WO2014072789A2 - Membrane polymère poreuse, son procédé de préparation, et son utilisation dans un électrolyte gel polymère - Google Patents
Membrane polymère poreuse, son procédé de préparation, et son utilisation dans un électrolyte gel polymère Download PDFInfo
- Publication number
- WO2014072789A2 WO2014072789A2 PCT/IB2013/002452 IB2013002452W WO2014072789A2 WO 2014072789 A2 WO2014072789 A2 WO 2014072789A2 IB 2013002452 W IB2013002452 W IB 2013002452W WO 2014072789 A2 WO2014072789 A2 WO 2014072789A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diisocyanate
- electrolyte
- polymer
- porous film
- polymer porous
- Prior art date
Links
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229920005597 polymer membrane Polymers 0.000 title claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 92
- 239000012528 membrane Substances 0.000 claims abstract description 42
- 238000001879 gelation Methods 0.000 claims abstract description 11
- 239000004814 polyurethane Substances 0.000 claims abstract description 6
- 229920002635 polyurethane Polymers 0.000 claims abstract description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 54
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 35
- 229910001416 lithium ion Inorganic materials 0.000 claims description 35
- 239000003792 electrolyte Substances 0.000 claims description 30
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 27
- 239000003960 organic solvent Substances 0.000 claims description 27
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 20
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 125000005442 diisocyanate group Chemical group 0.000 claims description 17
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 239000000693 micelle Substances 0.000 claims description 14
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 12
- -1 IiAlC14 Inorganic materials 0.000 claims description 12
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 238000001291 vacuum drying Methods 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims description 6
- 159000000002 lithium salts Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 6
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 6
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 5
- OXKUGIFNIUUKAW-UHFFFAOYSA-N n,n-dimethylformamide;hydrazine Chemical compound NN.CN(C)C=O OXKUGIFNIUUKAW-UHFFFAOYSA-N 0.000 claims description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 4
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 claims description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 3
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 claims description 3
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 claims description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 3
- 229910013188 LiBOB Inorganic materials 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims description 3
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 claims description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 229910021385 hard carbon Inorganic materials 0.000 claims description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 claims description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 claims 1
- FJZNROVGLPJDEE-UHFFFAOYSA-N 2-ethenylbutanedioic acid Chemical compound OC(=O)CC(C=C)C(O)=O FJZNROVGLPJDEE-UHFFFAOYSA-N 0.000 claims 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 claims 1
- 229910013462 LiC104 Inorganic materials 0.000 claims 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 claims 1
- 229910001290 LiPF6 Inorganic materials 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 150000002168 ethanoic acid esters Chemical class 0.000 claims 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 claims 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 claims 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims 1
- QVKOLZOAOSNSHQ-UHFFFAOYSA-N prop-1-ene;prop-2-enoic acid Chemical compound CC=C.OC(=O)C=C QVKOLZOAOSNSHQ-UHFFFAOYSA-N 0.000 claims 1
- 239000011244 liquid electrolyte Substances 0.000 abstract description 23
- 239000007788 liquid Substances 0.000 abstract description 19
- 239000011148 porous material Substances 0.000 abstract description 8
- 230000008961 swelling Effects 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 14
- 239000011245 gel electrolyte Substances 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 12
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- 238000007605 air drying Methods 0.000 description 6
- 238000003760 magnetic stirring Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010382 chemical cross-linking Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004502 linear sweep voltammetry Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 description 2
- 101150004907 litaf gene Proteins 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- XJRAOMZCVTUHFI-UHFFFAOYSA-N isocyanic acid;methane Chemical compound C.N=C=O.N=C=O XJRAOMZCVTUHFI-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/54—Polyureas; Polyurethanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the technical field of preparation and application of polymer films, in particular to a polymer porous film and a preparation method thereof, and a stable system for adsorbing and swelling an electrolyte as a gel polymer electrolyte: Background Art
- Gel polymer is widely used as a gel polymer electrolyte system instead of a liquid electrolyte of a lithium ion battery, and has a high ion conductivity close to that of a liquid electrolyte, and has a characteristic that the solid electrolyte does not leak. It can solve the high volatility and flammability of organic electrolytes, and may cause safety problems such as cracking, fire and explosion in case of short circuit. It provides guarantee for the application of large-scale lithium-ion batteries in the field of new energy vehicles and solar energy and wind energy energy storage equipment.
- PEO polyoxyethylene
- PA polyacrylonitrile
- PMMA polymethyl methacrylate
- P VDF polyvinylidene fluoride
- the PEO-based gel polymer electrolyte is easy to crystallize, resulting in low electrical conductivity at room temperature.
- the interface between the gel polymer film and the lithium electrode in the PAN-based gel polymer electrolyte is severely deactivated, and the mechanical properties are degraded when the plasticizer content is high. It is more serious;
- PMMA-based gel polymer electrolyte has poor mechanical properties;
- PVDF-based gel polymer electrolyte has a regular polymer structure and is easy to crystallize, which is not conducive to ion conduction. It can be seen that there are widespread problems with commonly used gel polymer bases, and gel film stability, mechanical properties and compatibility with electrodes still need to be improved. In addition, the problem of oozing out of the electrolyte from the gel has not been properly solved. Summary of the invention
- Hiroshi Sugawara et al. mentioned that the ratio of vinyl alcohol units in polyvinyl acetal is reduced by acid modification, and acid modification not only causes intramolecular exchange reaction of acetal ring, but also is isolated.
- the vinyl alcohol unit becomes a plurality of linked structures, thereby improving the gelation performance of the organic solvent.
- the polyvinyl acetal-based polymer has a good prospect for application to a lithium ion battery gel polymer, but the polyvinyl acetal and its derivative have high solubility in an organic solvent such as a carbonate, and are not stable, so When the gel polymer electrolyte is prepared by the in-situ polymerization process, the separator member must be placed, resulting in an increase in the interface.
- Li Fangxing et al. prepared a cross-linked polyvinyl acetal polyurethane which can dissolve the network, in which dibutyltin dilaurate or dilauric acid was used as a catalyst, and 4,4'- Diphenylmethane diisocyanate (MDI) chemically crosslinks polyvinyl acetal into a network structure, which is soluble in coatings, paints, adhesives, and the like.
- MDI 4,4'- Diphenylmethane diisocyanate
- the object of the present invention is to provide a porous film of polyvinyl acetal and a derivative thereof, and a method for producing the same, which are chemically crosslinked into a three-dimensional network-like stable structure.
- the polymer porous film exhibits the advantages of excellent film formability, heat resistance, good water resistance, and relatively stable chemical structure of the polyvinyl acetal and its derivatives, and the above polymer porous film and preparation thereof.
- the method solves the problem that the polyvinyl acetal and its derivative have high solubility in an organic solvent such as carbonate and cannot be stably existed, and the chemical stability is remarkable. Improve.
- the above polymer porous membrane has good ability of adsorbing electrolyte, and the liquid absorption rate is up to
- the gelation of the system is achieved by adsorbing and swelling the electrolyte (including a carbonate-based electrolyte system), and the porous membrane and the gel system can be stably existed for a long period of time.
- the electrolyte including a carbonate-based electrolyte system
- the polymer porous film to a gel polymer electrolyte, particularly to a gel polymer lithium ion battery. Since the polymer porous membrane and the formed gel polymer electrolyte can be stably existed for a long period of time, there is no problem of dissolution of the polymer porous membrane in the system and electrolyte leakage, and the above polymer porous membrane will swell in the electrolyte.
- the polymer porous membrane can be obtained in the gel polymer electrolyte, and can be obtained with respect to the solid electrolyte. High conductivity. With respect to the liquid electrolyte, the polymer porous film does not cause a liquid leakage problem in the liquid electrolyte when applied to the gel polymer electrolyte, and at the same time, a conductivity substantially equal to that of the liquid electrolyte can be obtained, and the polymer is obtained.
- the use of a porous membrane for a gel polymer electrolyte facilitates battery assembly.
- polyvinyl acetal and its derivatives have conventionally been used as binders and have good bonding properties.
- the polymer porous film according to the present invention exhibits good adhesion properties of polyvinyl acetal and its derivatives, and therefore, the gel polymer electrolyte formed of the above polymer porous film has a polymer porous film as compared with other polymer porous films Excellent adhesion and compatibility with the electrode, reducing the electrochemical polarization of the interface, high electrochemical stability, and the electrical conductivity is close to the average value of the liquid electrolyte conductivity of 10-3 ⁇ 4/cm. Moreover, it has high mechanical properties, and the assembled battery using the gel polymer electrolyte is convenient to operate and simple in process.
- the polymer porous membrane of the present invention is subjected to chemical crosslinking treatment, and the chemically crosslinked structure of the polyurethane is as follows:
- the preparation steps of the polymer porous membrane are as follows:
- the organic solvent described in the above preparation step (a) is preferably at least one of N-methylpyrrolidone, hydrazine, hydrazine-dimethylformamide, chloroform, tetrahydrofuran, and polyethylene according to a similar compatibility principle.
- the diisocyanate material described in the above production process step (b) is preferably 4,4'-diphenylmethane diisocyanate or toluene-2.
- the solvent is preferably at least one of deionized water, anhydrous methanol, and anhydrous ethanol; the drying step described in the preparation step (e) is blast drying or vacuum drying at 30 ° C - 60 ° C. .
- the above polymer porous film can be applied to a gel polymer electrolyte, and the polymer porous film adsorbs and swells the electrolyte to effect gelation to form a gel polymer electrolyte.
- the main component of the electrolytic solution is a lithium salt or an organic solvent.
- a lithium ion battery can be assembled by using the gel polymer electrolyte formed of the above polymer porous film.
- the positive electrode in the lithium ion battery system is at least one selected from the group consisting of lithium iron phosphate, nickel cobalt manganese ternary material, spinel lithium manganate, high capacity lithium-rich manganese-based material, and the negative electrode is selected from the following materials. At least one of: graphite, hard carbon, lithium titanate, silicon based compounds and alloys.
- the lithium salt in the electrolyte used in the lithium ion battery system is at least one selected from the group consisting of LiPF 6 , LiC 10 4 , LiBF 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 S ⁇ 3 , LiN (S ⁇ 2 CF 3 ) 2 LiBOB, LiSbF 6 , LiSCN, LiSnF 6 , LiGeF 6 , LiTaF 6 .
- the organic solvent in the electrolyte used in the lithium ion battery system is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl sulfite, sulfurous acid.
- Propylene ester dimethyl sulfite, diethyl linoleate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, methyl acetate, ethyl acetate, Ethyl propionate, ethyl butyrate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, dioxolane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, acetonitrile, two Sulfoxide, acetone, hydrazine, hydrazine-dimethylformamide, sulfolane, dimethyl
- the lithium ion battery is mainly composed of a gel polymer electrolyte layer formed by the polymer porous film of the present invention, a positive electrode pole piece, a negative electrode pole piece, a positive electrode tab, a negative electrode tab, and the like, and the battery can be assembled in a winding type. Or a laminated type, that is, a manufacturing method generally used for a lithium ion battery, and a schematic structural view thereof is shown in FIG.
- the invention has the following advantages:
- the polyvinyl acetal and its derivative of the polymer porous film of the present invention are non-irritating, non-toxic, environmentally friendly, non-flammable, and highly safe.
- the porous polymer membrane prepared by the technique of the present invention is chemically crosslinked, has good chemical stability, is not dissolved in an organic solvent such as carbonate, and is chemically stable.
- the interconnected pores of the polymer porous membrane can quickly adsorb the electrolyte, and form a long-term stable gel polymer electrolyte as a host material and support. This is related to polyvinyl acetal and its derivatives as a gelling agent. There is an essential difference in the gelation process.
- the polymer porous film of the present invention does not dissolve in an electrolyte system including a carbonate as a main solvent, and both mechanical properties and compatibility with electrodes are improved. Therefore, high chemical stability and mechanical strength bring greater convenience to the battery process, and do not require the use of a liquid electrolyte system or a separator of other battery systems as a support, thereby avoiding widespread use at present.
- the use of a diaphragm member in a gel polymer lithium ion battery effectively reduces the number of interfaces in the lithium ion battery structure, which is close to the average value of the liquid electrolyte of 10 - 3 S/cm.
- Fig. 1 is a view showing the structure of a lithium battery cell of a gel polymer electrolyte layer formed by using the polymer porous film of the present invention.
- Fig. 2 is a view showing the appearance of a polyvinyl formal (PVFM polymer porous film) by chemically crosslinking 4,4'-diphenylmethane diisocyanate (MDI) prepared in Example 1.
- PVFM polyvinyl formal
- MDI 4,4'-diphenylmethane diisocyanate
- Fig. 3 is a microscopic top view of a polyvinyl butyral (PVB) polymer porous film of MDI chemically crosslinked prepared in Example 2.
- PVB polyvinyl butyral
- Fig. 4 is a view showing the appearance of a polyvinyl formal (PVFM) polymer porous film prepared in Comparative Example 1.
- PVFM polyvinyl formal
- Figure 5 is a graph showing the results of an electrochemical stabilization window by linear sweep voltammetry after the polymer porous membrane prepared in Example 1 was initiated as a gel polymer electrolyte.
- Fig. 6 shows the results of charge and discharge cycle test of the lithium ion battery prepared in Example 8, with a voltage range of 2.5 V to 4.25 V and a charge and discharge rate of 0.1 C. detailed description
- Gelation can be achieved by MDI chemically crosslinked PVFM porous membranes.
- the electrolyte gradually immersed in the interior of the polymer porous membrane to swell the polymer, and the white film gradually became transparent.
- the formed gel polymer porous film was taken out from the electrolytic solution, drained, and the residual electrolyte on the surface of the gel polymer porous film was blotted with a filter paper to measure the liquid absorption rate.
- the gel polymer electrolyte to be tested was clamped with a stainless steel sheet to form a battery of I stainless steel I GPE I stainless steel I structure, and the electrochemical interface impedance was measured.
- PVFM polyvinyl formal
- MP N-methylpyrrolidone
- MDI diisocyanate
- FIG. 1 is a microscopic appearance of the PVFM polymer porous membrane prepared in Example 1, and the uniformly distributed interconnected pores brought a high liquid absorption rate of 593%.
- the PVFM polymer porous membrane prepared in Example 1 has high liquid absorption rate and high chemical stability, and is a prerequisite and basis for forming a stable gel electrolyte system and obtaining high electrical conductivity.
- the conductivity of the gel electrolyte systems PVFM porous polymer membrane prepared in Example 1 was formed a stable 1.25 X l (X 3 S / cm, the conductivity of the liquid electrolyte is slightly higher than the average 1CT 3 S / C m.
- the linear sweep voltammetry test results of Figure 5 show that the electrochemical stability window of the stable gel electrolyte system formed by the PVFM polymer porous membrane prepared in Example 1 is in the range of 2.0V ⁇ 5.0V, which is higher than that of the liquid electrolyte.
- the chemical stability window is 2.0V ⁇ 4.3V, and the electrochemical stability is better than that of the liquid electrolyte.
- PVB polyvinyl butyral
- NMP N-methylpyrrolidone
- MDI Methane diisocyanate
- the white micelles were dissolved by stirring to dissolve, and magnetic stirring was continued for 30 min.
- the mixed solution was prepared. The mixed solution was coated with a film and immersed in deionized water to prepare a porous film, and the obtained porous film was dried for 1 hour.
- the method of drying the porous film may be, for example, but not limited to, placing the porous film at 30 ° C - 60 ° C, by air drying or vacuum drying.
- 3 is a microscopic morphology of the PVB polymer porous film prepared in Example 2, and the uniformly distributed interconnected pores bring a high liquid absorption rate of 610%.
- the high liquid absorption rate and high chemical stability of the PVB polymer porous membrane form a stable gel electrolyte system and obtain higher electricity.
- the PVB polymer porous membrane prepared in Example 2 formed a stable gel electrolyte system having a conductivity of 1.33 X 10- 3 S/cm, which is slightly higher than the average value of the liquid electrolyte conductivity of 10 - 3 S/cm.
- Example 3
- PVFM polyvinyl formal
- NMP N-methylpyrrolidone
- MDI diisocyanate
- the mixed solution was coated with a film, immersed in deionized water to prepare a porous film, and the obtained porous film was dried for 1 hour.
- the method of drying the porous film may be, for example, but not limited to, placing the porous film at 30 ° C - 60 ° C, by air drying or vacuum drying.
- the synthetic PVFM polymer porous membrane prepared in Example 3 has a high liquid absorption rate of 411% and high chemical stability, and provides a prerequisite for stable gel electrolyte system formation and high electrical conductivity.
- the conductivity of the stabilized gel electrolyte system formed by the PVFM polymer porous film prepared in Example 3 had an electrical conductivity of 1.03 ⁇ 10 ⁇ 3 S/cm, which was close to the average value of the liquid electrolyte conductivity of 10 ⁇ / ⁇ .
- Example 4
- PVFM polyvinyl formal
- NMP N-methylpyrrolidone
- MDI diisocyanate
- OJ OlOg anhydrous ethanol was added dropwise to precipitate a white micelle.
- the white micelle was dissolved by stirring to dissolve, and the magnetic stirring was continued for 30 min.
- the mixed solution was prepared.
- the mixed solution was coated with a film, immersed in absolute ethanol to prepare a porous film, and the obtained porous film was dried for 1 hour.
- the method of drying the porous film may be, for example, but not limited to, placing the porous film at 30 ° C - 60 ° C, by air drying or vacuum drying.
- the PVFM polymer porous membrane prepared in Example 4 has a high liquid absorption rate of 352% and high chemical stability, and provides a prerequisite for the formation of a stable gel electrolyte system and the acquisition of higher electrical conductivity.
- the conductivity of the stabilized gel electrolyte system formed by the PVFM polymer porous membrane prepared in Example 1 had an electrical conductivity of 0.97 X 10- 3 S/cm, which was close to the average value of the liquid electrolyte conductivity of 10 _ 3 S/cm.
- Example 5
- PVFM polyvinyl formal
- NMP N-methylpyrrolidine
- MDI 4,4'-diphenylmethane diisocyanate
- the method of drying the porous film may be, for example, but not limited to, placing the porous film at 30 ° C - 60 ° C, by air drying or vacuum drying.
- the high chemical stability of the PVFM polymer porous membrane prepared in Example 5 and the high liquid absorption rate of 00% promoted the formation of a stable gel electrolyte system.
- the electrical conductivity of the system was 1.28 X 10- 3 S/cm, slightly higher than that of the liquid electrolyte.
- the average value of the electrical conductivity is 10" 3 S/cm.
- PVFM polyvinyl formal
- NMP N-methylpyrrolidone
- MDI diisocyanate
- the mixed solution was coated with a film and immersed in deionized water to prepare a porous film, and the obtained porous film was dried for 1 hour.
- the method of drying the porous film may be, for example, but not limited to, placing the porous film at 30 ° C - 60 ° C, by air drying or vacuum drying.
- the high chemical stability of the PVFM polymer porous membrane prepared in Example 6, and the high liquid absorption rate of 45% promoted the formation of a stable gel electrolyte system.
- the conductivity of the system was 1.12 X 10-S/cm, slightly higher than that of the liquid electrolyte.
- the average conductivity is 103 ⁇ 4/cm.
- polyvinyl acetal and polyvinyl butyral are used in the examples to prepare the polymer porous film of the present invention, those skilled in the art should be aware of polyvinyl formal and its homologues. All have the (1)-(4) basic structural unit as set forth in the description of the specification, the main structural features are similar, and both have certain hydroxyl groups, and the polyurethane of the polymer porous film of the present invention listed in the Summary of the Invention can be formed.
- the chemical cross-linking structure can be used, and other homologues of polyvinyl formal can be used to prepare the polymer porous film of the present invention.
- the organic solvent is preferably N-methylpyrrolidone, N,N-dimethylformamide, chloroform. At least one of tetrahydrofuran, an organic solvent having a solubility difference of ⁇ 1.7-2 in the field is also feasible.
- MDI 4,4'-diphenylmethane diisocyanate
- any other diisocyanate may be used to chemically crosslink with polyvinyl formal or a homolog thereof.
- anhydrous methanol In addition to water, anhydrous methanol, anhydrous ethanol, such as a cheap and readily available non-solvent, it is also possible to add other polyvinyl formal or its homologue to a solution of polyvinyl formal or its homologue and diisocyanate.
- a non-solvent for the polyurethaneized product The mass ratio of polyvinyl formal or its homologue to its organic solvent may be any ratio between 1:5 and 1:20.
- the mass ratio of polyvinyl formal or its homologue to diisocyanate may be any ratio between 10:1 and 2:1.
- the mass ratio of the polyethylol formal or its homologue to the non-solvent of the polyvinyl acetal and its chemically crosslinked product is any ratio between 10:1 and 1:1.
- t ⁇ is lower than column 1
- PVFM polyacetol formall
- NMP N-methylpyrrolidone
- the pellet was continuously magnetically stirred at 45 ° C until the precipitate was dissolved.
- the solution was coated and immersed in deionized water to prepare a porous film, and the obtained porous film was dried for 1 hour.
- Figure 4 is a microscopic topography of a porous polymer membrane.
- the porous membrane has a porous honeycomb shape and has a large pore diameter of about 25 ⁇ m.
- the polymer wall composed of large pores is also uniformly distributed, and the diameter is about 1-2 ⁇ m. Small pores.
- the PVFM polymer porous film which is not chemically crosslinked is rapidly dissolved in an electrolyte containing an organic solvent such as LiPF 6 /EC+DMC (3:7 in Vol.), and a stable gel electrolyte system cannot be formed.
- the composition of the polymer porous film of the present invention is chemically crosslinked, has good chemical stability, and the polymer porous film is not dissolved in the organic solvent component of the electrolytic solution.
- the connected pores of the porous membrane can quickly adsorb the electrolyte and form a gel polymer electrolyte to effectively prevent the electrolyte from being missed.
- the gel polymer electrolyte has high conductivity and reaches and approaches the average value of the liquid electrolyte conductivity of 1.12 ⁇ 10 ⁇ 3 .
- the electrochemical stability window of the gel polymer electrolyte is 2.0V ⁇ 5.0V, and the result is shown in FIG. 5.
- the impedance of the solution is 5.0 ⁇ through the AC impedance test, and the conductance is calculated according to the above formula.
- the rate is 1.25 X 10- /cm.
- the main components of the electrolytic solution used are a lithium salt and an organic solvent.
- the lithium salt is selected from at least one of the following: LiPF 6 , LiC10 4 LiBF 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 S ⁇ 3 , LiN(S0 2 CF 3 ) 2 , LiBOB, LiSbF 6 , LiSCN, LiSnF 6 , LiGeF 6 , LiTaF 6 .
- the organic solvent is selected from at least one of the following: ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinyl sulfite, propylene sulfite, dimethyl sulfite, diethyl sulfite Ester, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, methyl acetate, ethyl acetate, ethyl propionate, ethyl butyrate, tetrahydrofuran, 2-methyl Tetrahydrofuran, tetrahydropyran, dioxolane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, acetonitrile, dimethyl sulfoxide, acetone, hydrazine, hydrazine-dimethylformamidine Amine, sulfolane, dimethyl sulfone.
- the half cell is assembled with 1 ⁇ 1 ⁇ 2? ⁇ 4 as the positive electrode and Li as the negative electrode.
- the battery uses a CR2032 button battery.
- a separator member was not added to the battery, and instead, the polymer porous film prepared in Example 1 was used.
- a small amount of electrolyte is added dropwise to infiltrate the polymer porous membrane and the electrode material, and the electrolyte is swollen to gel.
- the polymer porous membrane prepared in Example 1 was applied to a gel polymer electrolyte, and a half-cell assembled using lithium iron phosphate as a positive electrode battery. After charging and discharging test, the results shown in FIG. 6 indicate that the embodiment was employed.
- the prepared polymer porous membrane is applied to the gel polymer electrolyte with good chemical stability, excellent cycle stability of the battery, battery cycle 80 times, capacity retention rate of 95.4%, close to the liquid electrolyte cycle 80 times, capacity The application rate of 97.6% is maintained, and the application requirements in the battery system are achieved.
- the polymer porous film prepared in Example 1 can also be used for a lithium ion battery in which positive and negative electrodes are composed of other materials.
- the positive electrode of the lithium ion battery is at least one selected from the group consisting of lithium iron phosphate, nickel cobalt manganese ternary material, spinel lithium manganate, high capacity lithium-rich manganese-based material
- the negative electrode is at least one selected from the group consisting of One: graphite, hard carbon, lithium niobate, silicon based compounds and alloys.
- Fig. 1 shows an embodiment of a lithium ion battery cell structure obtained by using the polymer porous film of the present invention as a gel polymer electrolyte.
- the lithium ion battery cell is a laminated type or a wound type, and includes a positive electrode tab 1, a positive electrode tab 2 welded to one end of the positive electrode tab 1, a negative electrode tab 3, and a sum welded to the negative electrode tab 3.
- the negative electrode tab 4 at the same end of the positive electrode tab 2 and the gel polymer electrolyte layer 5 formed of the polymer porous film of the present invention between the positive and negative electrode tabs.
- the lithium ion battery is deintercalated from the structure of the active material of the negative electrode tab 3 during discharge, and the active material of the negative electrode tab 3 is The solvation occurs at the interface of the gel polymer electrolyte layer 5, and migrates to the side of the positive electrode tab 1 in the gel polymer electrolyte layer 5, and the interface between the active material of the positive electrode tab 1 and the gel polymer electrolyte layer 5
- the upper side is desolvated and then embedded in the structure of the material of the positive electrode tab 1, and the electrons are passed from the negative electrode tab 4 to the positive electrode tab 2 via an external circuit to form an directional movement of electrons, that is, an electric current.
- lithium ions are deintercalated from the active material of the positive electrode tab 1 and traverse the interface between the gel polymer electrolyte layer 5 and the positive electrode tab 1 and the negative electrode tab 3, and then embedded in the negative electrode tab. 3
- the structure of the active substance in the charging process, in contrast to the above process, lithium ions are deintercalated from the active material of the positive electrode tab 1 and traverse the interface between the gel polymer electrolyte layer 5 and the positive electrode tab 1 and the negative electrode tab 3, and then embedded in the negative electrode tab. 3 The structure of the active substance.
- a gel polymer lithium ion battery for a gel polymer lithium ion battery, since a polymer porous film having a certain mechanical strength is used to adsorb-swell a gel polymer electrolyte formed after the electrolyte, the use of a separator is avoided. It reduces the multiple interfaces during lithium ion migration and the obstacles caused by the separator, which is more conducive to the migration of lithium ions and reduces the internal resistance of lithium ion batteries.
- the shape of the battery is not limited by the liquid electrolyte, but it can be made according to the design requirements.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
La présente invention concerne une membrane polymère poreuse obtenue par utilisation d'un polymère de polyvinylacétal traité au polyuréthane, et un procédé de préparation de ladite membrane polymère poreuse. Des pores traversants sont répartis uniformément dans la membrane poreuse, ce qui confère à ladite membrane d'excellentes capacités d'adsorption de liquide électrolytique et assure une vitesse d'adsorption de liquide de 300 % ou plus. L'adsorption et le gonflement du liquide électrolytique provoquent la gélification du système, et, la membrane poreuse et le système de gel peuvent ainsi rester stables pendant une longue période. L'électrolyte presque liquide de la présente invention présente une valeur de conductivité électrique moyenne de 1,0 x 10 -3 S/cm, une fenêtre de stabilité électrochimique comprise entre 2,0V et 5,0 V, des propriétés mécaniques et une électrocompatibilité nettement améliorées, et il peut servir d'électrolyte gel polymère, ce qui permet d'améliorer la sécurité de la batterie. L'invention rend inutile l'utilisation d'un système à électrolyte liquide ou d'un autre diaphragme de système de batterie en tant que support.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210445230.X | 2012-11-09 | ||
CN201210445230 | 2012-11-09 | ||
CN201310231733.1A CN103804892B (zh) | 2012-11-09 | 2013-06-09 | 一种聚合物多孔膜及其制备方法和在凝胶聚合物电解质中的应用 |
CN201310231733.1 | 2013-06-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014072789A2 true WO2014072789A2 (fr) | 2014-05-15 |
WO2014072789A3 WO2014072789A3 (fr) | 2014-11-20 |
Family
ID=50685263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/002452 WO2014072789A2 (fr) | 2012-11-09 | 2013-11-05 | Membrane polymère poreuse, son procédé de préparation, et son utilisation dans un électrolyte gel polymère |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103804892B (fr) |
WO (1) | WO2014072789A2 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106374139A (zh) * | 2016-11-04 | 2017-02-01 | 北京大学 | 一种凝胶电解质材料用单体、聚合物、制备方法及其应用 |
EP3442070A1 (fr) * | 2017-08-10 | 2019-02-13 | Baden-Württemberg Stiftung gGmbH | Électrolytes polymères en gel polyhydroxyurethane-based pour systèmes de stockage d'énergie |
CN113140789A (zh) * | 2021-04-22 | 2021-07-20 | 北京化工大学 | 一种可回收的自修复凝胶态电解质及其制备方法和应用 |
CN115133122A (zh) * | 2022-08-29 | 2022-09-30 | 江苏展鸣新能源有限公司 | 一种锂离子电池电解质的制备方法及其应用 |
CN118336151A (zh) * | 2024-06-12 | 2024-07-12 | 超威电源集团有限公司 | 一种自愈合水系凝胶电池及其制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105161759B (zh) * | 2015-08-21 | 2017-10-10 | 北京科技大学 | 一种锂空气电池的复合电解质及其制备方法 |
KR102019312B1 (ko) * | 2016-02-25 | 2019-09-06 | 주식회사 엘지화학 | 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지 |
KR102133384B1 (ko) * | 2016-09-02 | 2020-07-14 | 주식회사 엘지화학 | 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지 |
CN114725500A (zh) * | 2022-04-11 | 2022-07-08 | 万向一二三股份公司 | 一种聚合物复合固体电解质及其制备方法 |
WO2024168812A1 (fr) * | 2023-02-17 | 2024-08-22 | 宁德时代新能源科技股份有限公司 | Polymère aldéhyde-cétone, feuille d'électrode et élément de batterie associé, batterie et dispositif électrique |
CN117374515B (zh) * | 2023-12-06 | 2024-04-19 | 天津力神电池股份有限公司 | 具有锂离子容量补偿作用的隔膜及其制备方法和电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5874756A (ja) * | 1981-10-27 | 1983-05-06 | Fujikura Ltd | ポリビニルホルマ−ル塗料 |
JP2005306982A (ja) * | 2004-04-21 | 2005-11-04 | Denki Kagaku Kogyo Kk | 樹脂組成物及びシート |
JP2011195696A (ja) * | 2010-03-19 | 2011-10-06 | Denki Kagaku Kogyo Kk | イソシアネート変性ポリビニルアセタール樹脂及びその製造方法 |
CN102341422A (zh) * | 2009-03-05 | 2012-02-01 | 株式会社村田制作所 | 膜电容器用电介质树脂组合物及其制造方法、以及膜电容器 |
CN102504162A (zh) * | 2011-11-17 | 2012-06-20 | 中山大学 | 一种超支化聚氨酯磺酸盐及其固体高分子电解质膜的制造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006075392A1 (fr) * | 2005-01-14 | 2006-07-20 | Mitsui Chemicals, Inc. | Vernis de resine d’acetal polyvinylique, agent gelifiant, electrolyte non aqueux et element electrochimique |
EP1860723A4 (fr) * | 2005-03-14 | 2009-04-08 | Sony Corp | Electrolyte polymere et batterie |
CN102035043B (zh) * | 2009-09-25 | 2014-02-12 | 上海比亚迪有限公司 | 聚合物多孔膜、其制备方法、聚合物电解质及聚合物电池和电池的制备方法 |
CN102199846A (zh) * | 2011-04-29 | 2011-09-28 | 华南师范大学 | 一种多孔聚合物电解质支撑膜材料及其制备方法和应用 |
-
2013
- 2013-06-09 CN CN201310231733.1A patent/CN103804892B/zh active Active
- 2013-11-05 WO PCT/IB2013/002452 patent/WO2014072789A2/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5874756A (ja) * | 1981-10-27 | 1983-05-06 | Fujikura Ltd | ポリビニルホルマ−ル塗料 |
JP2005306982A (ja) * | 2004-04-21 | 2005-11-04 | Denki Kagaku Kogyo Kk | 樹脂組成物及びシート |
CN102341422A (zh) * | 2009-03-05 | 2012-02-01 | 株式会社村田制作所 | 膜电容器用电介质树脂组合物及其制造方法、以及膜电容器 |
JP2011195696A (ja) * | 2010-03-19 | 2011-10-06 | Denki Kagaku Kogyo Kk | イソシアネート変性ポリビニルアセタール樹脂及びその製造方法 |
CN102504162A (zh) * | 2011-11-17 | 2012-06-20 | 中山大学 | 一种超支化聚氨酯磺酸盐及其固体高分子电解质膜的制造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106374139A (zh) * | 2016-11-04 | 2017-02-01 | 北京大学 | 一种凝胶电解质材料用单体、聚合物、制备方法及其应用 |
EP3442070A1 (fr) * | 2017-08-10 | 2019-02-13 | Baden-Württemberg Stiftung gGmbH | Électrolytes polymères en gel polyhydroxyurethane-based pour systèmes de stockage d'énergie |
CN113140789A (zh) * | 2021-04-22 | 2021-07-20 | 北京化工大学 | 一种可回收的自修复凝胶态电解质及其制备方法和应用 |
CN113140789B (zh) * | 2021-04-22 | 2022-09-09 | 北京化工大学 | 一种可回收的自修复凝胶态电解质及其制备方法和应用 |
CN115133122A (zh) * | 2022-08-29 | 2022-09-30 | 江苏展鸣新能源有限公司 | 一种锂离子电池电解质的制备方法及其应用 |
CN115133122B (zh) * | 2022-08-29 | 2022-11-04 | 江苏展鸣新能源有限公司 | 一种锂离子电池电解质的制备方法及其应用 |
CN118336151A (zh) * | 2024-06-12 | 2024-07-12 | 超威电源集团有限公司 | 一种自愈合水系凝胶电池及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2014072789A3 (fr) | 2014-11-20 |
CN103804892B (zh) | 2019-01-18 |
CN103804892A (zh) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014072789A2 (fr) | Membrane polymère poreuse, son procédé de préparation, et son utilisation dans un électrolyte gel polymère | |
CN110010964B (zh) | 多孔膜增强的聚合物-塑晶固体电解质膜、其制法与应用 | |
Lu et al. | Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries | |
CN107959049B (zh) | 凝胶电解质的制备方法、凝胶电解质及锂离子电池 | |
CN104183867B (zh) | 一种单离子导体纳米颗粒增强锂电池隔膜或聚合物电解质的制备方法和应用 | |
CN101662042B (zh) | 一种聚合物锂离子电池及其隔膜的制备方法 | |
WO2021232904A1 (fr) | Membrane isolante d'un dispositif électrochimique et son procédé de préparation | |
CN103367799B (zh) | 一种全固态聚电解质薄膜及其制备和应用方法 | |
CN101662041B (zh) | 一种凝胶聚合物锂离子电池的制备方法 | |
TW201108488A (en) | Electrolyte compositions and methods of making and using the same | |
CN108933277B (zh) | 一种锂离子二次电池 | |
CN101677139B (zh) | 一种凝胶聚合物锂离子电池的制备方法 | |
WO2021174442A1 (fr) | Dispositif électrochimique et dispositif électronique le comprenant | |
CN104409770B (zh) | 含烯丙基功能化离子液体的聚合物电解质的制备方法 | |
WO2023141822A1 (fr) | Dispositif électrochimique et dispositif électronique | |
KR20230093521A (ko) | 전기화학 디바이스 및 전자 디바이스 | |
CN114843698B (zh) | 一种复合油基隔膜及其制备方法和二次电池 | |
WO2023000734A1 (fr) | Séparateur de batterie au lithium | |
CN116195099A (zh) | 一种粘结剂、电化学装置和电子装置 | |
WO2021174444A1 (fr) | Dispositif électrochimique et dispositif électronique le comprenant | |
CN113506951A (zh) | 用于金属二次电池的纤维素基复合隔膜及其制备方法 | |
CN114447416B (zh) | 改性无机快离子导体及其制备方法和应用 | |
CN112397771B (zh) | 一种固态电解质膜及其制备方法和在固态锂硫电池中的应用 | |
US20240258525A1 (en) | Polymer, composition, negative electrode and a battery employing the same | |
Tseng et al. | In-situ Synthesis of Solid-State Polymer Electrolytes for Lithium-Ion Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13853551 Country of ref document: EP Kind code of ref document: A2 |