WO2014069108A1 - 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法 - Google Patents

繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法 Download PDF

Info

Publication number
WO2014069108A1
WO2014069108A1 PCT/JP2013/074684 JP2013074684W WO2014069108A1 WO 2014069108 A1 WO2014069108 A1 WO 2014069108A1 JP 2013074684 W JP2013074684 W JP 2013074684W WO 2014069108 A1 WO2014069108 A1 WO 2014069108A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving member
bumper beam
vehicle width
impact receiving
layer portion
Prior art date
Application number
PCT/JP2013/074684
Other languages
English (en)
French (fr)
Inventor
重人 安原
朋也 彌武
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2014544373A priority Critical patent/JP5916173B2/ja
Publication of WO2014069108A1 publication Critical patent/WO2014069108A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/041Understructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/03Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by material, e.g. composite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • B60R2019/1846Structural beams therefor, e.g. shock-absorbing made of plastic material comprising a cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • B60R2019/1853Structural beams therefor, e.g. shock-absorbing made of plastic material of reinforced plastic material

Definitions

  • the present invention relates to a fiber reinforced resin impact receiving member including an outer layer portion made of continuous fiber reinforced resin and an inner layer portion made of discontinuous fiber reinforced resin, and a method of manufacturing the impact receiving member.
  • a stampable sheet for press-molding a bumper beam made of fiber reinforced resin for automobiles is made by impregnating a thermoplastic resin into reinforced long fibers and long fiber mats aligned in one direction. 1 is known.
  • Patent Document 2 both strength and moldability are achieved by configuring a site giving priority to strength with a continuous fiber reinforced resin and a site giving priority to moldability with a discontinuous fiber reinforced resin.
  • an impact receiving member such as a bumper beam to which a collision load is input
  • its main body is formed with continuous fiber reinforced resin having high strength, and its reinforcing ribs and the like are discontinuous with high moldability. It is conceivable to mold with a fiber reinforced resin.
  • Patent Document 1 what is described in Patent Document 1 is that continuous fiber reinforced resin containing reinforcing long fibers is arranged in the inner layer, and discontinuous fiber reinforced resin containing long fiber mats is only arranged in the outer layer. Since the resin and the discontinuous fiber reinforced resin are not properly used depending on the part, there is a problem that the characteristics of both fiber reinforced resins cannot be fully utilized.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an impact receiving member in which a continuous fiber reinforced resin and a discontinuous fiber reinforced resin are combined with sufficient bending strength and energy absorption performance.
  • the impact receiving member is formed in a U-shaped cross section or a U-shaped cross section in which a pair of side walls are connected to both end edges of the bottom wall facing the input direction of the collision load.
  • An outer layer portion made of continuous fiber reinforced resin, and an inner layer portion made of discontinuous fiber reinforced resin that is laminated on the inner surface of the outer layer portion and constitutes a plurality of vertical ribs connected to the bottom wall and the pair of side walls.
  • the outer layer portion includes continuous fibers oriented in the longitudinal direction of the impact receiving member, and the inner layer portion includes long fibers of discontinuous fibers having a fiber length of 35 mm to 50 mm oriented in the input direction of the collision load.
  • a fiber reinforced resin impact receiving member having the first feature is proposed.
  • the height of the vertical rib in the input direction of the collision load is greater than the height of the outer layer portion in the input direction of the collision load.
  • a fiber reinforced resin impact receiving member is proposed.
  • the inner layer portion in addition to the first or second feature, includes a lateral rib that intersects the longitudinal rib.
  • a third feature is a fiber reinforced resin impact receiving member. Is proposed.
  • a fourth feature is that the impact receiving member is disposed inside a front pillar lower continuous with the front end of the side sill.
  • a fiber reinforced resin impact receiving member is proposed.
  • the impact receiving member is a bumper beam arranged in the vehicle width direction, and the edge of the vertical rib on the center side in the vehicle width direction is the pair of side walls.
  • the fiber is characterized in that it is cut out from the line connecting the tips of the two ends toward the bottom wall, and the edge of the longitudinal rib on the outer side in the vehicle width direction is along the line connecting the tips of the pair of side walls.
  • the height in the input direction of the collision load on the side wall is smaller on the outer side in the vehicle width direction than on the center side in the vehicle width direction, and the collision load input on the vertical rib is input.
  • a fiber-reinforced resin impact receiving member having a sixth feature that the height in the direction is the same on the vehicle width direction outer side and the vehicle width direction center side is proposed.
  • the bumper beam extension includes a plurality of cylindrical shock absorbing portions extending in a collision load input direction at both ends in the vehicle width direction of the bumper beam.
  • a fiber reinforced resin impact receiving member characterized in that the vertical rib of the bumper beam is arranged on the extension line or the center line of the side wall portion of the impact absorbing portion is proposed. Is done.
  • the bumper beam has an isosceles triangle shape in plan view, and the width of the collision load input direction is the vehicle width direction.
  • An impact receiving member made of a fiber reinforced resin is proposed, which has an eighth feature that it is maximum at the center and minimum at both ends in the vehicle width direction.
  • the method for manufacturing the impact receiving member according to any one of the first to eighth aspects, wherein the continuous fiber prepreg constituting the outer layer portion is preheated on a female mold. And disposing the discontinuous fiber prepreg constituting the inner layer portion on the continuous fiber prepreg in a preheated state, and forming a groove for forming the vertical rib to form the male mold and the female mold.
  • a ninth feature of the present invention is to provide a method for manufacturing an impact receiving member, comprising the step of pressing the continuous fiber prepreg and the discontinuous fiber prepreg to form the impact receiving member.
  • a method for manufacturing an impact receiving member according to a tenth feature in which the male groove is curved in a waveform when viewed in the input direction of the collision load. Is done.
  • an impact receiving member according to the eleventh feature is characterized in that a widened portion with an enlarged groove width is formed at the opening end of the male groove.
  • a manufacturing method is proposed.
  • the bumper beams 18 and 49 of the embodiment correspond to the impact receiving member of the present invention
  • the vertical groove 28c of the embodiment corresponds to the groove of the present invention
  • the front side frame front portion 44 of the embodiment corresponds to the present invention.
  • the first closed cross section 48a, the second closed cross section 48b, and the third closed cross section 48c of the embodiment correspond to the shock absorbing portion of the present invention.
  • the impact receiving member is a continuous fiber reinforced formed in a U-shaped cross section or a U-shaped cross section in which a pair of side walls are connected to both end edges of the bottom wall facing the input direction of the collision load.
  • the outer layer portion includes continuous fibers oriented in the longitudinal direction of the impact receiving member, and the inner layer portion includes long fibers of discontinuous fibers having a length of 35 mm to 50 mm oriented in the input direction of the impact load.
  • Bending of the impact receiving member by the outer layer portion including continuous fibers oriented in the longitudinal direction is suppressed, and the opening and twisting of the impact receiving member at the time of offset collision are connected to a plurality of longitudinal layers of the inner layer portion connecting the bottom wall and the side wall. It can be suppressed by ribs, and the inner layer contains long fibers with a length of 35 to 50 mm that are oriented in the input direction of the collision load. Therefore, the length of the long fibers is effectively used to increase the amount of collision energy absorbed. Can be made.
  • the height of the vertical rib in the input direction of the collision load is greater than the height of the outer layer in the input direction of the collision load.
  • the inner layer portion includes the transverse ribs intersecting the longitudinal ribs, so that the longitudinal ribs and the transverse ribs support each other to prevent the collapse, thereby ensuring that It can be crushed to increase energy absorption performance.
  • the impact receiving member is disposed inside the front pillar lower connected to the front end of the side sill, the impact load input to the front pillar lower when the vehicle collides front is received. It can be effectively absorbed by the member and efficiently transmitted to the side sill for dispersion.
  • the impact receiving member is a bumper beam arranged in the vehicle width direction, and the edge of the longitudinal rib on the center side in the vehicle width direction is from a line connecting the ends of the pair of side walls. Notched toward the bottom wall, the edge of the vertical rib on the outside in the vehicle width direction is along the line connecting the tips of the pair of side walls, so that the outer layer opens at the center in the vehicle width direction of the bumper beam. It is possible to prevent the energy absorption effect.
  • the height of the side wall in the input direction of the collision load is smaller on the outer side in the vehicle width direction than on the center side in the vehicle width direction.
  • the height of the vertical ribs in the input direction of the collision load is the same on the vehicle width direction outer side and the vehicle width direction center side, so that the vertical ribs containing long fibers can be easily press-formed. Can do.
  • both end portions in the vehicle width direction of the bumper beam are supported by the vehicle body frame via bumper beam extensions having a plurality of cylindrical impact absorbing portions extending in the collision load input direction.
  • the bumper beam vertical rib is located on the extension line or center line of the side wall of the shock absorber, so that the collision load input from the bumper beam is reliably transmitted to the shock absorber of the bumper beam extension. The energy absorption performance can be improved.
  • the bumper beam has an isosceles triangle shape in plan view, and the width in the input direction of the collision load is maximum at the center in the vehicle width direction and minimum at both ends in the vehicle width direction.
  • the collision load can be input to the central portion of the bumper beam in the vehicle width direction, and the collision load can be effectively absorbed throughout the vehicle width direction of the bumper beam.
  • the continuous fiber prepreg constituting the outer layer portion is disposed on the female mold in a preheated state, and the discontinuous fiber prepreg constituting the inner layer portion is preliminarily disposed on the continuous fiber prepreg.
  • discontinuity occurs when the discontinuous fiber prepreg flows into the male groove.
  • the long fibers of the fiber prepreg can be automatically aligned in the input direction of the collision load.
  • the groove of the male core is curved in a waveform when viewed in the input direction of the collision load, so that when the discontinuous fiber prepreg containing long fibers flows into the groove of the core.
  • the long fibers flow linearly in the direction in which the flow resistance is small in the groove curved in a waveform, and are efficiently oriented in the input direction of the collision load.
  • the discontinuous fiber prepreg containing long fibers smoothly flows into the groove of the core.
  • the long fibers are efficiently oriented in the input direction of the collision load.
  • FIG. 1 is a plan view of a front part of a vehicle body.
  • FIG. 2 is a view in the direction of the arrow 2 in FIG.
  • First embodiment 3 is a cross-sectional view taken along lines 3A-3A, 3B-3B, and 3C-3C in FIG.
  • FIG. 4 is an enlarged view of part 4 of FIG.
  • First embodiment) 5 is a cross-sectional view taken along line 5-5 of FIG.
  • FIG. 6 is an explanatory diagram of a bumper beam forming process.
  • (First embodiment) 7 is a cross-sectional view taken along line 7-7 of FIG.
  • FIG. 8 is a perspective view of the impact receiving member 35.
  • FIG. 8 is a perspective view of the impact receiving member 35.
  • FIG. 9 is a diagram for explaining the operation when a collision load is input to the bumper beam.
  • FIG. 10 is a diagram for explaining how to take a test piece of rib tensile strength.
  • FIG. 11 is a graph showing the test results of the rib tensile strength.
  • FIG. 12 is an image diagram of the discontinuous fiber alignment direction.
  • FIG. 13 is a view showing a bumper beam having a curved vertical rib.
  • FIG. 14 is a plan view of the front part of the vehicle body.
  • FIG. 15 is a view in the direction of arrow 15 in FIG.
  • (Third embodiment) 16 is a cross-sectional view taken along line 16-16 of FIG.
  • (Third embodiment) 17 is a cross-sectional view taken along line 17-17 in FIG. (Third embodiment)
  • the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.
  • the input direction of the collision load is the front-rear direction.
  • the fiber reinforced resin cabin 11 is integrally provided with a floor panel 12, a pair of left and right side sills 13, 13, a center tunnel 14, a dash panel 15, and the like.
  • a pair of left and right metal front side frames 16, 16 extend forward from the front end of the cabin 11, and a pair of left and right fiber reinforced resin bumper beam extensions 17, 17 are connected to the front end.
  • Both ends in the vehicle width direction of the bumper beam 18 made of fiber reinforced resin are connected to the inner surfaces of the front end portions of the left and right bumper beam extensions 17 and 17, and a pair of left and right wheel house lower members made of fiber reinforced resin are connected to the outer surfaces of the front end portions.
  • the front ends of 19 and 19 are connected.
  • a square frame-shaped front bulkhead 20 made of fiber reinforced resin is provided between the left and right bumper beam extensions 17, 17, a square frame-shaped front bulkhead 20 made of fiber reinforced resin is provided.
  • the bumper beam 18 is formed by integrally molding an outer layer portion 21 made of continuous fiber reinforced resin and an inner layer portion 22 made of discontinuous fiber reinforced resin.
  • the outer layer portion 21 made of continuous fiber reinforced resin is a member having a U-shaped cross section having a bottom wall 21a and a pair of side walls 21b and 21c and having an open front surface.
  • a flange 21d faces upward from the front end of the upper side wall 21b.
  • the flange 21e protrudes downward from the front end of the lower side wall 21c.
  • the inner layer part 22 made of discontinuous fiber reinforced resin extends in the vehicle width direction on the bottom wall 21a of the outer layer part 21 and the laminated part 22a ... thinly laminated on the inner surfaces of the pair of side walls 21b, 21c.
  • Bosses 22e and 22e having positioning holes 22d and 22d provided, and plate-like end brackets 22f and 22f connected to the outer ends in the vehicle width direction of the lateral ribs 22b are provided.
  • the rear edge of the horizontal rib 22b is connected to the bottom wall 21a, the rear edge and the upper and lower edges of the vertical rib 22c ... are connected to the bottom wall 21a and the side walls 21b, 21c, and the front edge of each vertical rib 22c is U-shaped. Recessed cutouts 22g are formed.
  • a mold 26 for press-molding the bumper beam 18 is formed with a female mold 27 having a concave cavity 27a for molding the outer surface of the outer layer portion 21, and the inner surface of the inner layer portion 22.
  • a male core 28 having a convex core 28a.
  • the core 28a is formed with horizontal grooves 28b for forming the horizontal ribs 22b and vertical grooves 28c for forming the vertical ribs 22c.
  • widened portions 28d are formed in which the groove width is increased in a tapered shape.
  • the prepreg is made of woven fabric such as plain weave and twill weave made of continuous fibers such as carbon fiber, glass fiber and aramid fiber, UD (sheet in which continuous fibers are aligned in one direction), or a mat of discontinuous fibers as a reinforcing material. It is impregnated with a semi-cured thermosetting resin (such as an epoxy resin or a polyester resin) or a thermoplastic resin (such as nylon 6 or polypropylene), and has flexibility to adapt to the shape of the mold. In the case of a thermosetting resin, when a plurality of prepregs are inserted into a mold in a laminated state and heated to, for example, about 130 ° C.
  • a semi-cured thermosetting resin such as an epoxy resin or a polyester resin
  • a thermoplastic resin such as nylon 6 or polypropylene
  • thermosetting resin is cured and a fiber reinforced resin product is obtained.
  • thermoplastic resin a plurality of preheated prepregs are inserted into a mold in a laminated state, subjected to pressure molding, and then cooled to obtain a fiber reinforced resin product.
  • the reinforcing material of the continuous fiber prepreg 29 is the UD (nylon resin sheet in which continuous fibers are aligned in one direction), and the reinforcing material of the discontinuous fiber prepreg 30 is a random fiber having a fiber length of 35 mm to 50 mm. It is a nylon resin sheet of discontinuous fibers made of oriented long fibers.
  • the laminated portions 22a of the inner layer portion 22 are formed into a film shape, and flow into the transverse grooves 28b and longitudinal grooves 28c of the core 28a, and the end portions of the transverse ribs 22b and longitudinal ribs 22c of the inner layer portion 22
  • the brackets 22f and 22f are formed at the same time.
  • the bumper beam 18 is completed by cutting off the surplus portions of the flanges 21 d and 21 e of the outer layer portion 21 of the bumper beam 18 taken out from the mold 26.
  • the outer layer portion 21 of the bumper beam 18 that is, the bottom wall 21a, the upper and lower side walls 21b, 21c.
  • the upper and lower flanges 21d and 21e are reinforced with UDs of continuous fibers 31 oriented in the longitudinal direction (vehicle width direction), which is the main stress direction of the bumper beam 18.
  • the inner layer portion 22 of the bumper beam 18, that is, the laminated portion 22a, the lateral rib 22b, the longitudinal rib 22c, the bosses 22e and 22e, and the end brackets 22f and 22f are reinforced by the discontinuous fibers 32.
  • the discontinuous fiber prepreg 30 placed on the female die 27 is compressed and the peripheral edge thereof is closed by the die 26, so that the lateral groove 28b and the longitudinal groove 28c on the core 28a side of the male die 28 are ...
  • the horizontal ribs 22b and the vertical ribs 22c... Are formed by being extruded and filled. These transverse ribs 22b and longitudinal ribs 22c are aligned so that the long fibers of the discontinuous fibers 32 of the discontinuous fiber prepreg 30 face in one direction (that is, the front-rear direction which is the input direction of the collision load) from a random orientation. To do.
  • the reason for this is, for example, the longitudinal ribs 22c ...
  • the long fibers of the randomly oriented discontinuous fibers 32 of the discontinuous fiber prepreg 30 flow into the longitudinal grooves 28c of the male mold 28 together with the molten resin, the molten resin Is cooled, the viscosity decreases, and the resistance between the discontinuous fibers 32 increases, so that the orientation direction of the discontinuous fibers 32 gradually changes to the inflow direction of the molten resin and is contained in the molten resin. It is estimated that the long fibers are aligned parallel to the inflow direction.
  • the tensile strength test shows that the tensile strength of the test pieces T1, T2, T3 in the rib lateral direction is lower than the tensile strength of the test piece T0 in the rib vertical direction, and the test pieces T1, T2 in the rib lateral direction. Since the tensile strength of T3 gradually decreases from the root side toward the tip side, the discontinuous fibers 32... Gradually move from the random state of the prepreg toward the rib tip in the direction of impact input (into the rib of the molten resin). It is estimated that they are aligned in the flow direction (see FIG. 13).
  • the discontinuous fiber prepreg 30 is male when the mold 26 is molded. It becomes possible to smoothly flow into the horizontal grooves 28b and the vertical grooves 28c of the mold 28, and the action of aligning the long fibers contained in the molten resin in parallel with the inflow direction is promoted.
  • the left and right bumper beam extensions 17, 17 made of fiber reinforced resin have an S-shaped cross section when viewed from the front, and the left and right end brackets 22 f, 22 f are the left and right bumper beam extensions 17. , 17 are bonded or welded to the inner surface in the vehicle width direction, and are further joined by rivets 33.
  • a front pillar lower 34 stands up from the front end of the side sill 13, and an impact receiving member 35 made of fiber reinforced resin is accommodated inside the front pillar lower 34.
  • the impact receiving member 35 has substantially the same structure as the bumper beam 18 described above, and is manufactured by substantially the same method.
  • the impact receiving member 35 is integrally provided with an outer layer portion 21 made of continuous fiber reinforced resin and an inner layer portion 22 made of discontinuous fiber reinforced resin, and the outer layer portion 21 has a bottom wall 21a bent in a square shape. And a pair of side walls 21b, 21c connected to both side edges of the bottom wall 21a and configured in a U-shaped cross section, and the inner layer portion 22 covers the bottom wall 21a and the inner surfaces of the pair of side walls 21b, 21c thinly.
  • the front and rear heights of the horizontal ribs 22b and the vertical ribs 22c and 22c are higher than the heights of the side walls 21b and 21c in the front-rear direction, so that the ends of the horizontal ribs 22b and vertical ribs 22c and 22c collide from the front ends of the side walls 21b and 21c. It protrudes in the load input direction.
  • the bumper beam 18 is arranged with the longitudinal direction along the vehicle width direction, whereas the impact receiving member 35 is arranged with the longitudinal direction along the vertical direction.
  • the ribs 22 c and 22 c are directed in the input direction of the collision load in the same manner as the bumper beam 18.
  • the upper half of the bottom wall 21a is connected to the upper wall 34a of the front pillar lower 34, the lower half of the bottom wall 21a is connected to a bulkhead 36 provided at the front end of the side sill 13, and the lateral ribs 22b and the longitudinal ribs 22c are connected.
  • 22c is connected to the front wall 34b of the front pillar lower 34 constituting the wheel house.
  • the bending strength can be given to the bumper beam 18 by arranging the continuous fibers 31 of the outer layer portion 21 in the vehicle width direction. That is, as shown in FIG. 9 (A), when a bumper beam 18 having a simple U-shaped cross section without a rib collides with the front surface and deforms into a chain line state, tensile stress acts on the bottom wall 21a, and FIG. As shown in FIG. 9B, the front portions of the upper and lower side walls 21b and 21c tend to be deformed in the opening direction. The reason for this is that the bumper beam 18 has no front wall due to the U-shaped cross section, and it is difficult for compressive stress to act thereon.
  • the bumper beam 18 can retract and absorb an impact while generating a large reaction force without opening the mouth.
  • the bumper beam 18 when a collision load offset in the vertical direction is input to the bumper beam 18, the bumper beam 18 is twisted and deformed as shown in FIG. 9C.
  • the bumper beam 18 By connecting the bottom wall 21a of the bumper beam 18 and the upper and lower side walls 21b, 21c with the longitudinal ribs 22c ..., the bumper beam 18 is closed and a continuous fiber inclined by 45 ° is added, which increases the weight and cost. Without reinforcing, the rigidity against torsional deformation can be sufficiently increased.
  • the vertical ribs 22c are subjected to tensile stress in the direction orthogonal to the arrangement direction of the discontinuous fibers 32 during the opening deformation, but are absorbed by the extension of the resin.
  • the longitudinal ribs 22c of the inner layer portion 22 are crushed while peeling the discontinuous fibers 32 and the resin, thereby absorbing the collision energy.
  • the long fibers of the discontinuous fibers 32 of the longitudinal ribs 22c of the inner layer portion 22 are aligned in the input direction of the collision load, the lengths of the long fibers are effectively used and the discontinuous fibers 32.
  • the amount of energy absorbed at the time of crushing can be increased.
  • the fiber reinforced resin of the outer layer portion 21 of the bumper beam 18 having a simple U-shaped cross section is reinforced with continuous fibers 31 with high strength, and since it has a complicated shape, it is difficult to form with continuous fibers 31. Since the bosses 22e and 22e are formed at the intersections of the lateral ribs 22b and the longitudinal ribs 22c using discontinuous fibers 32 having a high degree of freedom in molding, the strength of the bumper beam 18 and the moldability of the bosses 22e and 22e are improved. Both can be achieved.
  • the continuous fiber prepreg 29 including the continuous fibers 31 and the discontinuous fiber prepreg 30 including the discontinuous fibers 32 are disposed in the same mold 26 to form the bumper beam 18 in one step. Manufacturing costs can be reduced as compared with the case of molding and integration by adhesion or welding.
  • the length of the discontinuous fibers 32 of the inner layer portion 22 is 35 mm to 50 mm, there is a possibility that the nozzle may be clogged when the discontinuous fibers 32 of that length are injected together with the resin.
  • By molding it is possible to align the discontinuous fibers 32 of sufficient length in the ribs in the direction of impact input, and to increase the separation energy amount of the fibers and the resin of the horizontal ribs 22b and the vertical ribs 22c.
  • the bosses 22e and 22e having the positioning holes 22d and 22d are provided at the intersections of the lattice-like horizontal ribs 22b and the vertical ribs 22c, positioning work when the bumper beam 18 and other parts are coupled is facilitated.
  • the lateral rib 22b increases the strength of the bumper beam 18 itself and supports the longitudinal ribs 22c to facilitate the separation of the fibers and the resin.
  • the end brackets 22f and 22f reinforced with the discontinuous fibers 32 are provided at both ends of the outer layer portion 21, both ends of the outer layer portion 21 can be easily coupled to the wheel house lower members 19 and 19.
  • the positioning holes 22d and 22d are post-processed with a drill, the resin between fibers may be peeled off and the strength may be lowered.
  • the bosses 22e and 22e having the positioning holes 22d and 22d are integrally formed with the bumper beam 18. Thus, the decrease in strength can be prevented.
  • the collision load input to the front wall 34b of the front pillar lower 34 from the front wheel retracted due to the frontal collision is transmitted to the impact receiving member 35 housed in the front pillar lower 34, and further transmitted to the front end of the side sill 13 therefrom.
  • the impact receiving member 35 is crushed and the collision energy is absorbed.
  • the action of the impact receiving member 35 at that time is the same as the action of the bumper beam 18 described above.
  • the vertical ribs 22c of the bumper beam 18 are formed in a flat plate shape, but in the second embodiment, the vertical ribs 22c are curved in a wave shape in front view.
  • the discontinuous fiber prepreg 30 flows into the lateral grooves 28b and the longitudinal grooves 28c of the male mold 28 to form the transverse ribs 22b and the longitudinal ribs 22c.
  • the discontinuous fiber prepreg 30 that flows into the grooves 28c is most likely to flow in the direction of arrow A (impact load input direction) and less likely to flow in the direction of arrow B (direction inclined with respect to the input direction of the collision load). .
  • the discontinuous fiber prepreg 30 can be actively flowed in the direction of the arrow A, and the long fibers can be more accurately aligned in the input direction of the collision load.
  • a dash panel 42 is erected from the front end of a cabin 41 integrally formed in a bathtub shape with fiber reinforced resin, and a pair of left and right suspension support members 43, 43 formed by die casting with aluminum alloy on the front surface thereof. Is fixed.
  • the suspension support members 43 and 43 include damper housings 43a and 43a that support upper ends of suspension dampers (not shown), and front side frame rear portions 43b and 43b that are connected to lower portions of the damper housings 43a and 43a and extend forward.
  • a pair of left and right front side frame front portions 44, 44 made of an aluminum extruded material or a steel plate press material are connected to the front ends of the front side frame rear portions 43b, 43b.
  • a pair of left and right side members 46, 46 are connected to the front ends of a pair of left and right upper members 45, 45 extending forward from the upper left and right sides of the dash panel 42.
  • a front bulkhead 47 made of a fiber reinforced resin formed in a rectangular frame shape when viewed from the front is fixed to the front ends of the front side frame front portions 44, 44, and side members 46, 46 are attached to the left and right upper portions of the front bulkhead 47. The front end of is connected.
  • a pair of left and right bumper beam extensions 48, 48 are fixed to the left and right front surfaces of the front bulkhead 47, and a bumper beam 49 extending in the vehicle width direction is stacked in two steps vertically on the front ends of the bumper beam extensions 48, 48. 49 are fixed.
  • a shroud 50 formed in a rectangular frame shape in front view is disposed at a position surrounded by the front bulkhead 47, bumper beams 49, 49 and a pair of left and right bumper beam extensions 48, 48, and inside the shroud 50.
  • An unillustrated engine cooling radiator, an air conditioning condenser, and a battery cooling radiator are stacked and supported in the front-rear direction.
  • the bumper beam 49 having a U-shaped cross section includes an outer layer portion 51 made of continuous fiber reinforced resin and an inner layer portion 52 made of discontinuous fiber reinforced resin.
  • the outer layer portion 51 has a bottom wall 51 a and a pair of upper and lower side walls 51 b and 51 c and is opened forward.
  • the outer layer portion 51 of the lower bumper beam 49 has an upper flange 51 d and an upper bumper beam 49.
  • a flange 51e on the lower side of the outer layer portion 51 is overlapped in the front-rear direction and integrally welded to form a substantially W-shaped cross section.
  • the inner layer portion 52 is connected to the bottom wall 51a and the pair of side walls 51b, 51c extending in the vertical direction and the bottom wall 51a and the pair of side walls 51b, 51c which are thinly laminated on the inner surface of the bottom wall 51a and the pair of side walls 51b, 51c of the outer layer portion 51. And a plurality of vertical ribs 52c. A plurality of fastening collars 53 are inserted into the bottom wall 51 a of the outer layer portion 51.
  • the shape of the bumper beam 49 in plan view is an isosceles triangle, and the height in the front-rear direction is a1 that is highest at the center in the vehicle width direction and a2 that is the lowest at both ends in the vehicle width direction (FIG. 14). reference).
  • the front edges of the two vertical ribs 52c, 52c on the vehicle width direction end side of the bumper beam 49 are on a line connecting the front ends of the pair of side walls 51b, 51c.
  • the front edges of the other vertical ribs 52c on the side are recessed rearward from the line by notches 52d (see FIG. 15).
  • the height in the front-rear direction of the portion excluding the notches 52d of the longitudinal ribs 52c on the center side in the vehicle width direction, and the height in the front-rear direction of the longitudinal ribs 52c not having the notches 52d on both ends in the vehicle width direction. are consistent.
  • the bumper beam 49 having the above structure can be manufactured by the same manufacturing method as the bumper beam 18 of the first embodiment. Therefore, the outer layer portion 51 of the bumper beam 49 is aligned so that the continuous fibers 31 thereof face the vehicle width direction, and the vertical ribs 52c of the inner layer portion 52 of the bumper beam 49 and the side walls 51b and 51c of the outer layer portion 51 are aligned. The laminated portions 52a covering the inner surface are aligned so that the long fibers of the discontinuous fibers 32 face the input direction (front-rear direction) of the collision load.
  • the initial load absorbing members 54 covering the front surfaces of the pair of upper and lower bumper beams 49 are divided into three in the longitudinal direction of the bumper beam 49, and each has substantially the same structure.
  • Each initial load absorbing member 54 includes a flat connecting wall 54a, and a plurality of vertical ribs 54b and a plurality of horizontal ribs 54c formed on the front surface of the connecting wall 54a.
  • the vertical ribs 54b extending in the vertical direction and the horizontal ribs 54c extending in the left-right direction intersect with each other in a lattice shape.
  • the upper and lower edges of the connecting wall 54a are joined to the upper and lower flanges 51d and 51e of the pair of upper and lower bumper beams 49 and 49 by adhesion or welding.
  • the bumper beam extension 48 is configured by connecting an upper member 61 and a lower member 62.
  • the upper member 61 of the bumper beam extension 48 includes a main body 61a that extends in the vehicle width direction while being bent into a corrugated plate shape, a front fastening flange 61b that is bent upward from a front edge of the main body 61a, and a rear edge of the main body 61a.
  • a rear fastening flange 61c that bends upward from the front, and four joints 61d to 61g that extend in the front-rear direction at positions spaced in the vehicle width direction on the inner surface of the main body 61a.
  • the lower member 62 is a member that is substantially vertically symmetrical with the upper member 61 described above.
  • the upper member 61 and the lower member 62 having the above-described shapes are configured so that the pins 62k of the lower member 62 are fitted into the pin holes 61m of the upper member 61 so that the joint portions 61d to 61g and 62d to 62g are brought into contact with each other. In this state, the pins 62k... Are melted together from the upper member 61 side with a vibrating tool and are integrally coupled.
  • a mounting plate 71 made of a metal plate is welded to the front end of the front side frame front portion 44, and a bracing member 72 made of a metal plate is attached to the outer end in the vehicle width direction of the mounting plate 71 and the outer surface in the vehicle width direction of the front side frame front portion 44. Is welded diagonally. Then, six bolts 73 that pass through the rear fastening flanges 61c and 62c of the bumper beam extension 48, the front bulkhead 47, and the mounting plate 71 from the front to the rear are screwed into weld nuts 74 that are provided on the rear surface of the mounting plate 71. As a result, the bumper beam extension 48 and the front bulkhead 47 are fastened together with the mounting plate 71 and joined to the front ends of the pair of left and right front side frame front portions 44, 44.
  • Three nuts 63 are inserted into the front fastening flanges 61 b and 62 b of the bumper beam extension 48, and bolts 64 passing through the fastening collars 53 from the opening side of the bumper beams 49 and 49 are attached to the nut 63.
  • the bumper beams 49 and 49 are fixed to the bumper beam extension 48 by being screwed together.
  • a bumper beam extension 48 in which the upper member 61 and the lower member 62 are coupled to each other includes a rectangular tube-shaped first closed cross-sectional portion 48a that is located on the inner side in the vehicle width direction and extends in the front-rear direction, and an elliptic cylinder adjacent to the outer side in the vehicle width direction.
  • the cross-sectional areas of the second and third closed cross-section portions 48b and 48c are equal to each other and smaller than the cross-sectional area of the first closed cross-section portion 48a.
  • the width in the front-rear direction of the bumper beam extension 48 is gradually narrowed from the inner side to the outer side in the vehicle width direction, the length in the front-rear direction is the longest in the first closed cross section 48a, and then the second closed cross section 48b. Is long and the third closed section 48c is the shortest.
  • the four vertical ribs 52c on the outer end side in the vehicle width direction of the bumper beam 49 are formed in front of both sides in the vehicle width direction of the first closed cross-sectional portion 48a of the rectangular tube shape of the bumper beam extension 48, and in the elliptical cylindrical shape. It is located on the center line of the second closed section 48b and on the center line of the third closed section 48c having an elliptical cylindrical shape (see FIG. 17).
  • the collision load is from the longitudinal center of the bumper beam 49 to the bumper beam extensions 48, 48 at both ends, the front side frame front portions 44, 44, and the suspension support members 43, 43, and the dash panel 42 of the cabin 41.
  • the bumper beam extensions 48 and 48 are mainly crushed to absorb the collision energy.
  • the bumper beam 49 not only efficiently transmits the collision load to the left and right bumper beam extensions 48, 48 due to the high bending rigidity of the outer layer portion 51, but also collides by the vertical ribs 52c of the inner layer portion 52 being crushed. Absorb energy.
  • the action of the bumper beam at that time is the same as the action of the bumper beam 18 of the first embodiment.
  • the bumper beam 49 since the entire opening of the bumper beam 49 that opens toward the front is closed by the connecting wall 54a of the initial load absorbing member 54, the bumper beam 49 is completely closed to increase the strength, and the impact load is reduced to the bumper beam. It can be efficiently transmitted to the extension 48.
  • the bumper beam 49 has a longitudinal rib 52c at the center side in the vehicle width direction, the front edge of which is cut out from the line connecting the tips of the pair of side walls 51b and 51c toward the bottom wall 51a.
  • the front edge of 52c ... is along a line connecting the ends of the pair of side walls 51b, 51c, so that the outer layer portion 51 is prevented from opening at the center in the vehicle width direction of the bumper beam 49 and the energy absorption effect is ensured. It can be demonstrated.
  • the bumper beam 49 has an isosceles triangle shape in plan view, and the height of the collision load in the input direction is smaller in the vehicle width direction outer side than in the vehicle width direction central side. Not only can it conform to the plane shape without difficulty, but also the collision load can be input to the central portion in the vehicle width direction of the bumper beam 49 at the time of a frontal collision, and the collision load can be effectively absorbed in the entire vehicle width direction of the bumper beam 48. Can do. Moreover, since the heights of the longitudinal ribs 52c in the input direction of the collision load are the same on the vehicle width direction outer side and the vehicle width direction center side, the vertical ribs 52c including the long fibers can be easily press-formed.
  • both end portions in the vehicle width direction of the bumper beam 49 are supported by the front side frame front portion 44 via a bumper beam extension 48 having first to third closed cross-section portions 48a, 48b, 48c extending in the input direction of the collision load.
  • the vertical ribs 52c of the bumper beam 49 are disposed on the extension line of the side wall portion of the first closed cross section 48a and on the center lines of the second closed cross section 48b and the third closed cross section 48c. Can be reliably transmitted to the first to third closed cross sections 48a, 48b, 48c of the bumper beam extension 48, and the energy absorption performance of the bumper beam extension 48 can be enhanced.
  • the initial load absorbing member 54 that closes the opening of the bumper beam 49 includes a connecting wall 54a, and a large number of vertical ribs 54b and a large number of horizontal ribs 54c formed on the outer surface in the front-rear direction of the connecting wall 54a.
  • the mold 26 is compared with the case where the pair of upper and lower bumper beams 49 and 49 are integrally formed. Can be reduced in size, and the disturbance in the orientation direction of the continuous fibers 31 of the bumper beam 49 can be minimized to ensure the strength.
  • the impact receiving member of the present invention is not limited to those disposed in the bumper beams 18 and 49 and the front pillar lower 34 of the embodiment, and can be applied to any part of a vehicle body such as a door beam. it can.
  • a pair of bumper beams 49, 49 having a U-shaped cross section may be integrally formed so as to have a W-shaped cross section instead of being overlapped in the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

繊維強化樹脂製衝撃受け部材において、バンパービーム(18)は、衝突荷重の入力方向を向く底壁(21a)の両端縁に一対の側壁(21b,21c)が連なるU字状断面ないしコ字状断面に形成された連続繊維強化樹脂製の外層部(21)と、外層部(21)の内表面に積層されるとともに底壁(21a)および一対の側壁(21b,21c)に接続する複数の縦リブ(22c)を構成する不連続繊維強化樹脂製の内層部(22)とを備える。外層部(21)はバンパービーム(18)の長手方向に配向された連続繊維(31)を含み、内層部(22)は衝突荷重の入力方向に配向された長さ35mm~50mmの不連続繊維(32)の長繊維を含むので、長繊維の長さを有効に活かして充分な曲げ強度および衝突エネルギーの吸収量を増加させることができる。

Description

繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法
 本発明は、連続繊維強化樹脂製の外層部と不連続繊維強化樹脂製の内層部とを備える繊維強化樹脂製衝撃受け部材と、その衝撃受け部材の製造方法とに関する。
 自動車の繊維強化樹脂製のバンパービームをプレス成形するためのスタンパブルシートを、一方向に引き揃えた補強長繊維と長繊維マットとに熱可塑性樹脂を含浸せしめて構成したものが、下記特許文献1により公知である。
 また強度を優先する部位を連続繊維強化樹脂で構成し、成形性を優先する部位を不連続繊維強化樹脂で構成することで強度および成形性を両立させるものが、下記特許文献2により公知である。
 また平均長さが7mm~50mmのガラス繊維を30~80重量%含むガラス繊維強化樹脂を予熱後にプレスしてリブを有する製品を成形する際に、リブの幅Wおよび高さHの関係がH/W≦5を満たすように設定することで、リブにおけるガラス繊維の配向方向を該リブに長手方向に揃えるものが、下記特許文献3により公知である。
日本特開昭62-240514号公報 日本特開2005-324340号公報 日本特開平6-293036号公報
 ところで、衝突荷重が入力するバンパービームのような衝撃受け部材を繊維強化樹脂で製造する場合、その本体部を強度が高い連続繊維強化樹脂で成形し、その補強リブ等を成形性が高い不連続繊維強化樹脂で成形することが考えられる。
 しかしながら、上記特許文献1に記載されたものは、補強長繊維を含む連続繊維強化樹脂を内層に配置し、長繊維マットを含む不連続繊維強化樹脂を外層に配置しただけであり、連続繊維強化樹脂および不連続繊維強化樹脂を部位に応じて使い分けていないため、両繊維強化樹脂の特性を充分に活かし切れない問題がある。
 また特許文献2に記載されたものは、不連続繊維強化樹脂に含まれる不連続繊維の配向方向がランダムであって一方向に整列していないため、それをバンパービーム等の衝撃受け部材に適用した場合に、不連続繊維強化樹脂に充分な衝突エネルギーの吸収効果を発揮させるのが難しいという問題がある。
 また特許文献3に記載されたものは、リブにおけるガラス繊維の配向方向が該リブの長手方向に沿っているため、それをバンパービームの補強リブに適用したとしても、ガラス繊維の配向方向を衝突荷重の入力方向に一致させることができず、充分な衝突エネルギーの吸収効果を発揮させるのが難しいという問題がある。しかもリブの幅Wおよび高さHの関係がH/W≦5を満たすように設定することが必要であるため、リブの設計自由度に大きな制約が加わる問題がある。
 本発明は前述の事情に鑑みてなされたもので、連続繊維強化樹脂および不連続繊維強化樹脂を組み合わせた衝撃受け部材に、充分な曲げ強度およびエネルギー吸収性能を持たせることを目的とする。
 上記目的を達成するために、本発明によれば、衝撃受け部材が、衝突荷重の入力方向を向く底壁の両端縁に一対の側壁が連なるU字状断面ないしコ字状断面に形成された連続繊維強化樹脂製の外層部と、前記外層部の内表面に積層されるとともに前記底壁および前記一対の側壁に接続する複数の縦リブを構成する不連続繊維強化樹脂製の内層部とを備え、前記外層部は前記衝撃受け部材の長手方向に配向された連続繊維を含み、前記内層部は衝突荷重の入力方向に配向された繊維長が35mm~50mmの不連続繊維の長繊維を含むことを第1の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記縦リブの衝突荷重の入力方向の高さは前記外層部の衝突荷重の入力方向の高さよりも大きいことを第2の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第1または第2の特徴に加えて、前記内層部は前記縦リブに対して交差する横リブを備えることを第3の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第1~第3の何れか1つの特徴に加えて、前記衝撃受け部材はサイドシルの前端に連なるフロントピラーロアの内部に配置されることを第4の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記衝撃受け部材は車幅方向に配置されたバンパービームであり、車幅方向中央側の前記縦リブの端縁は前記一対の側壁の先端間を結ぶラインから前記底壁に向かって切り欠かれ、車幅方向外側の前記縦リブの端縁は前記一対の側壁の先端間を結ぶラインに沿うことを第5の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第5の特徴に加えて、前記側壁の衝突荷重の入力方向の高さは車幅方向外側で車幅方向中央側よりも小さく、前記縦リブの衝突荷重の入力方向の高さは車幅方向外側および車幅方向中央側で同一であることを第6の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第5または第6の特徴に加えて、前記バンパービームの車幅方向両端部は、衝突荷重の入力方向に延びる複数の筒状の衝撃吸収部を有するバンパービームエクステンションを介して車体フレームに支持され、前記バンパービームの縦リブは前記衝撃吸収部の側壁部の延長線上あるいは中心線上に配置されることを第7の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、請前記第5~第7の何れか1つの特徴に加えて、前記バンパービームは平面視で二等辺三角形状であり、その衝突荷重の入力方向の幅は車幅方向中央で最大で車幅方向両端で最小であることを第8の特徴とする繊維強化樹脂製衝撃受け部材が提案される。
 また本発明によれば、前記第1~第8の何れか1つに記載の衝撃受け部材の製造方法であって、雌型上に前記外層部を構成する連続繊維プリプレグを予備加熱した状態で配置するとともに、前記連続繊維プリプレグ上に前記内層部を構成する不連続繊維プリプレグを予備加熱した状態で配置する工程と、前記縦リブを成形する溝が形成され雄型と前記雌型とで前記連続繊維プリプレグおよび前記不連続繊維プリプレグを加圧して前記衝撃受け部材を成形する工程とを備えることを第9の特徴とする衝撃受け部材の製造方法が提案される。
 また本発明によれば、前記第9の特徴に加えて、前記雄型の溝は衝突荷重の入力方向に見て波形に湾曲することを第10の特徴とする衝撃受け部材の製造方法が提案される。
 また本発明によれば、前記第9または第10の特徴に加えて、前記雄型の溝の開口端に溝幅が拡大する拡幅部が形成されることを第11の特徴とする衝撃受け部材の製造方法が提案される。
 尚、実施の形態のバンパービーム18,49は本発明の衝撃受け部材に対応し、実施の形態の縦溝28cは本発明の溝に対応し、実施の形態のフロントサイドフレーム前部44は本発明の車体フレームに対応し、実施の形態の第1閉断面部48a、第2閉断面部48bおよび第3閉断面部48cは本発明の衝撃吸収部に対応する。
 本発明の第1の特徴によれば、衝撃受け部材は、衝突荷重の入力方向を向く底壁の両端縁に一対の側壁が連なるU字状断面ないしコ字状断面に形成された連続繊維強化樹脂製の外層部と、外層部の内表面に積層されるとともに底壁および一対の側壁に接続する複数の縦リブを構成する不連続繊維強化樹脂製の内層部とを備える。外層部は衝撃受け部材の長手方向に配向された連続繊維を含み、内層部は衝突荷重の入力方向に配向された長さ35mm~50mmの不連続繊維の長繊維を含むので、衝突荷重の入力による衝撃受け部材の曲がりを長手方向に配向された連続繊維を含む外層部により抑制するともに、オフセット衝突時の衝撃受け部材の口開きや捩じれを底壁および側壁に接続する内層部の複数の縦リブにより抑制することができ、しかも内層部は衝突荷重の入力方向に配向された長さ35mm~50mmの長繊維を含むので、長繊維の長さを有効に活かして衝突エネルギーの吸収量を増加させることができる。
 また本発明の第2の特徴によれば、縦リブの衝突荷重の入力方向の高さは外層部の衝突荷重の入力方向の高さよりも大きいので、縦リブを外層部に優先して圧壊することでエネルギー吸収性能を高めることができる。
 また本発明の第3の特徴によれば、内層部は縦リブに対して交差する横リブを備えるので、縦リブおよび横リブが相互に支え合って倒れを防止することで、それらを確実に圧壊してエネルギー吸収性能を高めることができる。
 また本発明の第4の特徴によれば、衝撃受け部材はサイドシルの前端に連なるフロントピラーロアの内部に配置されるので、車両が前面衝突してフロントピラーロアに入力した衝突荷重を、衝撃受け部材により効果的に吸収するとともにサイドシルに効率的に伝達して分散することができる。
 また本発明の第5の特徴によれば、衝撃受け部材は車幅方向に配置されたバンパービームであり、車幅方向中央側の縦リブの端縁は一対の側壁の先端間を結ぶラインから底壁に向かって切り欠かれ、車幅方向外側の縦リブの端縁は一対の側壁の先端間を結ぶラインに沿うので、バンパービームの車幅方向中央部で外層部が口開きするのを防止してエネルギー吸収効果を確実に発揮させることができる。
 また本発明の第6の特徴によれば、側壁の衝突荷重の入力方向の高さは車幅方向外側で車幅方向中央側よりも小さいので、バンパービームの形状を車体前部の形状に無理なく沿わせることができるだけでなく、縦リブの衝突荷重の入力方向の高さは車幅方向外側および車幅方向中央側で同一であるので、長繊維を含む縦リブを容易にプレス成形することができる。
 また本発明の第7の特徴によれば、バンパービームの車幅方向両端部は、衝突荷重の入力方向に延びる複数の筒状の衝撃吸収部を有するバンパービームエクステンションを介して車体フレームに支持され、バンパービームの縦リブは衝撃吸収部の側壁部の延長線上あるいは中心線上に配置されるので、バンパービームから入力される衝突荷重をバンパービームエクステンションの衝撃吸収部に確実に伝達し、バンパービームエクステンションにおけるエネルギー吸収性能を高めることができる。
 また本発明の第8の特徴によれば、バンパービームは平面視で二等辺三角形状であり、その衝突荷重の入力方向の幅は車幅方向中央で最大で車幅方向両端で最小であるので、前面衝突時に衝突荷重をバンパービームの車幅方向中央部に入力させ、衝突荷重をバンパービームの車幅方向全域で効果的に吸収することができる。
 また本発明の第9の特徴によれば、雌型上に外層部を構成する連続繊維プリプレグを予備加熱した状態で配置するとともに、連続繊維プリプレグ上に内層部を構成する不連続繊維プリプレグを予備加熱した状態で配置し、縦リブを成形する溝が形成されたコアを有する雄型と雌型とで連続繊維プリプレグおよび不連続繊維プリプレグを加圧して衝撃受け部材を成形するので、プレス加工のみで連続繊維強化樹脂製の外層部と不連続繊維強化樹脂製の内層部とを一体に備える衝撃受け部材を成形できるだけでなく、不連続繊維プリプレグが雄型の溝内に流入する際に不連続繊維プリプレグの長繊維を衝突荷重の入力方向に自動的に整列させることができる。
 また本発明の第10の特徴によれば、雄型のコアの溝は衝突荷重の入力方向に見て波形に湾曲するので、長繊維を含む不連続繊維プリプレグがコアの溝内に流入したときに、長繊維は波形に湾曲する溝内を流動抵抗が小さい方向に直線状に流れ、衝突荷重の入力方向に効率的に配向される。
 また本発明の第11の特徴によれば、コアの溝の開口端に溝幅が拡大する拡幅部が形成されるので、長繊維を含む不連続繊維プリプレグはコアの溝内にスムーズに流入し、長繊維が衝突荷重の入力方向に効率的に配向される。
図1は自動車の車体前部の平面図である。(第1の実施の形態) 図2は図1の2方向矢視図である。(第1の実施の形態) 図3は図2の3A-3A線、3B-3B線および3C-3C線断面図である。(第1の実施の形態) 図4は図2の4部拡大図である。(第1の実施の形態) 図5は図2の5-5線断面図である。(第1の実施の形態) 図6はバンパービームの成形工程の説明図である。(第1の実施の形態) 図7は図1の7-7線断面図である。(第1の実施の形態) 図8は衝撃受け部材35の斜視図である。(第1の実施の形態) 図9はバンパービームへの衝突荷重の入力時の作用説明図である。(第1の実施の形態) 図10はリブの引張強度のテストピースの取り方を説明する図である。(第1の実施の形態) 図11はリブの引張強度のテスト結果を示すグラフである。(第1の実施の形態) 図12は不連続繊維の整列方向のイメージ図である。(第1の実施の形態) 図13は湾曲した縦リブを有するバンパービームを示す図である。(第2の実施の形態) 図14は自動車の車体前部の平面図である。(第3の実施の形態) 図15は図14の15方向矢視図である。(第3の実施の形態) 図16は図14の16-16線断面図である。(第3の実施の形態) 図17は図14の17-17線断面図である。(第3の実施の形態)
13    サイドシル
18    バンパービーム(衝撃受け部材)
21    外層部
21a   底壁
21b   側壁
21c   側壁
22    内層部
22b   横リブ
22c   縦リブ
27    雌型
28    雄型
28c   縦溝(溝)
28d   拡幅部
29    連続繊維プリプレグ
30    不連続繊維プリプレグ
31    連続繊維
32    不連続繊維
34    フロントピラーロア
35    衝撃受け部材
44    フロントサイドフレーム前部(車体フレーム)
48    バンパービームエクステンション
48a   第1閉断面部(衝撃吸収部)
48b   第2閉断面部(衝撃吸収部)
48c   第3閉断面部(衝撃吸収部)
49    バンパービーム(荷重受け部材)
51    外層部
51a   底壁
51b   側壁
51c   側壁
52    内層部
52c   縦リブ
 以下、本発明の実施の形態を添付図面に基づいて説明する。
第1の実施の形態
 先ず、図1~図12に基づいて本発明の第1の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。また衝突荷重の入力方向は前後方向である。
 図1および図2から明らかなように、繊維強化樹脂製のキャビン11は、フロアパネル12、左右一対のサイドシル13,13、センタートンネル14、ダッシュパネル15等を一体に備える。キャビン11の前端から左右一対の金属製のフロントサイドフレーム16,16が前方に延びており、その前端に左右一対の繊維強化樹脂製のバンパービームエクステンション17,17が接続される。左右のバンパービームエクステンション17,17の前端部内面に繊維強化樹脂製のバンパービーム18の車幅方向両端部が接続されるとともに、その前端部外面に繊維強化樹脂製の左右一対のホイールハウスロアメンバ19,19の前端部が接続される。左右のバンパービームエクステンション17,17の間には、繊維強化樹脂製の四角枠状のフロントバルクヘッド20が設けられる。
 図2~図4から明らかなように、バンパービーム18は、連続繊維強化樹脂製の外層部21と、不連続繊維強化樹脂製の内層部22とを一体に成形して構成される。連続繊維強化樹脂製の外層部21は、底壁21aおよび一対の側壁21b,21cを有して前面が開放するコ字状断面の部材であり、上側の側壁21bの前端からはフランジ21dが上向きに突出し、下側の側壁21cの前端からはフランジ21eが下向きに突出する。
 不連続繊維強化樹脂製の内層部22は、外層部21の底壁21aおよび一対の側壁21b,21cの内面に薄く積層された積層部22a…と、外層部21の内面を車幅方向に延びる1本の横リブ22bと、横リブ22bに直交して上下方向に延びる複数の縦リブ22c…と、左右両端に位置する2枚の縦リブ22c,22cと横リブ22bとが交差する位置に設けられた位置決め孔22d,22dを有するボス22e,22eと、横リブ22bの車幅方向外端に接続された板状の端部ブラケット22f,22fとを備える。横リブ22bの後縁は底壁21aに接続され、縦リブ22c…の後縁および上下縁は底壁21aおよび側壁21b,21cに接続され、各縦リブ22cの前縁にはコ字状に凹む切欠き22g…が形成される。
 図6(A)に示すように、バンパービーム18をプレス成形する金型26は、外層部21の外表面を成形する凹状のキャビティ27aを有する雌型27と、内層部22の内表面を成形する凸状のコア28aを有する雄型28とからなり、コア28aには横リブ22bを成形する横溝28bおよび縦リブ22c…を成形する縦溝28c…が形成される。横溝28bおよび縦溝28c…の開口部には、溝幅がテーパー状に拡大する拡幅部28d…が形成される。金型26を型開きした状態で、雌型27のキャビティ27aの上部に連続繊維プリプレグ29と、不連続繊維プリプレグ30とが予備加熱した状態で配置される。
 プリプレグは、カーボンファイバー、グラスファイバー、アラミドファイバー等の連続繊維よりなる平織や綾織などの織布やUD(連続繊維を一方向に引き揃えたシート)、あるいは不連続繊維のマットを補強材とし、それに半硬化の熱硬化性樹脂(エポキシ樹脂やポリエステル樹脂等)、あるいは熱可塑性樹脂(ナイロン6やポリプロピレン等の)を含浸させたもので、金型の形状になじむ柔軟性を有している。熱硬化性樹脂の場合、複数枚のプリプレグを積層状態で金型内に挿入して圧力を加えながら例えば130°C程度に加熱すると、熱硬化性樹脂が硬化して繊維強化樹脂製品が得られる。熱可塑性樹脂の場合、予備加熱した複数枚のプリプレグを積層状態で金型内に挿入して加圧成形し、その後冷却すると繊維強化樹脂製品が得られる。
 本実施の形態では、連続繊維プリプレグ29の補強材は前記UD(連続繊維を一方向に引き揃えたナイロン樹脂シート)であり、不連続繊維プリプレグ30の補強材は繊維長が35mm~50mmのランダム配向した長繊維からなる不連続繊維のナイロン樹脂シートである。
 続いて、図6(B)に示すように、雌型27に対して雄型28を下降させると、連続繊維プリプレグ29が雌型27のキャビティ27aと雄型28のコア28aとによってプレスされ、コ字状断面を有するバンパービーム18の外層部21が成形される。このとき、不連続繊維プリプレグ30は容易に変形可能であるため、連続繊維プリプレグ29と雄型28のコア28aとによって挟まれた不連続繊維プリプレグ30は、外層部21の内表面に沿って薄い膜状に積層されて内層部22の積層部22a…を成形するとともに、コア28aの横溝28bおよび縦溝28c…内に流入し、内層部22の横リブ22bおよび縦リブ22c…と、端部ブラケット22f,22fとを同時に成形する。
 続いて、図6(C)に示すように、金型26から取り出したバンパービーム18の外層部21のフランジ21d,21eの余剰部分を切断することで、バンパービーム18を完成する。
 図6の金型26で連続繊維プリプレグ29および不連続繊維プリプレグ30をプレス成形することで、図4に示すように、バンパービーム18の外層部21、つまり底壁21a、上下の側壁21b,21cおよび上下のフランジ21d,21eは、バンパービーム18の主応力方向である長手方向(車幅方向)に配向した連続繊維31…のUDで補強される。一方、バンパービーム18の内層部22、つまり積層部22a…、横リブ22b、縦リブ22c…、ボス22e,22eおよび端部ブラケット22f,22fは、不連続繊維32…で補強される。
 バンパービーム18のプレス成形時に、雌型27上に載置した不連続繊維プリプレグ30が圧縮されて周縁が金型26で閉じられるので、雄型28のコア28a側の横溝28bおよび縦溝28c…の内部に押し出されて充填されることで、横リブ22bおよび縦リブ22c…が成形される。これらの横リブ22bおよび縦リブ22c…は、不連続繊維プリプレグ30の不連続繊維32…の長繊維がランダムな配向から一方向(即ち、衝突荷重の入力方向である前後方向)を向いて整列する。その理由は、例えば縦リブ22c…について説明すると、不連続繊維プリプレグ30のランダムに配向する不連続繊維32…の長繊維が溶融樹脂と共に雄型28の縦溝28c…に流入するとき、溶融樹脂が冷やされて粘度が低下して不連続繊維32…との間の抵抗が増加することで、不連続繊維32…の配向方向が徐々に溶融樹脂の流入方向に変化し、溶融樹脂に含まれる長繊維が流入方向と平行に整列するためと推定される。
 このことは、図10および図11に示すように、リブ縦方向の引張強度とリブ横方向の引張強度とを比較することで説明できる。つまり、この引張強度の試験により、リブ縦方向のテストピースT0の引張強度に対し、リブ横方向のテストピースT1,T2,T3の引張強度が低いこと、およびリブ横方向のテストピースT1,T2,T3の引張強度が根本側から先端側に向かって徐々に低下することから、不連続繊維32…はプリプレグのランダム状態からリブ先端に向けて徐々に衝撃入力方向(溶融樹脂のリブ内への流動方向)に整列すると推定される(図13参照)。
 このとき、雄型28の横溝28bおよび縦溝28c…の開口部に拡幅部28d…が形成されているため(図6(A)参照)、金型26による成形時に不連続繊維プリプレグ30が雄型28の横溝28bおよび縦溝28c…にスムーズに流入することが可能となり、溶融樹脂に含まれる長繊維が流入方向と平行に整列する作用が促進される。
 尚、底壁21aに積層される積層部22a…だけは、上述した溶融樹脂の流れが発生しないため、長繊維がランダムに絡み合ったまま状態となる(図4参照)。
 図5に示すように、繊維強化樹脂製の左右のバンパービームエクステンション17,17は正面視でS字状の断面を有しており、左右の端部ブラケット22f,22fは左右のバンパービームエクステンション17,17の車幅方向内面に接着あるいは溶着され、更にリベット33…で結合される。
 図7および図8に示すように、サイドシル13の前端からフロントピラーロア34が起立しており、フロントピラーロア34の内部に繊維強化樹脂製の衝撃受け部材35が収納される。衝撃受け部材35は前述したバンパービーム18と実質的に同じ構造を有するもので、実質的に同じ方法で製造される。
 即ち、衝撃受け部材35は、連続繊維強化樹脂製の外層部21と不連続繊維強化樹脂製の内層部22とを一体に備えるもので、外層部21はく字状に屈曲した底壁21aと、底壁21aの両側縁に接続された一対の側壁21b,21cとを有してコ字状断面に構成され、内層部22は底壁21aおよび一対の側壁21b,21cの内表面を薄く覆う積層部22a…と、底壁21aに接続された1枚の横リブ22bと、横リブ22bに直交して底壁21aおよび一対の側壁21b,21cに接続された2枚の縦リブ22c,22cとで構成される。横リブ22bおよび縦リブ22c,22cの前後方向の高さは側壁21b,21cの前後方向の高さよりも高く、よって横リブ22bおよび縦リブ22c,22cの先端は側壁21b,21cの先端から衝突荷重の入力方向に突出している。
 バンパービーム18が長手方向を車幅方向に沿わせて配置されるのに対し、衝撃受け部材35は長手方向を上下方向に沿わせて配置されるが、衝撃受け部材35の横リブ22bおよび縦リブ22c,22cは、バンパービーム18と同様に衝突荷重の入力方向を指向している。そして底壁21aの上半部はフロントピラーロア34の上壁34aに接続し、底壁21aの下半部はサイドシル13の前端に設けたバルクヘッド36に接続し、横リブ22bおよび縦リブ22c,22cの先端はホイールハウスを構成するフロントピラーロア34の前壁34bに接続する。
 次に、上記構成を備えた本発明の第1の実施の形態の作用を説明する。
 車両が前面衝突して前方からバンパービーム18に衝突荷重が入力したとき、外層部21の連続繊維31…を車幅方向に配置することで、バンパービーム18に高い曲げ強度を与えることができる。即ち、図9(A)に示すように、リブを持たない単純なコ字状断面のバンパービーム18が前面衝突して鎖線の状態に変形した場合、底壁21aに引張応力が作用し、図9(B)に示すように、上下の側壁21b,21cの前部は口開き方向に変形しようとする。その理由は、バンパービーム18はコ字状断面のために前壁がなく、圧縮応力が作用し難いからである。従って、連続繊維31…を主応力方向(車幅方向)に配置することで、前面衝突時の曲げ変形に対するバンパービーム18の強度を高め、かつバンパービーム18の底壁21aおよび上下の側壁21b,21cを縦リブ22c…で接続することで、バンパービーム18は口開きせずに大きな反力を発生しながら後退して衝撃を吸収することができる。
 またバンパービーム18に上下方向にオフセットした衝突荷重が入力した場合には、図9(C)に示すように、バンパービーム18が捩じり変形してしまうが、本実施の形態によれば、バンパービーム18の底壁21aおよび上下の側壁21b,21cを縦リブ22c…で接続することで、バンパービーム18を閉断面化したり、45°傾斜した連続繊維を追加したりする重量やコストの嵩む補強を行うことなく、捩じり変形に対する剛性を充分に高めることができる。この縦リブ22c…には、口開き変形の際に不連続繊維32…の配列方向と直交する方向の引張応力が加わるが、樹脂が延びることで吸収される。
 またバンパービーム18に更に大きな衝突荷重が入力すると、内層部22の縦リブ22c…が不連続繊維32…および樹脂の剥離を伴いながら圧壊することで、衝突エネルギーを吸収する。このとき、内層部22の縦リブ22c…の不連続繊維32…の長繊維は衝突荷重の入力方向に整列しているので、長繊維の長さを有効に利用して不連続繊維32…および樹脂を剥離させることで、圧壊時のエネルギー吸収量を増加させることができる。
 また単純なコ字状断面を有するバンパービーム18の外層部21の繊維強化樹脂を強度の高い連続繊維31…で補強し、複雑な形状を有するために連続繊維31…で成形することが困難なボス22e,22eを、成形の自由度が高い不連続繊維32…を用いて横リブ22bおよび縦リブ22c…の交差部に形成したので、バンパービーム18の強度およびボス22e,22eの成形性を両立させることができる。しかも連続繊維31…を含む連続繊維プリプレグ29および不連続繊維32…を含む不連続繊維プリプレグ30を同一の金型26内に配置して1工程でバンパービーム18を成形するため、それらを別個に成形して接着や溶着で一体化する場合に比べて製造コストを削減することができる。
 また内層部22の不連続繊維32…の長さは35mm~50mmであるので、その長さの不連続繊維32…を樹脂と共に射出しようとするとノズルが目詰まりする虞があるが、それをプレス成形することで、充分な長さの不連続繊維32…をリブ内に衝撃入力方向に整列させ、横リブ22bおよび縦リブ22c…の繊維および樹脂の剥離エネルギー量を増加させることができる。
 また格子状の横リブ22bおよび縦リブ22c…の交点に位置決め孔22d,22dを有するボス22e,22eを設けたので、バンパービーム18と他の部品とを結合するときの位置決め作業が容易になる。また横リブ22bはバンパービーム18自体の強度を高めるとともに縦リブ22c…を支持し、繊維および樹脂の剥離を容易にする。また外層部21の両端に不連続繊維32…で補強した端部ブラケット22f,22fを備えるので、外層部21の両端をホイールハウスロアメンバ19,19に結合することが容易である。また位置決め孔22d,22dをドリルで後加工すると繊維間の樹脂が剥離して強度を低下させる虞があるが、位置決め孔22d,22dを有するボス22e,22eをバンパービーム18に一体に成形したことで前記強度の低下を防止することができる。
 また前面衝突により後退した前輪からフロントピラーロア34の前壁34bに入力した衝突荷重は、フロントピラーロア34の内部に収納された衝撃受け部材35に伝達され、そこから更にサイドシル13の前端に伝達されて分散されるだけなく、衝撃受け部材35が圧壊することで衝突エネルギーが吸収される。その際の衝撃受け部材35の作用は、上述したバンパービーム18の作用と同じである。
第2の実施の形態
 次に、図13に基づいて本発明の第2の実施の形態を説明する。
 第1の実施の形態ではバンパービーム18の縦リブ22c…が平板状に形成されているが、第2の実施の形態では縦リブ22c…が正面視で波状に湾曲している。バンパービーム18を金型26でプレスするとき、不連続繊維プリプレグ30は雄型28の横溝28bおよび縦溝28c…内に流入して横リブ22bおよび縦リブ22c…を成形するが、湾曲した縦溝28c…内に流入する不連続繊維プリプレグ30は、矢印A方向(衝突荷重の入力方向)に最も流れ易くなり、矢印B方向(衝突荷重の入力方向に対して傾斜する方向)に流れ難くなる。
 何故ならば、矢印A方向の流路は直線状であって流動抵抗が小さいのに対し、矢印B方向の流路は波型に湾曲していて流動抵抗が大きいからである。これにより、不連続繊維プリプレグ30を矢印A方向に積極的に流動させ、その長繊維を衝突荷重の入力方向に更に精度良く整列させることができる。
第3の実施の形態
 次に、図14~図17に基づいて本発明の第3の実施の形態を説明する。
 図14に示すように、繊維強化樹脂でバスタブ状に一体成形したキャビン41の前端からダッシュパネル42が起立しており、その前面にアルミニウム合金でダイキャスト成形した左右一対のサスペンション支持部材43,43が固定される。サスペンション支持部材43,43は、図示せぬサスペンションダンパーの上端を支持するダンパーハウジング43a,43aと、ダンパーハウジング43a,43aの下部に接続されて前方に延びるフロントサイドフレーム後部43b,43bとを備えており、フロントサイドフレーム後部43b,43bの前端にアルミニウム押し出し材あるいは鋼板プレス材で構成された左右一対のフロントサイドフレーム前部44,44が接続される。ダッシュパネル42の左右上部から前方に延びる左右一対のアッパーメンバ45,45の前端に左右一対のサイドメンバ46,46が接続される。
 フロントサイドフレーム前部44,44の前端に正面視で矩形枠状に形成された繊維強化樹脂製のフロントバルクヘッド47が固定されており、そのフロントバルクヘッド47の左右上部にサイドメンバ46,46の前端が接続される。フロントバルクヘッド47の左右前面に左右一対のバンパービームエクステンション48,48が固定されており、そのバンパービームエクステンション48,48の前端に上下方向に2段重ねになって車幅方向に延びるバンパービーム49,49が固定される。フロントバルクヘッド47、バンパービーム49,49および左右一対のバンパービームエクステンション48,48に囲まれた位置に、正面視で矩形枠状に形成されたシュラウド50が配置されており、シュラウド50の内部に図示せぬエンジン冷却用ラジエータ、空調用コンデンサおよびバッテリ冷却用ラジエータが前後方向に重ね合わされて支持される。
 図15~図17に示すように、U字状断面のバンパービーム49は、連続繊維強化樹脂製の外層部51と不連続繊維強化樹脂製の内層部52とを備える。外層部51は底壁51aおよび上下一対の側壁51b,51cを有して前方に向けて開放しており、下側のバンパービーム49の外層部51の上側のフランジ51dと上側のバンパービーム49の外層部51の下側のフランジ51eとが前後方向に重ね合わされて一体に溶着され、略W字状断面を形成する。内層部52は、外層部51の底壁51aおよび一対の側壁51b,51cの内表面に薄く積層された積層部52a…と、鉛直方向に延びて底壁51aおよび一対の側壁51b,51cを接続する複数の縦リブ52c…とを備える。外層部51の底壁51aには、複数の締結カラー53…がインサートされる。
 平面視でのバンパービーム49の形状は二等辺三角形状であり、その前後方向の高さは車幅方向中央部で最も高いa1であり、車幅方向両端部で最も低いa2である(図14参照)。またバンパービーム49の車幅方向端部側の各2枚の縦リブ52c,52cの前縁は一対の側壁51b,51cの前端間を結ぶライン上にあるが、バンパービーム49の車幅方向中央側の他の縦リブ52c…の前縁は切欠き52d…によって前記ラインから後方に窪んでいる(図15参照)。そして車幅方向中央部側の縦リブ52c…の切欠き52d…を除く部分の前後方向の高さと、車幅方向両端側の切欠き52d…を持たない縦リブ52c…の前後方向の高さとは一致している。
 上記構造のバンパービーム49は、第1の実施のバンパービーム18と同じ製法で製造可能である。よって、バンパービーム49の外層部51は、その連続繊維31…が車幅方向を向くように整列し、バンパービーム49の内層部52の縦リブ52c…と、外層部51の側壁51b,51cの内表面を覆う積層部52a…とは、その不連続繊維32…の長繊維が衝突荷重の入力方向(前後方向)を向くように整列している。
 上下一対のバンパービーム49,49の前面を覆う初期荷重吸収部材54…はバンパービーム49の長手方向に3分割されており、各々が実質的に同じ構造を有している。各初期荷重吸収部材54は、平坦な連結壁54aと、連結壁54aの前面に形成された複数の縦リブ54b…および複数の横リブ54c…とを備える。上下方向に延びる縦リブ54b…と左右方向に延びる横リブ54c…とは相互に格子状に交差する。連結壁54aの上縁および下縁は、上下一対のバンパービーム49,49の上下のフランジ51d,51eに接着や溶着で結合される。
 バンパービームエクステンション48は上部部材61および下部部材62を結合して構成される。バンパービームエクステンション48の上部部材61は、波板状に屈曲しながら車幅方向に延びる本体部61aと、本体部61aの前縁から上方に折れ曲がる前部締結フランジ61bと、本体部61aの後縁から上方に折れ曲がる後部締結フランジ61cと、本体部61aの内面の車幅方向に離間した位置を前後方向に延びる4個の接合部61d~61gとを備える。下部部材62は、上述した上部部材61と実質的に上下対称な部材である。上記形状を有する上部部材61および下部部材62は、下部部材62のピン62k…を上部部材61のピン孔61m…に嵌合して接合部61d~61g,62d~62gどうしを相互に当接させた状態で、上部部材61側からピン62k…を振動工具で溶融することで一体に結合される。
 フロントサイドフレーム前部44の前端に金属板よりなる取付プレート71が溶接され、取付プレート71の車幅方向外端とフロントサイドフレーム前部44の車幅方向外面とに金属板よりなる筋交い部材72が斜めに溶接される。そしてバンパービームエクステンション48の後部締結フランジ61c,62c、フロントバルクヘッド47および取付プレート71を前から後に貫通する6本のボルト73…を、取付プレート71の後面に設けたウエルドナット74…に螺合することで、バンパービームエクステンション48およびフロントバルクヘッド47が取付プレート71に共締めされ、左右一対のフロントサイドフレーム前部44,44の前端に接合される。
 バンパービームエクステンション48の前部締結フランジ61b,62bには各3個のナット63…がインサートされており、バンパービーム49,49の開口部側から締結カラー53…を貫通するボルト64…をナット63…に螺合することで、バンパービーム49,49がバンパービームエクステンション48に固定される。
 上部部材61および下部部材62を結合したバンパービームエクステンション48は、車幅方向内側に位置して前後方向に延びる四角筒状の第1閉断面部48aと、その車幅方向外側に隣接する楕円筒状の第2閉断面部48bと、その車幅方向外側に隣接する楕円筒状の第3閉断面部48cとを備える。第2、第3閉断面部48b,48cの断面積は相互に等しく、かつ第1閉断面部48aの断面積よりも小さくなっている。またバンパービームエクステンション48の前後方向の幅は車幅方向内側から外側に向かって次第に狭くなっているため、前後方向の長さは第1閉断面部48aが最も長く、次いで第2閉断面部48bが長く、第3閉断面部48cが最も短くなっている。
 バンパービーム49の車幅方向外端側の4枚の縦リブ52c…は、バンパービームエクステンション48の四角筒状の第1閉断面部48aの車幅方向両側部の前方と、楕円筒状の第2閉断面部48bの中心線上と、楕円筒状の第3閉断面部48cの中心線上とに位置している(図17参照)。
 次に、上記構成を備えた本発明の第3の実施の形態の作用を説明する。
 自動車が前面衝突すると、衝突荷重はバンパービーム49の長手方向中央から両端のバンパービームエクステンション48,48、フロントサイドフレーム前部44,44およびサスペンション支持部材43,43を介してキャビン41のダッシュパネル42に伝達されるが、その過程で主としてバンパービームエクステンション48,48が圧壊することで衝突エネルギーを吸収する。
 またバンパービーム49は、その外層部51の高い曲げ剛性によって衝突荷重を左右のバンパービームエクステンション48,48に効率的に伝達するだけでなく、内層部52の縦リブ52c…が圧壊することで衝突エネルギーを吸収する。その際のバンパービームの作用は、第1の実施の形態のバンパービーム18の作用と同じである。
 しかも前方に向かって開放するバンパービーム49の開口部の全域が初期荷重吸収部材54の連結壁54aで閉塞されるので、バンパービーム49を完全に閉断面化して強度を高め、衝突荷重をバンパービームエクステンション48に効率的に伝達することができる。
 またバンパービーム49は、車幅方向中央側の縦リブ52c…の前縁は一対の側壁51b,51cの先端間を結ぶラインから底壁51aに向かって切り欠かれ、車幅方向外側の縦リブ52c…の前縁は一対の側壁51b,51cの先端間を結ぶラインに沿うので、バンパービーム49の車幅方向中央部で外層部51が口開きするのを防止してエネルギー吸収効果を確実に発揮させることができる。
 またバンパービーム49は平面視で二等辺三角形状であり、その衝突荷重の入力方向の高さは車幅方向外側で車幅方向中央側よりも小さいので、バンパービーム49の形状を車体前部の平面形状に無理なく沿わせることができるだけでなく、前面衝突時に衝突荷重をバンパービーム49の車幅方向中央部に入力させ、衝突荷重をバンパービーム48の車幅方向全域で効果的に吸収することができる。しかも縦リブ52c…の衝突荷重の入力方向の高さは車幅方向外側および車幅方向中央側で同一であるので、長繊維を含む縦リブ52c…を容易にプレス成形することができる。
 またバンパービーム49の車幅方向両端部は、衝突荷重の入力方向に延びる第1~第3閉断面部48a,48b,48cを有するバンパービームエクステンション48を介してフロントサイドフレーム前部44に支持され、バンパービーム49の縦リブ52c…は、第1閉断面部48aの側壁部の延長線上と、第2閉断面部48bおよび第3閉断面部48cの中心線上に配置されるので、バンパービーム49から入力される衝突荷重をバンパービームエクステンション48の第1~第3閉断面部48a,48b,48cに確実に伝達し、バンパービームエクステンション48におけるエネルギー吸収性能を高めることができる。
 またバンパービーム49の開口部を塞ぐ初期荷重吸収部材54は、連結壁54aと、連結壁54aの前後方向外面に形成された多数の縦リブ54b…および多数の横リブ54c…とを備えるので、縦リブ54b…および多数の横リブ54c…の圧壊により前面衝突時の衝突初期荷重を効率的に吸収することができる。
 また上下一対のバンパービーム49,49を、その上側のフランジ51dおよび下側のフランジ51eを重ね合わせて接合するので、上下一対のバンパービーム49,49を一体に成形する場合に比べて金型26を小型化することができるだけでなく、バンパービーム49の連続繊維31…の配向方向の乱れを最小限に抑えて強度を確保することができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、本発明の衝撃受け部材は、実施の形態のバンパービーム18,49やフロントピラーロア34内に配置されるものに限定されず、ドアビーム等の自動車の車体の任意の部分に適用することができる。
 また断面U字状の一対のバンパービーム49,49を上下方向に重ねて結合する代わりに、それらを断面W字状となるように一体成形しても良い。

Claims (11)

  1.  衝撃受け部材(18,35,49)が、衝突荷重の入力方向を向く底壁(21a,51a)の両端縁に一対の側壁(21b,21c,51b,51c)が連なるU字状断面ないしコ字状断面に形成された連続繊維強化樹脂製の外層部(21,51)と、前記外層部(21,51)の内表面に積層されるとともに前記底壁(21a,51a)および前記一対の側壁(21b,21c,51b,51c)に接続する複数の縦リブ(22c,52c)を構成する不連続繊維強化樹脂製の内層部(22,52)とを備え、
     前記外層部(21,51)は前記衝撃受け部材(18,35,49)の長手方向に配向された連続繊維(31)を含み、前記内層部(22,52)は衝突荷重の入力方向に配向された繊維長が35mm~50mmの不連続繊維(32)の長繊維を含むことを特徴とする繊維強化樹脂製衝撃受け部材。
  2.  前記縦リブ(22c)の衝突荷重の入力方向の高さは前記外層部(21)の衝突荷重の入力方向の高さよりも大きいことを特徴とする、請求項1に記載の繊維強化樹脂製衝撃受け部材。
  3.  前記内層部(22)は前記縦リブ(22c)に対して交差する横リブ(22b)を備えることを特徴とする、請求項1または請求項2に記載の繊維強化樹脂製衝撃受け部材。
  4.  前記衝撃受け部材(35)はサイドシル(13)の前端に連なるフロントピラーロア(34)の内部に配置されることを特徴とする、請求項1~請求項3の何れか1項に記載の繊維強化樹脂製衝撃受け部材。
  5.  前記衝撃受け部材は車幅方向に配置されたバンパービーム(49)であり、車幅方向中央側の前記縦リブ(52c)の端縁は前記一対の側壁(51b,51c)の先端間を結ぶラインから前記底壁(51a)に向かって切り欠かれ、車幅方向外側の前記縦リブ(52c)の端縁は前記一対の側壁(51b,51c)の先端間を結ぶラインに沿うことを特徴とする、請求項1に記載の繊維強化樹脂製衝撃受け部材。
  6.  前記側壁(51b,51c)の衝突荷重の入力方向の高さは車幅方向外側で車幅方向中央側よりも小さく、前記縦リブ(52c)の衝突荷重の入力方向の高さは車幅方向外側および車幅方向中央側で同一であることを特徴とする、請求項5に記載の繊維強化樹脂製衝撃受け部材。
  7.  前記バンパービーム(49)の車幅方向両端部は、衝突荷重の入力方向に延びる複数の筒状の衝撃吸収部(48a,48b,48c)を有するバンパービームエクステンション(48)を介して車体フレーム(44)に支持され、前記バンパービーム(49)の縦リブ(52c)は前記衝撃吸収部(48a,48b,48c)の側壁部の延長線上あるいは中心線上に配置されることを特徴とする、請求項5または請求項6に記載の繊維強化樹脂製衝撃受け部材。
  8.  前記バンパービーム(49)は平面視で二等辺三角形状であり、その衝突荷重の入力方向の幅は車幅方向中央で最大で車幅方向両端で最小であることを特徴とする、請求項5~請求項7の何れか1項に記載の繊維強化樹脂製衝撃受け部材。
  9.  請求項1~請求項8の何れか1項に記載の衝撃受け部材(18)の製造方法であって、雌型(27)上に前記外層部(21)を構成する連続繊維プリプレグ(29)を予備加熱した状態で配置するとともに、前記連続繊維プリプレグ(29)上に前記内層部(22)を構成する不連続繊維プリプレグ(30)を予備加熱した状態で配置する工程と、前記縦リブ(22c)を成形する溝(28c)が形成された雄型(28)と前記雌型(27)とで前記連続繊維プリプレグ(29)および前記不連続繊維プリプレグ(30)を加圧して前記衝撃受け部材(18)を成形する工程とを備えることを特徴とする衝撃受け部材の製造方法。
  10.  前記雄型(28)の溝(28c)は衝突荷重の入力方向に見て波形に湾曲することを特徴とする、請求項9に記載の衝撃受け部材の製造方法。
  11.  前記雄型(28)の溝(28c)の開口端に溝幅が拡大する拡幅部(28d)が形成されることを特徴とする、請求項9または請求項10に記載の衝撃受け部材の製造方法。
PCT/JP2013/074684 2012-11-05 2013-09-12 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法 WO2014069108A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544373A JP5916173B2 (ja) 2012-11-05 2013-09-12 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-243880 2012-11-05
JP2012243880 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069108A1 true WO2014069108A1 (ja) 2014-05-08

Family

ID=50627025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074684 WO2014069108A1 (ja) 2012-11-05 2013-09-12 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法

Country Status (2)

Country Link
JP (1) JP5916173B2 (ja)
WO (1) WO2014069108A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200015A1 (ja) * 2013-06-12 2014-12-18 本田技研工業株式会社 繊維強化樹脂部材
WO2015037443A1 (ja) * 2013-09-10 2015-03-19 本田技研工業株式会社 自動車の車体構造
US9180829B1 (en) 2014-09-10 2015-11-10 Ford Global Technologies, Llc Carbon fiber wrapped aluminum dual tube deflector
US9193318B2 (en) 2013-10-14 2015-11-24 Ford Global Technologies, Llc Stepped dual tube deflector
DE102015207376A1 (de) * 2015-04-22 2016-10-27 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug
WO2017022948A1 (ko) * 2015-08-05 2017-02-09 (주)엘지하우시스 범퍼용 빔
WO2017125278A1 (de) * 2016-01-20 2017-07-27 Thyssenkrupp Steel Europe Ag STOßFÄNGER FÜR EIN FAHRZEUG
KR101780568B1 (ko) 2015-12-30 2017-09-22 한화첨단소재 주식회사 충돌성능이 향상된 자동차용 범퍼빔, 이의 제조방법 및 범퍼 시스템
JP2018058403A (ja) * 2016-10-03 2018-04-12 マツダ株式会社 車両の下部車体構造
CN109476344A (zh) * 2016-07-21 2019-03-15 泽菲罗斯有限公司 加强结构
JP2019064579A (ja) * 2017-10-02 2019-04-25 スズキ株式会社 繊維強化樹脂材の板状部材
WO2020053674A1 (en) * 2018-09-10 2020-03-19 Arcelormittal Bumper beam having an insert
KR20200045209A (ko) * 2018-10-22 2020-05-04 (주)엘지하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
KR20200045210A (ko) * 2018-10-22 2020-05-04 (주)엘지하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
JP2020117060A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 車体構造部材
CN113998005A (zh) * 2020-07-28 2022-02-01 丰田自动车株式会社 车辆中的骨架构件的加强构造
US20220097501A1 (en) * 2019-07-30 2022-03-31 Ford Global Technologies, Llc Vehicle door arrangement configured to prevent overlap
US20230142321A1 (en) * 2020-02-17 2023-05-11 Nissan Motor Co., Ltd. Bumper for vehicle
FR3132887A1 (fr) * 2022-02-18 2023-08-25 Valeo Systemes Thermiques Poutre de pare-chocs pour véhicule automobile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117661A (en) * 1981-01-16 1982-07-22 Nippon Petrochemicals Co Ltd Sheet for stamping molding and production thereof
JPS57174153U (ja) * 1981-04-28 1982-11-02
JP2000043763A (ja) * 1998-07-23 2000-02-15 Blechformwerke Bernsbach Gmbh ロ―ルバ―
JP2002036983A (ja) * 2000-05-19 2002-02-06 Sumitomo Chem Co Ltd バンパ補強部材
JP2002220014A (ja) * 2001-01-26 2002-08-06 Nishikawa Kasei Co Ltd 自動車のバンパー構造
JP2003512240A (ja) * 1999-10-20 2003-04-02 アールシーシー リージョナル コンパクト カー アーゲー 繊維強化熱可塑性ベヒクルセル
JP2009001238A (ja) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd エネルギ吸収構造およびエネルギ吸収方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117661A (en) * 1981-01-16 1982-07-22 Nippon Petrochemicals Co Ltd Sheet for stamping molding and production thereof
JPS57174153U (ja) * 1981-04-28 1982-11-02
JP2000043763A (ja) * 1998-07-23 2000-02-15 Blechformwerke Bernsbach Gmbh ロ―ルバ―
JP2003512240A (ja) * 1999-10-20 2003-04-02 アールシーシー リージョナル コンパクト カー アーゲー 繊維強化熱可塑性ベヒクルセル
JP2002036983A (ja) * 2000-05-19 2002-02-06 Sumitomo Chem Co Ltd バンパ補強部材
JP2002220014A (ja) * 2001-01-26 2002-08-06 Nishikawa Kasei Co Ltd 自動車のバンパー構造
JP2009001238A (ja) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd エネルギ吸収構造およびエネルギ吸収方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200015A1 (ja) * 2013-06-12 2014-12-18 本田技研工業株式会社 繊維強化樹脂部材
US9884466B2 (en) 2013-06-12 2018-02-06 Honda Motor Co., Ltd. Fiber-reinforced resin member
WO2015037443A1 (ja) * 2013-09-10 2015-03-19 本田技研工業株式会社 自動車の車体構造
JPWO2015037443A1 (ja) * 2013-09-10 2017-03-02 本田技研工業株式会社 自動車の車体構造
US9193318B2 (en) 2013-10-14 2015-11-24 Ford Global Technologies, Llc Stepped dual tube deflector
US9180829B1 (en) 2014-09-10 2015-11-10 Ford Global Technologies, Llc Carbon fiber wrapped aluminum dual tube deflector
DE102015207376A1 (de) * 2015-04-22 2016-10-27 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug
US10286956B2 (en) 2015-04-22 2019-05-14 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle
US10279763B2 (en) 2015-08-05 2019-05-07 Lg Hausys, Ltd. Beam for bumper
WO2017022948A1 (ko) * 2015-08-05 2017-02-09 (주)엘지하우시스 범퍼용 빔
KR101780568B1 (ko) 2015-12-30 2017-09-22 한화첨단소재 주식회사 충돌성능이 향상된 자동차용 범퍼빔, 이의 제조방법 및 범퍼 시스템
CN108602481A (zh) * 2016-01-20 2018-09-28 蒂森克虏伯钢铁欧洲股份公司 车辆保险杠
US10894521B2 (en) 2016-01-20 2021-01-19 Thyssenkrupp Steel Europe Ag Bumper for a vehicle
WO2017125278A1 (de) * 2016-01-20 2017-07-27 Thyssenkrupp Steel Europe Ag STOßFÄNGER FÜR EIN FAHRZEUG
CN109476344A (zh) * 2016-07-21 2019-03-15 泽菲罗斯有限公司 加强结构
CN109476344B (zh) * 2016-07-21 2021-08-10 泽菲罗斯有限公司 加强结构
JP2018058403A (ja) * 2016-10-03 2018-04-12 マツダ株式会社 車両の下部車体構造
JP2019064579A (ja) * 2017-10-02 2019-04-25 スズキ株式会社 繊維強化樹脂材の板状部材
JP7136633B2 (ja) 2017-10-02 2022-09-13 スズキ株式会社 繊維強化樹脂材の板状部材
WO2020053674A1 (en) * 2018-09-10 2020-03-19 Arcelormittal Bumper beam having an insert
US20210268976A1 (en) * 2018-09-10 2021-09-02 Arcelormittal Bumper beam having an insert
US11807178B2 (en) 2018-09-10 2023-11-07 Arcelormittal Bumper beam having an insert
WO2020053617A1 (en) * 2018-09-10 2020-03-19 Arcelormittal Bumper beam having an insert
KR102415511B1 (ko) * 2018-10-22 2022-06-30 (주)엘엑스하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
KR102415514B1 (ko) * 2018-10-22 2022-06-30 (주)엘엑스하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
KR20200045209A (ko) * 2018-10-22 2020-05-04 (주)엘지하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
KR20200045210A (ko) * 2018-10-22 2020-05-04 (주)엘지하우시스 차량 범퍼의 로워 스티프너 및 그의 제조방법
JP2020117060A (ja) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 車体構造部材
US20220097501A1 (en) * 2019-07-30 2022-03-31 Ford Global Technologies, Llc Vehicle door arrangement configured to prevent overlap
US20230142321A1 (en) * 2020-02-17 2023-05-11 Nissan Motor Co., Ltd. Bumper for vehicle
US11745682B2 (en) * 2020-02-17 2023-09-05 Nissan Motor Co., Ltd. Bumper for vehicle
CN113998005A (zh) * 2020-07-28 2022-02-01 丰田自动车株式会社 车辆中的骨架构件的加强构造
CN113998005B (zh) * 2020-07-28 2023-10-10 丰田自动车株式会社 车辆中的骨架构件的加强构造
FR3132887A1 (fr) * 2022-02-18 2023-08-25 Valeo Systemes Thermiques Poutre de pare-chocs pour véhicule automobile

Also Published As

Publication number Publication date
JPWO2014069108A1 (ja) 2016-09-08
JP5916173B2 (ja) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5916173B2 (ja) 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法
JP5734459B2 (ja) 自動車用繊維強化樹脂部材
WO2013105398A1 (ja) 自動車の車体フレーム構造
JP6080243B2 (ja) 自動車用バンパー
JP5928929B2 (ja) 自動車の衝撃吸収部材および自動車の車体構造
JP5862555B2 (ja) 自動車の車体構造
JP2009521368A (ja) 金属及びプラスチックで構成される車両バンパビーム
JP6120460B2 (ja) 自動車用バンパー
JP5991711B2 (ja) 自動車用バンパービーム
WO2013153872A1 (ja) 自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造
JP5995115B2 (ja) 自動車のバンパービーム構造
JP5803379B2 (ja) 車体の衝突エネルギー吸収体構造
JP5862308B2 (ja) 自動車の車体フレーム構造
JP5862309B2 (ja) 自動車の車体フレーム構造
JP5881117B2 (ja) 自動車の車体構造
JP5904410B2 (ja) 自動車の車体前部構造
JP6084705B2 (ja) 自動車用バンパー
JP5979486B2 (ja) 自動車用バンパービーム
JP2013141850A (ja) 自動車の車体フレーム構造
WO2014097765A1 (ja) 自動車の車体構造
JP6020911B2 (ja) 自動車の車体構造
JP7035906B2 (ja) ルーフリインフォースメント及び樹脂中空骨格部材の製造方法
JP5781030B2 (ja) 自動車の車体前部構造
JP5862554B2 (ja) 自動車の車体構造
JP2014024391A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850946

Country of ref document: EP

Kind code of ref document: A1