 42 is discharged to the drive side of the boom cylinder 7. The same applies to the relationship between the swing hydraulic motor 21 and the hydraulic actuator other than the boom cylinder 7.
  • the controller 30 is configured so that the accumulator unit can be operated even when the pressure of the hydraulic oil accumulated in the accumulator unit 42 is lower than the pressure on the driving side of the hydraulic actuator in operation.
  • the hydraulic oil accumulated in 42 can be discharged toward the hydraulic actuator.
  • an accumulator as a hydraulic oil accumulation destination can be selected from a plurality of accumulators.
  • an accumulator as a hydraulic oil accumulation destination is selected from a plurality of accumulators having different maximum discharge pressures according to the pressure of hydraulic oil on the braking side of the swing hydraulic motor 21. Can be selected.
  • the pressure accumulation (regeneration) operation is performed even when the pressure of the hydraulic fluid on the brake side is low.
  • the hydraulic circuit according to the present embodiment includes an accumulator as a supply source of hydraulic oil from a plurality of accumulators having different maximum discharge pressures according to a required discharge pressure during a pressure release (powering) operation. Can be selected. As a result, an accumulator with a low discharge pressure is used more efficiently.
  • first accumulator 420A, the second accumulator 420B, and the third accumulator 420C may have a discharge pressure range determined by the maximum discharge pressure and the minimum discharge pressure.
  • the hydraulic fluid on the brake side of the swing hydraulic motor 21 is accumulated in an accumulator having a discharge pressure range that matches the pressure of the hydraulic fluid on the brake side.
  • one of the plurality of accumulators is selected as the hydraulic oil accumulation destination during the pressure accumulation (regeneration) operation or the hydraulic oil supply source during the pressure release (power running) operation. That is, the plurality of accumulators are accumulated or released at different timings. Therefore, each of the plurality of accumulators can accumulate or release the hydraulic oil without being affected by the pressure of the other accumulator.
  • the present invention is not limited to this.
  • two or more accumulators may be simultaneously selected as a storage destination or a supply source. That is, two or more accumulators may be accumulated or released at a partially or entirely overlapping timing.
  • the hydraulic oil accumulated in the accumulator unit 42 is discharged toward the swing hydraulic motor 21 or one or more hydraulic actuators other than the swing hydraulic motor 21.
  • the present invention is not limited to this configuration.
  • the hydraulic oil accumulated in the accumulator unit 42 may be simultaneously released toward the swing hydraulic motor 21 and one or more hydraulic actuators other than the swing hydraulic motor 21.
  • the accumulator unit is employed as the hydraulic oil supply source, but other hydraulic circuit elements such as a separate hydraulic pump and hydraulic pressure booster may be employed.
  • Pressure sensor 0 Controller 40 ... Swivel control unit 41 ... First release / accumulation switching unit 42 ... Accumulator unit 43, 43A ... Release pressure switching unit 400L, 400R ... Relief valve 401L, 401R ... check valve 410R ... first switching valve 410D ... second switching valve 411R, 411D ... check valve 420A, 420B, 420C ... accumulator 421A, 421B, 421C ... opening and closing Valve 430 ... third switching valve 431 ... fourth switching valve 432 ... check valve 433 ... fifth switching valve 434 ... sixth switching valve S1, S2L, S2R, S3 ... Pressure sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 本発明の実施例に係る油圧ショベルは、旋回油圧モータ21と、旋回油圧モータ21に設けられるリリーフ弁400L、400Rと、リリーフ弁400L、400Rのリリーフ圧より低い圧力の作動油を旋回油圧モータ21に供給するアキュムレータ部42とを備える。アキュムレータ部42は、旋回油圧モータ21の制動側の作動油を蓄積する。アキュムレータ部42は、メインポンプ14の上流に作動油を放出可能である。

Description

ショベル
 本発明は、旋回油圧モータを備えたショベルに関する。
 従来、旋回油圧モータを備えた油圧ショベルが知られている(例えば、特許文献1参照)。
特開2000-204604号公報
 通常、旋回油圧モータを備えた油圧ショベルは、旋回油圧モータの2つのポートと旋回用流量制御弁の2つのポートとの間の2つの管路のそれぞれにリリーフ弁を備える。リリーフ弁は、管路内の作動油の圧力が所定の旋回リリーフ圧以上となった場合に、管路内の作動油をタンクに排出する。管路内の作動油の圧力はしばしば、旋回加速の際にメインポンプの吐出する作動油が2つの管路の何れかを通じて旋回油圧モータの駆動側(吸い込み側)に供給されると、所定のリリーフ弁を超える。
 しかしながら、リリーフ弁を通じた作動油のタンクへの排出は、メインポンプの吐出する作動油を無駄に捨ててしまうこととなり、作動油の利用方法としては効率的でない。
 上述の点に鑑み、本発明は、旋回油圧モータにおける作動油のより効率的な利用を可能とするショベルを提供することを目的とする。
 上述の目的を達成するために、本発明の実施例に係るショベルは、旋回油圧モータと、前記旋回油圧モータに設けられるリリーフ弁と、前記リリーフ弁のリリーフ圧より低い圧力の作動油を前記旋回油圧モータに供給する作動油供給源と、を備える。
 上述の手段により、本発明は、旋回油圧モータにおける作動油のより効率的な利用を可能とするショベルを提供することができる。
本発明の実施例に係る油圧ショベルの側面図である。 図1の油圧ショベルの駆動系の構成を示すブロック図である。 図1の油圧ショベルに搭載される油圧回路の要部構成例を示す図である。 蓄圧・放圧処理の流れを示すフローチャートである。 図3の油圧回路の状態と各切換弁の状態との対応関係を示す対応表である。 図3のアキュムレータの放圧の際の各種圧力の時間的推移の一例を示す図である。 図3のアキュムレータの放圧の際の各種圧力の時間的推移のさらに別の一例を示す図である。 旋回停止時放圧処理中におけるアキュムレータ部から油圧シリンダへの作動油の流れを示す図である。 図1の油圧ショベルに搭載される油圧回路の別の要部構成例を示す図である。 低圧時放圧処理中におけるアキュムレータ部から油圧シリンダへの作動油の流れを示す図である。
 図面を参照しながら本発明の実施例について説明する。
 図1は、本発明の実施例に係る油圧ショベルを示す側面図である。
 油圧ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3には、ブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられている。ブーム4、アーム5、及びバケット6は、アタッチメントを構成し、油圧シリンダであるブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、キャビン10が設けられ、且つエンジン等の動力源が搭載される。
 図2は、図1の油圧ショベルの駆動系の構成を示すブロック図である。図2において、機械的動力系は二重線、高圧油圧ラインは太実線、パイロットラインは破線、電気駆動・制御系は細実線でそれぞれ示されている。
 機械式駆動部としてのエンジン11の出力軸には、油圧ポンプとしてのメインポンプ14及びパイロットポンプ15が接続されている。メインポンプ14には、高圧油圧ライン16及び放圧切換部43を介してコントロールバルブ17が接続されている。また、パイロットポンプ15には、パイロットライン25を介して操作装置26が接続されている。
 コントロールバルブ17は、油圧ショベルにおける油圧系の制御を行う装置である。下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、旋回油圧モータ21等の油圧アクチュエータは、高圧油圧ラインを介してコントロールバルブ17に接続されている。
 操作装置26は、レバー26A、レバー26B、及びペダル26Cを含む。レバー26A、レバー26B、及びペダル26Cは、油圧ライン27及び28を介して、コントロールバルブ17及び圧力センサ29にそれぞれ接続されている。
 圧力センサ29は、操作装置26を用いた操作者の操作内容を検出するためのセンサであり、例えば、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。なお、操作装置26の操作内容は、圧力センサ以外の他のセンサを用いて検出されてもよい。
 コントローラ30は、油圧ショベルの駆動制御を行う主制御部としてのコントローラである。コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、内部メモリに格納された駆動制御用のプログラムをCPUが実行することにより実現される装置である。
 圧力センサS1は、メインポンプ14の吐出圧を検出するセンサであり、検出した値をコントローラ30に対して出力する。
 圧力センサS2Lは、旋回油圧モータ21の第1ポート側の作動油の圧力を検出するセンサであり、検出した値をコントローラ30に対して出力する。
 圧力センサS2Rは、旋回油圧モータ21の第2ポート側の作動油の圧力を検出するセンサであり、検出した値をコントローラ30に対して出力する。
 圧力センサS3は、アキュムレータ部42の作動油の圧力を検出するセンサであり、検出した値をコントローラ30に対して出力する。
 第1放圧・蓄圧切換部41は、旋回油圧モータ21とアキュムレータ部42との間の作動油の流れを制御する油圧回路要素である。
 アキュムレータ部42は、油圧回路内の余剰の作動油を蓄積し、必要に応じてその蓄積した作動油を放出する作動油供給源としての油圧回路要素である。
 放圧切換部43は、メインポンプ14とコントロールバルブ17とアキュムレータ部42との間の作動油の流れを制御する油圧回路要素である。
 なお、第1放圧・蓄圧切換部41、アキュムレータ部42、及び放圧切換部43についてはその詳細を後述する。
 次に、図3を参照しながら、図1の油圧ショベルに搭載されるアキュムレータ部42の蓄圧及び放圧について説明する。なお、図3は、図1の油圧ショベルに搭載される油圧回路の要部構成例を示す。
 図3に示す油圧回路の要部構成は、主に、旋回制御部40、第1放圧・蓄圧切換部41、アキュムレータ部42、及び放圧切換部43を含む。
 旋回制御部40は、主に、旋回油圧モータ21、リリーフ弁400L、400R、及び逆止弁401L、401Rを含む。
 リリーフ弁400Lは、旋回油圧モータ21の第1ポート21L側の作動油の圧力が所定の旋回リリーフ圧を超えるのを防止するための弁である。具体的には、第1ポート21L側の作動油の圧力が所定の旋回リリーフ圧に達した場合に、第1ポート21L側の作動油をタンクに排出する。
 同様に、リリーフ弁400Rは、旋回油圧モータ21の第2ポート21R側の作動油の圧力が所定の旋回リリーフ圧を超えるのを防止するための弁である。具体的には、第2ポート21R側の作動油の圧力が所定の旋回リリーフ圧に達した場合に、第2ポート21R側の作動油をタンクに排出する。
 逆止弁401Lは、第1ポート21L側の作動油の圧力がタンク圧未満になるのを防止するための弁である。具体的には、第1ポート21L側の作動油の圧力がタンク圧まで低下した場合に、タンク内の作動油を第1ポート21L側に供給する。
 同様に、逆止弁401Rは、第2ポート21R側の作動油の圧力がタンク圧未満になるのを防止するための弁である。具体的には、第2ポート21R側の作動油の圧力がタンク圧まで低下した場合に、タンク内の作動油を第2ポート21R側に供給する。
 第1放圧・蓄圧切換部41は、旋回制御部40(旋回油圧モータ21)とアキュムレータ部42との間の作動油の流れを制御する油圧回路要素である。本実施例では、第1放圧・蓄圧切換部41は、主に、第1切換弁410R、第2切換弁410D、及び逆止弁411R、411Dを含む。
 第1切換弁410Rは、アキュムレータ部42の蓄圧(回生)動作の際に、旋回制御部40からアキュムレータ部42への作動油の流れを制御する弁である。本実施例では、第1切換弁410Rは、3ポート3位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える電磁弁を用いることができる。また、パイロット圧を用いた比例弁を用いてもよい。具体的には、第1切換弁410Rは、第1位置、第2位置、及び第3位置を弁位置として有する。第1位置は、第1ポート21Lとアキュムレータ部42とを連通させる弁位置である。また、第2位置は、旋回制御部40とアキュムレータ部42とを遮断する弁位置である。また、第3位置は、第2ポート21Rとアキュムレータ部42とを連通させる弁位置である。
 第2切換弁410Dは、アキュムレータ部42の放圧(力行)動作の際に、アキュムレータ部42から旋回制御部40への作動油の流れを制御する弁である。本実施例では、第2切換弁410Dは、3ポート3位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える電磁弁を用いることができる。また、パイロット圧を用いた比例弁を用いてもよい。具体的には、第2切換弁410Dは、第1位置、第2位置、及び第3位置を弁位置として有する。第1位置は、アキュムレータ部42と第1ポート21Lとを連通させる弁位置である。また、第2位置は、アキュムレータ部42と旋回制御部40とを遮断する弁位置である。また、第3位置は、アキュムレータ部42と第2ポート21Rとを連通させる弁位置である。
 逆止弁411Rは、アキュムレータ部42から旋回制御部40に作動油が流れるのを防止する弁である。また、逆止弁411Dは、旋回制御部40からアキュムレータ部42に作動油が流れるのを防止する弁である。
 なお、以下では、第1切換弁410R及び逆止弁411Rの組み合わせを第1蓄圧(回生)回路と称し、第2切換弁410D及び逆止弁411Dの組み合わせを第1放圧(力行)回路と称する。
 アキュムレータ部42は、油圧回路内の余剰の作動油を蓄積し、必要に応じてその蓄積した作動油を放出する油圧回路要素である。具体的には、アキュムレータ部42は、旋回減速中に旋回油圧モータ21の制動側(吐出側)の作動油を蓄積し、旋回加速中に旋回油圧モータ21の駆動側(吸い込み側)に作動油を放出する。また、アキュムレータ部42は、旋回油圧モータ21以外の油圧アクチュエータの作動中に、その蓄積した作動油をその油圧アクチュエータに放出することもできる。本実施例では、アキュムレータ部42は、主に、第1アキュムレータ420A、第2アキュムレータ420B、第3アキュムレータ420C、第1開閉弁421A、第2開閉弁421B、及び第3開閉弁421Cを含む。
 第1アキュムレータ420A、第2アキュムレータ420B、第3アキュムレータ420Cは、油圧回路内の余剰の作動油を蓄積し、必要に応じてその蓄積した作動油を放出する装置である。本実施例では、各アキュムレータは、窒素ガスを利用するブラダ型アキュムレータであり、窒素ガスの圧縮性と作動油の非圧縮性を利用して作動油を蓄積或いは放出する。また、各アキュムレータの容量は任意であり、全て同じ容量であってもよく、それぞれ異なる容量であってもよい。
 また、本実施例では、第1アキュムレータ420Aの最大放出圧力は、第2アキュムレータ420Bの最大放出圧力より大きく、第2アキュムレータ420Bの最大放出圧力は、第3アキュムレータ420Cの最大放出圧力より大きい。
 なお、「最大放出圧力」とは、アキュムレータが放出できる最大の圧力であり、蓄圧(回生)動作の際のアキュムレータの最大圧力によって決まる圧力である。本実施例では、第1アキュムレータ420Aの最大放出圧力は、第1開閉弁421Aの開閉制御によって所定の値に調整される。第2アキュムレータ420B及び第3アキュムレータ420Cについても同様である。
 第1開閉弁421A、第2開閉弁421B、第3開閉弁421Cはそれぞれ、コントローラ30からの制御信号に応じて開閉する弁であり、第1アキュムレータ420A、第2アキュムレータ420B、第3アキュムレータ420Cの蓄圧・放圧を制御する。
 なお、コントローラ30は、旋回減速中において、旋回油圧モータ21の制動側(吐出側)の圧力が第1アキュムレータ420Aの圧力より高い場合に第1開閉弁421Aを開放可能とし、旋回油圧モータ21の制動側(吐出側)の圧力が第1アキュムレータ420Aの圧力より低い場合には第1開閉弁421Aを閉じる。これにより、コントローラ30は、旋回減速中に第1アキュムレータ420Aの作動油が旋回油圧モータ21の制動側(吐出側)に流れるのを防止することができる。また、コントローラ30は、旋回加速中において、第1アキュムレータ420Aの圧力が旋回油圧モータ21の駆動側(吸い込み側)の圧力より高い場合に第1開閉弁421Aを開放可能とし、第1アキュムレータ420Aの圧力が旋回油圧モータ21の駆動側(吸い込み側)の圧力より低い場合には第1開閉弁421Aを閉じる。これにより、コントローラ30は、旋回加速中に旋回油圧モータ21の駆動側(吸い込み側)の作動油が第1アキュムレータ420Aに流れるのを防止することができる。第2アキュムレータ420Bに関する第2開閉弁421Bの開閉制御、及び、第3アキュムレータ420Cに関する第3開閉弁421Cの開閉制御についても同様である。
 放圧切換部43は、メインポンプ14とコントロールバルブ17とアキュムレータ部42との間の作動油の流れを制御する油圧回路要素である。本実施例では、放圧切換部43は、主に、第3切換弁430、第4切換弁431、及び逆止弁432を含む。
 第3切換弁430は、コントロールバルブ17を介した旋回油圧モータ21への作動油の流れを制御する弁である。本実施例では、第3切換弁430は、2ポート2位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える電磁弁を用いることができる。また、パイロット圧を用いた比例弁を用いてもよい。具体的には、第3切換弁430は、第1位置及び第2位置を弁位置として有する。第1位置は、メインポンプ14及びアキュムレータ部42とコントロールバルブ17における旋回油圧モータ用流量制御弁17Aとを連通させる弁位置である。また、第2位置は、メインポンプ14及びアキュムレータ部42と旋回油圧モータ用流量制御弁17Aとを遮断する弁位置である。
 第4切換弁431は、アキュムレータ部42の放圧(力行)動作の際に、アキュムレータ部42からコントロールバルブ17への作動油の流れを制御する弁である。本実施例では、第4切換弁431は、2ポート2位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える。具体的には、第4切換弁431は、第1位置及び第2位置を弁位置として有する。第1位置は、メインポンプ14及びコントロールバルブ17とアキュムレータ部42とを連通させる弁位置である。また、第2位置は、メインポンプ14及びコントロールバルブ17とアキュムレータ部42とを遮断する弁位置である。
 逆止弁432は、メインポンプ14が吐出する作動油がアキュムレータ部42に流入するのを防止するための弁である。
 なお、以下では、第4切換弁431及び逆止弁432の組み合わせを第2放圧(力行)回路と称する。
 ここで、図4及び図5を参照しながら、コントローラ30がアキュムレータ部42の蓄圧及び放圧を制御する処理(以下、「蓄圧・放圧処理」とする。)について説明する。なお、図4は、蓄圧・放圧処理の流れを示すフローチャートであり、コントローラ30は、所定周期で繰り返しこの蓄圧・放圧処理を実行する。また、図5は、図3の油圧回路の状態と各切換弁の状態との対応関係を示す対応表である。
 最初に、コントローラ30は、油圧ショベルの状態を検出するための各種センサの出力に基づいて、旋回動作中であるか否かを判定する(ステップST1)。本実施例では、コントローラ30は、旋回操作レバーの操作量に基づいて旋回動作中であるか否かを判定する。
 旋回動作中であると判定すると(ステップST1のYES)、コントローラ30は、各種センサの出力に基づいて、旋回加速中であるか旋回減速中であるかを判定する(ステップST2)。本実施例では、コントローラ30は、旋回操作レバーの操作量に基づいて旋回加速中であるか旋回減速中であるかを判定する。
 旋回減速中であると判定すると(ステップST2の減速中)、コントローラ30は、油圧回路の状態を「旋回回生」の状態にする(ステップST3)。
 図5に示すように、「旋回回生」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第1位置又は第3位置とし、第1蓄圧(回生)回路を通じて旋回制御部40とアキュムレータ部42とを連通させる。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14とコントロールバルブ17とを連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第2位置とし、コントロールバルブ17とアキュムレータ部42との間の連通を遮断する。なお、「旋回回生」の状態では、コントロールバルブ17における旋回油圧モータ用流量制御弁17Aは、遮断状態、すなわち、旋回油圧モータ21とメインポンプ14及びタンクとの間の連通を遮断した状態にある。そのため、第3切換弁430が第1位置にあっても旋回油圧モータ21からの戻り油が旋回油圧モータ用流量制御弁17Aを介してタンクに排出されることはない。
 その結果、「旋回回生」の状態では、旋回油圧モータ21の制動側(吐出側)の作動油が第1蓄圧(回生)回路を通じてアキュムレータ部42に流れてアキュムレータ部42(例えば、第1アキュムレータ420Aである。)に蓄積される。また、第4切換弁431が遮断状態(第2位置)にあるため、旋回油圧モータ21の制動側(吐出側)の作動油が第4切換弁431を通ってコントロールバルブ17に流入することはない。
 ステップST2において、旋回加速中であると判定すると(ステップST2の加速中)、コントローラ30は、アキュムレータ部42の蓄圧状態が適切であるか否かを判定する(ステップST4)。本実施例では、コントローラ30は、圧力センサS2L、S2R、S3の出力に基づいて、第1アキュムレータ420Aに蓄積された作動油の圧力が旋回油圧モータ21の駆動側(吸い込み側)の圧力より高いか否かを判定する。なお、コントローラ30は、第1アキュムレータ420Aに蓄積された作動油の圧力が所定圧以上であるか否かに基づいてアキュムレータ部42の蓄圧状態が適切であるか否かを判定してもよい。
 蓄圧状態が適切であると判定した場合、例えば、第1アキュムレータ420Aに蓄積された作動油の圧力が旋回油圧モータ21の駆動側(吸い込み側)の圧力より高いと判定した場合(ステップST4のYES)、コントローラ30は、油圧回路の状態を「旋回力行」の状態にする(ステップST5)。
 図5に示すように、「旋回力行」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第1位置又は第3位置とし、第1放圧(力行)回路を通じて旋回制御部40とアキュムレータ部42との間を連通させる。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第2位置とし、メインポンプ14とコントロールバルブ17との間の連通を遮断する。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第2位置とし、コントロールバルブ17とアキュムレータ部42との間の連通を遮断する。
 その結果、「旋回力行」の状態では、第1アキュムレータ420Aの作動油が第1放圧(力行)回路を通じて旋回油圧モータ21の駆動側(吸い込み側)に放出されて旋回油圧モータ21が旋回駆動される。また、第4切換弁431が遮断状態(第2位置)にあるため、第1アキュムレータ420Aの作動油が第4切換弁431を通ってコントロールバルブ17に流入することはない。なお、「旋回力行」の状態において、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14と旋回油圧モータ用流量制御弁17Aとの間を連通させてもよい。この場合、第1アキュムレータ420Aが放出する作動油に加えて、メインポンプ14が吐出する作動油が旋回油圧モータ21の駆動側(吸い込み側)に供給される。
 ステップST4において、蓄圧状態が適切でないと判定した場合、例えば、第1アキュムレータ420Aに蓄積された作動油の圧力が旋回油圧モータ21の駆動側(吸い込み側)の圧力より低いと判定した場合(ステップST4のNO)、コントローラ30は、油圧回路の状態を「ポンプ供給」の状態にする(ステップST6)。
 図5に示すように、「ポンプ供給」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14と旋回油圧モータ用流量制御弁17Aとの間を連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第2位置とし、コントロールバルブ17とアキュムレータ部42との間の連通を遮断する。
 その結果、「ポンプ供給」の状態では、メインポンプ14が吐出する作動油が旋回油圧モータ21の駆動側(吸い込み側)に流入して旋回油圧モータ21が旋回駆動される。また、第4切換弁431が遮断状態(第2位置)にあるため、メインポンプ14が吐出する作動油が第4切換弁431を通って第1アキュムレータ420Aに流入することはない。
 ステップST1において、旋回動作中でないと判定すると(ステップST1のNO)、コントローラ30は、各種センサの出力に基づいて、旋回油圧モータ21以外の他の油圧アクチュエータが動作中であるか否かを判定する(ステップST7)。本実施例では、コントローラ30は、他の油圧アクチュエータの操作レバーの操作量に基づいて他の油圧アクチュエータが動作中であるか否かを判定する。
 他の油圧アクチュエータ(例えばブームシリンダ7)が動作中であると判定すると(ステップST7のYES)、コントローラ30は、アキュムレータ部42の蓄圧状態が適切であるか否かを判定する(ステップST8)。本実施例では、コントローラ30は、ブームシリンダ7内の作動油の圧力を検出するための圧力センサ(図示せず。)の出力に基づいて、第1アキュムレータ420Aに蓄積された作動油の圧力がブームシリンダ7の駆動側の圧力より高いか否かを判定する。なお、ブームシリンダ7の駆動側は、ボトム側油室及びロッド側油室のうち体積が増加する方の油室を意味する。アームシリンダ8及びバケットシリンダ9についても同様である。
 蓄圧状態が適切であると判定した場合、例えば、第1アキュムレータ420Aに蓄積された作動油の圧力がブームシリンダ7の駆動側の圧力より高いと判定した場合(ステップST8のYES)、コントローラ30は、油圧回路の状態を「シリンダ駆動」の状態にする(ステップST9)。
 図5に示すように、「シリンダ駆動」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14と旋回油圧モータ用流量制御弁17Aとの間を連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第1位置とし、第2放圧(力行)回路を通じてコントロールバルブ17とアキュムレータ部42との間を連通させる。
 その結果、「シリンダ駆動」の状態では、第1アキュムレータ420Aの作動油が第2放圧(力行)回路及びブームシリンダ用流量制御弁17Bを通じてブームシリンダ7の駆動側に放出されてブームシリンダ7が駆動される。また、第2切換弁410Dが遮断状態(第2位置)にあるため、第1アキュムレータ420Aの作動油が第2切換弁410Dを通って旋回制御部40(旋回油圧モータ21)に流入することはない。
 ステップST8において、蓄圧状態が適切でないと判定した場合、例えば、第1アキュムレータ420Aに蓄積された作動油の圧力がブームシリンダ7の駆動側の圧力より低いと判定した場合(ステップST8のNO)、コントローラ30は、油圧回路の状態を「ポンプ供給」の状態にする(ステップST10)。
 図5に示すように、「ポンプ供給」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14と旋回油圧モータ用流量制御弁17Aとの間を連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第2位置とし、コントロールバルブ17とアキュムレータ部42との間の連通を遮断する。
 その結果、「ポンプ供給」の状態では、メインポンプ14が吐出する作動油がブームシリンダ7の駆動側に流入してブームシリンダ7が駆動される。また、第4切換弁431が遮断状態(第2位置)にあるため、メインポンプ14が吐出する作動油が第4切換弁431を通って第1アキュムレータ420Aに流入することはない。
 ステップST7において、他の油圧アクチュエータが何れも動作中でないと判定すると(ステップST7のNO)、コントローラ30は、油圧回路の状態を「無負荷」の状態にする(ステップST11)。
 図5に示すように、「無負荷」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14と旋回油圧モータ用流量制御弁17Aとの間を連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第2位置とし、コントロールバルブ17とアキュムレータ部42との間の連通を遮断する。
 その結果、「無負荷」の状態では、メインポンプ14が吐出する作動油がコントロールバルブ17を通じてタンクに排出される通常状態となる。また、第4切換弁431が遮断状態(第2位置)にあるため、第1アキュムレータ420Aの作動油が第4切換弁431を通ってコントロールバルブ17に流入することはない。
 次に、図6を参照しながら、旋回油圧モータ21を旋回駆動させる際に、コントローラ30がアキュムレータ部42の放圧を制御する処理について説明する。なお、図6は、アキュムレータ部42の放圧(力行)動作の際の、操作レバー圧力Pi、アキュムレータ圧力Pa、及び旋回モータ圧力Psの時間的推移の一例を示す。なお、本実施例では、図6上段の操作レバー圧力Piの推移は、旋回操作レバーの操作に応じて変動するパイロット圧の推移を表す。また、図6中段のアキュムレータ圧力Paの推移は、圧力センサS3の検出値から導出されるアキュムレータ部42の圧力の推移を表す。なお、アキュムレータ部42の圧力は、3つのアキュムレータのうちの1つの圧力である。また、図6下段の旋回モータ圧力Psの推移は、旋回油圧モータ21の駆動側(吸い込み側)の圧力である圧力センサS2Lの検出値の推移を表す。
 時刻t1において、旋回操作レバーが中立位置から傾けられると、操作レバー圧力Piは、レバー傾斜量に応じた圧力まで増大する。そして、コントローラ30は、油圧回路の状態を「旋回力行」の状態にする。
 油圧回路の状態が「旋回力行」の状態になると、アキュムレータ部42の作動油が第1放圧(力行)回路を通じて旋回油圧モータ21の駆動側(吸い込み側)に放出されて旋回油圧モータ21が旋回駆動される。そのため、アキュムレータ圧力Paは、図6中段に示すように減少し始める。
 また、第3切換弁430が遮断状態(第2位置)にあるため、メインポンプ14が吐出する作動油が旋回油圧モータ用流量制御弁17Aを通って旋回油圧モータ21の駆動側(吸い込み側)に流入することはない。
 このため、旋回油圧モータ21と他の油圧アクチュエータ(例えば、ブームシリンダ7である。)との複合動作の際に、他の油圧アクチュエータの圧力が旋回油圧モータ21の圧力より低い場合であっても、圧力が高い旋回油圧モータ21へ確実に作動油を供給できる。このため、複合動作の際であっても、旋回油圧モータ21の操作性を維持することができる。
 また、コントローラ30は、時刻t1の旋回操作レバーの操作に応じてアキュムレータ部42の作動油を旋回油圧モータ21の駆動側に放出するため、リリーフ弁400Lを通じて作動油が無駄に排出されるのを防止できる。アキュムレータ圧力Paは、所定の旋回リリーフ圧を上回ることがないためである。具体的には、アキュムレータ部42は、旋回油圧モータ21の制動側(吐出側)の作動油、すなわち、所定の旋回リリーフ圧以下の作動油のみを蓄積するためである。
 その後、時刻t2において、アキュムレータ圧力Paが所定の最小放出圧力まで減少すると、コントローラ30は、油圧回路の状態を「ポンプ供給」の状態にする。
 油圧回路の状態が「ポンプ供給」の状態になると、第2切換弁410Dが遮断状態(第2位置)となり、第1放圧(力行)回路を通じたアキュムレータ部42から旋回油圧モータ21への作動油の放出が遮断される。そのため、アキュムレータ圧力Paは、図6中段に示すように最小放出圧力のまま推移する。
 一方で、第3切換弁430が開放状態(第1位置)にあり、旋回油圧モータ用流量制御弁17Aを通じたメインポンプ14から旋回油圧モータ21への作動油の供給は継続される。なお、メインポンプ14は、吐出圧を維持しながら、アキュムレータ部42からの作動油の流量に相当する流量だけ、吐出流量を増大させる。
 これにより、コントローラ30は、リリーフ弁400Lを通じて作動油が無駄に排出されるのを防止しながら、メインポンプ14からの作動油を用いて旋回油圧モータ21を駆動できる。
 次に、図7を参照しながら、旋回油圧モータ21を旋回駆動させる際に、コントローラ30がアキュムレータ部42の放圧を制御する別の処理について説明する。なお、図7は、アキュムレータ部42の放圧(力行)動作の際の、ポンプ圧力Pp、アキュムレータ圧力Pa、及び旋回モータ圧力Psの時間的推移の一例を示す。なお、本実施例では、図7上段のポンプ圧力Ppの推移は、メインポンプ14の吐出圧(圧力センサS1の検出値)の推移を表す。また、図7中段のアキュムレータ圧力Paの推移は、圧力センサS3の検出値から導出されるアキュムレータ部42の圧力の推移を表す。また、図7下段の旋回モータ圧力Psの推移は、旋回油圧モータ21の駆動側(吸い込み側)の圧力である圧力センサS2Lの検出値の推移を表す。
 時刻t11において、旋回操作レバーが中立位置から傾けられると、コントローラ30は、メインポンプ14の負荷が閾値より大きい場合(例えば、ポンプ圧力Ppが旋回リリーフ圧より高い場合)、油圧回路の状態を「旋回力行」の状態にする。
 具体的には、コントローラ30は、例えば、図7上段に示すように、ポンプ圧力Ppが旋回リリーフ圧より高くメインポンプ14の負荷が閾値より大きいと判断すると、油圧回路の状態を「旋回力行」の状態にする。なお、ポンプ圧力Ppは、例えば、旋回油圧モータ21以外の他の油圧アクチュエータが高負荷を受けている場合に旋回リリーフ圧以上となる。
 油圧回路の状態が「旋回力行」の状態になると、アキュムレータ部42の作動油が第1放圧(力行)回路を通じて旋回油圧モータ21の駆動側(吸い込み側)に放出されて旋回油圧モータ21が旋回駆動される。そのため、アキュムレータ圧力Paは、図7中段に示すように減少し始める。
 また、第3切換弁430が遮断状態(第2位置)にあるため、メインポンプ14が吐出する作動油が旋回油圧モータ用流量制御弁17Aを通って旋回油圧モータ21の駆動側(吸い込み側)に流入することはない。そのため、旋回モータ圧力Psは、図7下段に示すように、所定の旋回リリーフ圧より低い状態を維持しながら、アキュムレータ圧力Paと同じ推移を辿る。
 このように、コントローラ30は、時刻t11の旋回操作レバーの操作に応じてアキュムレータ部42の作動油を旋回油圧モータ21の駆動側に放出するため、リリーフ弁400Lを通じて作動油が無駄に排出されるのを防止できる。アキュムレータ圧力Paは、所定の旋回リリーフ圧を上回ることがないためである。具体的には、アキュムレータ部42は、旋回油圧モータ21の制動側(吐出側)の作動油、すなわち、所定の旋回リリーフ圧以下の作動油のみを蓄積するためである。
 その後、時刻t12において、旋回操作レバーが中立位置に戻されると、コントローラ30は、油圧回路の状態を「旋回回生」の状態にする。
 油圧回路の状態が「旋回回生」の状態になると、旋回油圧モータ21の制動側(吐出側)の作動油が第1蓄圧(回生)回路を通じてアキュムレータ部42に流れる。そのため、アキュムレータ圧力Paは、図7中段に示すように増大し始める。
 一方で、旋回油圧モータ21の駆動側(吸い込み側)では、アキュムレータ部42からの作動油の供給が止まる。そのため、旋回油圧モータ21の駆動側(吸い込み側)の圧力である圧力センサS2Lの検出値の推移を表す旋回モータ圧力Psは、図7下段に示すように低下する。
 なお、「旋回回生」の状態では、コントロールバルブ17における旋回油圧モータ用流量制御弁17Aは、遮断状態、すなわち、旋回油圧モータ21とメインポンプ14及びタンクとの間の連通を遮断した状態にある。そのため、ポンプ圧力Ppは、何ら影響を受けることなく、図7上段に示すようにそのまま推移する。
 このようにして、コントローラ30は、メインポンプ14によって所定の旋回リリーフ圧より高い作動油が旋回油圧モータ21に供給されるのを防止できる。
 すなわち、コントローラ30は、ポンプ圧力Ppが旋回リリーフ圧より高く、且つ、旋回フル操作の場合には、メインポンプ14が吐出する作動油の代わりにアキュムレータ部42の作動油を旋回油圧モータ21に供給する。その結果、メインポンプ14が吐出する作動油がリリーフ弁400Lを通じて無駄に排出されるのを防止できる。
 また、コントローラ30は、ポンプ圧力Ppが旋回リリーフ圧より高く、且つ、旋回微操作の場合にも、メインポンプ14が吐出する作動油の代わりにアキュムレータ部42の作動油を旋回油圧モータ21に供給する。その結果、メインポンプ14が吐出する作動油が旋回油圧モータ用流量制御弁17Aで圧損を発生させるのを防止できる。
 また、旋回油圧モータ21をアキュムレータ部42により駆動できるので、メインポンプ14が吐出する全ての作動油を他の油圧アクチュエータ(例えば、ブームシリンダ7である。)へ供給することができる。これにより、旋回油圧モータ21の操作性を維持しつつ、他の油圧アクチュエータの操作性を維持することができる。
 このように、コントローラ30は、ポンプ圧力Ppが旋回リリーフ圧より高い場合には、旋回フル操作及び旋回微操作の何れの場合であっても、アキュムレータ部42の作動油を用いて旋回油圧モータ21を旋回駆動することで、油圧エネルギが無駄に消費されるのを防止して省エネルギ化を図ることができる。
 次に、図8を参照しながら、旋回停止中に旋回油圧モータ21以外の油圧アクチュエータを動作させるために、コントローラ30がアキュムレータ部42の放圧を制御する処理(以下、「旋回停止時放圧処理」とする。)について説明する。なお、図8は、図3に対応する図であり、旋回停止時放圧処理中におけるアキュムレータ部42から油圧シリンダ7、8、9への作動油の流れを示す。また、図8は、第1アキュムレータ420Aから油圧シリンダ7、8、9への作動油の流れを示すが、3つのアキュムレータのうちの1つ、2つ、或いは3つから油圧シリンダ7、8、9へ作動油が供給されてもよい。
 コントローラ30は、旋回停止中にブーム操作レバーが操作されると、アキュムレータ部42の蓄圧状態が適切であれば、油圧回路の状態を「シリンダ駆動」の状態にする。
 「シリンダ駆動」の状態では、コントローラ30は、第1切換弁410Rに対して制御信号を出力して第1切換弁410Rを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第2切換弁410Dに対して制御信号を出力して第2切換弁410Dを第2位置とし、旋回制御部40とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第3切換弁430に対して制御信号を出力して第3切換弁430を第1位置とし、メインポンプ14とコントロールバルブ17との間を連通させる。また、コントローラ30は、第4切換弁431に対して制御信号を出力して第4切換弁431を第1位置とし、第2放圧(力行)回路を通じてコントロールバルブ17とアキュムレータ部42との間を連通させる。
 その結果、「シリンダ駆動」の状態では、アキュムレータ部42の作動油が第2放圧(力行)回路及びブームシリンダ用流量制御弁17Bを通じてブームシリンダ7の駆動側に放出されてブームシリンダ7が駆動される。また、第2切換弁410Dが遮断状態(第2位置)にあるため、アキュムレータ部42の作動油が第2切換弁410Dを通って旋回制御部40(旋回油圧モータ21)に流入することはない。
 このようにして、コントローラ30は、アキュムレータ部42に蓄積された作動油の圧力がブームシリンダ7の駆動側の圧力より高い場合には、アキュムレータ部42の作動油をメインポンプ14が吐出する作動油に合流させる。それによって、コントローラ30は、メインポンプ14のポンプ出力を低減し、省エネルギ化を図ることができる。
 次に、図9及び図10を参照しながら、アキュムレータ部42の圧力が、動作中の油圧アクチュエータの駆動側の圧力より低い場合に、油圧アクチュエータを動作させるために、コントローラ30がアキュムレータ部42の放圧を制御する処理(以下、「低圧時放圧処理」とする。)について説明する。なお、図9は、図1の油圧ショベルに搭載される油圧回路の別の要部構成例を示す。
 図9の油圧回路は、第4切換弁431の代わりに、第5切換弁433及び第6切換弁434を有する放圧切換部43Aを含む点で図3の油圧回路と相違する。しかしながら、図9の油圧回路は、その他の点で図3の油圧回路と共通する。そのため、共通点の説明を省略し、相違点を詳細に説明する。
 第2放圧(力行)回路としての放圧切換部43Aは、アキュムレータ部42とメインポンプ14の上流側(吸い込み側)又は下流側(吐出側)とを接続する油圧回路構成要素である。本実施例では、放圧切換部43Aは、主に、第5切換弁433及び第6切換弁434を含む。
 第5切換弁433は、アキュムレータ部42の放圧(力行)動作の際に、アキュムレータ部42からメインポンプ14の下流側の合流点を経てコントロールバルブ17へ向かう作動油の流れを制御する弁である。
 本実施例では、第5切換弁433は、2ポート2位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える電磁弁を用いることができる。また、パイロット圧を用いた比例弁を用いてもよい。具体的には、第5切換弁433は、第1位置及び第2位置を弁位置として有する。第1位置は、メインポンプ14の下流側の合流点を介してアキュムレータ部42とコントロールバルブ17とを連通させる弁位置である。また、第2位置は、アキュムレータ部42とコントロールバルブ17とを遮断する弁位置である。
 第6切換弁434は、アキュムレータ部42の放圧(力行)動作の際に、アキュムレータ部42からメインポンプ14の上流側の合流点を経てコントロールバルブ17へ向かう作動油の流れを制御する弁である。
 本実施例では、第6切換弁434は、2ポート2位置の切換弁であり、コントローラ30からの制御信号に応じて弁位置を切り換える電磁弁を用いることができる。また、パイロット圧を用いた比例弁を用いてもよい。具体的には、第6切換弁434は、第1位置及び第2位置を弁位置として有する。第1位置は、メインポンプ14の上流側の合流点を介してアキュムレータ部42とコントロールバルブ17とを連通させる弁位置である。また、第2位置は、アキュムレータ部42とコントロールバルブ17とを遮断する弁位置である。
 第6切換弁434が第1位置にある場合、メインポンプ14の上流側において、メインポンプ14とタンクとの間の連通が遮断され、メインポンプ14とアキュムレータ部42とが連通される。そして、メインポンプ14は、アキュムレータ部42が放出する比較的高い圧力の作動油を吸い込み、その作動油をコントロールバルブ17に向けて吐出する。その結果、メインポンプ14は、比較的低い圧力の作動油をタンクから吸い込んで吐出する場合に比べて吸収馬力(所定量の作動油を吐出するために必要なトルク)を低減でき、省エネルギ化を促進できる。また、メインポンプ14は、吐出量制御の応答性を高めることができる。
 また、第6切換弁434が第2位置にある場合、メインポンプ14の上流において、メインポンプ14とタンクとが連通され、メインポンプ14とアキュムレータ部42との間の連通が遮断される。そして、メインポンプ14は、比較的低い圧力の作動油をタンクから吸い込み、その作動油をコントロールバルブ17に向けて吐出する。
 コントローラ30は、放圧(力行)動作の際、第1放圧(力行)回路を閉じ、第2放圧(力行)回路43Aを開いてアキュムレータ部42の作動油をコントロールバルブ17に供給する。或いは、コントローラ30は、放圧(力行)動作の際、第1放圧(力行)回路を開き、第2放圧(力行)回路43Aを閉じてアキュムレータ部42の作動油を旋回油圧モータ21に供給する。なお、コントローラ30は、放圧(力行)動作の際、第1放圧(力行)回路及び第2放圧(力行)回路43Aの双方を開いてアキュムレータ部42の作動油を旋回油圧モータ21及びコントロールバルブ17の双方に供給してもよい。
 また、コントローラ30は、第2放圧(力行)回路43Aを開く場合には、第5切換弁433及び第6切換弁434のうちの一方を第1位置にし、他方を第2位置にする。
 具体的には、コントローラ30は、油圧アクチュエータが操作されたときに、アキュムレータ部42の圧力がその油圧アクチュエータの駆動側の圧力より高ければ、第5切換弁433を第1位置にし、第6切換弁434を第2位置にする。そして、コントローラ30は、メインポンプ14の下流側の合流点を通じて、アキュムレータ部42の作動油をコントロールバルブ17へ向けて放出させる。
 また、コントローラ30は、油圧アクチュエータが操作されたときに、アキュムレータ部42の圧力がその油圧アクチュエータの駆動側の圧力より低ければ、第5切換弁433を第2位置にし、第6切換弁434を第1位置にする。そして、コントローラ30は、メインポンプ14の上流側の合流点を通じて、アキュムレータ部42の作動油をメインポンプ14に向けて放出させる。メインポンプ14は、タンクから作動油を吸い込む代わりに、アキュムレータ部42が放出する作動油を吸い込んで下流側に吐出する。その結果、メインポンプ14は、比較的低い圧力の作動油をタンクから吸い込んで吐出する場合に比べて吸収馬力を低減できる。
 以上の構成により、図9の油圧回路は、図3の油圧回路による効果に加え、アキュムレータ部42の圧力が、動作させようとする油圧アクチュエータの駆動側の圧力より低い場合であっても、アキュムレータ部42の放圧(力行)動作を実行させることができるという効果をもたらす。
 また、図9の油圧回路では、第2放圧(力行)回路43Aは、メインポンプ14の上流側の合流点又は下流側の合流点でアキュムレータ部42からの作動油を合流させる構成を有する。しかしながら、本発明はこの構成に限定されるものではない。例えば、第2放圧(力行)回路43Aは、逆止弁432及び第5切換弁433を含む管路を省略し、メインポンプ14の上流側の合流点でのみアキュムレータ部42からの作動油を合流させることができる構成であってもよい。
 また、蓄圧(回生)動作の状態において全てのアキュムレータの蓄圧が終了した場合に、或いは、蓄圧(回生)動作の開始時点で既に全てのアキュムレータが十分に蓄圧されている場合に、旋回油圧モータ21からの戻り油を、第2放圧・蓄圧切換部43Aを用いてメインポンプ14の上流側の合流点又は下流側の合流点で合流させる構成としてもよい。
 図10は、図9に対応する図であり、低圧時放圧処理中におけるアキュムレータ部42から油圧シリンダ7、8、9への作動油の流れを示す。また、図10は、第1アキュムレータ420Aから油圧シリンダ7、8、9への作動油の流れを示すが、3つのアキュムレータのうちの1つ、2つ、或いは3つから油圧シリンダ7、8、9へ作動油が供給されてもよい。
 コントローラ30は、ブーム操作レバーが操作されると、アキュムレータ部42の圧力がブームシリンダ7の駆動側の圧力より低い場合、第5切換弁433に対して制御信号を出力して第5切換弁433を第2位置とし、メインポンプ14の下流側とアキュムレータ部42との間の連通を遮断する。また、コントローラ30は、第6切換弁434に対して制御信号を出力して第6切換弁434を第1位置とし、メインポンプ14の上流側とアキュムレータ部42との間を連通させる。
 その結果、アキュムレータ部42の作動油が第6切換弁434、メインポンプ14、及びブームシリンダ用流量制御弁17Bを通じてブームシリンダ7の駆動側に放出されてブームシリンダ7が駆動される。
 このようにして、コントローラ30は、アキュムレータ部42に蓄積された作動油の圧力がブームシリンダ7の駆動側の圧力より低い場合、アキュムレータ部42の作動油をメインポンプ14の上流側に合流させる。それによって、コントローラ30は、メインポンプ14の吸収馬力を低減し、省エネルギ化を図ることができる。ブームシリンダ7以外の油圧アクチュエータを駆動する場合も同様である。
 以上の構成により、上述の実施例に係る油圧回路は、旋回加速の際に、リリーフ弁400L、400Rを通じて作動油が排出されるのを抑制或いは防止する。そのため、旋回油圧モータにおける作動油のより効率的な利用を可能とする。
 また、上述の実施例に係る油圧回路は、アキュムレータ部42に蓄積された作動油を、旋回油圧モータ21ばかりでなく、旋回油圧モータ21以外の他の1又は複数の油圧アクチュエータにも放出できる。そのため、上述の実施例に係る油圧回路は、アキュムレータ部42に蓄積された油圧エネルギを効率的に利用することができる。
 また、上述の実施例では、コントローラ30は、第3切換弁430の連通・遮断を切り換えることによってコントロールバルブ17を介した旋回油圧モータ21への作動油の流れを制御する。しかしながら、本発明はこの構成に限定されることはない。例えば、コントローラ30は、コントロールバルブ17における旋回油圧モータ用流量制御弁17Aのパイロット圧を比例弁(図示せず。)で調整することによってコントロールバルブ17を介した旋回油圧モータ21への作動油の流れを制御してもよい。具体的には、コントローラ30は、旋回操作レバーが操作された場合であっても、必要に応じてそのパイロット圧を比例弁で調整し、旋回油圧モータ用流量制御弁17Aを介した旋回油圧モータ21への作動油の流れを遮断する。
 また、上述の実施例において、コントローラ30は、旋回動作中であるか否かを判定した後でブームシリンダ7が動作中であるか否かを判定する。そして、コントローラ30は、アキュムレータ部42の圧力が、動作中のブームシリンダ7の駆動側の圧力より高い場合に、アキュムレータ部42の作動油をブームシリンダ7の駆動側に放出させる。しかしながら、本発明はこの構成に限定されることはない。例えば、コントローラ30は、旋回動作中であるか否かを判定する前にブームシリンダ7が動作中であるか否かを判定してもよい。この場合、コントローラ30は、アキュムレータ部42の圧力が、動作中のブームシリンダ7の駆動側の圧力より高いときに、アキュムレータ部42の作動油をブームシリンダ7の駆動側に放出させる。また、ブームシリンダ7が動作中でないときには、アキュムレータ部42の圧力が、動作中の旋回油圧モータ21の駆動側の圧力より高いときに、アキュムレータ部42の作動油を旋回油圧モータ21の駆動側に放出させる。
 また、コントローラ30は、アキュムレータ部42の圧力が、動作中のブームシリンダ7の駆動側の圧力より低い場合であっても、動作中の旋回油圧モータ21の駆動側の圧力より高い場合には、アキュムレータ部42の作動油を旋回油圧モータ21の駆動側に放出させる。同様に、コントローラ30は、アキュムレータ部42の圧力が、動作中の旋回油圧モータ21の駆動側の圧力より低い場合であっても、動作中のブームシリンダ7の駆動側の圧力より高い場合には、アキュムレータ部42の作動油をブームシリンダ7の駆動側に放出させる。旋回油圧モータ21とブームシリンダ7以外の他の油圧アクチュエータとの間の関係についても同様である。
 また、図9の油圧回路を採用する場合には、コントローラ30は、アキュムレータ部42に蓄積された作動油の圧力が動作中の油圧アクチュエータの駆動側の圧力より低い場合であっても、アキュムレータ部42に蓄積された作動油をその油圧アクチュエータに向けて放出できる。
 また、上述の実施例に係る油圧回路は、複数のアキュムレータから作動油の蓄積先としてのアキュムレータを選択できるという効果をもたらす。具体的には、蓄圧(回生)動作の際に、旋回油圧モータ21の制動側の作動油の圧力に応じて、最大放出圧力をそれぞれ異ならせた複数のアキュムレータから作動油の蓄積先としてのアキュムレータを選択できるようにする。その結果、制動側の作動油の圧力が低いときにも蓄圧(回生)動作が行われるようにする。
 また、本実施例に係る油圧回路は、放圧(力行)動作の際に、要求される放出圧力に応じて、最大放出圧力をそれぞれ異ならせた複数のアキュムレータから作動油の供給元としてのアキュムレータを選択できるようにする。その結果、放出圧力の低いアキュムレータがより効率的に利用されるようにする。
 また、第1アキュムレータ420A、第2アキュムレータ420B、第3アキュムレータ420Cには、最大放出圧力と最小放出圧力とで定められる放出圧力範囲が設定されていてもよい。この場合、蓄圧(回生)動作の際、旋回油圧モータ21の制動側の作動油は、その制動側の作動油の圧力に適合する放出圧力範囲を持つアキュムレータに蓄積される。
 また、本実施例では、複数のアキュムレータのうちの1つが蓄圧(回生)動作の際の作動油の蓄積先、又は、放圧(力行)動作の際の作動油の供給元として選択される。すなわち、複数のアキュムレータは、それぞれ異なるタイミングで蓄圧され或いは放圧される。そのため、複数のアキュムレータのそれぞれは、他のアキュムレータの圧力の影響を受けることなく、作動油を蓄積し、或いは放出することができる。しかしながら、本発明はこれに限定されるものではない。例えば、2つ以上のアキュムレータが同時に蓄積先又は供給元として選択されてもよい。すなわち、2つ以上のアキュムレータが、部分的に或いは全体的に重複するタイミングで蓄圧され、或いは放圧されてもよい。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例において、アキュムレータ部42に蓄積された作動油は、旋回油圧モータ21、又は、旋回油圧モータ21以外の他の1又は複数の油圧アクチュエータに向けて放出される。しかしながら、本発明はこの構成に限定されるものではない。例えば、アキュムレータ部42に蓄積された作動油は、旋回油圧モータ21、及び、旋回油圧モータ21以外の他の1又は複数の油圧アクチュエータに向けて同時に放出されてもよい。
 また、上述の実施例では、作動油供給源としてアキュムレータ部が採用されるが、別体の油圧ポンプ、油圧増圧機等の他の油圧回路要素が採用されてもよい。
 また、本願は、2012年11月9日に出願した、日本国特許出願2012-247868号に基づく優先権を主張するものでありそれらの日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1A、1B・・・走行用油圧モータ 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 14・・・メインポンプ 15・・・パイロットポンプ 16・・・高圧油圧ライン 17・・・コントロールバルブ 17A・・・旋回油圧モータ用流量制御弁 17B・・・ブームシリンダ用流量制御弁 21・・・旋回油圧モータ 21L・・・第1ポート 21R・・・第2ポート 25・・・パイロットライン 26・・・操作装置 26A、26B・・・レバー 26C・・・ペダル 27、28・・・油圧ライン 29・・・圧力センサ 30・・・コントローラ 40・・・旋回制御部 41・・・第1放圧・蓄圧切換部 42・・・アキュムレータ部 43、43A・・・放圧切換部 400L、400R・・・リリーフ弁 401L、401R・・・逆止弁 410R・・・第1切換弁 410D・・・第2切換弁 411R、411D・・・逆止弁 420A、420B、420C・・・アキュムレータ 421A、421B、421C・・・開閉弁 430・・・第3切換弁 431・・・第4切換弁 432・・・逆止弁 433・・・第5切換弁 434・・・第6切換弁 S1、S2L、S2R、S3・・・圧力センサ

Claims (9)

  1.  旋回油圧モータと、
     前記旋回油圧モータに設けられるリリーフ弁と、
     前記リリーフ弁のリリーフ圧より低い圧力の作動油を前記旋回油圧モータに供給する作動油供給源と、
     を備えるショベル。
  2.  前記作動油供給源は、アキュムレータ部を含む、
     請求項1に記載のショベル。
  3.  前記アキュムレータ部は、前記旋回油圧モータの制動側の作動油を蓄積する、
     請求項2に記載のショベル。
  4.  メインポンプと、
     前記メインポンプと前記旋回油圧モータとの間の作動油の流れを制御するコントロールバルブと、
     前記メインポンプと前記コントロールバルブとの間の連通・遮断を切り換える切換弁と、を備え、
     前記アキュムレータ部は、前記切換弁が前記メインポンプと前記コントロールバルブとの間の連通を遮断したときに、前記旋回油圧モータに作動油を放出する、
     請求項2に記載のショベル。
  5.  前記切換弁は、前記旋回油圧モータ以外の別の油圧アクチュエータの駆動中に前記旋回油圧モータが駆動される場合、前記メインポンプの負荷が閾値より大きいときに、前記メインポンプと前記コントロールバルブとの間の連通を遮断する、
     請求項4に記載のショベル。
  6.  前記メインポンプの負荷状態は、前記メインポンプの吐出圧に基づいて判断される、
     請求項5に記載のショベル。
  7.  前記メインポンプの負荷状態は、油圧アクチュエータのレバー操作状態に基づいて判断される、
     請求項5に記載のショベル。
  8.  前記アキュムレータ部は、複数のアキュムレータで構成される、
     請求項2に記載のショベル。
  9.  前記アキュムレータ部は、メインポンプの上流に作動油を放出可能である、
     請求項2に記載のショベル。
PCT/JP2013/071161 2012-11-09 2013-08-05 ショベル WO2014073248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380058446.3A CN104769193B (zh) 2012-11-09 2013-08-05 挖土机
KR1020157011996A KR102043707B1 (ko) 2012-11-09 2013-08-05 쇼벨
JP2014545594A JP6054414B2 (ja) 2012-11-09 2013-08-05 ショベル
EP13853432.6A EP2918734B1 (en) 2012-11-09 2013-08-05 Shovel
US14/697,713 US10000906B2 (en) 2012-11-09 2015-04-28 Shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-247868 2012-11-09
JP2012247868 2012-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/697,713 Continuation US10000906B2 (en) 2012-11-09 2015-04-28 Shovel

Publications (1)

Publication Number Publication Date
WO2014073248A1 true WO2014073248A1 (ja) 2014-05-15

Family

ID=50684368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071161 WO2014073248A1 (ja) 2012-11-09 2013-08-05 ショベル

Country Status (6)

Country Link
US (1) US10000906B2 (ja)
EP (1) EP2918734B1 (ja)
JP (1) JP6054414B2 (ja)
KR (1) KR102043707B1 (ja)
CN (1) CN104769193B (ja)
WO (1) WO2014073248A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232354A (ja) * 2014-06-09 2015-12-24 日立建機株式会社 作業機械
JP2017044262A (ja) * 2015-08-26 2017-03-02 日立建機株式会社 作業機械の油圧駆動装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469844B2 (ja) * 2015-03-27 2019-02-13 住友重機械工業株式会社 ショベルおよびショベルの駆動方法
CN105485078B (zh) * 2015-12-31 2018-01-16 长安大学 一种旋挖钻机桅杆变幅机构能量再利用液压系统
KR102405661B1 (ko) * 2017-05-25 2022-06-07 현대두산인프라코어(주) 건설기계
CN107882802B (zh) * 2017-09-22 2019-11-08 北京机械设备研究所 一种三级起竖系统
KR102559751B1 (ko) * 2017-12-07 2023-07-25 스미토모 겐키 가부시키가이샤 쇼벨
CN111237264A (zh) * 2020-02-26 2020-06-05 浙江迦南科技股份有限公司 用于实现双作用油缸精确控制的油路结构
KR20220091867A (ko) * 2020-12-24 2022-07-01 현대두산인프라코어(주) 건설기계
IT202200005456A1 (it) 2022-03-21 2023-09-21 Cnh Ind Italia Spa Pala o scavatore
CN114892743B (zh) * 2022-06-08 2024-04-09 江苏大学 一种基于实时位姿的挖掘机势能回收系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170301U (ja) * 1981-04-23 1981-12-16
JP2000204604A (ja) 1999-01-08 2000-07-25 Sumitomo Constr Mach Co Ltd 建設機械の旋回ロック装置
JP2003222105A (ja) * 2001-12-21 2003-08-08 Caterpillar Inc 作動油を蓄積するためのシステムと方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919122U (ja) 1982-07-28 1984-02-06 安田 繁之 温熱療法用あんか
JPS6113004U (ja) 1984-06-28 1986-01-25 新キャタピラ−三菱株式会社 液圧再生回路
JP2004347040A (ja) * 2003-05-22 2004-12-09 Kobelco Contstruction Machinery Ltd 作業機械の制御装置
JP2005003183A (ja) 2003-06-16 2005-01-06 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の油圧回路
JP2006207143A (ja) * 2005-01-25 2006-08-10 Shin Caterpillar Mitsubishi Ltd リフティングマグネット用油圧モータの油圧制御回路
JP2006206205A (ja) * 2005-01-25 2006-08-10 Shin Caterpillar Mitsubishi Ltd リフティングマグネットを備えた作業機械の油圧制御回路
US7269944B2 (en) * 2005-09-30 2007-09-18 Caterpillar Inc. Hydraulic system for recovering potential energy
US7823379B2 (en) * 2006-11-14 2010-11-02 Husco International, Inc. Energy recovery and reuse methods for a hydraulic system
US7908852B2 (en) 2008-02-28 2011-03-22 Caterpillar Inc. Control system for recovering swing motor kinetic energy
JP2010048332A (ja) * 2008-08-21 2010-03-04 Nobuyuki Sugimura 液圧回路
JP2010121726A (ja) * 2008-11-20 2010-06-03 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP2011220390A (ja) * 2010-04-06 2011-11-04 Kobelco Contstruction Machinery Ltd 油圧作業機械の制御装置
EP2561147A4 (en) * 2010-04-19 2014-04-30 Parker Hannifin Ab ARRANGEMENT FOR OPERATING A HYDRAULIC DEVICE
CN101858094B (zh) * 2010-06-10 2016-07-06 中国重汽集团青岛重工有限公司 挖掘机液压混合动力系统
JP5667830B2 (ja) * 2010-10-14 2015-02-12 日立建機株式会社 旋回体を有する建設機械
US8726645B2 (en) * 2010-12-15 2014-05-20 Caterpillar Inc. Hydraulic control system having energy recovery
WO2012102654A1 (en) * 2011-01-27 2012-08-02 Parker Hannifin Ab Hyraulic accumulator system
JP5677866B2 (ja) * 2011-01-31 2015-02-25 株式会社Kcm 産業用車両の油圧ポンプ制御システムと産業用車両
JP2012197823A (ja) * 2011-03-18 2012-10-18 Nobuyuki Sugimura アキュムレータを使用した省エネ多圧回路
CN102733442B (zh) * 2011-04-02 2015-07-22 柳工常州机械有限公司 液压挖掘机回转能量回收利用系统
US9068575B2 (en) * 2011-06-28 2015-06-30 Caterpillar Inc. Hydraulic control system having swing motor energy recovery
US8776511B2 (en) * 2011-06-28 2014-07-15 Caterpillar Inc. Energy recovery system having accumulator and variable relief
US9051714B2 (en) * 2011-09-30 2015-06-09 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
CN102704524B (zh) * 2012-04-19 2014-06-11 华南理工大学 一种液压挖掘机回转节能系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170301U (ja) * 1981-04-23 1981-12-16
JP2000204604A (ja) 1999-01-08 2000-07-25 Sumitomo Constr Mach Co Ltd 建設機械の旋回ロック装置
JP2003222105A (ja) * 2001-12-21 2003-08-08 Caterpillar Inc 作動油を蓄積するためのシステムと方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2918734A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232354A (ja) * 2014-06-09 2015-12-24 日立建機株式会社 作業機械
JP2017044262A (ja) * 2015-08-26 2017-03-02 日立建機株式会社 作業機械の油圧駆動装置

Also Published As

Publication number Publication date
EP2918734A4 (en) 2016-02-10
EP2918734B1 (en) 2017-06-28
JPWO2014073248A1 (ja) 2016-09-08
EP2918734A1 (en) 2015-09-16
CN104769193B (zh) 2017-12-19
JP6054414B2 (ja) 2016-12-27
US10000906B2 (en) 2018-06-19
KR20150082297A (ko) 2015-07-15
CN104769193A (zh) 2015-07-08
KR102043707B1 (ko) 2019-11-12
US20150240450A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6054414B2 (ja) ショベル
US10233613B2 (en) Shovel and method of driving shovel
JP6054412B2 (ja) ショベル
JP6054413B2 (ja) ショベル
JP6479306B2 (ja) ショベル
JP6177913B2 (ja) ショベル及びショベルの制御方法
WO2015019839A1 (ja) ショベル
KR101747519B1 (ko) 하이브리드식 건설 기계
JP6385654B2 (ja) ショベル
JP2013147803A (ja) ホイール式作業車両の油圧制御装置
JP6338834B2 (ja) ショベル
JP6615868B2 (ja) ショベルおよびショベルの駆動方法
JPWO2019022029A1 (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545594

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013853432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013853432

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011996

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE