WO2013153872A1 - 自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造 - Google Patents

自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造 Download PDF

Info

Publication number
WO2013153872A1
WO2013153872A1 PCT/JP2013/055389 JP2013055389W WO2013153872A1 WO 2013153872 A1 WO2013153872 A1 WO 2013153872A1 JP 2013055389 W JP2013055389 W JP 2013055389W WO 2013153872 A1 WO2013153872 A1 WO 2013153872A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
side frame
width direction
wall
panel
Prior art date
Application number
PCT/JP2013/055389
Other languages
English (en)
French (fr)
Inventor
尚平 川田
正太郎 鮎澤
尚広 出口
重人 安原
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012088355A external-priority patent/JP5928880B2/ja
Priority claimed from JP2012089903A external-priority patent/JP5928881B2/ja
Priority claimed from JP2012093545A external-priority patent/JP5922471B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2013153872A1 publication Critical patent/WO2013153872A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/12Understructures, i.e. chassis frame on which a vehicle body may be mounted assembled from readily detachable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/088Details of structures as upper supports for springs or dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/008Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of light alloys, e.g. extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/041Understructures

Definitions

  • the present invention is an automobile comprising CFRP made of CFRP including at least a floor panel portion, left and right side sill portions, and a dash panel portion connecting the front portions of the left and right side sill portions and the front portion of the floor panel portion.
  • An energy absorbing member that bends like a corrugated plate in a side view is disposed inside a side sill portion of a cabin of an automobile molded into a bathtub shape by CFRP (carbon fiber reinforced resin), and energy is input by a load input to the side sill portion at the time of a frontal collision.
  • CFRP carbon fiber reinforced resin
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to prevent brittle fracture of a side sill portion of a CFRP cabin made at the time of a frontal collision.
  • At least a floor panel portion, left and right side sill portions, and a dash panel portion connecting the front portions of the left and right side sill portions and the front portion of the floor panel portion A CFRP cabin of a car comprising the cabin of the equipped car of CFRP, wherein the width of the front end of the side sill portion located behind the front wheel is expanded toward the front side frame side, and the vehicle width of the front wheel
  • a first feature of the CFRP cabin of a motor vehicle is proposed, which is characterized by being larger than the direction width.
  • a front connecting wall curved inward and forward in the vehicle width direction from an inner end in the vehicle width direction of the front wall of the side sill portion facing the rear of the front wheel
  • a rear connection wall connected to a rear end of the front side frame and extending along a rear surface of the front connection wall from a front end of an inner side wall of the side sill portion is connected to a rear end of the front side frame
  • a second feature of the present invention is a CFRP cabin of a car.
  • the front end of the side sill portion rises upward to constitute a front pillar lower portion, and supports a damper housing on the front surface of the front pillar lower portion.
  • a CFRP cabin of a motor vehicle characterized in that the width in the vehicle width direction of the upper surface of the front pillar lower portion substantially matches the width in the vehicle width direction of the upper surface of the damper housing.
  • the side sill portion includes a non-deformable portion behind the front pillar lower portion, and the non-deformable portion with respect to the front and rear direction and the vertical direction in side view
  • a fourth feature of the CFRP cabin of a motor vehicle is to provide a plurality of ribs that incline to connect the upper wall and the lower wall of the side sill.
  • the fifth feature is that the front pillar lower portion of the side sill portion constitutes a deformation permitting portion having a shock absorbing member disposed therein.
  • CFRP cabins of cars are proposed.
  • a CFRP cabin of a motor vehicle in addition to the fifth feature, there is proposed a CFRP cabin of a motor vehicle, according to a sixth feature, wherein the shock absorbing member is a honeycomb core.
  • a CFRP cabin of a motor vehicle according to a seventh feature characterized in that the shock absorbing member is a synthetic resin rib extending in the front-rear direction.
  • a suspension support module for supporting a suspension is coupled to a dash panel portion of the CFRP cabin according to any one of the first to seventh features, and the suspension support module is a bumper.
  • a vehicle body front structure of an automobile disposed between a front end module having a beam and the dash panel portion, wherein the suspension support module is configured by integrally casting a damper housing and a front side frame rear portion with light metal.
  • the vehicle body front structure of an automobile according to an eighth feature is characterized in that the front side frame front portion consisting of a hollow tube of light metal is connected between the front end of the rear side of the front side frame and the front end module. .
  • the rear portion of the front side frame includes a front portion, an intermediate portion and a rear portion, and the front portion is juxtaposed in the vehicle width direction in plan view ,
  • the middle portion includes one second rib connected to the rear end of the converged plurality of first ribs, and the back portion is disposed behind the second rib.
  • a ninth aspect of the present invention there is proposed a vehicle body front structure of an automobile, comprising a plurality of third ribs extending rearward as a series with the end.
  • the rear surface of the suspension support module abuts on the front surface of the dash panel portion and is fastened to the dash panel portion by a bolt inserted from the rear.
  • an eleventh aspect of the present invention there is proposed an automobile body front structure of an automobile, which is characterized in that the suspension support module is screwed through.
  • the front side frame front portion is made of an extruded material, and is fitted to the front end of the front side frame rear portion.
  • the front body structure of a car characterized by the above is proposed.
  • a connection plate provided at the front end of the front side frame front, and a bumper extending rearward from a bumper beam of the front end module According to a thirteenth feature of the present invention, there is proposed a front portion of a vehicle body of an automobile, characterized in that a connecting plate provided at a rear end of a beam extension is overlapped and fastened.
  • the rear portion of the upper member is connected to the upper end in the vehicle width direction of the dash panel portion, and the upper surface of the upper member
  • a fourteenth aspect of the present invention there is proposed a vehicle front portion structure of a motor vehicle, having a connecting member connected to an upper surface of a damper housing.
  • the dash panel portion includes an inclined wall extending rearward and downward from a portion to which the rear end of the front side frame rear portion is fastened.
  • an automotive body front structure characterized in that a thickness of the inclined wall is larger than a thickness of a floor panel continuous to the rear thereof.
  • the vehicle width direction inner end of the inclined wall is connected to the floor tunnel formed in the floor panel portion, and the vehicle width direction outer end is connected to the dash panel portion
  • an automobile body front structure of an automobile characterized in that it is connected to a side sill portion through a wheel house rear wall formed in the above.
  • a seventeenth feature of the present invention is a vehicle body front that is characterized in that the inclined wall is formed by sandwiching a honeycomb core between an upper panel and a lower panel.
  • a club structure is proposed.
  • the front end of the upper member is fitted to the rear end of a lower member extending rearward from the front end module, and the fitting portion of the upper member and the lower member is
  • an eighteenth feature of the present invention there is proposed an automobile body front structure according to an eighteenth feature of the present invention, characterized in that the damper housing is fastened to the damper housing by a bolt passing through a collar disposed therein.
  • an upper panel constituting an inner surface of the cabin and a lower panel constituting an outer surface of the cabin surround the outer periphery of the cabin. It is proposed that a CFRP cabin of a motor vehicle be characterized by being joined by a joining flange.
  • a CFRP cabin of a motor vehicle according to the twentieth feature is characterized in that the joining flange includes a longitudinal positioning portion which inclines vertically with respect to the longitudinal direction. Suggested.
  • the upper panel integrally includes a cross member extending in the vehicle width direction and projecting upward, and the lower panel is configured to be flat.
  • a CFRP cabin of an automobile characterized by the 21st feature is proposed.
  • the joining flange in the side sill portion is formed along the height of the center of the cross section of the side sill portion.
  • left and right rear side frame portions bent upward from the rear end of the left and right side sill portions with substantially the same sectional shape and extending backward.
  • a U-shaped rear frame comprising a rear cross member portion connecting the rear ends of the left and right rear side frame portions in the vehicle width direction, and the floor panel portion connects the lower portions of the left and right side sill portions.
  • a CFRP cabin of a motor vehicle comprising: a rear floor panel portion to be connected.
  • a method of manufacturing a CFRP cabin of a motor vehicle according to any one of the first and nineteenth to twenty-third aspects, which comprises a preform serving as a material of the upper panel and the lower panel.
  • Twenty-fifth automobile automobile CFRP characterized in that it comprises the steps of: supporting on a support plate; inserting the preform in a press mold while supporting the preform on the support plate; and heat pressing.
  • a method of manufacturing the cabin is proposed.
  • the front floor panel portion 24, the kick up portion 25 and the rear floor panel portion 26 of the embodiment correspond to the floor panel portion of the present invention, and the honeycomb core 37 and the rib 40 of the embodiment are the impact absorbing members of the present invention.
  • the first connection plate 52 and the second connection plate 53 of the embodiment correspond to the connection plate of the present invention
  • the first reinforcing member 57 and the second reinforcing member 58 of the embodiment correspond to the reinforcing members of the present invention. It corresponds.
  • a CFRP cabin of a car includes a dash panel connecting at least a floor panel, left and right side sills, front portions of the left and right side sills and front portions of the floor panel. And the width in the vehicle width direction of the front end of the side sill portion located behind the front wheel is expanded toward the front side frame side to be larger than the width in the vehicle width direction of the front wheel.
  • the front connecting wall curved inward and forward in the vehicle width direction from the inner end in the vehicle width direction of the front wall of the side sill portion facing the rear of the front wheel is the rear end of the front side frame
  • the rear connection wall extending along the rear face of the front connection wall from the front end of the side wall inward in the vehicle width direction of the side sill part is connected to the rear end of the front side frame. The impact can be reliably transmitted to the side sill portion through the front connection wall and the rear connection wall.
  • the damper housing is supported on the front surface of the front pillar lower portion rising upward from the front end of the side sill portion, and the width in the vehicle width direction of the upper surface of the front pillar lower portion and the upper surface of the damper housing Since the width in the vehicle width direction substantially matches, when the load of the frontal collision is input from the damper housing to the side sill portion through the front pillar lower portion, the load can be reliably transmitted to the side sill portion.
  • the side sill portion is provided with a non-deformable portion behind the front pillar lower portion, and the non-deformable portion is inclined with respect to the longitudinal and vertical directions in side view Since a plurality of ribs connecting the wall and the lower wall are provided, the brittle deformation of the non-deformable portion of the side sill portion reinforced by the rib is prevented when the load of the front collision is input to the front end of the side sill portion. Deformation can be minimized.
  • the front pillar lower portion of the side sill portion constitutes a deformation permitting portion in which the shock absorbing member is disposed inside, when a load is applied to the front end of the side sill portion in front collision.
  • the impact absorbing member housed inside the front pillar lower portion can be crushed to exhibit energy absorbing performance.
  • the impact absorbing member is a honeycomb core, it is possible to exhibit high energy absorption performance while being lightweight.
  • the impact absorbing member is a synthetic resin rib extending in the front-rear direction, high energy absorption performance can be exhibited with a simple structure.
  • the suspension support module disposed between the front end module having the bumper beam and the dash panel portion integrally casts the damper housing and the front side frame rear with light metal. Not only can minimize the number of parts but also make it possible to shorten the longitudinal dimension of the vehicle body by making the damper housing adjacent to the dash panel portion, and at the front end of the front side frame rear end light metal Since the front side frame front part consisting of hollow tubes is connected, it is possible to miniaturize the suspension support module by the front part of the front side frame and to miniaturize the mold for casting it, thereby achieving cost reduction.
  • the front side portions when the front side portion, the middle portion and the rear side portion of the front side frame rear portion are viewed in plan view, the front side portions are juxtaposed in the vehicle width direction and converge toward the rear
  • the middle portion has one second rib connected to the rear end of the plurality of converged first ribs, and the rear portion is connected to the rear end of the second rib and is expanded toward the rear
  • the load of the frontal collision input to the rear of the front side frame is dashed even if the rear of the front side frame is curved in plan view to avoid interference with the front wheels. It can be reliably transmitted and absorbed to the panel section.
  • the rear surface of the suspension support module is in contact with the front surface of the dash panel and is fastened to the dash panel with bolts inserted from the rear. Assembling is improved because it can be fixed to the rear with a bolt from the cabin side.
  • the strength of the dash panel portion is enhanced, and the flat portion around the wheel house rear wall is enhanced.
  • the suspension support module can be firmly fixed to the dash panel portion by screwing the bolt passing through the reinforcement member inserted into the suspension support module to the suspension support module.
  • the front side frame front portion is formed of an extruded material, not only manufacturing cost can be reduced but also the front side frame front portion is fitted to the front end of the front side frame rear portion Therefore, the front side frame front and the front side frame rear can be connected simply and firmly, and the length of the front side frame can be easily adjusted simply by changing the cutting length of the front side frame front be able to.
  • connection plate provided at the front end of the front side frame front and the connection plate provided at the rear end of the bumper beam extension extending backward from the bumper beam of the front end module are overlapped Since the fastening is performed together, the bumper beam extension can be firmly fastened to the front side of the front side frame while enlarging the cross-sectional area of the bumper beam extension to ensure the shock absorbing performance.
  • the rear of the upper member is connected to the upper end in the vehicle width direction of the dash panel portion, and the upper surface of the upper member and the upper surface of the damper housing are connected by the connecting member.
  • the dash panel portion includes an inclined wall extending rearward and downward from a portion to which the rear end of the front side frame rear end is fastened, and the thickness of the inclined wall is a floor continuous to the rear thereof Since the thickness is larger than the thickness of the panel portion, the collision load input to the inclined wall can be evenly dispersed to the floor panel portion to be absorbed effectively.
  • the wheelhouse rear wall is formed by connecting the inner end in the vehicle width direction of the inclined wall to the floor tunnel formed in the floor panel and forming the outer end in the vehicle width direction in the dash panel Since it is connected to the side sill part via, the collision load inputted to the inclined wall can be dispersed and absorbed effectively in the floor tunnel and the side sill part.
  • the inclined wall is formed by sandwiching the honeycomb core between the upper panel and the lower panel, when the load of the frontal collision is transmitted to the inclined wall through the suspension support module The load can be distributed more evenly to the floor panel portion.
  • a collar in which the front end of the upper member is fitted to the rear end of the lower member extending rearward from the front end module, and the fitting portion of the upper member and the lower member is disposed therein
  • the upper member and the lower member can be firmly fixed to the damper housing because the damper housing is fastened by the penetrating bolt.
  • the upper panel constituting the inner surface of the cabin and the lower panel constituting the outer surface of the cabin are joined by a joining flange surrounding the outer periphery of the cabin.
  • the side sill outer panel after the outer edge of the floor panel is joined to the lower wall of the side sill outer panel having the upper wall, the vertical wall and the lower wall while having a lightweight and rigid structure.
  • the joining flange is provided with the front and back direction positioning portion which inclines up and down with respect to the front and rear direction, when joining the joining flange of the upper panel and the joining flange of the lower panel
  • the upper panel and the lower panel can be positioned in the front-rear direction by the positioning portion to be joined with high accuracy.
  • the upper panel integrally includes a cross member extending in the vehicle width direction and protruding upward, the cross member prevents deformation of the floor panel portion at the time of a side collision.
  • the lower panel be configured flat, it is possible to rectify the air flow on the lower surface of the vehicle body and reduce the air resistance without providing a special undercover below the lower panel.
  • the joint flange in the side sill portion is formed along the height of the center of the cross section of the side sill portion, so that a special bulkhead is not provided inside the side sill portion.
  • the rigidity of the lateral surface of the side sill in the vehicle width direction can be effectively enhanced by the joining flange, and out-of-plane deformation of the lateral surface at the time of a frontal collision can be suppressed.
  • the left and right rear side frame portions are bent in substantially the same cross-sectional shape upward from the rear ends of the left and right side sill portions. Because it has a U-shaped rear frame consisting of a rear cross member connected in the width direction of the vehicle, it has a lightweight yet stiff cabin with a hollow side sill and a hollow rear frame integrally connected. You can get it.
  • the floor panel portion extends from the upper end of the front floor panel portion connecting the lower portions of the left and right side sill portions, the kick up portion rising from the rear end of the front floor panel portion and the upper end of the kick up portion to the rear side frame portion and the rear Since the rear floor panel connected to the middle in the height direction of the cross member is provided, the rigidity in the middle in the height direction of the side of the rear frame on the vehicle room side can be effectively enhanced by the rear floor panel, It is possible to suppress the out-of-plane deformation of the side surface on the side of the vehicle compartment at the time of turning of the vehicle or a rear collision.
  • the preform serving as the material of the upper panel and the lower panel of the cabin of an automobile is supported on the support plate and inserted into the press mold and heated and pressed, It becomes possible to easily convey and set preforms in the press mold for easy conveyance and setting work in the press mold due to the small size of the CFRP cabin. Improves the quality.
  • FIG. 1 is a perspective view of a CFRP cabin of a car.
  • First Embodiment FIG. 2 is a view in the direction of arrows in FIG.
  • First Embodiment FIG. 3 is a view in the direction of arrows 3A and 3B in FIG.
  • First Embodiment FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 3 (A).
  • First Embodiment FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 3 (A).
  • First Embodiment FIG. 6 is an explanatory view of a manufacturing process of the upper panel and the lower panel.
  • First Embodiment FIG. 7 is a diagram corresponding to FIG. 3 (A).
  • FIG. 8 is a cross-sectional view taken along line 8-8 of FIG.
  • FIG. 9 is a sectional view taken along line 9-9 of FIG.
  • Second Embodiment FIG. 10 is a sectional view taken along line 10-10 in FIG.
  • Second Embodiment FIG. 11 is a diagram corresponding to FIG. Third Embodiment FIG. 12 is a perspective view of a vehicle body frame of an automobile.
  • Fourth Embodiment FIG. 13 is a view on arrow 13 in FIG.
  • Fourth Embodiment FIG. 14 is a view on arrow 14 in FIG.
  • Fourth Embodiment FIG. 15 is a cross-sectional view taken along line 15-15 of FIG.
  • Fourth Embodiment 16 is a cross-sectional view taken along line 16-16 of FIG. Fourth Embodiment FIG.
  • FIG. 17 is a cross-sectional view taken along line 17-17 of FIG.
  • FIG. 18 is a view on arrow 18 in FIG.
  • FIG. 19 is an exploded perspective view corresponding to FIG. 18 (B).
  • Fourth Embodiment FIG. 20 is a cross-sectional view taken along line 20-20 of FIG. 18A.
  • Fourth Embodiment FIG. 21 is a cross-sectional view taken along line 21-21 of FIG. 18 (A).
  • the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are based on the driver seated in the driver's seat.
  • the vehicle body frame of the automobile is a cabin 11 made of carbon fiber reinforced resin (CFRP) and a pair of suspension support modules 12 which are cast parts of aluminum alloy connected to the front end of the cabin 11. 12, a pair of left and right front side frames 13 and 13 obtained by cutting an extruded material of aluminum alloy into a predetermined length, a CFRP front end module 14, and a pair of CFRP lower members 15 and 15, The left and right upper members 16, 16 made of CFRP are provided.
  • the cabin 11 has a hollow structure in which an upper panel 18 and a lower panel 19 are joined up and down, and a dash panel portion 20 at the front end and a pair of left and right side sill portions 21 and 21 extending rearward from both ends of the dash panel portion 20 in the vehicle width direction
  • a pair of left and right rear side frame portions 22, 22 extending rearward and upward from the rear ends of the side sill portions 21, 21, a rear cross member portion 23 connecting between rear ends of the rear side frame portions 22, 22 in the vehicle width direction;
  • the front floor panel portion 24 connecting the portion 20 and the left and right side sill portions 21, the kick up portion 25 rising from the rear end of the front floor panel portion 24, and the rear side frame portion extending rearward from the upper end of the kick up portion 25 22 and 22 and a rear floor panel 2 connected to the rear cross member 23 Provided with a door.
  • the front end module 14 includes a bumper beam 27 extending in the vehicle width direction, and a pair of left and right bumper beam extensions extending rearward from the vehicle width direction both ends of the bumper beam 27 and connected to the front ends of the front side frame front parts 13, 13. 28, 28 and a frame-like front bulkhead 29 supported between the bumper beam extensions 28, 28.
  • Each suspension support module 12 extends outward and upward from the front side frame rear portion 30 in the vehicle width direction from the front side frame rear portion 30 connected to the rear end of the front side frame front portion 13 and the front surface of the dash panel portion 20 And the damper housing 31 connected to the front surface of the dash panel portion 20 integrally.
  • the lower members 15, 15 extend outward in the vehicle width direction from both ends in the vehicle width direction of the bumper beam 27, are bent rearward and upward from there, are connected to the front ends of the upper members 16, 16, and the rear ends of the upper members 16, 16 are It is connected to upper ends in the vehicle width direction of the dash panel unit 20.
  • Upper panel 18 and lower panel 19 which constitute cabin 11 are provided with joining flanges 18a and 19a extended so that the perimeter may be surrounded, and both joining flanges 18a and 19a are joined by adhesion, welding, a rivet, etc.
  • the joint flanges 18a and 19a extend in a generally horizontal direction at most positions, but the rear side is the front side at the front part of the rear side frame parts 22 and 22, that is, the part rising upward from the rear ends of the side sill parts 21 and 21.
  • the front pillar lower part which is inclined in the front and rear direction so as to become higher than that and the front part of the side sill parts 21 and 21, that is, the side sill parts 21 and 21 continues to the dash panel part 20 It is inclined in the back and forth direction to become.
  • these inclined portions constitute longitudinal positioning portions 11a (see FIG. 2) for positioning in the longitudinal direction when the upper panel 18 and the lower panel 19 are joined.
  • the joint flanges 18a and 19a on the outer side surfaces in the vehicle width direction of the side sill portions 21 and 21 and the rear side frame portions 22 and 22 have a center of gravity G (see FIG. 5) of the cross section of the side sill portions 21 and 21 and rear side frame portions 22 and 22. It is formed to be generally along the height, that is, to be substantially along the center in the height direction of the outer surface in the vehicle width direction. Similarly, the joint flanges 18a and 19a on the rear side surface of the rear cross member portion 23 are generally along the height of the centroid G of the cross section of the rear cross member portion 23, that is, the approximate center in the height direction of the rear side surface. It is formed along the part.
  • a floor tunnel 24a extending in the front-rear direction is formed to project upward at the central portion in the vehicle width direction of the upper panel 18 and the lower panel 19 that constitute the front floor panel portion 24.
  • the lower panel 19 is flat between the floor tunnel 24 a and the side sills 21 and 21, whereas the upper panel 18 has two front and rear crosses connecting the floor tunnel 24 a and the side sills 21 and 21 in the vehicle width direction.
  • the members 18b and 18b are provided.
  • both the upper panel 18 and the lower panel 19 are formed flat.
  • the upper panel 18 and the lower panel 19 of the cabin 11 are made by pressing a sheet of carbon fiber into a predetermined shape and impregnating the resin into a preform 42 shaped into a product shape, and then pressing it. It is molded by compression and heating using 43. Since the preform 42 itself has almost no rigidity, it is difficult to transport the preform 42 to the press die 43 and set it inside the press die 43, and the carbon fiber is easily broken off and deformed There is a problem of
  • the support plate 41 having the same shape as the product shape is manufactured from a metal or CFRP plate, and the preform 42 after shaping is placed on the support plate 41 and impregnated with resin.
  • the upper panel 18 and the lower panel 19 manufactured in this manner are joined by bonding, welding, rivets or the like at the joining flanges 18a, 19a protruding on the outer periphery thereof.
  • the joint flanges 18a and 19a of the upper panel 18 and the lower panel 19 are in one plane, the upper panel 18 and the lower panel 19 can not be positioned in the front-rear direction, and positional deviation may occur at the time of joining There is sex.
  • the joining flanges 18a and 19a are provided with the longitudinal positioning portions 11a (see FIG. 5) which are inclined in the vertical direction with respect to the longitudinal direction, the joining flange 18a of the upper panel 18 and the lower panel 19 are provided.
  • the upper panel 18 and the lower panel 19 can be automatically positioned in the longitudinal direction by the longitudinal positioning portions 11a. Therefore, it is possible to join the upper panel 18 and the lower panel 19 with high accuracy only by paying attention not to position the upper panel 18 and the lower panel 19 in the lateral direction (vehicle width direction) when performing the joining operation. Work efficiency is improved.
  • the CFRP cabin 11 is configured by joining the upper panel 18 forming the inner surface of the vehicle and the lower panel 19 forming the outer surface of the vehicle with the joining flanges 18a and 19a, After joining the outer edge of the floor panel in the vehicle width direction to the lower wall of the side sill outer panel having the upper wall, the vertical wall and the lower wall while having a lightweight and rigid structure, the inner side of the side sill outer panel in the vehicle width
  • the productivity can be greatly enhanced as compared to a conventional cabin whose opening is closed by a side sill inner panel.
  • the joint flanges 18a and 19a in the side sill portions 21 and 21, the rear side frame portions 22 and 22 and the rear cross member portion 23 are formed along the height of the centroid G of their cross section, their outer side surfaces
  • the joint flanges 18a and 19a can effectively enhance the rigidity of the joint flanges 18a and 19a to suppress out-of-plane deformation of the outer side surface at the time of a frontal collision or a rearal collision.
  • the upper panel 18 constituting the front floor panel portion 24 integrally includes the cross members 18 b and 18 b extending in the vehicle width direction and protruding upward, the cross members 18 b and 18 b are provided in the front floor panel portion 24 at the side collision. Deformation can be prevented.
  • the lower panel 19 is configured to be flat, air flow can be rectified on the lower surface of the vehicle body to reduce air resistance without providing a special undercover below the lower panel 19.
  • the vehicle width between the rear ends of the left and right rear side frame portions 22, 22 and the left and right rear side frame portions 22, 22 is bent upward with substantially the same cross-sectional shape from the rear ends of the left and right side sill portions 21, 21 and Since it has a U-shaped rear frame consisting of rear cross member portions 23 connected in a direction, the side sill portions 21 and 21 of the hollow structure and the rear frame of the hollow structure are integrally connected to be lightweight, yet highly rigid.
  • the cabin 11 can be obtained.
  • the floor portion of the cabin 11 is from the front floor panel portion 24 connecting between the lower portions of the left and right side sill portions 21, the kick up portion 25 rising from the rear end of the front floor panel portion 24, and the upper end of the kick up portion 25
  • the rear floor panel portion 26 extending rearward and connected to the height direction intermediate portion of the rear side frame portions 22 and 22 and the rear cross member portion 23 is provided, the rigidity of the height direction intermediate portion of the side surface on the vehicle compartment side of the rear frame Can be effectively enhanced by the rear floor panel portion 26, and it is possible to suppress out-of-plane deformation of the outer side surface at the time of turning of the vehicle or a rear surface collision.
  • FIG. 7 a second embodiment of the present invention will be described based on FIGS. 7 to 10.
  • FIG. 7 a second embodiment of the present invention will be described based on FIGS. 7 to 10.
  • the front portion of the side sill portion 21 rises upward to constitute a front pillar lower portion 32, and the front wall 32a (see FIG. 8) of the front pillar lower portion 32 constitutes a wheel house rear wall facing the rear surface of the front wheel 33 Do.
  • a side wall 32b (see FIGS. 7 and 10) on the inner side in the vehicle width direction of the front pillar lower portion 32 is expanded inward in the vehicle width direction with respect to the vehicle width direction inner wall 21a of the side sill portion 21.
  • the vehicle width direction width of the front wall 32a of the lower portion 32 that is, the vehicle width direction width W1 of the front end of the side sill portion 21 is larger than the vehicle width direction width W2 of the front wheel 33 located in front thereof (see FIG. 7). ).
  • the front wall 32a of the front pillar lower portion 32 is curved inward in the vehicle width direction and arced forward to form a front connection wall 34 (see FIG. 10), and the side wall 32b of the front pillar lower portion 32 is inward in the vehicle width direction.
  • the rear connection wall 35 (see FIG. 10)
  • the front connection wall 34 and the rear connection wall 35 are fastened to the front surface of the dash panel portion 20.
  • the vehicle width direction width W3 of the upper end of the front pillar lower portion 32 substantially matches the vehicle width direction width W4 of the upper end of the damper housing 31 of the suspension support module 12 (see FIG. 7).
  • the front pillar lower portion 32 of the side sill portion 21 constitutes a deformation permitting portion 36 (see FIG. 8) which crushes and absorbs collision energy at the time of a frontal collision of the vehicle.
  • a honeycomb core 37 which is an aggregate is disposed with its axis directed in the front-rear direction.
  • the rear portion of the side sill portion 21 behind the front pillar lower portion 32 constitutes a high strength non-deformable portion 38 (see FIG. 8), and inside thereof, a plurality of synthetic resins made in X shape in side view Ribs 39 are arranged.
  • the ribs 39 are made up of upper and lower halves folded in a zigzag, the upper half is adhered to the upper wall 21c of the side sill 21, the lower half is adhered to the lower wall 21d of the side sill 21, and the upper The halves and lower halves are glued at an X-shaped intersection (see FIG. 8).
  • the left and right ends of the ribs 39 are bonded to the inner wall 21a in the vehicle width direction of the side sill portion 21 and the outer wall 21b in the vehicle width direction (see FIG. 9).
  • the front end of the honeycomb core 37 is bonded to the front wall 32a of the front pillar lower portion 32, and the rear end of the honeycomb core 37 is bonded to the X-shaped intersection of the front ends of the ribs 39 of the side sill portion 21 (see FIG. 8). ).
  • the collision load input to the front end module 14 is transmitted from the front side frame front 13 to the suspension support module 12 consisting of the front side frame rear 30 and the damper housing 31, and from there the dash panel portion of the cabin 11 20 and the front pillar lower portion 32. Further, when the front wheel 33 retreats due to a frontal collision, a collision load is input to the front wall 32 a of the front pillar lower portion 32 of the cabin 11 located behind the front wheel 33.
  • the rear connection wall 35 extending along the rear surface of the front connection wall 34 from the front end of the side wall 32b of the front pillar lower portion 32 of the side sill portion 21 in the vehicle width direction is connected to the rear end of the Since it is connected to the rear end of the front side frame rear portion 30, the impact of the front collision input to the front side frame rear portion 30 is reliably transmitted to the side sill portion 21 via the front connection wall 34 and the rear connection wall 35 and dispersed. be able to.
  • the vehicle width direction width W4 of the upper surface of the damper housing 31 of the suspension support module 12 and the vehicle width direction width W3 of the upper surface of the front pillar lower portion 32 at the front end of the side sill portion 21 connected rearward thereof (Refer to FIG. 7), when the load of the frontal collision is input from the damper housing 31 to the side sill portion 21 through the front pillar lower portion 32, the load is equally dispersed and transmitted to the front pillar lower portion 32. it can.
  • the vehicle width direction width W1 of the front end of the front pillar lower portion 32 is expanded inwardly in the vehicle width direction Since the width W2 of the front wheel 33 is larger than the width W2 (see FIG. 7), the collision load input from the front wheel 33 is dispersed and transmitted to the front pillar lower portion 32 of the side sill portion 21, thereby the front pillar lower portion It is possible to prevent the brittle fracture due to the out-of-plane deformation 32 and minimize the deformation of the casing.
  • the front pillar lower portion 32 constitutes the deformation allowing portion 36 in which the shock absorbing member made of the honeycomb core 37 is disposed inside, the front pillar lower portion 32 receives the front collision load to the front pillar lower portion 32.
  • the honeycomb core 37 housed inside the lower portion 32 can be crushed to exhibit energy absorption performance.
  • the impact absorbing member is formed of the honeycomb core 37, high energy absorption performance can be exhibited while being lightweight.
  • the side sill portion 21 includes the non-deformable portion 38 at the rear of the front pillar lower portion 32.
  • the non-deformable portion 38 is inclined with respect to the front and rear direction and the vertical direction in side view Since a plurality of X-shaped ribs 39 ... connecting the 21 d are provided, the brittleness of the non-deformable portion 38 of the side sill portion 21 reinforced by the ribs 39 ... when the frontal collision load is input to the front end of the side sill portion 21 Destruction can be prevented and deformation of the cabin can be minimized.
  • the shock absorbing member disposed inside the front pillar lower portion 32 is configured by the honeycomb core 37, but in the third embodiment, the shock absorbing member is arranged in the front and rear direction and in the vertical direction. It consists of a single synthetic resin rib 40 extending. The front end of the rib 40 is bonded to the front wall 32 a of the front pillar lower portion 32, the lower end is bonded to the lower wall 32 d of the front pillar lower portion 32, and the rear end is an X-shaped rib 39 disposed inside the side sill portion 21. Glued to ...
  • the shock absorbing member is constituted by a single synthetic resin rib 40 extending in the front-rear direction and the vertical direction, high energy absorption performance can be exhibited with a simple structure.
  • FIG. 12 a fourth embodiment of the present invention will be described based on FIGS. 12 to 21.
  • FIG. 12 a fourth embodiment of the present invention will be described based on FIGS. 12 to 21.
  • the bumper beam extension 28 extending rearward from the vehicle width direction end of the bumper beam 27 is provided with a large number of X-shaped intersecting ribs 28a ...
  • the ribs 28a are crushed to absorb the collision energy.
  • a rectangular first connection plate 52 made of CFRP is provided at the rear end of the bumper beam extension 28, and a metal second connection plate 53 welded to the front end of the front side frame 13 is the bumper beam extension 28.
  • the four stud bolts 54 provided on the first connection plate 52 are passed through the second connection plate 53 and fastened to the nuts 55.
  • the bumper beam extension 28 and the front side frame front portion 13 having different sectional areas are cut By using the first connection plate 52 and the second connection plate 53 having dimensions larger than the area, the bumper beam extension 28 is sufficiently expanded to secure the shock absorbing performance while the sectional area of the bumper beam extension 28 is sufficiently expanded. Can be firmly fastened to the front side frame front portion 13.
  • the front side frame rear portion 30 of the suspension support module 12 which is a cast product of aluminum alloy, comprises a front portion F, an intermediate portion C and a rear portion R. It comprises an upper wall 30a and a lower wall 30b which are continuous through the part C and the rear part R.
  • the front portion F includes first ribs 30c, 30c which are juxtaposed in the vehicle width direction to connect the upper wall 30a and the lower wall 30b, and which includes a pair of left and right vertical walls converging toward the rear.
  • the rear end of the front side frame front portion 13 is fitted in the rectangular opening.
  • the front side frame front portion 13 is made of an extruded material of an aluminum alloy having a “J” -shaped cross section, and a horizontally extending rib 13 a is provided therein.
  • the middle portion C is provided with one second rib 30d connected to the rear end of the pair of left and right first ribs 30c, 30c, and the rear portion R is connected to the rear end of the second rib 30d and headed backward It has four third ribs 30e, 30e, 30f, 30f which are expanded. Among them, the two third ribs 30e and 30e are juxtaposed in the vehicle width direction to connect the upper wall 30a and the lower wall 30b, and the other two third ribs 30f and 30f intersect in the X-shape to be the upper wall 30a and lower wall 30b are connected. Further, at the boundary between the middle portion C and the rear portion R, one fourth rib 30g is formed which extends in the vertical and horizontal directions and connects the upper wall 30a and the lower wall 30b.
  • front side frame front portion 13 is formed of an extruded material, not only can the manufacturing cost be reduced, but the front side frame front portion 13 is fitted to the front end of the front side frame rear portion 30.
  • the front side frame rear portion 30 can be connected easily and firmly, and the length of the front side frame can be easily adjusted simply by changing the cut length of the front side frame front portion 13.
  • the front side frame front portion 13 linearly extends in the front-rear direction, while the front side frame rear portion 30 has a vehicle width on the rear side in order to avoid interference with the front wheel 33 (see FIG. 13). It is curved toward the inside. However, two first ribs 30c, 30c that converge toward the rear of the front portion F, a second rib 30d of the middle portion C, and a collision load input from the front side frame front portion 13
  • the front side frame rear portion 30 is efficiently transmitted to the dash panel portion 20 via the four third ribs 30e, 30e, 30f, and 30f expanding toward the rear of the side portion R to disperse the cabin 11. Can be prevented.
  • the suspension support module 12 integrally includes a wall-shaped damper housing 31 extending upward and outward in the vehicle width direction from the front side frame rear portion 30, and the suspension support module 12 is the front side. It is fastened to the front of the dash panel portion 20 at four locations on the rear of the frame 30 and three locations on the damper housing 31.
  • first and second reinforcing members 57 and 58 made of an extruded material of aluminum are inserted into the inside of the dash panel portion 20 in advance.
  • the first reinforcing member 57 is a rectangular flat member, and two bolt holes 57a and 57a and two female screw holes 57b and 57b are formed at the corners.
  • the second reinforcing member 58 is a triangular flat member, and three bolt holes 58a are formed at the corners thereof.
  • two female screw holes 30h, 30h and two bolt holes 30i, 30i are formed at the rear end of the front side frame rear portion 30 of the suspension support module 12, and the rear of the damper housing 31 of the suspension support module 12 is formed.
  • Three female screw holes 31a are formed at the end.
  • the suspension support module 12 is provided with the dash panel portion 20 by screwing three bolts 61 passing through the three bolt holes 58a of the 58 through the front to the rear to the three female screw holes 31a of the damper housing 31. Is fastened to the front of the It is also possible to insert the bolts 59, 59, 61... In the same direction (front to back) as the bolts 60, 60.
  • the flat portion of the dash panel portion 20 to which the suspension support module 12 is attached has the wheel house rear wall 20a formed of a curved surface wall integrally formed in the vicinity thereof to increase the strength.
  • the connecting member 62 is bonded to the upper surface of the upper member 16 at a connecting flange 62a extending in the front-rear direction on the outer side in the vehicle width direction, and in the vehicle width direction of the damper housing 31 at two front and rear fastening portions 62b and 62b of the upper part It is fastened to the outer surface with bolts 63, 63.
  • the upper member 16 is separated from the suspension support module 12
  • the upper member 16 can be connected to the dash panel portion 20 and the damper housing 31 to secure the necessary strength while reducing the size and die of the mold for casting the suspension support module 12 and reducing the cost. it can.
  • the front end of the upper member 16 is sandwiched between the upper end of the lower member 15 having an L-shaped cross section and the outer surface of the damper housing 31 in the vehicle width direction, and the bolt 64 passing through the lower member 15 and the upper member 16 It is fastened to the outer surface of 31 in the vehicle width direction.
  • the collar 65 through which the bolt 64 passes inside the upper member 16 the fastening force of the bolt 64 can be increased while preventing the CFRP upper member 16 from being crushed.
  • a bolt 66 penetrating through the fastening flange 15a extending upward from the upper surface of the lower member 15 and the front end of the connecting member 62 from the outer side in the vehicle width direction to the inner surface in the vehicle width direction of the damper housing 31 is screwed.
  • the lower member 15 and the connecting member 62 are fastened together to the damper housing 31.
  • the lower portion of the dash panel portion 20 is formed with an inclined wall 20b which is inclined rearward and downward toward the front floor panel portion 24.
  • the inclined wall 20 b has a structure in which a honeycomb core 67 (see FIG. 15) is sandwiched between the upper panel 18 and the lower panel 19, and the thickness thereof is greater than the thickness of the front floor panel portion 24.
  • the honeycomb core 67 may have a corrugated shape.
  • the load when a frontal collision load is input from the front side frame rear portion 30 to the dash panel portion 20, the load is reinforced by the honeycomb core 67 and evenly distributed to the front floor panel portion 24 through the inclined wall 20b having high strength. Can be absorbed effectively.
  • the load input to the inclined wall 20b of the dash panel portion 20 is transmitted to the side sill portion 21 via the wheel house rear wall 20a and is also transmitted to the floor tunnel 24a of the front floor panel portion 24. Therefore, the collision load can be dispersed throughout the cabin 11 and absorbed more effectively.
  • the suspension support module 12 disposed between the front end module 14 and the dash panel portion 20 is integrally made of the damper housing 31 and the front side frame rear portion 30 with a light metal. Since it is cast and configured, not only the number of parts can be minimized, but the damper housing 31 can be made adjacent to the dash panel portion 20 to shorten the longitudinal dimension of the vehicle body. Moreover, since the front side frame front portion 13 made of a hollow tube made of light metal is connected to the front end of the front side frame rear portion 30, the suspension support module 12 is miniaturized by the front side frame front portion 13 and a mold for casting it. Can be downsized to reduce the cost.
  • the cabin 11 is configured by two members of the upper panel 18 and the lower panel 19, but it is also possible to add a member other than the upper panel 18 and the lower panel 19.
  • the honeycomb core 37 does not have to be an aggregate of quadrangular prisms, and may be an aggregate of hexagonal prisms or triangular prisms.
  • the material thereof is not limited to metals such as aluminum alloy, and may be synthetic resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

自動車のCFRP製キャビン(11)は少なくともフロアパネル部(24)および左右のサイドシル部(21)を備えており、前輪(33)の後方に位置するサイドシル部(21)の前端の車幅方向幅(W1)をフロントサイドフレーム(30)側に向けて拡大し、前輪(33)の車幅方向幅(W2)よりも大きくしたので、前面衝突時に前輪(33)から入力する荷重をサイドシル部(21)の前端に分散して伝達することで、サイドシル部(21)の前端の面外変形による脆性破壊を防止して車室の変形を最小限に抑えることができる。

Description

自動車のCFRP製キャビン、自動車のCFRP製キャビンの製造方法および自動車の前部車体構造
 本発明は、少なくともフロアパネル部と、左右のサイドシル部と、前記左右のサイドシル部の前部および前記フロアパネル部の前部を接続するダッシュパネル部とを備える自動車のキャビンをCFRPで構成した自動車のCFRP製キャビンと、前記CFRP製キャビンの製造方法と、前記CFRP製キャビンを備える自動車の前部車体構造とに関する。
 CFRP(カーボン繊維強化樹脂)でバスタブ状に成形した自動車のキャビンのサイドシル部の内部に、側面視で波板状に屈曲するエネルギー吸収部材を配置し、前面衝突時にサイドシル部に入力する荷重でエネルギー吸収部材を圧壊させて衝突エネルギーを吸収するものが、下記特許文献1により公知である。
日本特許第4788539号公報
 ところで、上記特許文献1に記載されたものは、車両の前面衝突時に後退する前輪の荷重がフロントピラーロア部を介してサイドシル部の前端に入力したとき、フロントピラーロア部が変形しながら後方に倒れてサイドシル部の前端との接続部のCFRP材が脆性破壊し、その脆性破壊がサイドシル部の全体に伝播することで車室の変形を招く可能性があった。
 本発明は前述の事情に鑑みてなされたもので、前面衝突時におけるCFRP製のキャビンのサイドシル部の脆性破壊を防止することを目的とする。
 上記目的を達成するために、本発明によれば、少なくともフロアパネル部と、左右のサイドシル部と、前記左右のサイドシル部の前部および前記フロアパネル部の前部を接続するダッシュパネル部とを備える自動車のキャビンをCFRPで構成した自動車のCFRP製キャビンであって、前輪の後方に位置する前記サイドシル部の前端の車幅方向幅をフロントサイドフレーム側に向けて拡大し、前記前輪の車幅方向幅よりも大きくしたことを第1の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第1の特徴に加えて、前記前輪の後部に対向する前記サイドシル部の前壁の車幅方向内端から車幅方向内方および前方に湾曲する前側連結壁を前記フロントサイドフレームの後端に接続し、前記サイドシル部の車幅方向内側の側壁の前端から前記前側連結壁の後面に沿って延びる後側連結壁を前記フロントサイドフレームの後端に接続したことを第2の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第1または第2の特徴に加えて、前記サイドシル部の前端は上方に立ち上がってフロントピラーロア部を構成し、前記フロントピラーロア部の前面にダンパーハウジングを支持し、前記フロントピラーロア部の上面の車幅方向幅と前記ダンパーハウジングの上面の車幅方向幅とを略一致させたことを第3の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第3の特徴に加えて、前記サイドシル部は前記フロントピラーロア部の後方に変形不可部を備え、前記変形不可部は側面視で前後方向および上下方向に対して傾斜して前記サイドシル部の上壁および下壁を接続する複数のリブを備えることを第4の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第3または第4の特徴に加えて、前記サイドシル部の前記フロントピラーロア部は内部に衝撃吸収部材を配置した変形許可部を構成することを第5の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第5の特徴に加えて、前記衝撃吸収部材はハニカムコアであることを第6の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第5の特徴に加えて、前記衝撃吸収部材は前後方向に延びる合成樹脂製のリブであることを第7の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第1~第7の何れか1つの特徴に記載のCFRP製のキャビンのダッシュパネル部に、サスペンションを支持するサスペンション支持モジュールを結合し、前記サスペンション支持モジュールを、バンパービームを有するフロントエンドモジュールと前記ダッシュパネル部との間に配置した自動車の車体前部構造であって、前記サスペンション支持モジュールはダンパーハウジングとフロントサイドフレーム後部とを軽金属で一体に鋳造して構成され、前記フロントサイドフレーム後部の前端と前記フロントエンドモジュールとの間に軽金属の中空管よりなるフロントサイドフレーム前部を接続したことを第8の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8の特徴に加えて、前記フロントサイドフレーム後部は前側部分、中間部分および後側部分からなり、平面視で、前記前側部分は車幅方向に並置されて後方に向かって収束する複数の第1リブを備え、前記中間部分は前記収束した複数の第1リブの後端に連なる1本の第2リブを備え、前記後側部分は前記第2リブの後端に連なって後方に向かって拡開する複数の第3リブを備えることを第9の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8または第9の特徴に加えて、前記サスペンション支持モジュールの後面は前記ダッシュパネル部の前面に当接し、後方から挿入したボルトで前記ダッシュパネル部に締結されることを第10の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第10の特徴に加えて、前記ダッシュパネル部にはホイールハウス後壁が一体に形成され、前記ボルトは前記ホイールハウス後壁の周囲の平坦部にインサートした補強部材を貫通して前記サスペンション支持モジュールに螺合することを第11の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8~第11の何れか1つの特徴に加えて、前記フロントサイドフレーム前部は押出し材よりなり、前記フロントサイドフレーム後部の前端に嵌合することを第12の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8~第12の何れか1つの特徴に加えて、前記フロントサイドフレーム前部の前端に設けた連結プレートと、前記フロントエンドモジュールのバンパービームから後方に延びるバンパービームエクステンションの後端に設けた連結プレートとを重ね合わせて締結したことを第13の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8~第13の何れか1つの特徴に加えて、アッパーメンバの後部を前記ダッシュパネル部の車幅方向両端上部に接続するとともに、前記アッパーメンバの上面と前記ダンパーハウジングの上面とを連結部材で接続したことを第14の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第8~第14の何れか1つの特徴に加えて、前記ダッシュパネル部は前記フロントサイドフレーム後部の後端が締結される部分から後下方に延びる傾斜壁を備え、前記傾斜壁の厚さはその後方に連続するフロアパネル部の厚さよりも大きいことを第15の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第15の特徴に加えて、前記傾斜壁の車幅方向内端を前記フロアパネル部に形成したフロアトンネルに接続するとともに、車幅方向外端を前記ダッシュパネル部に形成したホイールハウス後壁を介してサイドシル部に接続したことを第16の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第15または第16の特徴に加えて、前記傾斜壁はアッパーパネルおよびロアパネルの間にハニカムコアを挟んで構成されることを第17の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第14の特徴に加えて、前記アッパーメンバの前端を前記フロントエンドモジュールから後方に延びるロアメンバの後端に嵌合し、前記アッパーメンバおよび前記ロアメンバの嵌合部を、その内部に配置したカラーを貫通するボルトで前記ダンパーハウジングに締結したことを第18の特徴とする自動車の車体前部構造が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記キャビンの車内側の面を構成するアッパーパネルと、前記キャビンの車外側の面を構成するロアパネルとを、前記キャビンの外周を囲む接合フランジで接合したことを第19の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第19の特徴に加えて、前記接合フランジは、前後方向に対して上下に傾斜する前後方向位置決め部を備えることを第20の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第19または第20の特徴に加えて、前記アッパーパネルは車幅方向に延びて上向きに隆起するクロスメンバを一体に備え、前記ロアパネルは平坦に構成されることを第21の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第19~第21の何れか1つの特徴に加えて、前記サイドシル部における前記接合フランジは、前記サイドシル部の断面の図心の高さに沿って形成されることを第22の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第19~第22の何れか1つの特徴に加えて、前記左右のサイドシル部の後端から略同一断面形状で上方に屈曲して後方に延びる左右のリヤサイドフレーム部と、前記左右のリヤサイドフレーム部の後端間を車幅方向に接続するリヤクロスメンバ部とからなるU字状の後部フレームを備え、前記フロアパネル部は前記左右のサイドシル部の下部間を接続するフロントフロアパネル部と、前記フロントフロアパネル部の後端から立ち上がるキックアップ部と、前記キックアップ部の上端から後方に延びて前記リヤサイドフレーム部および前記リヤクロスメンバ部の高さ方向中間部に接続するリヤフロアパネル部とを備えることを第23の特徴とする自動車のCFRP製キャビンが提案される。
 また本発明によれば、前記第1および第19~第23の何れか1つの特徴に記載の自動車のCFRP製キャビンの製造方法であって、前記アッパーパネルおよび前記ロアパネルの素材となるプリフォームを支持プレート上に支持する工程と、前記プリフォームを前記支持プレート上に支持した状態でプレス金型内に挿入して加熱プレス成形する工程とを含むことを第24の特徴とする自動車のCFRP製キャビンの製造方法が提案される。
 尚、実施の形態のフロントフロアパネル部24、キックアップ部25およびリヤフロアパネル部26は本発明のフロアパネル部に対応し、実施の形態のハニカムコア37およびリブ40は本発明の衝撃吸収部材に対応し、実施の形態の第1連結プレート52および第2連結プレート53は本発明の連結プレートに対応し、実施の形態の第1補強部材57および第2補強部材58は本発明の補強部材に対応する。
 本発明の第1の特徴によれば、自動車のCFRP製キャビンが、少なくともフロアパネル部と、左右のサイドシル部と、左右のサイドシル部の前部およびフロアパネル部の前部を接続するダッシュパネル部とを備え、前輪の後方に位置するサイドシル部の前端の車幅方向幅をフロントサイドフレーム側に向けて拡大し、前輪の車幅方向幅よりも大きくしたので、前面衝突時に前輪から入力する荷重をサイドシル部の前端に分散して伝達することで、サイドシル部の前端の面外変形による脆性破壊を防止して車室の変形を最小限に抑えることができる。
 また本発明の第2の特徴によれば、前輪の後部に対向するサイドシル部の前壁の車幅方向内端から車幅方向内方および前方に湾曲する前側連結壁をフロントサイドフレームの後端に接続し、サイドシル部の車幅方向内側の側壁の前端から前側連結壁の後面に沿って延びる後側連結壁をフロントサイドフレームの後端に接続したので、フロントサイドフレームに入力した前面衝突の衝撃を前側連結壁および後側連結壁を介してサイドシル部に確実に伝達することができる。
 また本発明の第3の特徴によれば、サイドシル部の前端から上方に立ち上がるフロントピラーロア部の前面にダンパーハウジングを支持し、フロントピラーロア部の上面の車幅方向幅とダンパーハウジングの上面の車幅方向幅とを略一致させたので、前面衝突の荷重がダンパーハウジングからフロントピラーロア部を介してサイドシル部に入力するとき、その荷重をサイドシル部に確実に伝達することができる。
 また本発明の第4の特徴によれば、サイドシル部はフロントピラーロア部の後方に変形不可部を備え、変形不可部は側面視で前後方向および上下方向に対して傾斜してサイドシル部の上壁および下壁を接続する複数のリブを備えるので、サイドシル部の前端に前面衝突の荷重が入力したときに、リブにより補強されたサイドシル部の変形不可部の脆性破壊を防止して車室の変形を最小限に抑えることができる。
 また本発明の第5の特徴によれば、サイドシル部のフロントピラーロア部は内部に衝撃吸収部材を配置した変形許可部を構成するので、前面衝突に荷重がサイドシル部の前端に入力したときに、フロントピラーロア部の内部に収納した衝撃吸収部材が圧壊してエネルギー吸収性能を発揮することができる。
 また本発明の第6の特徴によれば、衝撃吸収部材はハニカムコアであるので、軽量でありながら高いエネルギー吸収性能を発揮することができる。
 また本発明の第7の特徴によれば、衝撃吸収部材は前後方向に延びる合成樹脂製のリブであるので、簡単な構造でありながら高いエネルギー吸収性能を発揮することができる。
 また本発明の第8の特徴によれば、バンパービームを有するフロントエンドモジュールとダッシュパネル部との間に配置されるサスペンション支持モジュールは、ダンパーハウジングとフロントサイドフレーム後部とを軽金属で一体に鋳造して構成されるので、部品点数を最小限に抑えることができるだけでなく、ダンパーハウジングをダッシュパネル部に隣接させて車体の前後方向寸法を短縮することができ、しかもフロントサイドフレーム後部の前端に軽金属の中空管よりなるフロントサイドフレーム前部を接続するので、フロントサイドフレーム前部の分だけサスペンション支持モジュールを小型化し、それを鋳造する金型を小型化してコストダウンを図ることができる。
 また本発明の第9の特徴によれば、フロントサイドフレーム後部の前側部分、中間部分および後側部分を平面視で見ると、前側部分は車幅方向に並置されて後方に向かって収束する複数の第1リブを備え、中間部分は収束した複数の第1リブの後端に連なる1本の第2リブを備え、後側部分は第2リブの後端に連なって後方に向かって拡開する複数の第3リブを備えるので、前輪との干渉を回避するためにフロントサイドフレーム後部が平面視で湾曲している場合であっても、フロントサイドフレーム後部に入力した前面衝突の荷重をダッシュパネル部に確実に伝達して吸収することができる。
 また本発明の第10の特徴によれば、サスペンション支持モジュールの後面はダッシュパネル部の前面に当接し、後方から挿入したボルトでダッシュパネル部に締結されるので、サスペンション支持モジュールをダッシュパネル部の後方に車室側からボルトで固定することが可能となって組立性が向上する。
 また本発明の第11の特徴によれば、ダッシュパネル部にホイールハウス後壁を一体に形成することでダッシュパネル部の強度が高められ、強度が高められたホイールハウス後壁の周囲の平坦部にインサートした補強部材を貫通するボルトをサスペンション支持モジュールに螺合するので、サスペンション支持モジュールをダッシュパネル部に強固に固定することができる。
 また本発明の第12の特徴によれば、フロントサイドフレーム前部を押出し材で構成したので製造コストを低減することができるだけでなく、フロントサイドフレーム前部をフロントサイドフレーム後部の前端に嵌合するので、フロントサイドフレーム前部およびフロントサイドフレーム後部を簡単かつ強固に結合することができ、しかもフロントサイドフレーム前部の切断長さを変更するだけでフロントサイドフレームの長さを容易に調整することができる。
 また本発明の第13の特徴によれば、フロントサイドフレーム前部の前端に設けた連結プレートと、フロントエンドモジュールのバンパービームから後方に延びるバンパービームエクステンションの後端に設けた連結プレートとを重ね合わせて締結したので、バンパービームエクステンションの断面積を拡大して衝撃吸収性能を確保しながら、バンパービームエクステンションをフロントサイドフレーム前部に強固に締結することができる。
 また本発明の第14の特徴によれば、アッパーメンバの後部をダッシュパネル部の車幅方向両端上部に接続するとともに、アッパーメンバの上面とダンパーハウジングの上面とを連結部材で接続したので、アッパーメンバをサスペンション支持モジュールと別体に構成することで、サスペンション支持モジュールを鋳造する金型を小型化してコストダウンを図りながら、アッパーメンバをダッシュパネル部およびダンパーハウジングに接続して必要な強度を確保することができる。
 また本発明の第15の特徴によれば、ダッシュパネル部はフロントサイドフレーム後部の後端が締結される部分から後下方に延びる傾斜壁を備え、傾斜壁の厚さはその後方に連続するフロアパネル部の厚さよりも大きいので、傾斜壁に入力した衝突荷重をフロアパネル部に均等に分散して効果的に吸収することができる。
 また本発明の第16の特徴によれば、傾斜壁の車幅方向内端をフロアパネル部に形成したフロアトンネルに接続するとともに、車幅方向外端をダッシュパネル部に形成したホイールハウス後壁を介してサイドシル部に接続したので、傾斜壁に入力した衝突荷重をフロアトンネルおよびサイドシル部に分散して効果的に吸収することができる。
 また本発明の第17の特徴によれば、傾斜壁はアッパーパネルおよびロアパネルの間にハニカムコアを挟んで構成されるので、前面衝突の荷重がサスペンション支持モジュールを介して傾斜壁に伝達されたとき、その荷重をフロアパネル部に一層均等に分散することができる。
 また本発明の第18の特徴によれば、アッパーメンバの前端をフロントエンドモジュールから後方に延びるロアメンバの後端に嵌合し、アッパーメンバおよびロアメンバの嵌合部を、その内部に配置したカラーを貫通するボルトでダンパーハウジングに締結したので、アッパーメンバおよびロアメンバをダンパーハウジングに強固に固定することができる。
 また本発明の第19の特徴によれば、キャビンの車内側の面を構成するアッパーパネルと、キャビンの車外側の面を構成するロアパネルとを、キャビンの外周を囲む接合フランジで接合して構成されるので、軽量で剛性の高い構造でありながら、上壁部、縦壁部および下壁部を有するサイドシルアウタパネルの下壁部にフロアパネルの車幅方向外縁を接合した後に、サイドシルアウタパネルの車幅方向内側の開口部をサイドシルインナパネルで閉じる従来のキャビンに比べて、その生産性を大幅に高めることができる。
 また本発明の第20の特徴によれば、接合フランジは前後方向に対して上下に傾斜する前後方向位置決め部を備えるので、アッパーパネルの接合フランジおよびロアパネルの接合フランジを接合したときに、前後方向位置決め部によってアッパーパネルおよびロアパネルを前後方向に位置決めして精度良く接合することができる。
 また本発明の第21の特徴によれば、アッパーパネルは車幅方向に延びて上向きに隆起するクロスメンバを一体に備えるので、クロスメンバによって側面衝突時のフロアパネル部の変形を防止することができるだけでなく、ロアパネルは平坦に構成されるので、ロアパネルの下方に特別のアンダーカバーを設けることなく、車体下面における空気の流れを整流して空気抵抗を低減することができる。
 また本発明の第22の特徴によれば、サイドシル部における接合フランジは、サイドシル部の断面の図心の高さに沿って形成されるので、サイドシル部の内部に特別のバルクヘッドを設けることなく、サイドシル部の車幅方向外側面の剛性を接合フランジによって効果的に高め、前面衝突時における前記外側面の面外変形を抑制することができる。
 また本発明の第23の特徴によれば、左右のサイドシル部の後端から略同一断面形状で上方に屈曲して後方に延びる左右のリヤサイドフレーム部と、左右のリヤサイドフレーム部の後端間を車幅方向に接続するリヤクロスメンバ部とからなるU字状の後部フレームを備えるので、中空構造のサイドシル部と中空構造の後部フレームとを一体に連結して軽量でありながら剛性の高いキャビンを得ることができる。
 しかもフロアパネル部は左右のサイドシル部の下部間を接続するフロントフロアパネル部と、フロントフロアパネル部の後端から立ち上がるキックアップ部と、キックアップ部の上端から後方に延びてリヤサイドフレーム部およびリヤクロスメンバ部の高さ方向中間部に接続するリヤフロアパネル部とを備えるので、後部フレームの車室側の側面の高さ方向中間部の剛性をリヤフロアパネル部によって効果的に高めることが可能となり、車両の旋回時や後面衝突時における前記車室側の側面の面外変形を抑制することができる。
 また本発明の第24の特徴によれば、自動車のキャビンのアッパーパネルおよびロアパネルの素材となるプリフォームを支持プレート上に支持した状態でプレス金型内に挿入して加熱プレス成形するので、剛性が小さいためにプレス金型内への搬送作業やプレス金型内へのセット作業が困難なプリフォームを、プレス金型内に簡単に搬送およびセットすることが可能となり、CFRP製のキャビンの生産性が向上する。
図1は自動車のCFRP製のキャビンの斜視図である。(第1の実施の形態) 図2は図1の2方向矢視図である。(第1の実施の形態) 図3は図2の3A方向および3B方向矢視図である。(第1の実施の形態) 図4は図3(A)の4-4線断面図である。(第1の実施の形態) 図5は図3(A)の5-5線断面図である。(第1の実施の形態) 図6はアッパーパネルおよびロアパネルの製造工程の説明図である。(第1の実施の形態) 図7は前記図3(A)に対応する図である。(第2の実施の形態) 図8は図7の8-8線断面図である。(第2の実施の形態) 図9は図7の9-9線断面図である。(第2の実施の形態) 図10は図8の10-10線断面図である。(第2の実施の形態) 図11は前記図8に対応する図である。(第3の実施の形態) 図12は自動車の車体フレームの斜視図である。(第4の実施の形態) 図13は図12の13方向矢視図である。(第4の実施の形態) 図14は図13の14方向矢視図である。(第4の実施の形態) 図15は図14の15-15線断面図である。(第4の実施の形態) 図16は図14の16-16線断面図である。(第4の実施の形態) 図17は図13の17-17線断面図である。(第4の実施の形態) 図18は図14の18方向矢視図である。(第4の実施の形態) 図19は図18(B)に対応する分解斜視図である。(第4の実施の形態) 図20は図18(A)の20-20線断面図である。(第4の実施の形態) 図21は図18(A)の21-21線断面図である。(第4の実施の形態)
11    キャビン
11a   前後方向位置決め部
12    サスペンション支持モジュール
13    フロントサイドフレーム前部
14    フロントエンドモジュール
15    ロアメンバ
16    アッパーメンバ
18    アッパーパネル
18a   接合フランジ
18b   クロスメンバ
19    ロアパネル
19a   接合フランジ
20    ダッシュパネル部
20a   ホイールハウス後壁
20b   傾斜壁
21    サイドシル部
21a   車幅方向内壁
21c   上壁
21d   下壁
22    リヤサイドフレーム部
23    リヤクロスメンバ部
24    フロントフロアパネル部(フロアパネル部)
24a   フロアトンネル
25    キックアップ部(フロアパネル部)
26    リヤフロアパネル部(フロアパネル部)
27    バンパービーム
28    バンパービームエクステンション
30    フロントサイドフレーム後部(フロントサイドフレーム)
30c   第1リブ
30d   第2リブ
30e   第3リブ
30f   第3リブ
31    ダンパーハウジング
32    フロントピラーロア部
32a   前壁
32b   側壁
33    前輪
34    前側連結壁
35    後側連結壁
36    変形許可部
37    ハニカムコア(衝撃吸収部材)
38    変形不可部
39    リブ
40    リブ(衝撃吸収部材)
41    支持プレート
42    プリフォーム
43    プレス金型
52    第1連結プレート(連結プレート)
53    第2連結プレート(連結プレート)
57    第1補強部材(補強部材)
58    第2補強部材(補強部材)
59    ボルト
61    ボルト
62    連結部材
64    ボルト
65    カラー
67    ハニカムコア
F     前側部分
C     中間部分
R     後側部分
W1    サイドシル部の前端の車幅方向幅
W2    前輪の車幅方向幅
W3    フロントピラーロア部の上面の車幅方向幅
W4    ダンパーハウジングの上面の車幅方向幅
 以下、添付図面に基づいて本発明の実施の形態を説明する。
第1の実施の形態
 先ず、図1~図6に基づいて本発明の第1の実施の形態を説明する。尚、本明細書における前後方向、左右方向(車幅方向)および上下方向は、運転席に着座した運転者を基準としている。
 図1および図2に示すように、自動車の車体フレームはカーボン繊維強化樹脂(CFRP)製のキャビン11と、キャビン11の前端に接続されたアルミニウム合金の鋳造部品である左右一対のサスペンション支持モジュール12,12と、アルミニウム合金の押出し材を所定長さに切断した左右一対のフロントサイドフレーム前部13,13と、CFRP製のフロントエンドモジュール14と、CFRP製の左右一対のロアメンバ15,15と、CFRP製の左右一対のアッパーメンバ16,16とを備える。キャビン11の後部上面には、2本のステーで補強されたCFRP製のロールバー17が立設される。
 キャビン11はアッパーパネル18およびロアパネル19を上下に接合した中空構造であり、前端のダッシュパネル部20と、ダッシュパネル部20の車幅方向両端から後方に延びる左右一対のサイドシル部21,21と、サイドシル部21,21の後端から後上方に延びる左右一対のリヤサイドフレーム部22,22と、リヤサイドフレーム部22,22の後端間を車幅方向に接続するリヤクロスメンバ部23と、ダッシュパネル部20および左右のサイドシル部21,21を接続するフロントフロアパネル部24と、フロントフロアパネル部24の後端から立ち上がるキックアップ部25と、キックアップ部25の上端から後方に延びてリヤサイドフレーム部22,22およびリヤクロスメンバ部23に接続するリヤフロアパネル部26とを備える。
 フロントエンドモジュール14は、車幅方向に延びるバンパービーム27と、バンパービーム27の車幅方向両端部から後方に延びてフロントサイドフレーム前部13,13の前端に接続される左右一対のバンパービームエクステンション28,28と、バンパービームエクステンション28,28間に支持された枠状のフロントバルクヘッド29とを備える。各々のサスペンション支持モジュール12は、フロントサイドフレーム前部13の後端とダッシュパネル部20の前面とに接続されたフロントサイドフレーム後部30と、フロントサイドフレーム後部30から車幅方向外側かつ上方に延びてダッシュパネル部20の前面に接続されたダンパーハウジング31とを一体に備える。ロアメンバ15,15はバンパービーム27の車幅方向両端部から車幅方向外側に延び、そこから後上方に屈曲してアッパーメンバ16,16の前端に接続され、アッパーメンバ16,16の後端はダッシュパネル部20の車幅方向両端上部に接続される。
 次に、図1~図5に基づいてキャビン11の構造を詳細に説明する。
 キャビン11を構成するアッパーパネル18およびロアパネル19は、その外周を取り囲むように延びる接合フランジ18a,19aを備えており、両接合フランジ18a,19aは接着、溶着、リベット等で接合される。接合フランジ18a,19aは大部分の位置で概ね水平方向に延びているが、リヤサイドフレーム部22,22の前部、つまりサイドシル部21,21の後端から上方に立ち上がる部分で、後方側が前方側よりも高くなるように前後方向に傾斜しており、またサイドシル部21,21の前部、つまりサイドシル部21,21がダッシュパネル部20に連なるフロントピラーロア部で、前方側が後方側よりも高くなるように前後方向に傾斜している。接合フランジ18a,19aのうち、これらの傾斜した部分は、アッパーパネル18およびロアパネル19を接合する際に前後方向の位置決めを行うための前後方向位置決め部11a…(図2参照)を構成する。
 サイドシル部21,21およびリヤサイドフレーム部22,22の車幅方向外側面における接合フランジ18a,19aは、サイドシル部21,21およびリヤサイドフレーム部22,22の断面の図心G(図5参照)の高さに概ね沿うように、つまり前記車幅方向外側面の高さ方向の略中央部に沿うように形成される。同様に、リヤクロスメンバ部23の後側面における接合フランジ18a,19aは、リヤクロスメンバ部23の断面の図心Gの高さに概ね沿うように、つまり前記後側面の高さ方向の略中央部に沿うように形成される。
 フロントフロアパネル部24を構成するアッパーパネル18およびロアパネル19の車幅方向中央部には、前後方向に延びるフロアトンネル24aが上向きに隆起するように形成される。ロアパネル19は、フロアトンネル24aとサイドシル部21,21との間が平坦であるのに対し、アッパーパネル18はフロアトンネル24aとサイドシル部21,21とを車幅方向に接続する前後2本のクロスメンバ18b,18bを備える。一方、リヤフロアパネル部26は、アッパーパネル18およびロアパネル19が共に平坦に形成される。
 次に、上記構成を備えた本発明の実施の形態の作用を説明する。
 図6に示すように、キャビン11のアッパーパネル18およびロアパネル19は、カーボン繊維のシートを所定形状に裁断して製品の形状に賦形したプリフォーム42に樹脂を含浸させた後、プレス金型43を用いて圧縮および加熱することで成形される。プリフォーム42はそれ自体が殆ど剛性を持たないため、プリフォーム42をプレス金型43まで搬送してプレス金型43の内部にセットする作業が困難であり、カーボン繊維がほつれて形崩れし易いという問題がある。
 本実施の形態では、製品形状と同形の支持プレート41を金属あるいはCFRPの板材で製造し、この支持プレート41上に賦形後のプリフォーム42を載置して樹脂を含浸させた状態のまま、プレス金型43内にセットして圧縮および加熱を行う。よって、支持プレート41がプリフォーム42を支持する支持面は、プレス金型43の凸型および凹型の何れか一方の成形面として利用されることになる。成形完了後に支持プレート41および製品はプレス金型43から取り出され、支持プレート41から製品であるアッパーパネル18あるいはロアパネル19が分離される。
 これにより、プリフォーム42の搬送、樹脂の含浸およびプレス金型43へのセットが容易になり、作業性が大幅に向上する。
 このようにして製造されたアッパーパネル18およびロアパネル19は、それらの外周に突設した接合フランジ18a,19aにおいて接着、溶着、リベット等により接合される。このとき、アッパーパネル18およびロアパネル19の接合フランジ18a,19aが一平面内にあると仮定すると、アッパーパネル18およびロアパネル19を前後方向に位置決めすることができず、接合時に位置ずれが発生する可能性がある。しかしながら、本実施の形態によれば、接合フランジ18a,19aは前後方向に対して上下に傾斜する前後方向位置決め部11a…(図5参照)を備えるので、アッパーパネル18の接合フランジ18aおよびロアパネル19の接合フランジ19aを接合したときに、前後方向位置決め部11a…によってアッパーパネル18およびロアパネル19を自動的に前後方向に位置決めすることができる。従って、接合作業を行うときに、アッパーパネル18およびロアパネル19が左右方向(車幅方向)に位置ずれしないように注意するだけで、アッパーパネル18およびロアパネル19を精度良く接合することが可能となって作業性が向上する。
 このように、CFRP製のキャビン11は、その車内側の面を構成するアッパーパネル18と、その車外側の面を構成するロアパネル19とを接合フランジ18a,19aで接合して構成されるので、軽量で剛性の高い構造でありながら、上壁部、縦壁部および下壁部を有するサイドシルアウタパネルの下壁部にフロアパネルの車幅方向外縁を接合した後に、サイドシルアウタパネルの車幅方向内側の開口部をサイドシルインナパネルで閉じる従来のキャビンに比べて、その生産性を大幅に高めることができる。
 特に、サイドシル部21,21、リヤサイドフレーム部22,22およびリヤクロスメンバ部23における接合フランジ18a,19aは、それらの断面の図心Gの高さに沿って形成されるので、それらの外側面の剛性を接合フランジ18a,19aによって効果的に高め、前面衝突時や後面衝突時における前記外側面の面外変形を抑制することができる。その結果、それらの内部に補強用のバルクヘッドを設ける必要がなくなり、キャビン11を更に軽量化することができる。
 またフロントフロアパネル部24を構成するアッパーパネル18は車幅方向に延びて上向きに隆起するクロスメンバ18b,18bを一体に備えるので、クロスメンバ18b,18bによって側面衝突時におけるフロントフロアパネル部24の変形を防止することができる。またロアパネル19は平坦に構成されるので、ロアパネル19の下方に特別のアンダーカバーを設けることなく、車体下面における空気の流れを整流して空気抵抗を低減することができる。
 また左右のサイドシル部21,21の後端から略同一断面形状で上方に屈曲して後方に延びる左右のリヤサイドフレーム部22,22と、左右のリヤサイドフレーム部22,22の後端間を車幅方向に接続するリヤクロスメンバ部23とからなるU字状の後部フレームを備えるので、中空構造のサイドシル部21,21と中空構造の後部フレームとを一体に連結して軽量でありながら剛性の高いキャビン11を得ることができる。
 しかもキャビン11のフロア部は左右のサイドシル部21,21の下部間を接続するフロントフロアパネル部24と、フロントフロアパネル部24の後端から立ち上がるキックアップ部25と、キックアップ部25の上端から後方に延びてリヤサイドフレーム部22,22およびリヤクロスメンバ部23の高さ方向中間部に接続するリヤフロアパネル部26とを備えるので、後部フレームの車室側の側面の高さ方向中間部の剛性をリヤフロアパネル部26によって効果的に高めることが可能となり、車両の旋回時や後面衝突時における前記外側面の面外変形を抑制することができる。
第2の実施の形態
 次に、図7~図10に基づいて本発明の第2の実施の形態を説明する。
 サイドシル部21の前部は上方に立ち上がってフロントピラーロア部32を構成しており、フロントピラーロア部32の前壁32a(図8参照)は前輪33の後面に対向するホイールハウス後壁を構成する。フロントピラーロア部32の車幅方向内側の側壁32b(図7および図10参照)は、サイドシル部21の車幅方向内壁21aに対して車幅方向内側に拡開しており、これによりフロントピラーロア部32の前壁32aの車幅方向幅、つまりサイドシル部21の前端の車幅方向幅W1は、その前方に位置する前輪33の車幅方向幅W2よりも大きくなっている(図7参照)。
 フロントピラーロア部32の前壁32aは車幅方向内方かつ前方に弧状に湾曲して前側連結壁34(図10参照)を構成するとともに、フロントピラーロア部32の側壁32bは車幅方向内方かつ前方に弧状に湾曲して後側連結壁35(図10参照)を構成し、前側連結壁34および後側連結壁35はダッシュパネル部20の前面に締結されたサスペンション支持モジュール12のフロントサイドフレーム後部30の後端に接続する。フロントピラーロア部32の上端の車幅方向幅W3は、サスペンション支持モジュール12のダンパーハウジング31の上端の車幅方向幅W4に略一致している(図7参照)。
 サイドシル部21のフロントピラーロア部32は車両の前面衝突時に圧壊して衝突エネルギーを吸収する変形許可部36(図8参照)を構成するもので、その内部には例えばアルミニウム合金製の四角柱の集合体であるハニカムコア37が軸線を前後方向に向けて配置される。サイドシル部21のフロントピラーロア部32よりも後方部分は強度の高い変形不可部38(図8参照)を構成するもので、その内部には側面視でX字状を成す合成樹脂製の複数のリブ39…が配置される。
 リブ39…はジグザグに折り曲げられた上半部および下半部からなり、上半部はサイドシル部21の上壁21cに接着され、下半部はサイドシル部21の下壁21dに接着され、上半部および下半部どうしはX字状の交差部で接着される(図8参照)。またリブ39…の左右両端はサイドシル部21の車幅方向内壁21aおよび車幅方向外壁21bに接着される(図9参照)。ハニカムコア37の前端はフロントピラーロア部32の前壁32aに接着され、ハニカムコア37の後端はサイドシル部21のリブ39…の前端のX字状の交差部に接着される(図8参照)。
 次に、上記構成を備えた本発明の実施の形態の作用を説明する。
 自動車が前面衝突すると、フロントエンドモジュール14に入力した衝突荷重はフロントサイドフレーム前部13からフロントサイドフレーム後部30およびダンパーハウジング31よりなるサスペンション支持モジュール12に伝達され、そこからキャビン11のダッシュパネル部20およびフロントピラーロア部32に入力される。また前面衝突により前輪33が後退すると、前輪33の後方に位置するキャビン11のフロントピラーロア部32の前壁32aに衝突荷重が入力される。
 前輪33の後部に対向するフロントピラーロア部32の前壁32aの車幅方向内端から車幅方向内方および前方に湾曲する前側連結壁34をダッシュパネル部20を挟んでフロントサイドフレーム後部30の後端に接続し、サイドシル部21のフロントピラーロア部32の車幅方向内側の側壁32bの前端から前側連結壁34の後面に沿って延びる後側連結壁35をダッシュパネル部20を挟んでフロントサイドフレーム後部30の後端に接続したので、フロントサイドフレーム後部30に入力した前面衝突の衝撃を前側連結壁34および後側連結壁35を介してサイドシル部21に確実に伝達して分散することができる。
 しかもサスペンション支持モジュール12のダンパーハウジング31の上面の車幅方向幅W4と、その後方に接続されたサイドシル部21の前端のフロントピラーロア部32の上面の車幅方向幅W3とを略一致させたので(図7参照)、前面衝突の荷重がダンパーハウジング31からフロントピラーロア部32を介してサイドシル部21に入力するとき、その荷重を均等に分散してフロントピラーロア部32に伝達することができる。
 またホイールハウス後壁を構成するフロントピラーロア部32の前壁32aに前輪33から衝突荷重が入力するとき、フロントピラーロア部32前端の車幅方向幅W1を車幅方向内側に向けて拡大し、前輪33の車幅方向幅W2よりも大きくしたので(図7参照)、前輪33から入力する衝突荷重をサイドシル部21のフロントピラーロア部32に分散して伝達することで、フロントピラーロア部32の面外変形による脆性破壊を防止して車室の変形を最小限に抑えることができる。
 このとき、フロントピラーロア部32は、内部にハニカムコア37よりなる衝撃吸収部材を配置した変形許可部36を構成するので、前面衝突の荷重がフロントピラーロア部32に入力したときに、フロントピラーロア部32の内部に収納したハニカムコア37が圧壊してエネルギー吸収性能を発揮することができる。特に、衝撃吸収部材をハニカムコア37で構成したので、軽量でありながら高いエネルギー吸収性能を発揮することができる。
 一方、サイドシル部21はフロントピラーロア部32の後方に変形不可部38を備え、変形不可部38は側面視で前後方向および上下方向に対して傾斜してサイドシル部21の上壁21cおよび下壁21dを接続する複数のX字状のリブ39…を備えるので、サイドシル部21の前端に前面衝突の荷重が入力したときに、リブ39…により補強されたサイドシル部21の変形不可部38の脆性破壊を防止して車室の変形を最小限に抑えることができる。
第3の実施の形態
 次に、図11に基づいて本発明の第3の実施の形態を説明する。
 第2の実施の形態ではフロントピラーロア部32の内部に配置される衝撃吸収部材がハニカムコア37で構成されているが、第3の実施の形態は前記衝撃吸収部材が前後方向および上下方向に延びる1枚の合成樹脂製のリブ40で構成される。リブ40の前端はフロントピラーロア部32の前壁32aに接着され、下端はフロントピラーロア部32の下壁32dに接着され、後端はサイドシル部21の内部に配置したX字状のリブ39…に接着される。
 本実施の形態によれば、衝撃吸収部材を前後方向および上下方向に延びる1枚の合成樹脂製のリブ40で構成したので、簡単な構造でありながら高いエネルギー吸収性能を発揮することができる。
第4の実施の形態
 以下、図12~図21に基づいて本発明の第4の実施の形態を説明する。
 図12および図15から明らかなように、バンパービーム27の車幅方向端部から後方に延びるバンパービームエクステンション28は、その内部にX字状に交差する多数のリブ28a…を備えており、バンパービーム27から前面衝突の荷重が入力したときにリブ28a…が圧壊することで衝突エネルギーを吸収する。バンパービームエクステンション28の後端にはCFRPで構成された矩形状の第1連結プレート52が設けられており、フロントサイドフレーム13の前端に溶接した金属製の第2連結プレート53がバンパービームエクステンション28の第1連結プレート52に重ね合わされ、第1連結プレート52に設けた4本のスタッドボルト54…が第2連結プレート53を貫通してナット55…に締結される。
 バンパービームエクステンション28の上下幅および左右幅はフロントサイドフレーム前部13の上下幅および左右幅よりも大きいが、断面積に差のあるバンパービームエクステンション28およびフロントサイドフレーム前部13を、それらの断面積よりも大きい寸法の第1連結プレート52および第2連結プレート53を用いて結合することで、バンパービームエクステンション28の断面積を充分に拡大して衝撃吸収性能を確保しながら、バンパービームエクステンション28をフロントサイドフレーム前部13に強固に締結することができる。
 図17から明らかなように、アルミニウム合金の鋳造品であるサスペンション支持モジュール12のフロントサイドフレーム後部30は、前側部分F、中間部分Cおよび後側部分Rから構成されており、前側部分F、中間部分Cおよび後側部分Rを通して連続する上壁30aおよび下壁30bを備える。前側部分Fは、車幅方向に並置されて上壁30aおよび下壁30bを接続し、後方に向かって収束する左右一対の縦壁よりなる第1リブ30c,30cを備えており、その前端の矩形状の開口部にフロントサイドフレーム前部13の後端が嵌合する。フロントサイドフレーム前部13は「日」字状の断面を有するアルミニウム合金の押出し材からなり、その内部に水平方向に延びるリブ13aが設けられる。
 中間部分Cは、収束した左右一対の第1リブ30c,30cの後端に連なる1本の第2リブ30dを備え、後側部分Rは前記第2リブ30dの後端に連なって後方に向かって拡開する4枚の第3リブ30e,30e,30f,30fを備える。そのうち2枚の第3リブ30e,30eは車幅方向に並置されて上壁30aおよび下壁30bを接続し、他の2枚の第3リブ30f,30fはX字状に交差して上壁30aおよび下壁30bを接続する。また中間部分Cおよび後側部分Rの境界には、上下方向および左右方向に延びて上壁30aおよび下壁30bを接続する1枚の第4リブ30gが形成される。
 フロントサイドフレーム前部13を押出し材で構成したので製造コストを低減することができるだけでなく、フロントサイドフレーム前部13をフロントサイドフレーム後部30の前端に嵌合するので、フロントサイドフレーム前部13およびフロントサイドフレーム後部30を簡単かつ強固に結合することができ、しかもフロントサイドフレーム前部13の切断長さを変更するだけでフロントサイドフレームの長さを容易に調整することができる。
 平面視で、フロントサイドフレーム前部13は前後方向に直線状に延びているのに対し、フロントサイドフレーム後部30は前輪33(図13参照)との干渉を回避するために、後方側が車幅方向内側に向かって湾曲している。しかしながら、フロントサイドフレーム前部13から入力した衝突荷重を、前側部分Fの後方に向かって収束する2枚の第1リブ30c,30cと、中間部分Cの1枚の第2リブ30dと、後側部分Rの後方に向かって拡開する4枚の第3リブ30e,30e,30f,30fを介してダッシュパネル部20に効率よく伝達してキャビン11の分散させることで、フロントサイドフレーム後部30の圧壊を防止することができる。
 図16~図19から明らかなように、サスペンション支持モジュール12はフロントサイドフレーム後部30から上方および車幅方向外側に延びる壁状のダンパーハウジング31を一体に備えており、サスペンション支持モジュール12はフロントサイドフレーム後部30の4カ所と、ダンパーハウジング31の3カ所とでダッシュパネル部20の前面に締結される。
 即ち、ダッシュパネル部20の内部には何れもアルミニウムの押出し材よりなる第1、第2補強部材57,58が予めインサートされている。第1補強部材57は矩形状の平坦な部材であり、その角部に2個のボルト孔57a,57aと2個の雌ねじ孔57b,57bとが形成される。第2補強部材58は三角形状の平坦な部材であり、その角部に3個のボルト孔58a…が形成される。一方、サスペンション支持モジュール12のフロントサイドフレーム後部30の後端には、2個の雌ねじ孔30h,30hと2個のボルト孔30i,30iとが形成され、サスペンション支持モジュール12のダンパーハウジング31の後端には3個の雌ねじ孔31a…が形成される。
 そして第1補強部材57の2個のボルト孔57a,57aを後から前に貫通する2本のボルト59,59をフロントサイドフレーム後部30の2個の雌ねじ孔30h,30hに螺合し、フロントサイドフレーム後部30の2個のボルト孔30i,30iを前から後に貫通する2本のボルト60,60を第1補強部材57の2個の雌ねじ孔57b,57bに螺合し、第2補強部材58の3個のボルト孔58a…を後から前に貫通する3本のボルト61…をダンパーハウジング31の3個の雌ねじ孔31a…に螺合することで、サスペンション支持モジュール12がダッシュパネル部20の前面に締結される。尚、ボルト59,59,61…をボルト60,60と同じ方向(前から後)に挿入することも可能である。
 サスペンション支持モジュール12をダッシュパネル部20の前面に締結する合計7本のボルト59,59,60,60,61…のうち、フロントサイドフレーム後部30の車幅方向内側部分を締結する2本のボルト60,60はエンジンルーム側から後向きに挿入されて第1補強部材57に螺合する。その理由は、前記2本のボルト60,60はエンジンルームの中央部に臨んでいるため、エンジンルーム側から容易に操作することが可能であるからである。一方、残りの5本のボルト59,59,61…はエンジンルーム側に作業スペースが確保することが難しいが、それら5本のボルト59,59,61…は充分な作業スペースが確保できる車室側から前向きに挿入されてサスペンション支持モジュール12に螺合するので、サスペンション支持モジュール12の組付性が向上する。
 このとき、サスペンション支持モジュール12が取り付けられるダッシュパネル部20の平坦部は、その近傍に曲面壁よりなるホイールハウス後壁20aが一体に形成されて強度が高められているため、その平坦部に第1、第2補強部材57,58をインサートすることで、サスペンション支持モジュール12を一層強固に固定することができる。
 図18(A)、図20および図21から明らかなように、CFRPで矩形断面のパイプ状に形成されたアッパーメンバ16の上面と、サスペンション支持モジュール12のダンパーハウジング31の上部の車幅方向外面とが、CFRP製の連結部材62によって連結される。連結部材62は、その車幅方向外側を前後方向に延びる接合フランジ62aにおいてアッパーメンバ16の上面に接着されるとともに、その上部の前後2カ所の締結部62b,62bにおいてダンパーハウジング31の車幅方向外面にボルト63,63で締結される。
 このように、アッパーメンバ16の後部をダッシュパネル部20に接続するとともに、アッパーメンバ16の上面とダンパーハウジング31の上面とを連結部材62で接続したので、アッパーメンバ16をサスペンション支持モジュール12と別体に構成することで、サスペンション支持モジュール12を鋳造する金型を小型化してコストダウンを図りながら、アッパーメンバ16をダッシュパネル部20およびダンパーハウジング31に接続して必要な強度を確保することができる。
 また断面L字状になったロアメンバ15の上端とダンパーハウジング31の車幅方向外面との間にアッパーメンバ16の前端が挟まれており、ロアメンバ15およびアッパーメンバ16を貫通するボルト64がダンパーハウジング31の車幅方向外面に締結される。このとき、アッパーメンバ16の内部にボルト64が貫通するカラー65を配置することにより、CFRP製のアッパーメンバ16が潰れるのを防止しながら、ボルト64の締結力を高めることができる。更に、ロアメンバ15の上面から上方に延びる締結フランジ15aと、連結部材62の前端部とを車幅方向外側から内側に貫通するボルト66をダンパーハウジング31の車幅方向外面に螺合することで、ロアメンバ15および連結部材62がダンパーハウジング31に共締めされる。
 図14および図15から明らかなように、ダッシュパネル部20の下部にはフロントフロアパネル部24に向かって後下方に傾斜する傾斜壁20bが形成される。傾斜壁20bはアッパーパネル18およびロアパネル19間にハニカムコア67(図15参照)を挟んだ構造であり、その厚さはフロントフロアパネル部24の厚さよりも厚くなっている。尚、ハニカムコア67を波板形状としても良い。また傾斜壁20bの車幅方向外側は曲面よりなるホイールハウス後壁20aに連なるとともに、傾斜壁20bの車幅方向内側はフロントフロアパネル部24の車幅方向中央部に前後方向に形成したフロアトンネル24aに連続的に連なっている。
 従って、前面衝突の荷重がフロントサイドフレーム後部30からダッシュパネル部20に入力したとき、その荷重をハニカムコア67で補強されて強度が高い傾斜壁20bを介してフロントフロアパネル部24に均等に分散して効果的に吸収することができる。このとき、ダッシュパネル部20の傾斜壁20bに入力された荷重は、ホイールハウス後壁20aを介してサイドシル部21に伝達されるととともに、フロントフロアパネル部24のフロアトンネル24aにも伝達されるため、衝突荷重をキャビン11の全体に分散して更に効果的に吸収することができる。
 以上のように、本実施の形態によれば、フロントエンドモジュール14とダッシュパネル部20との間に配置されるサスペンション支持モジュール12を、ダンパーハウジング31とフロントサイドフレーム後部30とを軽金属で一体に鋳造して構成したので、部品点数を最小限に抑えることができるだけでなく、ダンパーハウジング31をダッシュパネル部20に隣接させて車体の前後方向寸法を短縮することができる。しかもフロントサイドフレーム後部30の前端に軽金属の中空管よりなるフロントサイドフレーム前部13を接続するので、フロントサイドフレーム前部13の分だけサスペンション支持モジュール12を小型化し、それを鋳造する金型を小型化してコストダウンを図ることができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、実施の形態ではキャビン11をアッパーパネル18およびロアパネル19の二つの部材で構成しているが、アッパーパネル18およびロアパネル19以外の部材を付加することも可能である。
 またハニカムコア37は四角柱の集合体である必要はなく、六角柱や三角柱の集合体であっても良く、その材質はアルミニウム合金等の金属に限定されず、合成樹脂であっても良い。
 また実施の形態ではサスペンション支持モジュール12をダッシュパネル20に締結する7本のボルト59,59,60,60,61…のうち、5本のボルト59,59,61…を車室側から挿入しているが、それらをエンジンルーム側から挿入しても良く、またボルトの数も任意である。

Claims (24)

  1.  少なくともフロアパネル部(24,25,26)と、左右のサイドシル部(21)と、前記左右のサイドシル部(21)の前部および前記フロアパネル部(24,25,26)の前部を接続するダッシュパネル部(20)とを備える自動車のキャビン(11)をCFRPで構成した自動車のCFRP製キャビンであって、
     前輪(33)の後方に位置する前記サイドシル部(21)の前端の車幅方向幅(W1)をフロントサイドフレーム(30)側に向けて拡大し、前記前輪(33)の車幅方向幅(W2)よりも大きくしたことを特徴とする自動車のCFRP製キャビン。
  2.  前記前輪(33)の後部に対向する前記サイドシル部(21)の前壁(32a)の車幅方向内端から車幅方向内方および前方に湾曲する前側連結壁(34)を前記フロントサイドフレーム(30)の後端に接続し、前記サイドシル部(21)の車幅方向内側の側壁(32b)の前端から前記前側連結壁(34)の後面に沿って延びる後側連結壁(35)を前記フロントサイドフレーム(30)の後端に接続したことを特徴とする、請求項1に記載の自動車のCFRP製キャビン。
  3.  前記サイドシル部(21)の前端は上方に立ち上がってフロントピラーロア部(32)を構成し、前記フロントピラーロア部(32)の前面にダンパーハウジング(31)を支持し、前記フロントピラーロア部(32)の上面の車幅方向幅(W3)と前記ダンパーハウジング(31)の上面の車幅方向幅(W4)とを略一致させたことを特徴とする、請求項1または請求項2に記載の自動車のCFRP製キャビン。
  4.  前記サイドシル部(21)は前記フロントピラーロア部(32)の後方に変形不可部(38)を備え、前記変形不可部(38)は側面視で前後方向および上下方向に対して傾斜して前記サイドシル部(21)の上壁(21c)および下壁(21d)を接続する複数のリブ(39)を備えることを特徴とする、請求項3に記載の自動車のCFRP製キャビン。
  5.  前記サイドシル部(21)の前記フロントピラーロア部(32)は内部に衝撃吸収部材(37,40)を配置した変形許可部(36)を構成することを特徴とする、請求項3または請求項4に記載の自動車のCFRP製キャビン。
  6.  前記衝撃吸収部材はハニカムコア(37)であることを特徴とする、請求項5に記載の自動車のCFRP製キャビン。
  7.  前記衝撃吸収部材は前後方向に延びる合成樹脂製のリブ(40)であることを特徴とする、請求項5に記載の自動車のCFRP製キャビン。
  8.  請求項1~請求項7の何れか1項に記載のCFRP製のキャビン(11)のダッシュパネル部(20)に、サスペンションを支持するサスペンション支持モジュール(12)を結合し、前記サスペンション支持モジュール(12)を、バンパービーム(27)を有するフロントエンドモジュール(14)と前記ダッシュパネル部(20)との間に配置した自動車の車体前部構造であって、
     前記サスペンション支持モジュール(12)はダンパーハウジング(31)とフロントサイドフレーム後部(30)とを軽金属で一体に鋳造して構成され、前記フロントサイドフレーム後部(30)の前端と前記フロントエンドモジュール(14)との間に軽金属の中空管よりなるフロントサイドフレーム前部(13)を接続したことを特徴とする自動車の車体前部構造。
  9.  前記フロントサイドフレーム後部(30)は前側部分(F)、中間部分(C)および後側部分(R)からなり、平面視で、前記前側部分(F)は車幅方向に並置されて後方に向かって収束する複数の第1リブ(30c)を備え、前記中間部分(C)は前記収束した複数の第1リブ(30c)の後端に連なる1本の第2リブ(30d)を備え、前記後側部分(R)は前記第2リブ(30d)の後端に連なって後方に向かって拡開する複数の第3リブ(30e,30f)を備えることを特徴とする、請求項8に記載の自動車の車体前部構造。
  10.  前記サスペンション支持モジュール(12)の後面は前記ダッシュパネル部(20)の前面に当接し、後方から挿入したボルト(59,61)で前記ダッシュパネル部(20)に締結されることを特徴とする、請求項8または請求項9に記載の自動車の車体前部構造。
  11.  前記ダッシュパネル部(20)にはホイールハウス後壁(20a)が一体に形成され、前記ボルト(59,61)は前記ホイールハウス後壁(20a)の周囲の平坦部にインサートした補強部材(57,58)を貫通して前記サスペンション支持モジュール(12)に螺合することを特徴とする、請求項10に記載の自動車の車体前部構造。
  12.  前記フロントサイドフレーム前部(13)は押出し材よりなり、前記フロントサイドフレーム後部(30)の前端に嵌合することを特徴とする、請求項8~請求項11の何れか1項に記載の自動車の車体前部構造。
  13.  前記フロントサイドフレーム前部(13)の前端に設けた連結プレート(53)と、前記フロントエンドモジュール(14)のバンパービーム(27)から後方に延びるバンパービームエクステンション(28)の後端に設けた連結プレート(52)とを重ね合わせて締結したことを特徴とする、請求項8~請求項12の何れか1項に記載の自動車の車体前部構造。
  14.  アッパーメンバ(16)の後部を前記ダッシュパネル部(20)の車幅方向両端上部に接続するとともに、前記アッパーメンバ(16)の上面と前記ダンパーハウジング(31)の上面とを連結部材(62)で接続したことを特徴とする、請求項8~請求項13の何れか1項に記載の自動車の車体前部構造。
  15.  前記ダッシュパネル部(20)は前記フロントサイドフレーム後部(30)の後端が締結される部分から後下方に延びる傾斜壁(20b)を備え、前記傾斜壁(20b)の厚さはその後方に連続するフロアパネル部(24)の厚さよりも大きいことを特徴とする、請求項8~請求項14の何れか1項に記載の自動車の車体前部構造。
  16.  前記傾斜壁(20b)の車幅方向内端を前記フロアパネル部(24)に形成したフロアトンネル(24a)に接続するとともに、車幅方向外端を前記ダッシュパネル部(20)に形成したホイールハウス後壁(20a)を介してサイドシル部(21)に接続したことを特徴とする、請求項15に記載の自動車の車体前部構造。
  17.  前記傾斜壁(20b)はアッパーパネル(18)およびロアパネル(19)の間にハニカムコア(67)を挟んで構成されることを特徴とする、請求項15または請求項16に記載の自動車の車体前部構造。
  18.  前記アッパーメンバ(16)の前端を前記フロントエンドモジュール(14)から後方に延びるロアメンバ(15)の後端に嵌合し、前記アッパーメンバ(16)および前記ロアメンバ(15)の嵌合部を、その内部に配置したカラー(65)を貫通するボルト(64)で前記ダンパーハウジング(31)に締結したことを特徴とする、請求項14に記載の自動車の車体前部構造。
  19.  前記キャビン(11)の車内側の面を構成するアッパーパネル(18)と、前記キャビン(11)の車外側の面を構成するロアパネル(19)とを、前記キャビン(11)の外周を囲む接合フランジ(18a,19a)で接合したことを特徴とする、請求項1に記載の自動車のCFRP製キャビン。
  20.  前記接合フランジ(18a,19a)は、前後方向に対して上下に傾斜する前後方向位置決め部(11a)を備えることを特徴とする、請求項19に記載の自動車のCFRP製キャビン。
  21.  前記アッパーパネル(18)は車幅方向に延びて上向きに隆起するクロスメンバ(18b)を一体に備え、前記ロアパネル(19)は平坦に構成されることを特徴とする、請求項19または請求項20に記載の自動車のCFRP製キャビン。
  22.  前記サイドシル部(21)における前記接合フランジ(18a,19a)は、前記サイドシル部(21)の断面の図心の高さに沿って形成されることを特徴とする、請求項19~請求項21の何れか1項に記載の自動車のCFRP製キャビン。
  23.  前記左右のサイドシル部(21)の後端から略同一断面形状で上方に屈曲して後方に延びる左右のリヤサイドフレーム部(22)と、前記左右のリヤサイドフレーム部(22)の後端間を車幅方向に接続するリヤクロスメンバ部(23)とからなるU字状の後部フレームを備え、
     前記フロアパネル部は前記左右のサイドシル部(21)の下部間を接続するフロントフロアパネル部(24)と、前記フロントフロアパネル部(24)の後端から立ち上がるキックアップ部(25)と、前記キックアップ部(25)の上端から後方に延びて前記リヤサイドフレーム部(22)および前記リヤクロスメンバ部(23)の高さ方向中間部に接続するリヤフロアパネル部(26)とを備えることを特徴とする、請求項19~請求項22の何れか1項に記載の自動車のCFRP製キャビン。
  24.  請求項1および請求項19~請求項23の何れか1項に記載の自動車のCFRP製キャビンの製造方法であって、
     前記アッパーパネル(18)および前記ロアパネル(19)の素材となるプリフォーム(42)を支持プレート(41)上に支持する工程と、前記プリフォーム(42)を前記支持プレート(41)上に支持した状態でプレス金型(43)内に挿入して加熱プレス成形する工程とを含むことを特徴とする自動車のCFRP製キャビンの製造方法。
PCT/JP2013/055389 2012-04-09 2013-02-28 自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造 WO2013153872A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-088355 2012-04-09
JP2012088355A JP5928880B2 (ja) 2012-04-09 2012-04-09 自動車のcfrp製キャビン
JP2012089903A JP5928881B2 (ja) 2012-04-11 2012-04-11 自動車のcfrp製キャビンおよび自動車のcfrp製キャビンの製造方法
JP2012-089903 2012-04-11
JP2012093545A JP5922471B2 (ja) 2012-04-17 2012-04-17 自動車の車体前部構造
JP2012-093545 2012-04-17

Publications (1)

Publication Number Publication Date
WO2013153872A1 true WO2013153872A1 (ja) 2013-10-17

Family

ID=49327450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055389 WO2013153872A1 (ja) 2012-04-09 2013-02-28 自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造

Country Status (1)

Country Link
WO (1) WO2013153872A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140300135A1 (en) * 2011-12-20 2014-10-09 Bayerische Motoren Werke Aktiengesellschaft Structure for a Motor Vehicle, In Particular a Passenger Vehicle, as Well as a Method for Producing Such A Structure
US20160137229A1 (en) * 2013-06-21 2016-05-19 Teijin Limited Vehicle of monocoque construction formed from thermoplastic resin members
EP3190033A1 (en) 2015-12-07 2017-07-12 Toyota Jidosha Kabushiki Kaisha Vehicle floor structure
CN110282016A (zh) * 2019-06-20 2019-09-27 浙江吉利控股集团有限公司 一种纵梁加强板结构及汽车
JP2020501956A (ja) * 2016-12-22 2020-01-23 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ 車両用耐荷重構造
WO2020085385A1 (ja) 2018-10-24 2020-04-30 日本製鉄株式会社 自動車構造部材
JP2021172191A (ja) * 2020-04-23 2021-11-01 マツダ株式会社 車体構造
WO2024170785A1 (fr) * 2023-02-17 2024-08-22 Segula Engineering Structure de véhicule automobile en matériaux composites et véhicule ainsi obtenu

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190776U (ja) * 1985-05-21 1986-11-27
JPH0298078U (ja) * 1989-01-23 1990-08-03
JPH02141579U (ja) * 1989-04-25 1990-11-28
JPH0616154A (ja) * 1992-01-29 1994-01-25 Honda Motor Co Ltd 車両の衝撃吸収構造
JPH1015970A (ja) * 1996-07-03 1998-01-20 Exedy Corp 繊維強化プラスチック製品の製造方法
JPH10226363A (ja) * 1997-02-14 1998-08-25 Mitsubishi Motors Corp 自動車のサイドストラクチャ構造
JP2008049895A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 車体構造
JP2009190696A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 車体フロア構造
JP2009255799A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp インサートおよびインサート構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190776U (ja) * 1985-05-21 1986-11-27
JPH0298078U (ja) * 1989-01-23 1990-08-03
JPH02141579U (ja) * 1989-04-25 1990-11-28
JPH0616154A (ja) * 1992-01-29 1994-01-25 Honda Motor Co Ltd 車両の衝撃吸収構造
JPH1015970A (ja) * 1996-07-03 1998-01-20 Exedy Corp 繊維強化プラスチック製品の製造方法
JPH10226363A (ja) * 1997-02-14 1998-08-25 Mitsubishi Motors Corp 自動車のサイドストラクチャ構造
JP2008049895A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 車体構造
JP2009190696A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 車体フロア構造
JP2009255799A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp インサートおよびインサート構造

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469351B2 (en) * 2011-12-20 2016-10-18 Bayerische Motoren Werke Aktiengesellschaft Structure for a motor vehicle, in particular a passenger vehicle, as well as a method for producing such a structure
US20140300135A1 (en) * 2011-12-20 2014-10-09 Bayerische Motoren Werke Aktiengesellschaft Structure for a Motor Vehicle, In Particular a Passenger Vehicle, as Well as a Method for Producing Such A Structure
US20160137229A1 (en) * 2013-06-21 2016-05-19 Teijin Limited Vehicle of monocoque construction formed from thermoplastic resin members
US9802650B2 (en) * 2013-06-21 2017-10-31 Teijin Limited Vehicle of monocoque construction formed from thermoplastic resin members
EP3190033A1 (en) 2015-12-07 2017-07-12 Toyota Jidosha Kabushiki Kaisha Vehicle floor structure
US9944160B2 (en) 2015-12-07 2018-04-17 Toyota Jidosha Kabushiki Kaisha Vehicle floor structure
JP2020501956A (ja) * 2016-12-22 2020-01-23 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ 車両用耐荷重構造
US11465687B2 (en) 2018-10-24 2022-10-11 Nippon Steel Corporation Automobile structural member
WO2020085385A1 (ja) 2018-10-24 2020-04-30 日本製鉄株式会社 自動車構造部材
CN110282016A (zh) * 2019-06-20 2019-09-27 浙江吉利控股集团有限公司 一种纵梁加强板结构及汽车
JP2021172191A (ja) * 2020-04-23 2021-11-01 マツダ株式会社 車体構造
JP7400611B2 (ja) 2020-04-23 2023-12-19 マツダ株式会社 車体構造
WO2024170785A1 (fr) * 2023-02-17 2024-08-22 Segula Engineering Structure de véhicule automobile en matériaux composites et véhicule ainsi obtenu
FR3145922A1 (fr) * 2023-02-17 2024-08-23 Segula Engineering Structure de véhicule automobile en matériaux composites et véhicule ainsi obtenu.

Similar Documents

Publication Publication Date Title
WO2013153872A1 (ja) 自動車のcfrp製キャビン、自動車のcfrp製キャビンの製造方法および自動車の前部車体構造
JP5916173B2 (ja) 繊維強化樹脂製衝撃受け部材および衝撃受け部材の製造方法
JP6150365B2 (ja) 自動車車体および自動車車体の製造方法
JP5568547B2 (ja) 車両シャーシ
US20150158532A1 (en) Fiber-reinforced plastic cabin for vehicle
JP5862555B2 (ja) 自動車の車体構造
JP5922471B2 (ja) 自動車の車体前部構造
WO2014106924A1 (ja) 自動車の衝撃吸収部材および自動車の車体構造
JP6308427B2 (ja) 車体構造
WO2014125723A1 (ja) 自動車のダンパーハウジング構造
JP5781031B2 (ja) 自動車の車体前部構造
JP5991711B2 (ja) 自動車用バンパービーム
JP5896289B2 (ja) 自動車のキャビン構造
JP5881117B2 (ja) 自動車の車体構造
JP5904410B2 (ja) 自動車の車体前部構造
JP5928880B2 (ja) 自動車のcfrp製キャビン
JP5781030B2 (ja) 自動車の車体前部構造
JP6150355B2 (ja) 自動車の車体構造
WO2014097765A1 (ja) 自動車の車体構造
JP5928881B2 (ja) 自動車のcfrp製キャビンおよび自動車のcfrp製キャビンの製造方法
JP2014024391A5 (ja)
JP5979486B2 (ja) 自動車用バンパービーム
JP5896290B2 (ja) 自動車のfrp製キャビン
JP5896291B2 (ja) 自動車のfrp製キャビン
JP5862554B2 (ja) 自動車の車体構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775748

Country of ref document: EP

Kind code of ref document: A1