WO2014069137A1 - 車輪用軸受および軸受装置 - Google Patents

車輪用軸受および軸受装置 Download PDF

Info

Publication number
WO2014069137A1
WO2014069137A1 PCT/JP2013/076475 JP2013076475W WO2014069137A1 WO 2014069137 A1 WO2014069137 A1 WO 2014069137A1 JP 2013076475 W JP2013076475 W JP 2013076475W WO 2014069137 A1 WO2014069137 A1 WO 2014069137A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
shaft hole
wheel bearing
hub
hub wheel
Prior art date
Application number
PCT/JP2013/076475
Other languages
English (en)
French (fr)
Inventor
修二 持永
乗松 孝幸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US14/433,944 priority Critical patent/US9393836B2/en
Priority to CN201380056468.6A priority patent/CN104755276B/zh
Priority to EP13851701.6A priority patent/EP2915683B1/en
Priority to IN2903DEN2015 priority patent/IN2015DN02903A/en
Publication of WO2014069137A1 publication Critical patent/WO2014069137A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0021Hubs for driven wheels characterised by torque transmission means from drive axle
    • B60B27/0031Hubs for driven wheels characterised by torque transmission means from drive axle of the axial type, e.g. front teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0036Hubs for driven wheels comprising homokinetic joints
    • B60B27/0042Hubs for driven wheels comprising homokinetic joints characterised by the fixation of the homokinetic joint to the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • F16C35/0635Fixing them on the shaft the bore of the inner ring being of special non-cylindrical shape which co-operates with a complementary shape on the shaft, e.g. teeth, polygonal sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/30Manufacturing methods joining
    • B60B2310/316Manufacturing methods joining by press-fitting, shrink-fitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2380/00Bearings
    • B60B2380/10Type
    • B60B2380/12Ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2380/00Bearings
    • B60B2380/70Arrangements
    • B60B2380/73Double track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/113Production or maintenance time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/20Avoidance of
    • B60B2900/212Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/12Force connections, e.g. clamping by press-fit, e.g. plug-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/80Positive connections with splines, serrations or similar profiles to prevent movement between joined parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Definitions

  • the present invention relates to a wheel bearing and a bearing device that rotatably supports driving wheels (front wheels of FF vehicles, rear wheels of FR vehicles, all wheels of 4WD vehicles), for example, with respect to a suspension device of an automobile.
  • the wheel bearing device disclosed in Patent Document 1 includes a wheel bearing 120 including a hub wheel 101, an inner ring 102, double row rolling elements 103 and 104, and an outer ring 105, and a fixed constant velocity.
  • the main part is composed of the universal joint 106.
  • the hub wheel 101 has an inner raceway surface 107 on the outboard side formed on the outer peripheral surface thereof, and a wheel mounting flange 109 for mounting a wheel (not shown). Hub bolts 110 for fixing the wheel disc are implanted at equal intervals in the circumferential direction of the wheel mounting flange 109.
  • An inner ring 102 is fitted to a small diameter step portion 112 formed on the inboard side outer peripheral surface of the hub wheel 101, and an inner raceway surface 108 on the inboard side is formed on the outer peripheral surface of the inner ring 102.
  • the inner ring 102 is press-fitted with an appropriate tightening allowance to prevent creep.
  • An outboard-side inner raceway surface 107 formed on the outer peripheral surface of the hub wheel 101 and an inboard-side inner raceway surface 108 formed on the outer peripheral surface of the inner ring 102 constitute a double-row raceway surface.
  • the inner ring 102 is press-fitted into the small-diameter step portion 112 of the hub wheel 101, the inboard side end portion of the small-diameter step portion 112 is caulked outward, and the inner ring 102 is prevented from coming off by the caulking portion 111 to be removed. And preload is applied to the wheel bearing 120.
  • the outer ring 105 is formed with double row outer raceway surfaces 113 and 114 facing the inner raceway surfaces 107 and 108 of the hub wheel 101 and the inner ring 102 on the inner peripheral surface.
  • the wheel bearing device is attached to the vehicle body by fitting and fixing the outer peripheral surface of the outer ring 105 to a knuckle extending from a suspension device (not shown) of the vehicle body.
  • the wheel bearing 120 has a double-row angular contact ball bearing structure, and has inner raceway surfaces 107 and 108 formed on the outer peripheral surfaces of the hub wheel 101 and the inner ring 102, and an outer raceway surface 113 formed on the inner peripheral surface of the outer ring 105.
  • the rolling elements 103 and 104 are interposed between the rolling elements 103 and 104, and the rolling elements 103 and 104 in each row are supported by the cages 115 and 116 at equal intervals in the circumferential direction.
  • a pair of seals 117, 118 that seal the annular space between the outer ring 105, the hub ring 101, and the inner ring 102 are provided at both end openings of the wheel bearing 120 so as to be in sliding contact with the outer peripheral surfaces of the hub ring 101 and the inner ring 102.
  • 105 is fitted to the inner diameters at both ends, and prevents leakage of grease filled in the inside and intrusion of water and foreign matters from the outside.
  • the constant velocity universal joint 106 is provided at one end of an intermediate shaft 122 that constitutes the drive shaft 121, and is opposed to the outer joint member 124 in which the track groove 123 is formed on the inner peripheral surface, and the track groove 123 of the outer joint member 124.
  • An inner joint member 126 having a track groove 125 formed on the outer peripheral surface, a ball 127 incorporated between the track groove 123 of the outer joint member 124 and the track groove 125 of the inner joint member 126, and the outer joint member 124.
  • the cage 128 is interposed between the inner peripheral surface and the outer peripheral surface of the inner joint member 126 and holds the ball 127.
  • the outer joint member 124 is composed of a mouse part 129 that houses internal parts composed of the inner joint member 126, the ball 127, and the cage 128, and a stem part 130 that extends integrally from the mouse part 129 in the axial direction.
  • the inner joint member 126 is coupled so that torque can be transmitted by spline fitting with the shaft end of the intermediate shaft 122 press-fitted.
  • a resin bellows for preventing leakage of a lubricant such as grease sealed inside the joint and preventing foreign matter from entering from the outside of the joint.
  • the outer boot member 124 is closed by the boot 131 and the outer joint member 124 is closed.
  • the boot 131 includes a large-diameter end portion 133 fastened and fixed to the outer peripheral surface of the outer joint member 124 by a boot band 132, a small-diameter end portion 135 fastened and fixed to the outer peripheral surface of the intermediate shaft 122 by a boot band 134,
  • the diameter end portion 133 and the small diameter end portion 135 are connected to each other, and a flexible bellows portion 136 having a diameter reduced from the large diameter end portion 133 toward the small diameter end portion 135 is formed.
  • FIG. 21 shows a state before the stem portion 130 of the outer joint member 124 is press-fitted into the shaft hole 138 of the hub wheel 101.
  • the stem portion 130 of the outer joint member 124 has a male spline formed of a plurality of convex portions 137 extending in the axial direction on the outer peripheral surface thereof.
  • the shaft hole 138 of the hub wheel 101 forms a simple cylindrical portion 139 in which a female spline is not formed on the inner peripheral surface thereof.
  • FIG. 22 shows a state after the stem portion 130 of the outer joint member 124 is press-fitted into the shaft hole 138 of the hub wheel 101.
  • the stem portion 130 of the outer joint member 124 is press-fitted into the shaft hole 138 of the hub wheel 101, and the convex portion 137 of the stem portion 130 is transferred to the inner peripheral surface of the shaft hole 138 of the hub wheel 101.
  • a concave portion 140 is formed on the inner peripheral surface of the shaft hole 138 of the hub wheel 101 so as to be in close contact with the convex portion 137 with an allowance, and the concave and convex fitting is in close contact with the entire fitting contact portion between the convex portion 137 and the concave portion 140.
  • the female screw formed at the shaft end of the stem portion 130 of the outer joint member 124 is formed.
  • the constant velocity universal joint 106 is fixed to the hub wheel 101 by screwing the bolt 142 to 141 and tightening the bolt 142 in a state where the bolt 142 is locked to the end surface of the hub wheel 101.
  • the fixed constant velocity universal joint 106 coupled to the wheel bearing 120 including the hub wheel 101, the inner ring 102, the double row rolling elements 103 and 104, and the outer ring 105 is provided on the drive shaft 121.
  • a drive shaft 121 that transmits power from an automobile engine to a wheel needs to cope with an angular displacement and an axial displacement due to a change in the relative positional relationship between the engine and the wheel.
  • a structure connected by a shaft 122 is provided.
  • the inner peripheral surface of the shaft hole 138 of the hub wheel 101 forms a simple cylindrical portion 139 in which no female spline is formed.
  • a large press-fitting load is required to transfer the convex portion 137 of the stem portion 130 to the inner peripheral surface of the shaft hole 138. It was necessary to use. Therefore, the current situation is that the wheel bearing device must be assembled to the vehicle body with the constant velocity universal joint 106 of the drive shaft 121 assembled to the wheel bearing 120.
  • the wheel bearing 120 and the constant velocity universal joint 106 of the drive shaft 121 are coupled, that is, the two constant velocity universal joints 106 and 151 of the wheel bearing 120 and the drive shaft 121 are connected.
  • the minimum inner diameter of the knuckle 152 (see FIG. 23) extending from the suspension device of the vehicle body is larger than the maximum outer diameter of the constant velocity universal joints 106 and 151, this assembly to the vehicle body is shown in FIG.
  • the sliding constant velocity universal joint 151 and the fixed constant velocity universal joint 106 of the drive shaft 121 are sequentially passed through the knuckle 152 extending from the suspension device of the vehicle body, and then the outer ring 105 of the wheel bearing 120 is knuckled. It is made to fit in 152 and to be fixed.
  • the drive shaft 121 is a long assembly body that connects the wheel side and the engine side, as described above, the sliding constant velocity universal joint 151 and the fixed constant velocity universal joint 106 of the drive shaft 121 are knuckled.
  • the assembling method to the vehicle body that is sequentially passed through 152 is inferior in workability, and there is a possibility that parts constituting the drive shaft 121 may be damaged during the assembling.
  • the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to improve the workability in assembling the vehicle body and prevent damage to the components during the assembly.
  • An object of the present invention is to provide a bearing and a bearing device.
  • a wheel bearing device includes an outer member having a double-row outer raceway formed on the inner periphery, and a double-row inner raceway facing the outer raceway on the outer periphery. And a bearing for a wheel comprising a double row rolling element interposed between the outer raceway surface of the outer member and the inner raceway surface of the inner member, and is provided in the shaft hole of the hub wheel.
  • the wheel bearing device has a shaft hole of a hub wheel penetrating in a cylindrical shape in the axial direction, and is formed on an inner peripheral surface of the shaft hole of the hub wheel.
  • a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact by press-fitting into the shaft hole of the hub wheel formed with the concave portion and transferring the shape of the convex portion to the inner peripheral surface of the shaft hole. It is characterized by comprising.
  • a plurality of convex portions extending in the axial direction are formed in the stem portion of the outer joint member, and concave portions having a tightening margin with respect to the convex portions are formed in advance in the shaft hole of the hub wheel. Then, when the stem portion of the outer joint member is press-fitted into the shaft hole of the hub wheel, the concave portion forming surface is slightly cut by the convex portion, and the slight plastic deformation and elastic deformation of the concave portion forming surface by the convex portion are accompanied. Accordingly, the shape of the convex portion is transferred to the concave portion forming surface.
  • the convex portion bites into the concave portion forming surface so that the inner peripheral surface of the shaft hole of the hub wheel is slightly expanded in diameter, and the relative movement in the axial direction of the convex portion is allowed. If the axial relative movement of the projections stops, the inner peripheral surface of the hub hole of the hub wheel is reduced in diameter to return to the original diameter. Thereby, it can closely_contact
  • the fitting contact portion between the convex portion and the concave portion is compared with a case where the convex portion is transferred to a simple cylindrical portion as in the past. Since the press-fitting load at the time of close contact can be reduced, after attaching the wheel bearing to the vehicle body, press the outer joint member into the hub wheel of the wheel bearing to couple the constant velocity universal joint to the wheel bearing. It becomes easy.
  • the axial hole of the hub wheel is formed in a cylindrical shape through the axial direction, so that a recess extending in the axial direction is formed on the inner peripheral surface of the axial hole of the hub wheel by broaching. This makes it easy to form a recess having a tightening margin with respect to the protrusion in advance in the shaft hole of the hub wheel, thereby reducing the cost.
  • the screw tightening structure in the present invention has a structure in which a female screw portion is formed at the shaft end of the stem portion of the outer joint member, and a male screw portion that is screwed into the female screw portion is locked to the peripheral edge portion of the opening end of the shaft hole of the hub wheel.
  • a female screw portion is formed at the shaft end of the stem portion of the outer joint member, and a male screw portion that is screwed into the female screw portion is locked to the peripheral edge portion of the opening end of the shaft hole of the hub wheel.
  • a female screw portion is formed at the shaft end of the stem portion of the outer joint member, and the male screw portion to be screwed into the female screw portion is attached to the annular plate fitted to the shaft hole opening end of the hub wheel.
  • a locked structure is possible.
  • the annular plate by fitting the annular plate to the opening end of the shaft hole of the hub wheel that penetrates in the cylindrical shape in the axial direction, the male threaded portion that engages with the female threaded portion of the stem portion becomes the end surface of the annular plate.
  • the constant velocity universal joint is fixed to the hub wheel.
  • the inboard side end portion of the hub wheel is swaged outward in the radial direction so that the inner ring is prevented from coming off by the swaged portion and integrated with the hub wheel, and the swaged portion is the outer joint of the constant velocity universal joint.
  • a structure that is in contact with the shoulder portion of the member is desirable. If such a caulking structure is adopted, the inner ring is prevented from coming off by the caulking portion and integrated with the hub ring, so that the wheel bearing can be easily separated from the constant velocity universal joint.
  • a structure in which the end surface of the inner ring located on the inboard side of the hub wheel is in contact with the end surface of the shoulder portion of the outer joint member of the constant velocity universal joint is desirable. If such a non-caulking structure is employed, the weight of the caulking portion described above can be reduced, and caulking work is not necessary, thereby reducing costs.
  • the plurality of convex portions formed in the stem portion of the outer joint member and extending in the axial direction are press-fitted into the shaft hole of the hub wheel formed with the plurality of concave portions having a tightening margin with respect to the convex portion.
  • the concave / convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact with each other is formed. Since the recessed part which has has been formed previously, the press-fit load at the time of closely_contact
  • a recess extending in the axial direction can be formed on the inner peripheral surface of the shaft hole of the hub wheel by broaching, It becomes easy to form a recess having a tightening margin with respect to the protrusion in the shaft hole of the hub wheel in advance, and the cost can be reduced.
  • FIG. 2 is a cross-sectional view showing a state after a constant velocity universal joint is assembled to the wheel bearing of FIG. 1. It is sectional drawing which shows the state which performs broaching with respect to a hub ring single-piece
  • FIG. 10B is a cross-sectional view taken along the line CC of FIG. 10A.
  • the main part which shows the state before press-fitting the stem part of an outer joint member in the hub wheel of a wheel bearing in the embodiment which formed the crevice which has a margin for the peripheral side wall part and radial direction tip part of a convex part. It is an expanded sectional view. It is sectional drawing which follows the DD line
  • FIG. 15 is a cross-sectional view showing a state after the constant velocity universal joint is assembled to the wheel bearing of FIG. 14.
  • FIG. 17 is a cross-sectional view showing a state after the constant velocity universal joint is assembled to the wheel bearing of FIG. 16.
  • Sectional drawing which shows the state before assembling a constant velocity universal joint to the wheel bearing of the non-clamping structure by which the annular plate was mounted
  • FIG. 19 is a cross-sectional view showing a state after the constant velocity universal joint is assembled to the wheel bearing of FIG. 18.
  • FIG. 20 It is a longitudinal cross-sectional view which shows the whole structure of the conventional wheel bearing apparatus.
  • the wheel bearing device of FIG. 20 it is a principal part expanded longitudinal sectional view which shows the state before pressing the stem part of an outer joint member in the axial hole of a hub ring.
  • the wheel bearing device of FIG. 20 it is a principal part expanded cross-sectional view which shows the state after pressing the stem part of an outer joint member in the axial hole of a hub ring.
  • the wheel bearing device shown in FIGS. 1 and 2 includes a hub wheel 1 and an inner ring 2 which are inner members, double-row rolling elements 3 and 4, a wheel bearing 20 including an outer ring 5 and a constant velocity universal joint 6.
  • the main part is composed.
  • FIG. 1 shows a state before the constant velocity universal joint 6 is assembled to the wheel bearing 20
  • FIG. 2 shows a state after the constant velocity universal joint 6 is assembled to the wheel bearing 20.
  • the side closer to the outer side of the vehicle body is called the outboard side (left side of the drawing) and the side closer to the center is called the inboard side (right side of the drawing).
  • the hub wheel 1 has an inner raceway surface 7 on the outboard side formed on the outer peripheral surface thereof, and includes a wheel mounting flange 9 for mounting a wheel (not shown). Hub bolts 10 for fixing the wheel disc are implanted at equal intervals in the circumferential direction of the wheel mounting flange 9.
  • the inner ring 2 is fitted to the small-diameter step portion 12 formed on the inboard side outer peripheral surface of the hub wheel 1, and the inboard-side inner raceway surface 8 is formed on the outer peripheral surface of the inner ring 2.
  • the inner ring 2 is press-fitted with an appropriate tightening allowance to prevent creep.
  • the outboard side inner raceway surface 7 formed on the outer peripheral surface of the hub wheel 1 and the inboard side inner raceway surface 8 formed on the outer peripheral surface of the inner ring 2 constitute a double row raceway surface.
  • the inner ring 2 is press-fitted into the small-diameter step portion 12 of the hub wheel 1, and the inboard side end portion of the small-diameter step portion 12 is crimped outward by swing caulking, and the inner ring 2 is prevented from coming off with the caulking portion 11.
  • it is integrated with the hub wheel 1 and preload is applied to the wheel bearing 20.
  • the outer ring 5 is formed with double row outer raceway surfaces 13 and 14 facing the inner raceway surfaces 7 and 8 of the hub wheel 1 and the inner ring 2 on the inner peripheral surface, and is a knuckle extending from a suspension device of a vehicle body (not shown).
  • a vehicle body mounting flange 19 for mounting is provided. As will be described later, the vehicle body mounting flange 19 is fitted to the knuckle 52 and fixed by a bolt 63 (see FIG. 5).
  • the wheel bearing 20 has a double-row angular ball bearing structure, and has inner raceway surfaces 7 and 8 formed on the outer peripheral surfaces of the hub wheel 1 and the inner ring 2 and an outer raceway surface 13 formed on the inner peripheral surface of the outer ring 5. 14, the rolling elements 3 and 4 are interposed, and the rolling elements 3 and 4 in each row are supported by the cages 15 and 16 at equal intervals in the circumferential direction.
  • a pair of seals 17 and 18 that seal the annular space between the outer ring 5, the hub ring 1, and the inner ring 2 are provided at both ends of the wheel bearing 20 so as to be in sliding contact with the outer peripheral surfaces of the hub ring 1 and the inner ring 2. 5 is fitted to the inner diameters of both end portions to prevent leakage of grease filled inside and entry of water and foreign matters from the outside.
  • the constant velocity universal joint 6 is provided at one end of an intermediate shaft 22 constituting the drive shaft 21 and is opposed to the outer joint member 24 having a track groove 23 formed on the inner peripheral surface thereof and the track groove 23 of the outer joint member 24.
  • An inner joint member 26 having track grooves 25 formed on the outer peripheral surface thereof, balls 27 incorporated between the track grooves 23 of the outer joint member 24 and the track grooves 25 of the inner joint member 26, and the outer joint member 24.
  • the cage 28 is interposed between the inner peripheral surface and the outer peripheral surface of the inner joint member 26 and holds the balls 27.
  • the outer joint member 24 is composed of a mouse part 29 that accommodates internal parts including the inner joint member 26, the ball 27, and the cage 28, and a stem part 30 that extends integrally from the mouse part 29 in the axial direction.
  • the inner joint member 26 is coupled so that torque can be transmitted by fitting the shaft end of the intermediate shaft 22 by spline fitting.
  • a resin bellows for preventing leakage of a lubricant such as grease enclosed in the joint and preventing foreign matter from entering from the outside of the joint.
  • the boot 31 is attached and the opening of the outer joint member 24 is closed with the boot 31.
  • the boot 31 includes a large-diameter end portion 33 fastened and fixed to the outer peripheral surface of the outer joint member 24 by a boot band 32, a small-diameter end portion 35 fastened and fixed to the outer peripheral surface of the intermediate shaft 22 by a boot band 34,
  • the diameter end portion 33 and the small diameter end portion 35 are connected to each other, and a flexible bellows portion 36 having a diameter reduced from the large diameter end portion 33 toward the small diameter end portion 35 is formed.
  • the wheel bearing device has a cylindrical fitting surface 61 formed on the outer peripheral surface of the inboard side of the stem portion 30 of the outer joint member 24, and a plurality of axially extending surfaces on the outer peripheral surface of the stem portion 30 on the outboard side.
  • a male spline composed of the convex portions 37 is formed.
  • a cylindrical fitting surface 62 is formed on the inboard side inner peripheral surface of the shaft hole 38 of the hub wheel 1, and the convex portion 37 is formed on the outboard side inner peripheral surface of the shaft hole 38.
  • a plurality of recesses 39 having a tightening margin are formed only on the circumferential side wall portion 47 (see FIG. 9B).
  • the above-mentioned convex part 37 is made into the trapezoidal tooth shape of a cross section, an involute tooth shape may be sufficient.
  • the plurality of concave portions 39 extending in the axial direction are formed by broaching on the inner peripheral surface of the shaft hole 38 of the hub wheel 1 on the outboard side.
  • the hub wheel 101 in the conventional wheel bearing device has a structure having a protruding wall portion 171 at the open end on the outboard side of the shaft hole 138, whereas in this embodiment (see FIG. 1).
  • the hub wheel 1 does not have the protruding wall portion 171 and has a structure in which the shaft hole 38 is penetrated in a cylindrical shape in the axial direction. That is, the inner peripheral surface of the shaft hole 38 has a cylindrical shape having the same inner diameter in the axial direction.
  • the axial hole 38 is formed in a cylindrical shape so that the inner peripheral surface thereof has the same inner diameter in the axial direction, whereby the concave portion 39 extending in the axial direction can be formed by broaching. it can.
  • 3 shows a case where broaching is performed on the hub wheel 1 alone
  • FIG. 4 shows a case where broaching is performed on the wheel bearing 20.
  • the processing jig 72 is inserted into the shaft hole 38 of the hub wheel 1 with the wheel mounting flange 9 of the hub wheel 1 placed on the base 71 and positioned and fixed.
  • a plurality of recesses 39 extending in the axial direction are formed on the inner peripheral surface of the shaft hole 38 of the hub wheel 1.
  • a post-process such as cleaning can be easily performed.
  • a plurality of recesses 39 are formed after caulking the shaft end of the wheel bearing 20, so that the accuracy of the plurality of recesses 39 is increased. It is effective in that it can be improved.
  • the stem portion 30 of the outer joint member 24 is press-fitted into the shaft hole 38 of the hub wheel 1, and the circumferential side wall of the convex portion 37 is inserted into the shaft hole 38 of the hub wheel 1, which is a recess forming surface on the other side.
  • the concave portion 40 is formed by transferring only the shape of the portion 47 (see FIG. 9B and FIG. 10B), and the concave-convex fitting structure M is formed in which the entire fitting contact region X between the convex portion 37 and the concave portion 40 adheres ( (See FIG. 2).
  • As the material of the outer joint member 24 and the hub wheel 1 medium carbon steel for machine structure represented by S53C and the like is suitable.
  • the screw tightening structure N includes a female screw portion 41 formed at the shaft end of the stem portion 30 of the outer joint member 24 and a bolt that is a male screw portion that is engaged with the female screw portion 41 and is locked to the hub wheel 1. 42.
  • the constant velocity universal joint 6 is fixed to the hub wheel 1 by screwing the bolt 42 into the female screw portion 41 of the stem portion 30 and tightening the bolt 42 in a state where the bolt 42 is locked to the hub wheel 1. .
  • the wheel bearing 20 has a structure in which the inner ring 2 is prevented from coming off by the caulking portion 11 and integrated with the hub wheel 1, and the caulking portion 11 is brought into contact with the shoulder portion 46 of the outer joint member 24. Therefore, the outer joint member 24 of the constant velocity universal joint 6 can be separated.
  • the head of the bolt 42 is a conventional wheel bearing device (see FIG. 20).
  • the bearing surface 43 has a larger diameter than the seat surface 143 of the head of the bolt 142, and is engaged with the peripheral portion of the opening end on the outboard side of the shaft hole 38.
  • a fixed type constant velocity universal joint 6 coupled to a wheel bearing 20 comprising a hub wheel 1, an inner ring 2, double row rolling elements 3, 4 and an outer ring 5 is part of a drive shaft 21. It is composed.
  • the drive shaft 21 that transmits power from the engine of the automobile to the wheels needs to cope with angular displacement and axial displacement due to a change in the relative positional relationship between the engine and the wheels.
  • a structure connected by a shaft 22 is provided.
  • the convex portion 137 is formed into a cylindrical shape as in the prior art.
  • the press-fitting load at the time of close contact in the entire fitting contact region X between the convex portion 37 and the concave portion 40 can be reduced as compared with the case of transferring to the portion 139 (see FIG. 21).
  • the wheel bearing 20 is fixed to the knuckle 52 extending from the suspension device of the vehicle body with the bolt 63, and then the wheel bearing 20 of the wheel bearing 20 is pulled by the pulling force by the bolt 42 of the screw tightening structure N.
  • the stem portion 30 of the outer joint member 24 of the constant velocity universal joint 6 can be press-fitted into the shaft hole 38 of the hub wheel 1, and the constant velocity universal joint 6 of the drive shaft 21 can be easily assembled to the wheel bearing 20. It becomes.
  • a cylindrical fitting surface 61 is formed on the outer peripheral surface of the stem portion 30 on the inboard side. Since the cylindrical fitting surface 62 is formed on the inboard side inner peripheral surface of the shaft hole 38 of the hub wheel 1, the stem portion 30 is formed on the fitting surface 62 of the shaft hole 38 of the hub wheel 1. By fitting the fitting surface 61, the axis alignment of the stem portion 30 with respect to the hub wheel 1 can be easily performed.
  • a guide portion 64 that guides the start of press-fitting is provided between the fitting surface 62 located on the inboard side of the hub wheel 1 and the concave portion 39 located on the outboard side.
  • the guide portion 64 is formed with a plurality of concave portions 65 extending in the axial direction in the same phase as the concave portion 39, and is a concave portion 65 larger than the convex portion 37 of the stem portion 30 (see an enlarged portion in FIG. 1). That is, a gap m is formed between the convex portion 37 and the concave portion 65 (see FIG. 8B).
  • the convex portion 37 of the stem portion 30 can be guided so as to be surely press-fitted into the concave portion 39 of the hub wheel 1.
  • the guide part 64 since the guide part 64 is made into the recessed part 65 larger than the recessed part 39 located in the outboard side, it cannot be broached like the recessed part 39 located in the outboard side. Therefore, the concave portion 65 of the guide portion 64 is formed by pressing. After the concave portion 65 of the guide portion 64 is formed, the concave portion 39 located on the outboard side is formed by broaching.
  • the circumferential dimension of the concave portion 39 is set to the convex portion 37 so that the concave portion 39 has a tightening margin n only with respect to the circumferential side wall portion 47 of the convex portion 37. Is set smaller. Further, since the portion excluding the circumferential side wall portion 47 of the convex portion 37, that is, the radial front end portion 48 of the convex portion 37 does not have an interference with the concave portion 39, the radial dimension of the concave portion 39 is set to the convex portion 37. By setting it larger than this, the concave portion 39 has a gap p with respect to the radial front end portion 48 of the convex portion 37.
  • the outer joint member 24 can be press-fitted into the hub wheel 1 with the axial force generated by tightening the bolt 42 or less. That is, after the wheel bearing 20 is attached to the knuckle 52 of the vehicle body, the outer joint member 24 is press-fitted into the hub wheel 1 of the wheel bearing 20 by the pulling force of the bolt 42, and the constant velocity universal joint 6 is attached to the wheel bearing 20. It becomes easy to combine, workability
  • the outer joint member 24 when the outer joint member 24 is press-fitted into the hub wheel 1 of the wheel bearing 20 after the wheel bearing 20 is attached to the knuckle 52 of the vehicle body, it is not necessary to prepare a dedicated jig separately.
  • the constant velocity universal joint 6 can be easily coupled to the wheel bearing 20 with the bolt 42 which is a component constituting the bearing device.
  • the bolt 42 since it is possible to press-fit by applying a relatively small pulling force equal to or less than the axial force generated by tightening the bolt 42, the pulling workability by the bolt 42 can be improved.
  • the concave portion forming surface is slightly cut by the circumferential side wall portion 47 of the convex portion 37, and the circumferential side wall of the convex portion 37 is cut.
  • the shape of the circumferential side wall portion 47 of the convex portion 37 is transferred to the concave portion forming surface while accompanying a slight plastic deformation or elastic deformation of the concave portion forming surface by the portion 47.
  • the circumferential side wall portion 47 of the convex portion 37 bites into the concave portion forming surface so that the inner diameter of the hub wheel 1 is slightly expanded, and relative movement in the axial direction of the convex portion 37 is allowed.
  • Such a low-cost and highly reliable connection does not form gaps that cause play in the radial direction and circumferential direction of the fitting portion of the stem portion 30 and the hub wheel 1, so that the entire area X of the fitting contact portion transmits rotational torque.
  • This contributes to stable torque transmission and can prevent harsh rattling noises over a long period of time. Since the fitting contact part whole area X is in close contact as described above, the strength of the torque transmission part is improved, so that the vehicle bearing device can be reduced in weight and size.
  • the surface hardness of the convex portion 37 is made larger than the surface hardness of the concave portion 39.
  • the difference between the surface hardness of the convex portion 37 and the surface hardness of the concave portion 39 is set to 20 or more in HRC.
  • the surface hardness of the convex portion 37 is preferably 50 to 65 in HRC, and the surface hardness of the concave portion 39 is preferably 10 to 30 in HRC.
  • an accommodating portion 67 for accommodating the protruding portion 66 generated by the transfer of the convex shape by press-fitting is provided (FIG. 9A and FIG. 9). 10A).
  • the protruding portion 66 generated by the transfer of the convex shape by press-fitting can be held in the housing portion 67, and the protruding portion 66 can be prevented from entering the vehicle outside the apparatus.
  • the removal processing of the protruding portion 66 becomes unnecessary, the work man-hours can be reduced, the workability can be improved, and the cost can be reduced.
  • the concave portion 39 is set smaller than the convex portion 37 so that the entire region of the concave portion 39 has a tightening margin n with respect to the circumferential side wall portion 47 and the radial tip portion 48 of the convex portion 37. That is, in order to set the concave portion 39 smaller than the convex portion 37, the circumferential dimension and the radial dimension of the concave portion 39 may be made smaller than the convex portion 37.
  • this embodiment is also positioned on the inboard side of the hub wheel 1 as shown in FIGS. 11A and 11B.
  • the stem portion 30 of the outer joint member 24 is press-fitted into the hub wheel 1 by the guide portion 64 provided between the fitting surface 62 and the concave portion 39 located on the outboard side, the convex portion 37 of the stem portion 30 is provided. Is guided to be surely press-fitted into the recess 39 of the hub wheel 1. Then, as shown in FIGS.
  • the recess forming surface is slightly cut by the circumferential side wall portion 47 and the radial tip portion 48 of the convex portion 37, and the circumferential side wall portion 47 and the diameter of the convex portion 37 are cut.
  • the shape of the circumferential side wall portion 47 and the radial front end portion 48 of the convex portion 37 is transferred to the concave portion forming surface while accompanying slight plastic deformation and elastic deformation of the concave portion forming surface by the direction front end portion 48.
  • the circumferential side wall portion 47 and the radial front end portion 48 of the convex portion 37 bite into the concave portion forming surface so that the inner diameter of the hub wheel 1 is slightly expanded, and the axial direction of the convex portion 37 is reached. Relative movement is allowed. If the relative movement in the axial direction of the convex portion 37 stops, as shown in FIGS. 13A and 13B, the shaft hole 38 of the hub wheel 1 is reduced to return to the original diameter, and the hub wheel 1 is reduced in diameter. A recess 40 is formed in the shaft hole 38.
  • the fastening margin n is provided only for the circumferential side wall portion 47 (see FIG. 9B) of the convex portion 37. It is set as follows. In contrast, in the embodiment shown in FIGS. 11A, 11B, 12A, 12B, 13A, and 13B, the circumferential side wall portion 47 and the radial front end portion 48 of the convex portion 37 (see FIG. 12B). The tightening allowance n is set. As described above, in the embodiment shown in FIGS.
  • FIGS. 14 and 15 show a state before the constant velocity universal joint 6 is assembled to the wheel bearing 20
  • FIG. 15 shows a state after the constant velocity universal joint 6 is assembled to the wheel bearing 20.
  • the inner ring 2 is press-fitted into the small diameter step portion 12 of the hub wheel 1, and the end surface of the inner ring 2 is brought into contact with the end surface of the shoulder portion 46 of the outer joint member 24.
  • a preload is applied to the wheel bearing 20 with the axial force generated by tightening the bolt 42 by screwing the bolt 42 into the female thread portion 41 of the stem portion 30.
  • it is effective to use the bolt 42 surface-treated with the axial force stabilizer because the variation of the axial force with respect to the tightening torque of the bolt 42 can be reduced.
  • the bolt 42 subjected to the axial force stabilization treatment can also be used in the embodiment shown in FIGS. 1 and 2.
  • FIG. 16 shows a state before the constant velocity universal joint 6 is assembled to the wheel bearing 20
  • FIG. 17 shows a state after the constant velocity universal joint 6 is assembled to the wheel bearing 20.
  • a recessed portion 44 having a diameter larger than that of the shaft hole 38 is formed at the opening end of the shaft hole 38 of the hub wheel 1, and an annular plate 45 is fitted into the recessed portion 44. .
  • the head of the bolt 42 that is screwed into the female screw portion 41 of the stem portion 30 is locked to the end surface of the annular plate 45.
  • the head of the bolt 42 is the same as that of the above-described embodiment (FIG. 1). 2, 14, and 15) having a seat surface 43 having a smaller diameter than the seat surface 43 of the bolt 42 can be used.
  • FIGS. 16 and 17 the inboard side end of the small-diameter step portion 12 of the hub wheel 1 is caulked outward by swing caulking, whereby the inner ring 2 is prevented from coming off by the caulking portion 11.
  • the caulking structure that is integrated with the hub wheel 1 and applies the preload to the wheel bearing 20 is exemplified, but an uncaulking structure as shown in FIGS. 18 and 19 may be used.
  • FIG. 18 shows a state before the constant velocity universal joint 6 is assembled to the wheel bearing 20
  • FIG. 19 shows a state after the constant velocity universal joint 6 is assembled to the wheel bearing 20.
  • the inner ring 2 is press-fitted into the small-diameter step portion 12 of the hub wheel 1, and the end surface of the inner ring 2 is in contact with the end surface of the shoulder 46 of the outer joint member 24.
  • the caulking portion 11 (see FIGS. 16 and 17) is not provided, so that the weight can be reduced, and the processing by the swing caulking is not required, so that the cost can be reduced.
  • a structure in which the bolt 42 is screwed to the female thread portion 41 of the stem portion 30 and the bolt 42 is fastened to the end surface of the hub wheel 1 or the end surface of the annular plate 45 is illustrated.
  • a nut which is a female thread portion to be locked.
  • the constant velocity universal joint 6 is fixed to the hub wheel 1 by screwing the nut into the male thread portion of the stem portion 30 and tightening the nut while being locked to the hub wheel 1 or the annular plate 45. Will do.
  • one of the double-row inner raceway surfaces 7 and 8 formed on the inner member composed of the hub wheel 1 and the inner ring 2, that is, the inner raceway surface 7 on the outboard side is connected to the hub wheel 1.
  • a drive wheel bearing device of the type (called third generation) formed on the outer periphery is illustrated, but the present invention is not limited to this, and a pair of inner rings are press-fitted into the outer periphery of the hub wheel.
  • the outboard side raceway surface 7 is formed on the outer periphery of one inner ring
  • the inboard side raceway surface 8 is formed on the outer periphery of the other inner ring (referred to as first and second generation) type of drive.
  • the present invention can also be applied to a wheel bearing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

 内周に複列の外側軌道面13,14が形成された外輪5と、外周に外側軌道面13,14と対向する複列の内側軌道面7,8を有し、ハブ輪1および内輪2と、外輪5の外側軌道面13,14とハブ輪1および内輪2の内側軌道面7,8との間に介装された複列の転動体3,4とからなる車輪用軸受20を備え、ハブ輪1の軸孔に外側継手部材24のステム部30を嵌合することにより車輪用軸受20に等速自在継手6をねじ締め付け構造Mにより結合させた車輪用軸受装置において、ハブ輪1の軸孔38を軸方向に亘って円筒状に貫通させ、外側継手部材24のステム部30の凸部37に対して締め代を有する複数の凹部39をハブ輪1の軸孔38にブローチ加工により形成し、外側継手部材24のステム部30をハブ輪1の軸孔に圧入して凸部37の形状を転写することにより、凸部37と凹部39との嵌合接触部位全域が密着する凹凸嵌合構造を構成する。

Description

車輪用軸受および軸受装置
 本発明は、例えば自動車の懸架装置に対して駆動車輪(FF車の前輪、FR車の後輪、4WD車の全輪)を回転自在に支持する車輪用軸受および軸受装置に関する。
 従来の車輪用軸受装置として、例えば、ハブ輪と等速自在継手の外側継手部材との分離を可能にしてメンテナンス性に優れた車輪用軸受装置が提案されている(例えば、特許文献1参照)。この特許文献1に開示された車輪用軸受装置は、図20に示すように、ハブ輪101、内輪102、複列の転動体103,104および外輪105からなる車輪用軸受120と固定式等速自在継手106とで主要部が構成されている。
 ハブ輪101は、その外周面にアウトボード側の内側軌道面107が形成されると共に、車輪(図示せず)を取り付けるための車輪取付フランジ109を備えている。この車輪取付フランジ109の円周方向等間隔に、ホイールディスクを固定するためのハブボルト110が植設されている。このハブ輪101のインボード側外周面に形成された小径段部112に内輪102を嵌合させ、この内輪102の外周面にインボード側の内側軌道面108が形成されている。
 内輪102は、クリープを防ぐために適当な締め代をもって圧入されている。ハブ輪101の外周面に形成されたアウトボード側の内側軌道面107と、内輪102の外周面に形成されたインボード側の内側軌道面108とで複列の軌道面を構成する。この内輪102をハブ輪101の小径段部112に圧入し、その小径段部112のインボード側端部を外側に加締め、その加締め部111でもって内輪102を抜け止めしてハブ輪101と一体化し、車輪用軸受120に予圧を付与している。
 外輪105は、内周面にハブ輪101および内輪102の内側軌道面107,108と対向する複列の外側軌道面113,114が形成されている。この外輪105の外周面を車体の懸架装置(図示せず)から延びるナックルに嵌合させて固定することにより、車輪用軸受装置を車体に取り付けるようにしている。
 車輪用軸受120は、複列のアンギュラ玉軸受構造で、ハブ輪101および内輪102の外周面に形成された内側軌道面107,108と外輪105の内周面に形成された外側軌道面113,114との間に転動体103,104を介在させ、各列の転動体103,104を保持器115,116により円周方向等間隔に支持した構造を有する。
 車輪用軸受120の両端開口部には、ハブ輪101と内輪102の外周面に摺接するように、外輪105とハブ輪101および内輪102との環状空間を密封する一対のシール117,118が外輪105の両端部内径に嵌合され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。
 等速自在継手106は、ドライブシャフト121を構成する中間シャフト122の一端に設けられ、内周面にトラック溝123が形成された外側継手部材124と、その外側継手部材124のトラック溝123と対向するトラック溝125が外周面に形成された内側継手部材126と、外側継手部材124のトラック溝123と内側継手部材126のトラック溝125との間に組み込まれたボール127と、外側継手部材124の内周面と内側継手部材126の外周面との間に介在してボール127を保持するケージ128とで構成されている。
 外側継手部材124は、内側継手部材126、ボール127およびケージ128からなる内部部品を収容したマウス部129と、マウス部129から軸方向に一体的に延びるステム部130とで構成されている。内側継手部材126は、中間シャフト122の軸端が圧入されてスプライン嵌合によりトルク伝達可能に結合されている。
 等速自在継手106の外側継手部材124と中間シャフト122との間に、継手内部に封入されたグリース等の潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するための樹脂製の蛇腹状ブーツ131を装着して、外側継手部材124の開口部をブーツ131で閉塞した構造としている。
 このブーツ131は、外側継手部材124の外周面にブーツバンド132により締め付け固定された大径端部133と、中間シャフト122の外周面にブーツバンド134により締め付け固定された小径端部135と、大径端部133と小径端部135とを繋ぎ、その大径端部133から小径端部135へ向けて縮径した可撓性の蛇腹部136とで構成されている。
 図21は、外側継手部材124のステム部130をハブ輪101の軸孔138に圧入する前の状態を示す。同図に示すように、外側継手部材124のステム部130は、その外周面に軸方向に延びる複数の凸部137からなる雄スプラインが形成されている。これに対して、ハブ輪101の軸孔138は、その内周面に雌スプラインが形成されていない単純な円筒部139をなす。
 図22は、外側継手部材124のステム部130をハブ輪101の軸孔138に圧入した後の状態を示す。この外側継手部材124のステム部130をハブ輪101の軸孔138に圧入し、そのステム部130の凸部137をハブ輪101の軸孔138の内周面に転写することにより、同図に示すように、ハブ輪101の軸孔138の内周面に凸部137と締め代をもって密着する凹部140を形成し、この凸部137と凹部140との嵌合接触部位全域で密着する凹凸嵌合構造を構成することで、外側継手部材124とハブ輪101とをトルク伝達可能に結合させている。
 このようにして、外側継手部材124のステム部130をハブ輪101の軸孔138に圧入した上で、図20に示すように、外側継手部材124のステム部130の軸端に形成された雌ねじ141にボルト142を螺合させることにより、そのボルト142をハブ輪101の端面に係止させた状態で締め付けることで、等速自在継手106をハブ輪101に固定している。
特開2009-97557号公報
 ところで、前述した車輪用軸受装置において、ハブ輪101、内輪102、複列の転動体103,104および外輪105からなる車輪用軸受120と結合される固定式等速自在継手106がドライブシャフト121の一部を構成している。自動車のエンジンから車輪に動力を伝達するドライブシャフト121は、図23に示すように、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的にエンジン側(インボード側)に摺動式等速自在継手151を、車輪側(アウトボード側)に固定式等速自在継手106をそれぞれ装備し、両者の等速自在継手106,151を中間シャフト122で連結した構造を具備する。
 ここで、従来の車輪用軸受装置では、図21に示すように、ハブ輪101の軸孔138の内周面は雌スプラインが形成されていない単純な円筒部139をなすことから、外側継手部材124のステム部130をハブ輪101の軸孔138に圧入するに際して、そのステム部130の凸部137を軸孔138の内周面に転写するために大きな圧入荷重が必要であり、プレス機などを用いる必要があった。そのため、車輪用軸受120にドライブシャフト121の等速自在継手106を組み付けた状態で車輪用軸受装置を車体に組み付けなければならないというのが現状であった。
 自動車メーカでの車両組み立て時には、車輪用軸受120とドライブシャフト121の等速自在継手106とを結合させた状態、つまり、車輪用軸受120とドライブシャフト121の二つの等速自在継手106,151とが一体化した状態で取り扱われる。車体の懸架装置から延びるナックル152(図23参照)の最小内径寸法を等速自在継手106,151の最大外径寸法よりも大きくしていることから、この車体への組み付けは、図24に示すように、ドライブシャフト121の摺動式等速自在継手151と固定式等速自在継手106とを、車体の懸架装置から延びるナックル152に順次通した上で、車輪用軸受120の外輪105をナックル152に嵌合させて固定するようにしている。
 このドライブシャフト121は車輪側とエンジン側とを繋ぐ長尺なアッセンブリ体であることから、前述したようにドライブシャフト121の摺動式等速自在継手151と固定式等速自在継手106とをナックル152に順次通す車体への組み付け方法では作業性が悪く、その組み付け時にドライブシャフト121を構成する部品を損傷させたりする可能性がある。
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、車体への組み付けにおける作業性を向上させ、その組み付け時の部品の損傷を未然に防止し得る車輪用軸受および軸受装置を提供することにある。
 本発明に係る車輪用軸受装置は、内周に複列の外側軌道面が形成された外方部材と、外周に外側軌道面と対向する複列の内側軌道面を有し、ハブ輪および内輪からなる内方部材と、外方部材の外側軌道面と内方部材の内側軌道面との間に介装された複列の転動体とからなる車輪用軸受を備え、ハブ輪の軸孔に等速自在継手の外側継手部材のステム部を嵌合することにより車輪用軸受に等速自在継手をねじ締め付け構造により結合させた構造を具備する。以上のように、車輪用軸受装置は、車輪用軸受と等速自在継手とで構成されている。
 前述の目的を達成するための技術的手段として、本発明に係る車輪用軸受装置は、ハブ輪の軸孔を軸方向に亘って円筒状に貫通させ、ハブ輪の軸孔の内周面にブローチ加工により軸方向に延びる凹部を形成した車輪用軸受を備え、外側継手部材のステム部外周面に形成されて軸方向に延びる複数の凸部を、その凸部に対して締め代を有する複数の凹部が形成されたハブ輪の軸孔に圧入し、その軸孔内周面に凸部の形状を転写することにより、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成したことを特徴とする。
 本発明では、外側継手部材のステム部に軸方向に延びる複数の凸部を形成すると共にその凸部に対して締め代を有する凹部をハブ輪の軸孔に予め形成しておく。そして、外側継手部材のステム部をハブ輪の軸孔に圧入する際、凸部により凹部形成面を極僅かに切削加工し、凸部による凹部形成面の極僅かな塑性変形や弾性変形を付随的に伴いながら、凹部形成面に凸部の形状を転写する。この時、凸部が凹部形成面に食い込んでいくことによってハブ輪の軸孔内周面が僅かに拡径した状態となって、凸部の軸方向の相対的移動が許容される。凸部の軸方向相対移動が停止すれば、ハブ輪の軸孔内周面が元の径に戻ろうとして縮径することになる。これによって、凸部と凹部との嵌合接触部位全域で密着し、外側継手部材とハブ輪を強固に結合一体化することができる。
 ここで、凸部に対して締め代を有する凹部を予め形成していることから、従来のように凸部を単純な円筒部に転写する場合よりも、凸部と凹部との嵌合接触部位全域で密着する際の圧入荷重を下げることができるので、車輪用軸受を車体に取り付けた後にその車輪用軸受のハブ輪に外側継手部材を圧入して等速自在継手を車輪用軸受に結合させることが容易となる。
 また、本発明では、ハブ輪の軸孔を軸方向に亘って円筒状に貫通させた構造としたことにより、軸方向に延びる凹部をハブ輪の軸孔の内周面にブローチ加工により形成することができ、凸部に対して締め代を有する凹部をハブ輪の軸孔に予め形成することが容易となり、コストの低減が図れる。
 本発明におけるねじ締め付け構造は、外側継手部材のステム部の軸端に雌ねじ部を形成し、雌ねじ部に螺合する雄ねじ部をハブ輪の軸孔の開口端周縁部位に係止させた構造が可能である。この構造の場合、ハブ輪の軸孔を軸方向に亘って円筒状に貫通させたことにより、ステム部の雌ねじ部に螺合する雄ねじ部をハブ輪の軸孔の開口端周縁部位に係止させることで、等速自在継手をハブ輪に固定することになる。
 また、本発明におけるねじ締め付け構造は、外側継手部材のステム部の軸端に雌ねじ部を形成し、雌ねじ部に螺合する雄ねじ部をハブ輪の軸孔開口端に嵌合された環状プレートに係止させた構造が可能である。この構造の場合、軸方向に亘って円筒状に貫通したハブ輪の軸孔の開口端に環状プレートを嵌合させたことにより、ステム部の雌ねじ部に螺合する雄ねじ部を環状プレートの端面に係止させることで、等速自在継手をハブ輪に固定することになる。
 本発明において、ハブ輪のインボード側端部を径方向外側に加締めることにより、加締め部でもって内輪を抜け止めしてハブ輪と一体化し、加締め部を等速自在継手の外側継手部材の肩部に当接させた構造が望ましい。このような加締め構造を採用すれば、加締め部でもって内輪を抜け止めしてハブ輪と一体化することで、車輪用軸受を等速自在継手と分離可能にすることが容易となる。
 また、本発明において、ハブ輪のインボード側に位置する内輪の端面を等速自在継手の外側継手部材の肩部の端面に当接させた構造が望ましい。このような非加締め構造を採用すれば、前述した加締め部の重量分の軽量化が図れ、加締め加工が不要となってコストの低減が図れる。
 本発明によれば、外側継手部材のステム部に形成されて軸方向に延びる複数の凸部を、その凸部に対して締め代を有する複数の凹部が形成されたハブ輪の軸孔に圧入し、その軸孔内周面に凸部の形状を転写することで凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成したことにより、凸部に対して締め代を有する凹部を予め形成していることから、凸部と凹部との嵌合接触部位全域で密着する際の圧入荷重を下げることができる。その結果、車輪用軸受を車体に取り付けた後にその車輪用軸受のハブ輪に外側継手部材を圧入して等速自在継手を車輪用軸受に結合させることが容易となり、車体への組み付けにおける作業性を向上させ、組み付け時の部品の損傷を未然に防止することができる。
 また、ハブ輪の軸孔を軸方向に亘って円筒状に貫通させた構造としたことにより、軸方向に延びる凹部をハブ輪の軸孔の内周面にブローチ加工により形成することができ、凸部に対して締め代を有する凹部をハブ輪の軸孔に予め形成することが容易となり、コストの低減が図れる。
本発明に係る車輪用軸受装置の実施形態で、加締め構造の車輪用軸受に等速自在継手を組み付ける前の状態を示す断面図である。 図1の車輪用軸受に等速自在継手を組み付けた後の状態を示す断面図である。 ハブ輪単体に対してブローチ加工を行う状態を示す断面図である。 車輪用軸受に対してブローチ加工を行う状態を示す断面図である。 ナックルに装着された車輪用軸受に、ドライブシャフトの等速自在継手を組み付ける前の状態を示す断面図である。 ナックルに装着された車輪用軸受に、ドライブシャフトの等速自在継手を組み付ける途中の状態を示す断面図である。 ナックルに装着された車輪用軸受に、ドライブシャフトの等速自在継手を組み付けた後の状態を示す断面図である。 凸部の周方向側壁部のみに対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入する前の状態を示す要部拡大断面図である。 図8AのA-A線に沿う断面図である。 凸部の周方向側壁部のみに対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入する途中の状態を示す要部拡大断面図である。 図9AのB-B線に沿う断面図である。 凸部の周方向側壁部のみに対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入した後の状態を示す要部拡大断面図である。 図10AのC-C線に沿う断面図である。 凸部の周方向側壁部および径方向先端部に対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入する前の状態を示す要部拡大断面図である。 図11AのD-D線に沿う断面図である。 凸部の周方向側壁部および径方向先端部に対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入する途中の状態を示す要部拡大断面図である。 図12AのE-E線に沿う断面図である。 凸部の周方向側壁部および径方向先端部に対して締め代を有する凹部を形成した実施形態で、車輪用軸受のハブ輪に外側継手部材のステム部を圧入した後の状態を示す要部拡大断面図である。 図13AのF-F線に沿う断面図である。 本発明に係る車輪用軸受装置の他の実施形態で、非加締め構造の車輪用軸受に等速自在継手を組み付ける前の状態を示す断面図である。 図14の車輪用軸受に等速自在継手を組み付けた後の状態を示す断面図である。 本発明に係る車輪用軸受装置の他の実施形態で、ハブ輪の軸孔に環状プレートが装着された加締め構造の車輪用軸受に、等速自在継手を組み付ける前の状態を示す断面図である。 図16の車輪用軸受に等速自在継手を組み付けた後の状態を示す断面図である。 本発明に係る車輪用軸受装置の他の実施形態で、ハブ輪の軸孔に環状プレートが装着された非加締め構造の車輪用軸受に、等速自在継手を組み付ける前の状態を示す断面図である。 図18の車輪用軸受に等速自在継手を組み付けた後の状態を示す断面図である。 従来の車輪用軸受装置の全体構成を示す縦断面図である。 図20の車輪用軸受装置において、外側継手部材のステム部をハブ輪の軸孔に圧入する前の状態を示す要部拡大縦断面図である。 図20の車輪用軸受装置において、外側継手部材のステム部をハブ輪の軸孔に圧入した後の状態を示す要部拡大横断面図である。 ドライブシャフトが組み付けられた車輪用軸受装置をナックルに装着する前の状態を示す断面図である。 ドライブシャフトが組み付けられた車輪用軸受装置をナックルに装着した後の状態を示す断面図である。
 本発明に係る車輪用軸受装置の実施形態を以下に詳述する。図1および図2に示す車輪用軸受装置は、内方部材であるハブ輪1および内輪2、複列の転動体3,4、外輪5からなる車輪用軸受20と等速自在継手6とで主要部が構成されている。図1は車輪用軸受20に等速自在継手6を組み付ける前の状態を示し、図2は車輪用軸受20に等速自在継手6を組み付けた後の状態を示す。なお、以下の説明では、車体に組み付けた状態で、車体の外側寄りとなる側をアウトボード側(図面左側)と呼び、中央寄りとなる側をインボード側(図面右側)と呼ぶ。
 ハブ輪1は、その外周面にアウトボード側の内側軌道面7が形成されると共に、車輪(図示せず)を取り付けるための車輪取付フランジ9を備えている。この車輪取付フランジ9の円周方向等間隔に、ホイールディスクを固定するためのハブボルト10が植設されている。このハブ輪1のインボード側外周面に形成された小径段部12に内輪2を嵌合させ、この内輪2の外周面にインボード側の内側軌道面8が形成されている。
 内輪2は、クリープを防ぐために適当な締め代をもって圧入されている。ハブ輪1の外周面に形成されたアウトボード側の内側軌道面7と、内輪2の外周面に形成されたインボード側の内側軌道面8とで複列の軌道面を構成する。この内輪2をハブ輪1の小径段部12に圧入し、その小径段部12のインボード側端部を揺動加締めにより外側に加締め、その加締め部11でもって内輪2を抜け止めしてハブ輪1と一体化し、車輪用軸受20に予圧を付与している。
 外輪5は、内周面にハブ輪1および内輪2の内側軌道面7,8と対向する複列の外側軌道面13,14が形成され、車体(図示せず)の懸架装置から延びるナックルに取り付けるための車体取付フランジ19を備えている。後述するように、この車体取付フランジ19は、前述のナックル52に嵌合されてボルト63により固定される(図5参照)。
 車輪用軸受20は、複列のアンギュラ玉軸受構造で、ハブ輪1および内輪2の外周面に形成された内側軌道面7,8と外輪5の内周面に形成された外側軌道面13,14との間に転動体3,4を介在させ、各列の転動体3,4を保持器15,16により円周方向等間隔に支持した構造を有する。
 車輪用軸受20の両端開口部には、ハブ輪1と内輪2の外周面に摺接するように、外輪5とハブ輪1および内輪2との環状空間を密封する一対のシール17,18が外輪5の両端部内径に嵌合され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。
 等速自在継手6は、ドライブシャフト21を構成する中間シャフト22の一端に設けられ、内周面にトラック溝23が形成された外側継手部材24と、その外側継手部材24のトラック溝23と対向するトラック溝25が外周面に形成された内側継手部材26と、外側継手部材24のトラック溝23と内側継手部材26のトラック溝25との間に組み込まれたボール27と、外側継手部材24の内周面と内側継手部材26の外周面との間に介在してボール27を保持するケージ28とで構成されている。
 外側継手部材24は、内側継手部材26、ボール27およびケージ28からなる内部部品を収容したマウス部29と、マウス部29から軸方向に一体的に延びるステム部30とで構成されている。内側継手部材26は、中間シャフト22の軸端が圧入されてスプライン嵌合によりトルク伝達可能に結合されている。
 等速自在継手6の外側継手部材24と中間シャフト22との間に、継手内部に封入されたグリース等の潤滑剤の漏洩を防ぐと共に継手外部からの異物侵入を防止するための樹脂製の蛇腹状ブーツ31を装着して、外側継手部材24の開口部をブーツ31で閉塞した構造としている。
 このブーツ31は、外側継手部材24の外周面にブーツバンド32により締め付け固定された大径端部33と、中間シャフト22の外周面にブーツバンド34により締め付け固定された小径端部35と、大径端部33と小径端部35とを繋ぎ、その大径端部33から小径端部35へ向けて縮径した可撓性の蛇腹部36とで構成されている。
 この車輪用軸受装置は、外側継手部材24のステム部30のインボード側外周面に円柱形状の嵌合面61を形成すると共に、ステム部30のアウトボード側外周面に軸方向に延びる複数の凸部37からなる雄スプラインを形成する。これに対して、ハブ輪1の軸孔38のインボード側内周面に円筒形状の嵌合面62を形成すると共に、その軸孔38のアウトボード側内周面に前述の凸部37の周方向側壁部47(図9B参照)のみに対して締め代を有する複数の凹部39を形成する。なお、前述の凸部37は断面台形の歯形状としているが、インボリュート歯形状であってもよい。
 この軸方向に延びる複数の凹部39は、ハブ輪1の軸孔38のアウトボード側内周面にブローチ加工により形成されている。従来の車輪用軸受装置(図20参照)におけるハブ輪101は、軸孔138のアウトボード側開口端に突壁部171を有する構造であるのに対して、この実施形態(図1参照)におけるハブ輪1は、従来のハブ輪101と異なって突壁部171を有さず、軸孔38を軸方向に亘って円筒状に貫通させた構造を具備する。つまり、軸孔38の内周面が軸方向に亘って同一内径となっている円筒状をなす。このように、軸孔38をその内周面が軸方向に亘って同一内径となるように円筒状に貫通させた構造としたことにより、軸方向に延びる凹部39をブローチ加工により形成することができる。その結果、ハブ輪1の軸孔38に凸部37の周方向側壁部47のみに対して締め代を有する凹部39を予め形成することが容易となり、コストの低減が図れる。図3はハブ輪1単体に対してブローチ加工を行う場合、図4は車輪用軸受20に対してブローチ加工を行う場合をそれぞれ示す。このブローチ加工では、同図に示すように、ハブ輪1の車輪取付フランジ9を基台71に載置して位置決め固定した状態で、加工治具72をハブ輪1の軸孔38に挿入してハブ輪1の軸方向に上下動させることにより、ハブ輪1の軸孔38の内周面に、軸方向に延びる複数の凹部39を形成する。ハブ輪1に対してブローチ加工を行う場合(図3参照)は、洗浄などの後工程が行い易い点で有効がある。一方、車輪用軸受20に対してブローチ加工を行う場合(図4参照)は、車輪用軸受20の軸端を加締め加工した後に複数の凹部39を形成するため、それら複数の凹部39の精度向上が図れる点で有効である。
 この車輪用軸受装置では、外側継手部材24のステム部30をハブ輪1の軸孔38に圧入し、相手側の凹部形成面であるハブ輪1の軸孔38に凸部37の周方向側壁部47のみの形状を転写することにより凹部40を形成し(図9Bおよび図10B参照)、凸部37と凹部40との嵌合接触部位全域Xが密着する凹凸嵌合構造Mを構成する(図2参照)。なお、外側継手部材24およびハブ輪1の材質としては、S53C等に代表される機械構造用の中炭素鋼が好適である。
 この車輪用軸受装置は、以下のようなねじ締め付け構造N(図2参照)を具備する。このねじ締め付け構造Nは、外側継手部材24のステム部30の軸端に形成された雌ねじ部41と、その雌ねじ部41に螺合した状態でハブ輪1に係止される雄ねじ部であるボルト42とで構成されている。この構造では、ステム部30の雌ねじ部41にボルト42を螺合させることによりそのボルト42をハブ輪1に係止させた状態で締め付けることで、等速自在継手6をハブ輪1に固定する。なお、車輪用軸受20は、加締め部11でもって内輪2を抜け止めしてハブ輪1と一体化し、加締め部11を外側継手部材24の肩部46に当接させた構造となっていることから、等速自在継手6の外側継手部材24と分離可能になっている。ここで、前述したようにハブ輪1の軸孔38を軸方向に亘って円筒状に貫通させた構造としたことから、ボルト42の頭部は、従来の車輪用軸受装置(図20参照)におけるボルト142の頭部の座面143よりも大径の座面43を有し、軸孔38のアウトボード側開口端の周縁部位に係止させた構造となっている。
 この車輪用軸受装置において、ハブ輪1、内輪2、複列の転動体3,4および外輪5からなる車輪用軸受20と結合される固定式等速自在継手6はドライブシャフト21の一部を構成している。自動車のエンジンから車輪に動力を伝達するドライブシャフト21は、図5に示すように、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的にエンジン側(インボード側)に摺動式等速自在継手51を、車輪側(アウトボード側)に固定式等速自在継手6をそれぞれ装備し、両者の等速自在継手6,51を中間シャフト22で連結した構造を具備する。
 この車輪用軸受装置の場合、凸部37の周方向側壁部47(図9B参照)のみに対して締め代を有する凹部39を予め形成していることから、従来のように凸部137を円筒部139に転写する場合(図21参照)よりも、凸部37と凹部40との嵌合接触部位全域Xで密着する際の圧入荷重を下げることができる。その結果、自動車メーカでの車両組み立て時、車輪用軸受20を車体の懸架装置から延びるナックル52にボルト63で固定した後、ねじ締め付け構造Nのボルト42による引き込み力でもって、車輪用軸受20のハブ輪1の軸孔38に等速自在継手6の外側継手部材24のステム部30を圧入することができ、車輪用軸受20にドライブシャフト21の等速自在継手6を簡易に組み付けることが可能となる。
 なお、図6に示すように、外側継手部材24のステム部30をハブ輪1の軸孔38に圧入するに先立って、ステム部30のインボード側外周面に円柱形状の嵌合面61を形成すると共に、ハブ輪1の軸孔38のインボード側内周面に円筒形状の嵌合面62を形成していることから、ハブ輪1の軸孔38の嵌合面62にステム部30の嵌合面61を嵌合させることで、ハブ輪1に対するステム部30の軸芯合わせを容易に行うことができる。
 また、図8Aおよび図8Bに示すように、ハブ輪1のインボード側に位置する嵌合面62とアウトボード側に位置する凹部39との間に、圧入の開始をガイドするガイド部64を設けている。このガイド部64は、凹部39と同位相で軸方向に延びる複数の凹部65が形成され、ステム部30の凸部37よりも大きめの凹部65となっている(図1の拡大部分参照)。つまり、凸部37と凹部65との間に隙間mが形成されている(図8B参照)。このガイド部64により、外側継手部材24のステム部30をハブ輪1に圧入するに際して、ステム部30の凸部37がハブ輪1の凹部39に確実に圧入するように誘導することができるので、安定した圧入が可能となって圧入時の芯ずれや芯傾きなどを防止することができる。なお、ガイド部64は、アウトボード側に位置する凹部39よりも大きめの凹部65としていることから、アウトボード側に位置する凹部39のようにブローチ加工することができない。そのため、このガイド部64の凹部65はプレス加工により形成され、ガイド部64の凹部65を形成した後、アウトボード側に位置する凹部39をブローチ加工により形成することになる。
 ここで、図9Aおよび図9Bに示すように、前述の凹部39が凸部37の周方向側壁部47のみに対して締め代nを有するように、その凹部39の周方向寸法を凸部37よりも小さく設定している。また、凸部37の周方向側壁部47を除く部位、つまり、凸部37の径方向先端部48は、凹部39と締め代を有さないことから、凹部39の径方向寸法を凸部37よりも大きく設定することにより、凹部39が凸部37の径方向先端部48に対して隙間pを有する。
 図10Aおよび図10Bに示すように、ステム部30のハブ輪1への圧入時、ハブ輪1の軸孔38に凸部37の周方向側壁部47のみの形状を転写することにより凹部40を形成した場合、凸部37の周方向側壁部47のみに対して締め代nを有する凹部39、つまり、周方向寸法が凸部37よりも小さく設定された凹部39を予め形成していることから、従来のように凸部137を円筒部139に転写する場合(図21参照)よりも、凸部37と凹部40との嵌合接触部位全域X(図2参照)で密着する際の圧入荷重を下げることができる。なお、凸部37の径方向先端部48は、凹部39と締め代を有さないことから、凸部37の径方向先端部48の形状が凹部39に転写されることはない。
 その結果、図7に示すように、ボルト42の締め付けにより発生する軸力以下でハブ輪1に対して外側継手部材24を圧入可能とすることができる。つまり、車輪用軸受20を車体のナックル52に取り付けた後にボルト42の引き込み力でもって車輪用軸受20のハブ輪1に外側継手部材24を圧入して等速自在継手6を車輪用軸受20に結合させることが容易となり、車体への組み付けにおける作業性を向上させ、その組み付け時の部品の損傷を未然に防止することができる。
 このように、車輪用軸受20を車体のナックル52に取り付けた後にその車輪用軸受20のハブ輪1に外側継手部材24を圧入するに際して、専用の治具を別に用意する必要がなく、車輪用軸受装置を構成する部品であるボルト42でもって等速自在継手6を簡易に車輪用軸受20に結合させることができる。また、ボルト42の締め付けにより発生する軸力以下という比較的小さな引き込み力の付与で圧入することができるので、ボルト42による引き込み作業性の向上が図れる。さらに、大きな圧入荷重を付与しないので済むことから、凹凸嵌合構造Mでの凹凸が損傷する(むしれる)ことを防止でき、高品質で長寿命の凹凸嵌合構造Mを実現できる。
 この外側継手部材24のステム部30をハブ輪1の軸孔38に圧入するに際して、凸部37の周方向側壁部47により凹部形成面を極僅かに切削加工し、凸部37の周方向側壁部47による凹部形成面の極僅かな塑性変形や弾性変形を付随的に伴いながら、その凹部形成面に凸部37の周方向側壁部47の形状を転写することになる。この時、凸部37の周方向側壁部47が凹部形成面に食い込んでいくことによってハブ輪1の内径が僅かに拡径した状態となって、凸部37の軸方向の相対的移動が許容される。この凸部37の軸方向相対移動が停止すれば、ハブ輪1の軸孔38が元の径に戻ろうとして縮径することになる。これによって、凸部37と凹部40との嵌合接触部位全域Xで密着し、外側継手部材24とハブ輪1を強固に結合一体化することができる。
 このような低コストで信頼性の高い結合により、ステム部30とハブ輪1の嵌合部分の径方向および周方向においてガタが生じる隙間が形成されないので、嵌合接触部位全域Xが回転トルク伝達に寄与して安定したトルク伝達が可能であり、耳障りな歯打ち音を長期に亘り防止できる。このように嵌合接触部位全域Xで密着していることから、トルク伝達部位の強度が向上するため、車両用軸受装置の軽量コンパクト化が図れる。
 外側継手部材24のステム部30をハブ輪1の軸孔38に圧入するに際して、凸部37の表面硬度を凹部39の表面硬度よりも大きくする。その場合、凸部37の表面硬度と凹部39の表面硬度との差をHRCで20以上とする。これにより、圧入時における塑性変形および切削加工により、相手側の凹部形成面に凸部37の周方向側壁部47の形状を容易に転写することができる。なお、凸部37の表面硬度としてはHRCで50~65、また、凹部39の表面硬度としてはHRCで10~30が好適である。
 ハブ輪1の軸孔38と外側継手部材24のステム部30との間に、圧入による凸部形状の転写によって生じる食み出し部66を収容する収容部67を設けている(図9Aおよび図10A参照)。これにより、圧入による凸部形状の転写によって生じる食み出し部66を収容部67に保持することができ、その食み出し部66が装置外の車両内などへ入り込んだりすることを阻止できる。その食み出し部66を収容部67に保持することで、食み出し部66の除去処理が不要となり、作業工数の削減を図ることができ、作業性の向上およびコスト低減を図ることができる。
 なお、以上の実施形態では、凸部37の周方向側壁部47(図9B参照)のみに対して締め代nを有するように設定した場合について説明したが、本発明はこれに限定されることなく、図11A、図11B、図12A、図12B、図13Aおよび図13Bに示す実施形態のように、凸部37の周方向側壁部47のみならず、その径方向先端部48を含む部位、つまり、凸部37の山形中腹部から山形頂上部に至る領域で締め代nを設定するようにしてもよい。このように、凹部39の全領域が凸部37の周方向側壁部47および径方向先端部48に対して締め代nを有するように、その凹部39を凸部37よりも小さく設定する。つまり、凹部39を凸部37よりも小さく設定するには、凹部39の周方向寸法および径方向寸法を凸部37よりも小さくすればよい。
 この実施形態の場合も、図8A、図8B、図9A、図9B、図10Aおよび図10Bに示す実施形態と同様、図11Aおよび図11Bに示すように、ハブ輪1のインボード側に位置する嵌合面62とアウトボード側に位置する凹部39との間に設けられたガイド部64により、外側継手部材24のステム部30をハブ輪1に圧入するに際して、ステム部30の凸部37がハブ輪1の凹部39に確実に圧入するように誘導する。そして、図12Aおよび図12Bに示すように、凸部37の周方向側壁部47および径方向先端部48により凹部形成面を極僅かに切削加工し、凸部37の周方向側壁部47および径方向先端部48による凹部形成面の極僅かな塑性変形や弾性変形を付随的に伴いながら、その凹部形成面に凸部37の周方向側壁部47および径方向先端部48の形状を転写する。この時、凸部37の周方向側壁部47および径方向先端部48が凹部形成面に食い込んでいくことによってハブ輪1の内径が僅かに拡径した状態となって、凸部37の軸方向の相対的移動が許容される。この凸部37の軸方向相対移動が停止すれば、図13Aおよび図13Bに示すように、ハブ輪1の軸孔38が元の径に戻ろうとして縮径することになってハブ輪1の軸孔38に凹部40が形成される。
 なお、前述の図8A、図8B、図9A、図9B、図10Aおよび図10Bに示す実施形態では、凸部37の周方向側壁部47(図9B参照)のみに対して締め代nを有するように設定している。これに対して、図11A、図11B、図12A、図12B、図13Aおよび図13Bに示す実施形態では、凸部37の周方向側壁部47および径方向先端部48(図12B参照)に対して締め代nを有するように設定している。このように、図8A、図8B、図9A、図9B、図10Aおよび図10Bに示す実施形態では、凸部37の周方向側壁部47のみに対して締め代nを有するように設定していることから、図11A、図11B、図12A、図12B、図13Aおよび図13Bに示す実施形態のように、凸部37の周方向側壁部47および径方向先端部48に対して締め代nを設定している場合よりも、圧入荷重を下げることができる。
 図1および図2に示す実施形態では、ハブ輪1の小径段部12のインボード側端部を揺動加締めにより外側に加締めることにより、加締め部11でもって内輪2を抜け止めしてハブ輪1と一体化し、車輪用軸受20に予圧を付与する加締め構造を例示したが、図14および図15に示すような非加締め構造であってもよい。図14は車輪用軸受20に等速自在継手6を組み付ける前の状態を示し、図15は車輪用軸受20に等速自在継手6を組み付けた後の状態を示す。この実施形態では、内輪2をハブ輪1の小径段部12に圧入し、内輪2の端面を外側継手部材24の肩部46の端面に当接させた構造としている。この構造を採用することにより、加締め部11(図1および図2参照)がないことから軽量化が図れ、また、揺動加締めによる加工が不要となることから低コスト化が図れる。
 この非加締め構造では、ステム部30の雌ねじ部41にボルト42を螺合させることにより、ボルト42の締め付けにより発生する軸力でもって車輪用軸受20に予圧を付与することになる。このことから、軸力安定剤で表面処理したボルト42を使用することが、ボルト42の締め付けトルクに対する軸力のばらつきを小さくすることができる点で有効である。この軸力安定化処理したボルト42は、図1および図2に示す実施形態においても使用可能である。
 なお、図14および図15の実施形態における他の構成部分、例えば、ハブ輪1の軸孔38に凹部39をブローチ加工により形成する点、ボルト42の頭部をハブ輪1の軸孔38の開口端周縁部位に係止させる点や、車輪用軸受20を車体の懸架装置へ組み付ける要領、および車輪用軸受20にドライブシャフト21の等速自在継手6を組み付ける要領については、図1および図2の実施形態と同様であるため、図1および図2と同一または相当部分に同一参照符号を付して重複説明は省略する。
 また、以上の実施形態では、従来のボルト142よりも大径の座面43を持つボルト42をハブ輪1の軸孔38の開口端周縁部位に係止させた構造を例示したが、図16および図17に示すようなねじ締め付け構造であってもよい。図16は車輪用軸受20に等速自在継手6を組み付ける前の状態を示し、図17は車輪用軸受20に等速自在継手6を組み付けた後の状態を示す。この実施形態におけるねじ締め付け構造は、ハブ輪1の軸孔38の開口端にその軸孔38よりも大径の凹陥部44を形成し、その凹陥部44に環状プレート45を嵌合させている。この構造では、ステム部30の雌ねじ部41に螺合するボルト42の頭部を環状プレート45の端面に係止させることになる。このように、軸方向に亘って円筒状に貫通したハブ輪1の軸孔38の開口端に環状プレート45を嵌合させたことにより、ボルト42の頭部は、前述の実施形態(図1および図2、図14および図15参照)におけるボルト42の座面43よりも小径の座面43を有するものを使用することができる。
 なお、図16および図17の実施形態における他の構成部分、例えば、ハブ輪1の軸孔38に凹部39をブローチ加工により形成する点や、車輪用軸受20を車体の懸架装置へ組み付ける要領、および車輪用軸受20にドライブシャフト21の等速自在継手6を組み付ける要領については、図1および図2の実施形態と同様であるため、図1および図2と同一または相当部分に同一参照符号を付して重複説明は省略する。
 図16および図17に示す実施形態では、ハブ輪1の小径段部12のインボード側端部を揺動加締めにより外側に加締めることにより、加締め部11でもって内輪2を抜け止めしてハブ輪1と一体化し、車輪用軸受20に予圧を付与する加締め構造を例示したが、図18および図19に示すような非加締め構造であってもよい。図18は車輪用軸受20に等速自在継手6を組み付ける前の状態を示し、図19は車輪用軸受20に等速自在継手6を組み付けた後の状態を示す。この実施形態では、内輪2をハブ輪1の小径段部12に圧入し、その内輪2の端面を外側継手部材24の肩部46の端面に当接させた構造としている。この構造を採用することにより、加締め部11(図16および図17参照)がないことから軽量化が図れ、また、揺動加締めによる加工が不要となることから低コスト化が図れる。
 なお、この場合も非加締め構造であることから、軸力安定剤で表面処理したボルト42を使用することが、ボルト42の締め付けトルクに対する軸力のばらつきを小さくすることができる点で有効である。また、図18および図19の実施形態における他の構成部分、例えば、ハブ輪1の軸孔38に凹部39をブローチ加工により形成する点、ボルト42の頭部を環状プレート45の端面に係止させる点や、車輪用軸受20を車体の懸架装置へ組み付ける要領、および車輪用軸受20にドライブシャフト21の等速自在継手6を組み付ける要領については、図16および図17の実施形態と同様であるため、図16および図17と同一または相当部分に同一参照符号を付して重複説明は省略する。
 なお、以上の実施形態では、ステム部30の雌ねじ部41にボルト42を螺合させることによりそのボルト42をハブ輪1の端面あるいは環状プレート45の端面に係止させた状態で締め付ける構造を例示したが、他のねじ締め付け構造として、外側継手部材24のステム部30の軸端に形成された雄ねじ部と、その雄ねじ部に螺合した状態でハブ輪1の端面あるいは環状プレート45の端面に係止される雌ねじ部であるナットとで構成することも可能である。この構造では、ステム部30の雄ねじ部にナットを螺合させることによりそのナットをハブ輪1あるいは環状プレート45に係止させた状態で締め付けることで、等速自在継手6をハブ輪1に固定することになる。
 また、以上の実施形態では、ハブ輪1および内輪2からなる内方部材に形成された複列の内側軌道面7,8の一方、つまり、アウトボード側の内側軌道面7をハブ輪1の外周に形成した(第三世代と称される)タイプの駆動車輪用軸受装置に適用した場合を例示したが、本発明はこれに限定されることなく、ハブ輪の外周に一対の内輪を圧入し、アウトボード側の軌道面7を一方の内輪の外周に形成すると共にインボード側の軌道面8を他方の内輪の外周に形成した(第一、第二世代と称される)タイプの駆動車輪用軸受装置にも適用可能である。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (6)

  1.  内周に複列の外側軌道面が形成された外方部材と、外周に前記外側軌道面と対向する複列の内側軌道面を有し、ハブ輪および内輪からなる内方部材と、前記外方部材の外側軌道面と内方部材の内側軌道面との間に介装された複列の転動体とからなる車輪用軸受を備え、前記ハブ輪の軸孔に等速自在継手の外側継手部材のステム部を嵌合することにより車輪用軸受に等速自在継手をねじ締め付け構造により結合させた車輪用軸受装置において、
     前記ハブ輪の軸孔を軸方向に亘って円筒状に貫通させ、前記外側継手部材のステム部外周面に軸方向に延びる複数の凸部を形成すると共に、前記凸部に対して締め代を有する複数の凹部を前記ハブ輪の軸孔内周面にブローチ加工により形成し、前記外側継手部材のステム部を前記ハブ輪の軸孔に圧入し、その軸孔内周面に凸部の形状を転写することにより、前記凸部と前記凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成したことを特徴とする車輪用軸受装置。
  2.  前記ねじ締め付け構造は、前記外側継手部材のステム部の軸端に雌ねじ部を形成し、前記雌ねじ部に螺合する雄ねじ部を前記ハブ輪の軸孔の開口端周縁部位に係止させた請求項1に記載の車輪用軸受装置。
  3.  前記ねじ締め付け構造は、前記外側継手部材のステム部の軸端に雌ねじ部を形成し、前記雌ねじ部に螺合する雄ねじ部を前記ハブ輪の軸孔開口端に嵌合された環状プレートに係止させた請求項1に記載の車輪用軸受装置。
  4.  前記ハブ輪のインボード側端部を径方向外側に加締めることにより、加締め部でもって前記内輪を抜け止めしてハブ輪と一体化し、前記加締め部を等速自在継手の外側継手部材の肩部に当接させた請求項1~3のいずれか一項に記載の車輪用軸受装置。
  5.  前記ハブ輪のインボード側に位置する内輪の端面を等速自在継手の外側継手部材の肩部の端面に当接させた請求項1~3のいずれか一項に記載の車輪用軸受装置。
  6.  内周に複列の外側軌道面が形成された外方部材と、外周に前記外側軌道面と対向する複列の内側軌道面を有し、ハブ輪および内輪からなる内方部材と、前記外方部材の外側軌道面と内方部材の内側軌道面との間に介装された複列の転動体とからなる車輪用軸受であって、
     前記ハブ輪の軸孔を軸方向に亘って円筒状に貫通させ、前記ハブ輪の軸孔の内周面にブローチ加工により軸方向に延びる凹部を形成したことを特徴とする車輪用軸受。
PCT/JP2013/076475 2012-10-30 2013-09-30 車輪用軸受および軸受装置 WO2014069137A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/433,944 US9393836B2 (en) 2012-10-30 2013-09-30 Bearing for wheel, and bearing device for wheel
CN201380056468.6A CN104755276B (zh) 2012-10-30 2013-09-30 车轮用轴承以及轴承装置
EP13851701.6A EP2915683B1 (en) 2012-10-30 2013-09-30 Bearing for wheel, and bearing device for wheel
IN2903DEN2015 IN2015DN02903A (ja) 2012-10-30 2013-09-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012238888 2012-10-30
JP2012-238888 2012-10-30
JP2013-150569 2013-07-19
JP2013150569A JP6253909B2 (ja) 2012-10-30 2013-07-19 車輪用軸受装置

Publications (1)

Publication Number Publication Date
WO2014069137A1 true WO2014069137A1 (ja) 2014-05-08

Family

ID=50627053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076475 WO2014069137A1 (ja) 2012-10-30 2013-09-30 車輪用軸受および軸受装置

Country Status (6)

Country Link
US (1) US9393836B2 (ja)
EP (1) EP2915683B1 (ja)
JP (1) JP6253909B2 (ja)
CN (1) CN104755276B (ja)
IN (1) IN2015DN02903A (ja)
WO (1) WO2014069137A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125657A1 (ja) * 2008-04-10 2009-10-15 Ntn株式会社 車輪用軸受装置
ITTO20130023A1 (it) * 2013-01-11 2014-07-12 Skf Ab Unità mozzo di peso leggero con anelli di cuscinetto integrati, e procedimento per la sua fabbricazione
ITTO20130027A1 (it) * 2013-01-11 2014-07-12 Skf Ab Unità mozzo di peso leggero con anelli di cuscinetto integrati, e procedimenti per la sua fabbricazione
JP6320695B2 (ja) * 2013-07-16 2018-05-09 Ntn株式会社 車輪用軸受装置及びその組立方法
CN104553613A (zh) * 2015-01-30 2015-04-29 张琦 一种电动车用轮轴装置
US10233972B1 (en) * 2017-09-08 2019-03-19 GM Global Technology Operations LLC Bearing race with serrations
FR3126900B1 (fr) * 2021-09-10 2023-12-08 Ntn Snr Roulements Procédé d’assemblage d’au moins une bague coopérant par frettage avec une portée de frettage d'une pièce

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251522A (ja) * 1986-04-21 1987-11-02 Toyota Motor Corp 回転軸の連結方法
JPH07167116A (ja) * 1993-10-20 1995-07-04 Mercedes Benz Ag 圧力ばめ
JP2005081868A (ja) * 2003-09-04 2005-03-31 Nsk Ltd 駆動輪用ハブユニット
JP2009097557A (ja) 2007-10-15 2009-05-07 Ntn Corp 車輪用軸受装置
JP2010047042A (ja) * 2008-08-19 2010-03-04 Ntn Corp 駆動車輪用軸受装置
JP2011240857A (ja) * 2010-05-20 2011-12-01 Ntn Corp 車輪用軸受装置
JP2012035798A (ja) * 2010-08-10 2012-02-23 Ntn Corp 車輪用軸受装置の製造方法
JP2012062013A (ja) * 2010-09-17 2012-03-29 Ntn Corp 車輪用軸受装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182537A (ja) * 1997-12-17 1999-07-06 Nippon Seiko Kk 車輪用転がり軸受ユニット
WO2009051047A1 (ja) * 2007-10-15 2009-04-23 Ntn Corporation 車輪用軸受装置
JP5517869B2 (ja) * 2009-11-27 2014-06-11 Ntn株式会社 インホイール型モータ内蔵センサ付き車輪用軸受装置
EP2517897B1 (en) * 2009-12-21 2018-04-18 NTN Corporation Wheel bearing device
JP5681414B2 (ja) * 2010-09-02 2015-03-11 協同油脂株式会社 ハブユニット軸受用グリース組成物
WO2013042595A1 (ja) * 2011-09-21 2013-03-28 Ntn株式会社 車輪用軸受および軸受装置
ITTO20111127A1 (it) * 2011-12-09 2013-06-10 Skf Ab Gruppo integrato cuscinetto-mozzo per la ruota di un veicolo a motore

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251522A (ja) * 1986-04-21 1987-11-02 Toyota Motor Corp 回転軸の連結方法
JPH07167116A (ja) * 1993-10-20 1995-07-04 Mercedes Benz Ag 圧力ばめ
JP2005081868A (ja) * 2003-09-04 2005-03-31 Nsk Ltd 駆動輪用ハブユニット
JP2009097557A (ja) 2007-10-15 2009-05-07 Ntn Corp 車輪用軸受装置
JP2010047042A (ja) * 2008-08-19 2010-03-04 Ntn Corp 駆動車輪用軸受装置
JP2011240857A (ja) * 2010-05-20 2011-12-01 Ntn Corp 車輪用軸受装置
JP2012035798A (ja) * 2010-08-10 2012-02-23 Ntn Corp 車輪用軸受装置の製造方法
JP2012062013A (ja) * 2010-09-17 2012-03-29 Ntn Corp 車輪用軸受装置

Also Published As

Publication number Publication date
EP2915683A1 (en) 2015-09-09
JP2014111425A (ja) 2014-06-19
EP2915683B1 (en) 2020-12-23
EP2915683A4 (en) 2017-03-01
JP6253909B2 (ja) 2017-12-27
CN104755276A (zh) 2015-07-01
US9393836B2 (en) 2016-07-19
CN104755276B (zh) 2017-06-09
US20150273939A1 (en) 2015-10-01
IN2015DN02903A (ja) 2015-09-11

Similar Documents

Publication Publication Date Title
JP5829173B2 (ja) 車輪用軸受装置の製造方法
JP6253909B2 (ja) 車輪用軸受装置
WO2013042595A1 (ja) 車輪用軸受および軸受装置
US20100092122A1 (en) Bearing device for driving wheel, and its assembling method
JP6320695B2 (ja) 車輪用軸受装置及びその組立方法
JP6042142B2 (ja) 車輪用軸受、車輪用軸受装置、および車輪用軸受装置の製造方法
WO2015015992A1 (ja) 車輪用軸受装置
JP5752542B2 (ja) 車輪用軸受装置
JP6239310B2 (ja) 車輪用軸受装置
JP6253906B2 (ja) 車輪用軸受装置
JP6109786B2 (ja) 車輪用軸受装置、および車輪用軸受装置の製造方法
JP6261846B2 (ja) 車輪用軸受装置および車輪用軸受装置の製造方法
JP6279237B2 (ja) 車輪用軸受装置
JP2008247274A (ja) 車輪用軸受装置
JP6239315B2 (ja) 車輪用軸受装置
JP6009495B2 (ja) 車輪用軸受装置の製造方法
JP6261847B2 (ja) 車輪用軸受装置および車輪用軸受装置の製造方法
JP2017116108A (ja) 車輪用軸受装置、および車輪用軸受装置の製造方法
JP2022149827A (ja) 車輪用軸受装置
JP5101051B2 (ja) 駆動車輪用軸受ユニット
JP2016107873A (ja) 車輪用軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14433944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013851701

Country of ref document: EP