WO2014068775A1 - 電力中継器、及び消費電力低減方法 - Google Patents

電力中継器、及び消費電力低減方法 Download PDF

Info

Publication number
WO2014068775A1
WO2014068775A1 PCT/JP2012/078544 JP2012078544W WO2014068775A1 WO 2014068775 A1 WO2014068775 A1 WO 2014068775A1 JP 2012078544 W JP2012078544 W JP 2012078544W WO 2014068775 A1 WO2014068775 A1 WO 2014068775A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
repeater
power saving
output port
value
Prior art date
Application number
PCT/JP2012/078544
Other languages
English (en)
French (fr)
Inventor
木村喜昌
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014544186A priority Critical patent/JP6098642B2/ja
Priority to PCT/JP2012/078544 priority patent/WO2014068775A1/ja
Publication of WO2014068775A1 publication Critical patent/WO2014068775A1/ja
Priority to US14/693,423 priority patent/US20150229129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/04Regulating voltage or current wherein the variable is ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/0005Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving power plugs or sockets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to a technique for reducing (suppressing) power consumption for the entire device to which power is supplied.
  • a circuit breaker such as a breaker or a fuse.
  • Electric power is supplied to the electrical equipment through a plurality of power repeaters such as the main switchboard, switchboard, and wall outlet.
  • some conventional power repeaters for example, a power strip provided with one or more outlets, can cut off the power supply through the outlet.
  • the power consumption of the entire facility can be suppressed so that the previously provided circuit breaker does not operate by individually cutting off the power supply through the outlet. .
  • JP 2006-146293 A JP 2003-32290 A Japanese Patent Laying-Open No. 2005-4243 WO04 / 53696
  • an object of the present invention is to provide a technique for reducing power consumption of an entire electrical device without interrupting power supply to the electrical device.
  • One system to which the present invention is applied includes one or more output ports for supplying power to the downstream side, and a communication means for communicating with the downstream side connected to the output port for each output port. And a control means capable of requesting the operation of the power saving function to the first electric device having the power saving function among the electric devices located on the downstream side of the output port by using the communication means. Electric power is supplied to each electrical device by using one or more power repeaters.
  • the power consumption of the entire electrical equipment can be reduced without interrupting the power supply to the electrical equipment.
  • FIG. 9 is a diagram illustrating the contents of power management information held in each power repeater in the case of the connection configuration illustrated in FIG. 8.
  • the power management information held in the power relays 1-4-1 and 1-4-2 by the power relay 1-4-1 executing the power saving process. It is a figure explaining the change of the content (the 4).
  • the power relay information 1-4-1 and 1-4-2 store the power management information held by the power relays 1-4-1 by executing the power saving process. It is a figure explaining the change of the content (the 1).
  • the power relay information 1-4-1 and 1-4-2 store the power management information held by the power relays 1-4-1 by executing the power saving process. It is a figure explaining the change of the content (the 2).
  • the power relay information 1-4-1 and 1-4-2 store the power management information held by the power relays 1-4-1 by executing the power saving process. It is a figure explaining the change of the content (the 3).
  • the power relay information 1-4-1 and 1-4-2 store the power management information held by the power relays 1-4-1 by executing the power saving process. It is a figure explaining the change of the content (the 4).
  • FIG. 1 is a diagram illustrating a configuration example of a power distribution system constructed using the power repeater according to the present embodiment.
  • This power distribution system is a system constructed to distribute electric power supplied to a facility such as a building or a factory to electric devices 5 and 7.
  • the power supplied to the facility is one of the main switchboard 1 (1-1), one of the plurality of switchboards 1 (1-2), and many wall outlets 1 (1-3). ) Can be supplied to the electric devices 5 and 7 through one of the above.
  • FIG. 1 shows a state in which electric power is supplied to the electric devices 5 and 7 through the power tap 1 (1-4) in addition to the wall outlet 1 (1-3).
  • the electric devices 5 and 7 are represented as “terminals” in FIG.
  • the electric device is referred to as a terminal.
  • the configuration of the power distribution system is not limited to the example shown in FIG.
  • the power control device 2 is mounted on all of the main switchboard 1-1, switchboard 1-2, wall outlet 1-3, and power strip 1-4 shown in FIG.
  • the main switchboard 1-1, switchboard 1-2, wall outlet 1-3, and power strip 1-4 are all power repeaters that supply the power supplied from the upstream side to the downstream side.
  • the main switchboard 1-1, switchboard 1-2, wall outlet 1-3, and power strip 1-4 on which the power control device 2 is mounted are all power repeaters according to this embodiment. In the case where there is no need to particularly limit the type of the power repeater, it is hereinafter referred to as “power repeater 1”.
  • the solid arrows in FIG. 1 indicate the direction in which power is supplied via the power line.
  • a dotted arrow in FIG. 1 represents a communication line, that is, an object with which the power control device 2 mounted on each power repeater 1 communicates.
  • the power control device 2 mounted on each power repeater 1 includes the power control device 2 of the power repeater 1 located on the upstream side, the power control device 2 of the power repeater 1 located on the downstream side, or the terminal 5. Communication with the power management apparatus 6 is possible. There is no power repeater arranged by the facility upstream of the main switchboard 1-1. For this reason, the power control apparatus 2 mounted on the main switchboard 1-1 communicates only with the downstream side.
  • the power management device 6 mounted on the terminal 5 can communicate with the power control device 2 of the power repeater 1 located on the upstream side.
  • the communication cannot be performed by the terminal 7 on which the power management apparatus 6 is not mounted. Therefore, the terminals 5 and 7 are distinguished here.
  • the power management apparatus 6 is mounted on the terminal 5 having a power saving function. This is for the following reason.
  • a PC not only has a power saving function for shifting to a sleep state, but also has a power saving function for reducing power consumption by lowering the clock frequency of a CPU (Central Processing Unit).
  • the power saving function for shifting to the sleep state is widely installed in office automation (OA) devices such as copiers and printers.
  • OA office automation
  • As a power saving function there is also a power saving function that cuts off power supply to a circuit having a relatively low use frequency to reduce power consumption.
  • the power saving function of the terminal 5 is actively used to reduce the power consumption of the entire facility.
  • the number of terminals 5 or 7 that need to be cut off from the power supply can be further reduced.
  • adverse effects caused directly or indirectly by the interruption of the power supply to the terminal 5 or 7 can be further suppressed.
  • FIG. 2 is a diagram illustrating a configuration example of the power control apparatus mounted on the power repeater according to the present embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a terminal equipped with a power management apparatus.
  • the terminal 5 includes a power supply plug 51, and the power supplied via the plug 51 is input to the main body 55.
  • the main body 55 includes a basic unit 56 that is supplied with power even in a power saving mode in which power consumption is reduced by a power saving function, an additional unit 57 that is not supplied with power in the power saving mode, and a breaker that can cut off power supply to the additional unit 57 58.
  • the terminal 5 is configured to reduce power consumption by interrupting or releasing the power supply to the additional unit 57 depending on whether or not the power saving mode is set.
  • the configuration shown in FIG. 3 is an example, and power consumption may be reduced according to the type of the terminal 5. For this reason, the power saving function mounted on the terminal 5 is not limited.
  • the reduction in power consumption may be realized by changing the frequency of a clock used for processing, decreasing the response speed of each unit, or the like.
  • the terminals 5 are all configured as shown in FIG.
  • the power management device 6 includes a communication unit 61, a control unit 62, a power value response unit 63, and a storage unit 64.
  • the communication unit 61 communicates with the power control device 2 of the power repeater 1 located on the upstream side via the power line.
  • the power control apparatus 2 instructs the power management apparatus 6 to transmit information related to the terminal 5 and shift to the power saving mode.
  • the control unit 62 processes the instruction received by the communication unit 61.
  • the transition to the power saving mode is performed by causing the breaker 58 in the main body 55 to cut off the power.
  • the power value response unit 63 inputs a power consumption value from the main body 55 as needed, for example, and outputs the power consumption value to the control unit 62 in response to a request from the control unit 62.
  • the storage unit 64 stores information on priority, rated value, and power saving value as information relating to the terminal 5.
  • Priority is a value that represents the priority for shutting off power supply.
  • a higher value indicates that power supply should not be cut off. Accordingly, a higher priority is assigned to the terminal 5 that should not cut off the power supply.
  • the rated value is the maximum power consumption value assumed by the terminal 5.
  • the power saving value is the maximum power consumption value when the power saving mode is set.
  • the control unit 62 causes the communication unit 61 to transmit various information input from the power value response unit 63 to the power control device 2 of the upstream power repeater 1.
  • the power control device 2 of each power repeater 1 can directly recognize the existence of the terminal 5 that supplies power, and can acquire information necessary for controlling power consumption from the terminal 5. it can.
  • the priority can be changed by an instruction to be received by the communication unit 61. This is because the importance of the terminal 5 may be different depending on the person who uses the terminal 5 or the department. Thereby, in this embodiment, the possibility that the power supply is interrupted can be controlled through the priority according to the person, department, or situation of use. If there is no need to change the priority according to the department or situation, the priority may be fixed.
  • the configuration example shown in FIG. 2 is for the case of the power strip 1-4, for example.
  • the power strip 1-4 as the power repeater 1 has a plurality of outlets 11 (11-1, 11-2,...) And plugs for connection to the wall outlet 1-3. 12 is provided.
  • the power control device includes a communication unit 21, a control unit 22, a storage unit 23, an ammeter 24 arranged for each outlet 11, a breaker 25 arranged for each outlet, a key group 26, and a display unit 27. Since the appliance provided for power supply in the power repeater 1 is not limited to the outlet 11, the outlet 11 is hereinafter referred to as an outlet.
  • the outlet is used as a general term for a supply port that supplies power to the downstream side.
  • “OL” is an abbreviation for outlet
  • “OL1” represents the outlet 11-1.
  • “1” of “OL1” and “11-1” is the identification information of the outlet 11, and each outlet 11 is represented by using the identification information.
  • the identification information is hereinafter referred to as an outlet number.
  • the communication unit 21 performs communication via a power line.
  • the ammeter 24 and the breaker 25 arranged for each outlet 11 are used for measuring the electric power supplied via the corresponding outlet 11 and cutting off the electric power supply, respectively.
  • the control unit 22 refers to the measurement result of the wattmeter 24 and controls the breaker 25. The reason why the ammeter 24 is used for the power measurement is that it is assumed that the power is fixed.
  • the storage unit 23 is a storage device used by the control unit 22 for processing, and stores power management information 23a.
  • the power management information 23 a is information in a form in which each information of current value, rated value, power saving value, and priority of power consumption is collected for each outlet 11.
  • the current value is a power consumption value obtained from the measurement result of the ammeter 24.
  • the rated value is a rated value transmitted from the terminal 5 when the terminal 5 is connected to the downstream side. When the terminal 5 is not connected on the downstream side, the current value is treated as the rated value.
  • the power saving value is a power consumption value when the terminal 5 located on the downstream side is shifted to the power saving mode.
  • the current value is treated as a power saving value.
  • the priority is specified by the terminal 5 or 7 existing on the downstream side. In the present embodiment, the lowest priority of the terminal 7 that cannot communicate via the power line is 1. When there are a plurality of terminals 5 on the downstream side, the highest priority among the terminals 5 is adopted. Therefore, the priority may be 2 or more only when one or more terminals 5 exist on the downstream side.
  • Total written in the power management information 23 a represents the total value of each outlet 11. The total value is calculated for all of the current value, the rated value, the power saving value, and the priority. As the priority, the maximum value is adopted among the priorities of the outlets 11 in the same manner as the priorities of the outlets 11.
  • power consumption is reduced (suppressed) when a target value is input. This is because it is considered that the input of the target value is performed with the intention of reducing power consumption.
  • the key group 26 and the display unit 27 can be used by a manager to specify (input) a target value.
  • the information to be input may be information other than the target value as long as it is information indicating the amount of power that can be supplied. For example, it may be information indicating the amount of power to be reduced.
  • the current value (OLx) that is confirmed for each outlet 11 by the power control device 2 configured as shown in FIG. 2 corresponds to the total amount of power supplied to the downstream side through the outlet 11.
  • the target value is directly specified from the upstream power repeater 1 connected to the power repeater 1 located downstream of the power repeater 1 as a starting point.
  • the power repeater 1 to which the target value is specified performs control so that the amount of power supplied to the downstream side becomes lower than the target value. For this reason, the key group 26 and the display unit 27 are not essential components.
  • the target value designated by the manager or the power repeater 1 is referred to as “power saving target value”.
  • each power repeater 1 depends on the terminal 5 existing on the downstream side. When only the terminal 7 exists without the terminal 5 on the downstream side, power consumption is not reduced by shifting to the power saving mode. However, in another power repeater 1, there is a possibility that the power consumption can be reduced more than required by the power saving target value by the terminal 5 existing on the downstream side. For this reason, in the present embodiment, when the current value (total) is larger than the target value, the power relay 1 that is the starting point causes all terminals 5 that can shift to the power saving mode to shift to the power saving mode. If the current value (total) exceeds the target value due to the shift, the prescribed power repeater 1 cuts off the power supply to the required number of terminals 5 or 7 according to the priority. It has become.
  • the power control device 2 of each power repeater 1 executes the following process depending on the situation. Here, the processing will be described in detail with reference to FIGS.
  • FIG. 4 is a flowchart of the measurement process.
  • This measurement process is a process performed by the control unit 22 for confirming the amount of power supplied from the own power repeater 1 to the downstream side and acquiring information necessary for controlling the power supply.
  • the power repeater 1 located in the uppermost stream for example, it is executed every time a predetermined time elapses.
  • the power repeater 1 connected directly from the upstream power repeater 1 is connected. Performed by request.
  • the power management information 23a stored in the storage unit 23 is created or updated by executing this measurement process.
  • a processing loop (S1) for specifying the current value (OLx), the priority (OLx), the rated value (OLx), and the power saving value (OLx) is executed.
  • the control unit 22 acquires a measurement value of the ammeter 24 of the target outlet 11, calculates a power consumption value from the acquired measurement value, and calculates the calculated power consumption value as a current value (OLx ) In the current management information 23a (S11).
  • the outlet 11 targeted first is, for example, the outlet 11 with the smallest outlet number, and the outlet 11 targeted next is the outlet 11 with the next largest outlet number.
  • control unit 22 instructs the communication unit 21 to make an inquiry to the terminal 5 connected to the target outlet 11 (S12). After making the inquiry, the control unit 22 determines whether there is a response to the inquiry from downstream (S13).
  • the control unit 62 of the terminal 5 transmits information on the power consumption value, the rated value, the power saving value, and the priority from the communication unit 61 as a response. Let Therefore, the determination in S13 is Yes, and the control unit 22 then sets the received priority, rated value, and power saving value as the priority (OLx), rated value (OLx), and power saving value (OLx), respectively. It stores in the current management information 23a (S14). Thereafter, if there is another outlet 11 to be targeted, the targeted outlet 11 is changed, and the process of S11 is executed again.
  • the control unit 22 next sets the lowest value 1 as the priority (OLx), and the current value (OLx) as the rated value (OLx) and the power saving value (OLx). It stores in the current management information 23a (S15). Thereafter, if there is another outlet 11 to be targeted, the targeted outlet 11 is changed, and the process of S11 is executed again.
  • the control unit 22 obtains the current value (total), the priority (total), the rated value (total), and the power saving value (total), and stores them in the current management information 23a.
  • the obtained current value (total) is the total value of the current values (OLx) of each outlet 11 (denoted as “total of current values (each OLx)” in FIG. 4).
  • the priority (total) is a maximum value of the priority (OLx) of each outlet 11 (denoted as “maximum value of priority (each OLx)” in FIG. 4).
  • the rated value (total) is the total value of the rated values (OLx) of each outlet 11 (indicated as “total of rated values (each OLx)” in FIG. 4).
  • the power saving value (total) is the total value of the power saving values (OLx) of each outlet 11 (denoted as “total of power saving values (each OLx)” in FIG. 4).
  • the power repeater 1 executes a measurement process in response to the inquiry. Thereby, all the power repeaters 1 existing on the downstream side of the outlet 11 execute the measurement process.
  • FIG. 5 is a flowchart of the power saving process.
  • the power saving process illustrated in FIG. 5 is a process executed by the control unit 22 when, for example, a power saving target value is input. Next, the power saving process will be described in detail with reference to FIG.
  • the input of the power saving target value is performed by an operation on the key group 26 by the administrator or by reception from the upstream power repeater 1 by the communication unit 21.
  • control unit 22 acquires a power saving target value input by an operation on the key group 26 or reception by the communication unit 21 (S21).
  • control part 22 performs a power saving mode switching process (S22).
  • This power saving mode switching process is a process performed to switch the terminal 5 existing on the downstream side from the normal mode to the power saving mode.
  • the power saving mode switching process will be described in detail with reference to the flowchart shown in FIG.
  • a process for determining a power saving target value in the target outlet 11 while changing the target outlet 11 and requesting power saving to the downstream side connected to the target outlet 11 A loop (S30) is executed.
  • the processing loop of S30 specifically, the following processing is executed.
  • the control unit 22 determines the magnitude relationship between the current value (total) and the power saving target value (S31). If the current value (total) is less than or equal to the power saving target value, this is determined in S31, and a power saving request to the downstream side connected to another outlet 11 is unnecessary, and the power saving mode switching process ends here. . If the current value (total) is larger than the power saving target value, this is determined in S31, and the process proceeds to S32.
  • control unit 22 calculates a power saving target value that should be targeted on the downstream side connected to the target outlet 11.
  • the control unit 22 causes the communication unit 21 to transmit the calculated power saving target value to the downstream side (S33).
  • the calculation of the power saving target value for each outlet 11 is performed so that, for example, the difference between the power saving target value and the current value (total) is shared downstream of each outlet 11.
  • the power saving target value is calculated by the following formula.
  • Power saving target value current value (OLx)-(current value (total) -MAX (input power saving target value, Power saving value (total))) x (current value (OLx) -Power saving value (OLx)) / (current value (total) -Power saving value (total)) (1)
  • the control unit 62 of the power management device 6 of the terminal 5 controls the breaker 58 to cut off the power supply to the adding unit 57. Thereby, the electric energy supplied from the outlet 11 made into object is reduced.
  • the power repeater 1 executes the power saving mode switching process by receiving the power saving target value.
  • the control unit 22 After transmitting the power saving target value, the control unit 22 executes the measurement process shown in FIG. 4 (S34). The measurement process is executed in order to confirm the power saving effect due to the transmission of the power saving target value. The confirmation result is used when the process of S31 is executed next.
  • control unit 22 determines the magnitude relationship between the current value (total) and the power saving target value. If the current value (total) is less than or equal to the power saving target value, this is determined in S23, and the power saving process ends here. If the current value (total) is larger than the power saving target value, this is determined in S23, and the process proceeds to S24.
  • the shift to S24 means that the necessary power consumption cannot be reduced only by shifting all the terminals 5 existing on the downstream side to the power saving mode. From this, in S24, the control part 22 performs the interruption
  • the power saving process is executed by inputting the power saving target value.
  • the power saving process may be automatically executed.
  • the terminal 5 may be shifted to the power saving mode simply to reduce power consumption. That is, the power saving mode switching process may be executed separately from the cutoff control process. Thereby, the power saving mode switching process may be executed simply by an execution request for the process.
  • FIG. 7 is a flowchart of the shutoff control process. Next, the shutoff control process will be described in detail with reference to FIG.
  • the interruption control process includes a processing loop (S60) including a processing loop (S70) for cutting off the power supply to the terminals 5 and 7 that should cut off the power supply while changing the target outlet 11. ) Exists.
  • the processing loop of S60 is for cutting off the power supply to the terminals 5 and 7 below the priority while sequentially increasing the target priority.
  • control unit 22 determines the magnitude relationship between the current value (total) and the power saving target value (S71). If the current value (total) is less than or equal to the power saving target value, this is determined in S71, and no further power supply interruption is necessary, and the interruption control process ends here. If the current value (total) is larger than the power saving target value, this is determined in S71, and the process proceeds to S72.
  • the control unit 22 determines the magnitude relationship between the priority (OLx) of the target outlet 11 and the priority P at present. If the priority (OLx) is equal to or lower than the priority P, this is determined in S72. In that case, the control unit 22 controls the breaker 25 of the outlet 11 as a target to cut off the power supply (S73). Thereafter, in order to confirm the result of shutting off the power supply, the control unit 22 executes a measurement process (S75).
  • the control unit 22 instructs the communication unit 21 to transmit the priority P to the downstream side of the target outlet 11 (S74).
  • the transmission of the priority P is based on the premise that another power repeater 1 is connected downstream. Since the priority (total) transmitted by the power repeater 1 is the maximum value among the priorities (OLx), there may be an outlet 11 having a priority (OLx) smaller than the priority P. Accordingly, the power repeater 1 that has received the priority P cuts off the power supply from the outlet 11 having a priority (OLx) smaller than the priority P. Therefore, the process proceeds to S75 thereafter.
  • the power repeater 1 to which the priority P has been transmitted in the process of S74 executes a shutoff control process as shown in FIG.
  • the processing loop of S60 does not exist, and the priority P is only the received priority P. This is because the power supply at the outlet 11 with the priority (OLx) higher than the received priority P is not cut off.
  • the received priority P is transmitted to the outlet 11 to which another power repeater 1 is connected on the downstream side.
  • the power supply to the terminals 5 and 7 is cut off, the power supply to the required number of terminals 5 and 7 is cut off from the lower priority. Therefore, the power supply is cut off only for the minimum terminals 5 and 7, which are less important.
  • FIG. 8 is a diagram for explaining an example of a power relay actually used and terminals connected to each power relay.
  • the power repeater 1-4-1 that is a power strip provided with five outlets 11-1 to 11-5 is connected to a power repeater 1-4-1 provided with two outlets 11-1 and 11-2.
  • the power repeaters 1-4-2 and 1-4-3 which are two power strips, are connected.
  • the power repeaters 1-4-2 and 1-4-3 are connected to the outlets 11-1 and 11-5 of the power repeater 1-4-1.
  • Terminals 5-3, 7-1, and 7-2 are connected to the outlets 11-2 to 11-4 of the power repeater 1-4-1.
  • Terminals 5-1 and 5-2 are connected to the outlets 11-1 and 11-2 of the power repeater 1-4-2, respectively.
  • Terminals 7-3 and 5-4 are connected to outlets 11-1 and 11-2 of the power repeater 1-4-3, respectively.
  • the terminal 5-1 is an electrical device having a priority of 1, a current value of 1320W, a rated value of 1500W, and a power saving value of 1000W.
  • the terminal 5-2 is an electric device having a priority of 2, a current value of 2200 W, a rated value of 2500 W, and a power saving value of 2000 W.
  • the terminal 5-3 is an electrical device having a priority of 2, a current value of 600W, a rated value of 750W, and a power saving value of 460W.
  • the terminal 5-4 is an electrical device having a priority of 2, a current value of 290 W, a rated value of 350 W, and a power saving value of 150 W.
  • the terminals 7-1 to 7-3 are electrical devices having current values of 1190W, 850W, and 150W, respectively. Since these terminals 7-1 to 7-3 are non-compatible devices that do not have a communication function with the connected power repeater 1-4, 1 is set as the priority.
  • FIG. 9 is a diagram for explaining the contents of the power management information held in each power repeater in the case of the connection configuration shown in FIG.
  • the power management information is given any one of 23a1 to 23a3 as a code.
  • Reference numeral 23a1 represents power management information held in the power repeater 1-4-1.
  • 23a2 and 23a3 represent power management information held in the power repeaters 1-4-2 and 1-4-3, respectively.
  • the rated value and the power saving value are the same as the current value.
  • each of the power repeaters 1-4-1 to 1-4-3 operates as follows. An example of the power saving target value will be given and described in detail.
  • FIGS. 10A to 10D show that when 6000 W is input as a power saving target value, the power repeaters 1-4-1 execute the power saving process to the power repeaters 1-4-1 and 1-4-2. It is a figure explaining the change of the content of the electric power management information hold
  • the power repeater 1-4-1 has a current value (total) of 6600 W. Therefore, when 6000 W is input as the power saving target value, the power relay connected to the outlet 11-1 The power saving target value to be transmitted to the device 1-4-2 is calculated. As the power saving target value, 3120 W is calculated by the equation (1). The calculated power saving target value is transmitted to the power repeater 1-4-2.
  • the power repeater 1-4-2 shifts the terminal 5-1 connected to the outlet 11-1 to the power saving mode upon reception of the power saving target value.
  • the current value of the outlet 11-1 is reduced to 1000 W, which is the same as the power saving value.
  • the current value (total) is 3200W, which is larger than the power saving target value of 3120W. Therefore, the power repeater 1-4-2 shifts the terminal 5-2 connected to the outlet 11-2 to the power saving mode.
  • the current value of the outlet 11-2 is reduced to 2000 W, which is the same as the power saving value, and the current value (total) is 3000 W, which is 3120 W or less, which is the power saving target value.
  • the power repeater 1-4-1 confirms that the amount of power supplied from the outlet 11-1 is 3000 W by executing the measurement process, and updates the power management information as shown in FIG. 10C. However, the current value (total) is 6060 W, which is larger than the power saving target value of 6000 W. Therefore, the power repeater 1-4-1 calculates a power saving target value for the terminal 5-3 connected to the outlet 11-2, and instructs the terminal 5-3 to shift to the power saving mode. At this time, the calculated power saving target value is 560 W.
  • the terminal 5-3 shifts to the power saving mode in response to a shift instruction to the power saving mode from the power repeater 1-4-1.
  • the power repeater 1-4-1 confirms that the amount of power supplied from the outlet 11-2 is 460 W by executing the measurement process, and updates the power management information as shown in FIG. 10D. To do.
  • the updated current value (total) is 5940 W, which is smaller than the power saving target value of 6000 W. For this reason, the power repeater 1-4-1 ends the power saving process.
  • FIGS. 11A to 11D show that when 5600 W is inputted as a power saving target value, the power repeater 1-4-1 executes the power saving process to cause the power repeaters 1-4-1 to 1-4-3 to It is a figure explaining the change of the content of the electric power management information hold
  • the power repeater 1-4-1 calculates a power saving target value to be transmitted to the power repeater 1-4-3 connected to the outlet 11-5, and uses the calculated power saving target value as the power repeater 1 -4-3. Thereby, the power repeater 1-4-3 shifts the terminal 5-4 connected to the outlet 11-2 to the power saving mode.
  • the power repeater 1-4-1 updates the current value (OL5) of the outlet 11-5 from 440 W to 300 W and updates the current value (total) from 5940 W to 5800 W, as shown in FIG. 11A. .
  • the power repeater 1-4-3 updates the current value (OL2) of the outlet 11-2 from 300 W to 150 W, and updates the current value (total) from 440 W to 300 W.
  • the current value (total) after being updated is 5800 W, which is larger than 5600 W input as the power saving target value. This means that even if all the terminals 5-1 to 5-4 directly or indirectly connected to the power repeater 1-4-1 are shifted to the power saving mode, the current value (total) does not become 5600W or less. Means that. Therefore, the power repeater 1-4-1 executes the interruption control process shown in FIG. As a result, the power repeater 1-4-1 transmits a priority P having a value of 1 to the power repeater 1-4-2.
  • the power repeater 1-4-2 controls the breaker 25 of the outlet 11-1 by receiving the priority P having a value of 1, and cuts off the power supply from the outlet 11-1.
  • the power repeater 1-4-2 updates the current value (OL1) of the outlet 11-1 from 1000 W to 0 W, and updates the current value (total) from 3000 W to 2000 W.
  • the power repeater 1-4-1 updates the current value (OL1) of the outlet 11-1 from 3000 W to 2000 W, and updates the current value (total) from 5800 W to 4800 W. Since 5800W is equal to or less than 5600W, the cutoff control process ends here.
  • the power consumption of the terminals 5-1 to 5-4 and the terminals 7-1 to 7-3 as a whole is first reduced by shifting the terminals 5-1 to 5-4 to the power saving mode. If the amount of power consumption reduction is insufficient even when all the terminals 5-1 to 5-4 are shifted to the power saving mode, the terminals 5-1 to 5-4 and the terminals 7-1 to 7-3 The power supply is cut off until a sufficient reduction amount is obtained from the lower priority. In this way, the interruption of power supply to the terminals 5-1 to 5-4 and the terminals 7-1 to 7-3 is minimized.
  • a command requesting the cancellation is input from the power repeater 1 including the key group 26. You can do it in.
  • each power repeater 1 is caused to shift from the power saving mode to the normal mode or / and to restart the power supply. You may make it make it transfer to mode, and also interruption
  • the power repeater 1 instructs the terminal 5 to shift to the power saving mode via the power line, but this is another signal line connecting the power repeater 1 and the terminal 5. This is to make it unnecessary. By not using another signal line, it is advantageous in terms of convenience in arranging the power repeater 1 and cost reduction.
  • a transition to the power saving mode may be instructed by another signal line.
  • the terminal 5 holds the priority as information, but this priority is acquired by each power repeater 1 directly or indirectly from an external device other than the terminal 5. Also good. Although the transition of the terminals 5 to the power saving mode is performed for all the terminals 5, only a required number of terminals 5 may be shifted to the power saving mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Sources (AREA)

Abstract

 本発明を適用した1システムでは、電力中継器を1つ以上、用いて、各電気機器への電力供給が行われる。電力中継器は、電力を下流側に供給するための1つ以上の出力口と、出力口毎に、該出力口と接続されている下流側と通信を行うための通信手段と、通信手段を用いて、出力口毎に、該出力口の下流側に位置する電気機器のなかで節電機能を備える第1の電気機器に節電機能の動作を要求可能な制御手段と、を有する。

Description

電力中継器、及び消費電力低減方法
 本発明は、電力が供給される機器全体を対象に、消費電力を低減(抑制)するための技術に関する。
 通常、建物等の施設への電力供給は、予め定めた契約容量までの範囲内で行われる。その契約容量を超える異常な電力供給を回避するために、施設にはブレーカー、或いはヒューズ等の配線用遮断器が設けられるのが普通である。
 建物等の施設では、多数の電気機器が使用されるのが普通である。配線用遮断器が作動した場合、作動した配線用遮断器を介して電力が供給されていた全ての電気機器への電力供給が直ちに遮断される。
 しかし、電気機器のなかには、電力供給を直ちに遮断すべきでないものも存在する。例えばPC(Personal Computer)等の情報処理装置は、停止させるには或る程度の時間が必要であり、電力供給を直ちに遮断させた場合、必要なデータが失われるといった不具合が発生する可能性が高い。また、照明器具や消防設備等は、安全性の面から、常に電力を供給可能にすべきと云える。このようなことから、施設に予め設けられた配線用遮断器は作動させないようにするのが望ましい。
 電機機器への電力供給は、主配電盤、配電盤、壁コンセント等の電力中継器を複数、介して行われる。このことから、従来の電力中継器、例えば1つ以上のコンセントが設けられた電源タップのなかには、コンセントを介した電力供給を遮断できるようになっているものがある。このような従来の電力中継器を用いた場合、コンセントを介した電力供給を個別に遮断することにより、予め設けられた配線用遮断器が作動しないように施設全体の消費電力を抑えることができる。
 この従来の電力中継器に接続された電気機器は、必要に応じて優先的に電力供給が遮断される。そのため、この従来の電力中継器には、優先的に電力供給が遮断されても良い電気機器を接続させなくてはならない。
 しかし、電気機器への電力供給は、使用するのを前提として行われる。それにより、例え使用頻度、或いは重要度の低い電気機器であっても、電力を供給させている場合、その電気機器を使用しているか、或いは使用しようとする人が居る可能性がある。電気機器への電力供給の遮断は、その電気機器を使用している人、或いは使用しようとする人に、直接的、或いは間接的に悪影響を及ぼし、作業効率を低下させる。このようなことから、例え総合的に重要度の低い電気機器であっても電力供給の遮断は行われないようにするのが望ましいと云える。
特開2006-146293号公報 特開2003-32290号公報 特開2005-4243号公報 WO04/53696
 1側面では、本発明は、電気機器への電力供給の遮断を行うことなく、電気機器全体の消費電力を低減させるための技術を提供することを目的とする。
 本発明を適用した1システムは、電力を下流側に供給するための1つ以上の出力口と、出力口毎に、該出力口と接続されている下流側と通信を行うための通信手段と、通信手段を用いて、出力口毎に、該出力口の下流側に位置する電気機器のなかで節電機能を備える第1の電気機器に節電機能の動作を要求可能な制御手段と、を有する電力中継器を1つ以上、用いて、各電気機器への電力供給が行われる。
 本発明を適用した1システムでは、電気機器への電力供給の遮断を行うことなく、電気機器全体の消費電力を低減させることができる。
本実施形態による電力中継器を用いて構築された電力分配システムの構成例を説明する図である。 本実施形態による電力中継器に搭載された電力制御装置の構成例を説明する図である。 電力管理装置を搭載した端末の構成例を説明する図である。 測定処理のフローチャートである。 節電処理のフローチャートである。 節電モード切替処理のフローチャートである。 遮断制御処理のフローチャートである。 実際に使用された電力中継器、及び各電力中継器に接続された端末の例を説明する図である。 図8に表す接続構成の場合に、各電力中継器に保持される電力管理情報の内容を説明する図である。 節電目標値として6000Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その1)。 節電目標値として6000Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その2)。 節電目標値として6000Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その3)。 節電目標値として6000Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その4)。 節電目標値として5600Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その1)。 節電目標値として5600Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その2)。 節電目標値として5600Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その3)。 節電目標値として5600Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である(その4)。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
 図1は、本実施形態による電力中継器を用いて構築された電力分配システムの構成例を説明する図である。この電力分配システムは、建物、或いは工場等の施設に供給された電力を電気機器5、7に分配するために構築されたシステムである。図1に表すように、施設に供給された電力は主配電盤1(1-1)、複数の配電盤1(1-2)のうちの一つ、及び多数、存在する壁コンセント1(1-3)のうちの一つを介して電気機器5、7に供給可能になっている。図1では、壁コンセント1(1-3)の他に、電源タップ1(1-4)を更に介して電気機器5、7に電力が供給される様子を表している。電気機器5、7は図1中「端末」と表記している。以降、電気機器は端末と表記する。電力分配システムの構成は、図1に表すような例に限定されない。
 図1に表す主配電盤1-1、配電盤1-2、及び壁コンセント1-3の全て、並びに電源タップ1-4の殆どには電力制御装置2が搭載されている。主配電盤1-1、配電盤1-2、壁コンセント1-3、及び電源タップ1-4は全て、上流側から供給された電力を下流側に供給する電力中継器である。電力制御装置2が搭載された主配電盤1-1、配電盤1-2、壁コンセント1-3、及び電源タップ1-4は全て本実施形態による電力中継器である。電力中継器の種類を特に限定する必要がないような場合、以降「電力中継器1」と表記する。
 図1中の実線の矢印は、電力線を介して電力が供給される向きを表している。図1中の点線の矢印は、通信線、つまり各電力中継器1に搭載された電力制御装置2が通信を行う対象を表している。各電力中継器1に搭載された電力制御装置2は、上流側に位置する電力中継器1の電力制御装置2、及び下流側に位置する電力中継器1の電力制御装置2、或いは端末5の電力管理装置6と通信が可能となっている。主配電盤1-1の上流側には、施設によって配置される電力中継器は存在しない。このため、主配電盤1-1に搭載された電力制御装置2は、下流側とのみ通信を行う。
 端末5に搭載された電力管理装置6は、図1に表すように、上流側に位置する電力中継器1の電力制御装置2との通信を行うことができる。その通信は、電力管理装置6が搭載されていない端末7は行うことができない。このことから、ここでは端末5、7を区別している。本実施形態では、電力管理装置6は、節電機能を備えた端末5に搭載させるようにしている。これは、以下のような理由からである。
 現在、消費電力を通常よりも低減できる節電機能は電気機器に広く搭載されている。例えばPCでは、スリープ状態に移行させる節電機能が搭載されるだけでなく、CPU(Central Processing Unit)のクロック周波数を低下させることにより、消費電力を低減する節電機能が搭載されるようになっている。そのスリープ状態に移行させる節電機能は、複写機、プリンター等のOA(Office Automation)機器にも広く搭載されている。節電機能としては、使用頻度の比較的に低い回路への電力供給を遮断して消費電力を低減させる節電機能もある。
 このようなことから、本実施形態では、施設全体の消費電力の低減に、端末5の節電機能を積極的に活用するようにしている。端末5の節電機能を積極的に活用することにより、電力供給の遮断が必要になる端末5、或いは7の数はより抑えられるようになる。それにより、端末5、或いは7への電力供給の遮断によって直接的、或いは間接的に発生する悪影響もより抑えられるようになる。
 図2は、本実施形態による電力中継器に搭載された電力制御装置の構成例を説明する図である。図3は、電力管理装置を搭載した端末の構成例を説明する図である。次に図2、及び図3を参照し、電力中継器1、及び端末5の各構成について具体的に説明する。
 始めに、図3を参照し、端末5の構成について説明する。
 図3に表すように、端末5は、電力供給用のプラグ51を備え、そのプラグ51を介して供給される電力が本体55に入力される構成となっている。本体55は、節電機能により消費電力を低減させる節電モード時にも電力が供給される基本部56と、節電モード時には電力が供給されない付加部57と、付加部57への電力供給を遮断可能なブレーカー58とを備える。それにより、端末5は、節電モードが設定されているか否かに応じて、付加部57への電力供給の遮断、或いは遮断の解除を行うことにより、消費電力を低減できる構成となっている。
 図3に表す構成は一例であり、消費電力の低減は、端末5の種類に応じて行えば良い。このことから、端末5に搭載される節電機能は限定されない。消費電力の低減は、処理に用いられるクロックの周波数の変更、各部のレスポンス速度の低下、等によって実現させても良い。ここでは、説明上、便宜的に、端末5は全て図3に表すような構成であると想定する。
 電力管理装置6は、通信部61、制御部62、電力値応答部63、及び記憶部64を備える。通信部61は、電力線を介して、上流側に位置する電力中継器1の電力制御装置2と通信を行う。その電力制御装置2は、電力管理装置6に対し、端末5に係わる情報の送信、節電モードへの移行、等の指示を行う。
 制御部62は、通信部61が受信した指示を処理する。節電モードへの移行は、本体55内のブレーカー58に電力を遮断させることで行われる。
 電力値応答部63は、例えば本体55から消費電力値を随時、入力し、制御部62からの要求に応じて、消費電力値を制御部62に出力する。記憶部64は、端末5に係わる情報として、優先度、定格値、及び節電値の各情報を格納する。
 優先度は、電力供給を遮断するうえでの優先順位を表す値である。本実施形態では、高い値ほど、電力供給を遮断すべきでないことを表している。それにより、電力供給を遮断すべきでない端末5ほど、高い値の優先度が割り当てられる。
 定格値は、端末5の想定する最大消費電力値である。節電値は、節電モード設定時の最大消費電力値である。
 記憶部64に格納されたこれらの情報は、制御部62の指示により、電力値応答部63によって読み出され、制御部62に出力される。制御部62は、電力値応答部63から入力した各種情報を通信部61により上流側の電力中継器1の電力制御装置2宛に送信させる。それにより、各電力中継器1の電力制御装置2は、直接、電力を供給する端末5の存在を認識することができると共に、その端末5から消費電力の制御に必要な情報を取得することができる。
 上記優先度は、通信部61に受信させる指示により、変更可能となっている。これは、端末5を使用する人、或いは部署等により、その端末5の重要度が異なる可能性があるためである。それにより、本実施形態では、使用する人、部署、或いは状況等により、優先度を通して、電力供給が遮断される可能性を制御できるようにさせている。部署、或いは状況等により、優先度を変更する必要のない場合、優先度は固定とさせても良い。
 次に、図2を参照し、電力中継器1の構成について説明する。
 図2に表す構成例は、例えば電源タップ1-4の場合のものである。図2に表すように、電力中継器1である電源タップ1-4は、複数のコンセント11(11-1、11-2、・・・)、及び壁コンセント1-3との接続用のプラグ12を備えている。電力制御装置は、通信部21、制御部22、記憶部23、コンセント11毎に配置された電流計24、コンセント毎に配置されたブレーカー25、キー群26、及び表示部27を備えている。電力中継器1に電力供給用に設けられる器具はコンセント11に限定されないことから、以降、コンセント11はアウトレットと表記する。つまりアウトレットは、下流側に電力を供給する供給口の総称として用いる。図2に表記の「OL」はアウトレットの略記であり、「OL1」はアウトレット11-1を表している。「OL1」及び「11-1」の「1」はアウトレット11の識別情報であり、その識別情報を用いて個々のアウトレット11を表している。その識別情報は以降、アウトレット番号と呼ぶことにする。
 通信部21は、電力線を介した通信を行う。アウトレット11毎に配置された電流計24、及びブレーカー25は、それぞれ、対応するアウトレット11を介して供給される電力の測定、及び電力供給の遮断に用いられる。制御部22は、電力計24の測定結果の参照、及びブレーカー25の制御を行う。電力の測定に電流計24を用いているのは、電圧が固定の電力の供給を想定しているためである。
 記憶部23は、制御部22が処理に用いられる記憶装置であり、電力管理情報23aが格納される。この電力管理情報23aは、アウトレット11毎に、消費電力の現在値、定格値、節電値、及び優先度の各情報をまとめた形の情報である。
 現在値は、電流計24の測定結果から得られる消費電力値である。定格値は、下流側に端末5が接続されていた場合、その端末5から送信される定格値である。下流側に端末5が接続されていない場合、現在値が定格値として扱われる。
 節電値は、下流側に位置する端末5を節電モードに移行させた場合の消費電力値である。下流側に端末5が接続されていない場合、現在値が節電値として扱われる。優先度は、下流側に存在する端末5或いは7によって特定される。本実施形態では、電力線を介した通信が行えない端末7の優先度は最も低い1としている。下流側に複数台の端末5が存在する場合、その端末5のなかで最大の優先度が採用される。このことから、下流側に1台以上の端末5が存在する場合にのみ、優先度は2以上となる可能性がある。
 以降、対応するアウトレット11との関係を明確にする必要がある場合、符号11-1を付すアウトレット11-1の現在値は「現在値(OL1)」と表記する。対応するアウトレット11が不明、或いは特定する必要の無い場合、「現在値(OLx)」と表記する。他の定格値、節電値等もこの表記法を用いる。
 電力管理情報23a中に表記の「合計」は、各アウトレット11の合計値を表している。合計値は、現在値、定格値、節電値、及び優先度の全てが対象に計算される。優先度は、アウトレット11毎の優先度と同じく、各アウトレット11の優先度のなかで最大値が採用される。
 本実施形態では、消費電力の低減(抑制)は、目標値が入力された場合に行うようにさせている。これは、目標値の入力は消費電力を低減させることを意図して行われたと見なすためである。キー群26、及び表示部27は、管理者が目標値の指定(入力)に用いることができる。入力させる情報は、供給可能な電力量を表す情報であれば良いことから、目標値以外であっても良い。例えば低減すべき電力量を表す情報であっても良い。
 図2に表すような構成の電力制御装置2でアウトレット11毎に確認される現在値(OLx)は、そのアウトレット11を介して下流側に供給される総電力量に相当する。これは、上流側に位置する電力中継器1ほど、より広範囲の消費電力値を確認できることを意味する。このことから、本実施形態では、消費電力の制御のための処理は、起点とする電力中継器1、及びその下流側に位置する電力中継器1に行わせるようにしている。それにより、消費電力を低減させるべき範囲内での消費電力の低減を可能にさせている。
 起点とする電力中継器1の下流側に位置する電力中継器1には、直接、接続された上流側の電力中継器1から目標値が指定される。目標値が指定された電力中継器1は、それよりも下流側に供給される電力量がその目標値以下となるようにするための制御を行う。このことから、上記キー群26、及び表示部27は必須の構成要素ではない。以降、管理者、或いは電力中継器1によって指定される目標値は「節電目標値」と表記する。
 各電力中継器1で低減される消費電力量は、それよりも下流側に存在する端末5に依存する。下流側に端末5が存在せずに端末7のみが存在する場合、節電モードへの移行による消費電力の低減は行わない。しかし、他の電力中継器1では、下流側に存在する端末5によって、節電目標値により要求する以上の消費電力の低減を行える可能性がある。このようなことから、本実施形態では、起点となる電力中継器1は、目標値より現在値(合計)が大きい場合、節電モードへの移行が可能な端末5は全て節電モードに移行させる。その移行によっても現在値(合計)が目標値を超えている場合、規定となる電力中継器1は、優先度に応じて、必要な数の端末5、或いは7への電力供給を遮断させるようになっている。
 各電力中継器1の電力制御装置2は、状況に応じて、以下のような処理を実行する。ここで図4~図7を参照し、その処理について詳細に説明する。
 図4は、測定処理のフローチャートである。この測定処理は、自電力中継器1から下流側に供給される電力量の確認、及び電力供給の制御に必要な情報の取得のために制御部22が行う処理である。最上流に位置する電力中継器1では、例えば予め定めた時間が経過する度に実行され、それよりも下流側の電力中継器1では、直接、接続された上流側の電力中継器1からの要求によって実行される。記憶部23に格納された電力管理情報23aは、この測定処理の実行により、作成、或いは更新される。始めに図4を参照し、この測定処理について詳細に説明する。
 この測定処理では、先ず、アウトレット11毎に、現在値(OLx)、優先度(OLx)、定格値(OLx)、及び節電値(OLx)を特定するための処理ループ(S1)が実行される。このS1の処理ループでは、制御部22は、対象とするアウトレット11の電流計24の測定値を取得し、取得した測定値から消費電力値を計算し、計算した消費電力値を現在値(OLx)として電流管理情報23aに格納する(S11)。最初に対象とするアウトレット11は、例えばアウトレット番号が最小のアウトレット11であり、次に対象となるアウトレット11は、その次に大きいアウトレット番号のアウトレット11である。
 次に制御部22は、通信部21に指示して、対象とするアウトレット11に接続されている端末5への問い合わせを行う(S12)。その問い合わせを行った後に、制御部22は、下流から問い合わせへの応答があったか否か判定する(S13)。
 対象とするアウトレット11に接続されている端末5が存在する場合、その端末5の制御部62は、消費電力値、定格値、節電値、及び優先度の各情報を通信部61から応答として送信させる。このことから、S13の判定はYesとなり、制御部22は次に、受信した優先度、定格値、及び節電値をそれぞれ優先度(OLx)、定格値(OLx)、及び節電値(OLx)として電流管理情報23aに格納する(S14)。その後は、他に対象とすべきアウトレット11が存在するのであれば、対象とするアウトレット11を変更し、再度、S11の処理が実行される。
 一方、対象とするアウトレット11に接続されている端末5が存在しない場合、上記問い合わせへの応答は通信部21に受信されない。このことから、S13の判定はNoとなり、制御部22は次に、優先度(OLx)として最低値の1を、定格値(OLx)、及び節電値(OLx)として現在値(OLx)をそれぞれ電流管理情報23aに格納する(S15)。その後は、他に対象とすべきアウトレット11が存在するのであれば、対象とするアウトレット11を変更し、再度、S11の処理が実行される。
 他に対象とすべきアウトレット11が存在しない場合、S1の処理ループが終了し、S16に移行する。そのS16では、制御部22は、現在値(合計)、優先度(合計)、定格値(合計)、及び節電値(合計)をそれぞれ求め、電流管理情報23aに格納する。求められる現在値(合計)は、各アウトレット11の現在値(OLx)の合計値(図4中「現在値(各OLx)の合計」と表記)である。優先度(合計)は、各アウトレット11の優先度(OLx)の最大値(図4中「優先度(各OLx)の最大値」と表記)である。定格値(合計)は、各アウトレット11の定格値(OLx)の合計値(図4中「定格値(各OLx)の合計」と表記)である。節電値(合計)は、各アウトレット11の節電値(OLx)の合計値(図4中「節電値(各OLx)の合計」と表記)である。求めた現在値(合計)、優先度(合計)、定格値(合計)、及び節電値(合計)を電流管理情報23aに格納した後、この測定処理が終了する。
 アウトレット11に他の電力中継器1が接続されていた場合、その電力中継器1は、上記問い合わせを契機に、測定処理を実行する。それにより、アウトレット11の下流側に存在する各電力中継器1は、全て測定処理を実行する。
 図5は、節電処理のフローチャートである。図5に表す節電処理は、例えば節電目標値の入力を契機に、制御部22によって実行される処理である。次に図5を参照して、その節電処理について詳細に説明する。節電目標値の入力は、管理者によるキー群26への操作、或いは通信部21による上流側の電力中継器1からの受信によって行われる。
 先ず、制御部22は、キー群26への操作、或いは通信部21による受信によって入力された節電目標値を取得する(S21)。次に制御部22は、節電モード切替処理を実行する(S22)。
 この節電モード切替処理は、下流側に存在する端末5を通常モードから節電モードに切り替えるために行われる処理である。ここで、図6に表すフローチャートを参照し、その節電モード切替処理について詳細に説明する。
 この節電モード切替処理では、対象とするアウトレット11を変更しながら、対象とするアウトレット11での節電目標値を決定し、対象とするアウトレット11に接続された下流側に節電を要求するための処理ループ(S30)が実行される。このS30の処理ループでは、具体的には以下のような処理が実行される。
 先ず、制御部22は、現在値(合計)と節電目標値の大小関係を判定する(S31)。現在値(合計)が節電目標値以下であった場合、その旨がS31で判定され、他のアウトレット11に接続された下流側への節電要求は不要として、ここで節電モード切替処理が終了する。現在値(合計)が節電目標値より大きい場合、その旨がS31で判定され、S32に移行する。
 S32では、制御部22は、対象とするアウトレット11に接続された下流側が目標とすべき節電目標値を計算する。制御部22は、計算した節電目標値を通信部21により下流側に送信させる(S33)。
 アウトレット11個別の節電目標値の計算は、例えば節電目標値と現在値(合計)との差分を各アウトレット11の下流側にシェアさせるように行う。具体的には、例えば以下の式により節電目標値を計算する。
 節電目標値=現在値(OLx)-(現在値(合計)
       -MAX(入力された節電目標値、
       節電値(合計)))×(現在値(OLx)
       -節電値(OLx))÷(現在値(合計)
       -節電値(合計))   ・・・ (1)
 この式(1)では、下流側に端末5が存在しない場合、右辺第2項の値は0となって、計算される節電目標値は現在値(OLx)と一致する。しかし、下流側に端末5が存在する場合、右辺第2項は正の値となって、計算される節電目標値は現在値(OLx)より小さい値となる。そのような式(1)を採用したのは、下流側に端末5が存在するアウトレット11での節電のみを想定したためである。言い換えれば、この時点で電力供給が遮断される端末5、7が発生しないようにするためである。
 節電目標値が送信された下流側が端末5であった場合、その端末5の電源管理装置6の制御部62は、ブレーカー58を制御して、付加部57への電力供給を遮断させる。それにより、対象とするアウトレット11から供給される電力量は低減される。一方、節電目標値が送信された下流側が他の電力中継器1であった場合、その電力中継器1は、その節電目標値の受信により、節電モード切替処理を実行することになる。
 節電目標値を送信させた後、制御部22は、図4に表す測定処理を実行する(S34)。その測定処理を実行するのは、節電目標値の送信による節電効果を確認するためである。その確認結果は、次にS31の処理を実行する際に用いられる。
 その測定処理を実行した後は、他に対象とすべきアウトレット11が存在するか否かの判定が行われる。それにより、他に対象とすべきアウトレット11が存在する場合、再度、S31の処理が実行される。他に対象とすべきアウトレット11が存在しない場合、S30の処理ループが終了する。それにより、この節電モード切替処理も終了する。
 図5のS23以降の説明に戻る。
 S23では、制御部22は、現在値(合計)と節電目標値の大小関係を判定する。現在値(合計)が節電目標値以下であった場合、その旨がS23で判定され、ここで節電処理が終了する。現在値(合計)が節電目標値より大きい場合、その旨がS23で判定され、S24に移行する。
 S24への移行は、下流側に存在する端末5を全て節電モードに移行させるだけでは必要な消費電力の低減が行えないことを意味する。このことから、S24では、制御部22は、電流供給を遮断すべき端末5、7への電力供給を遮断させるための遮断制御処理を実行する。その後、この節電処理が終了する。
 なお、本実施形態では、節電目標値の入力により上記節電処理を実行するようになっているが、予め節電目標値を設定し、設定した節電目標値を現在値(合計)が越えた場合に、その節電処理を自動的に実行させるようにしても良い。また、端末5の節電モードへの移行は、単に消費電力を抑えさせるために行っても良い。つまり節電モード切替処理は、遮断制御処理とは別に実行させても良い。それにより、節電モード切替処理は、単にその処理の実行要求により実行させても良い。
 図7は、遮断制御処理のフローチャートである。次に図7を参照して、その遮断制御処理について詳細に説明する。
 電力供給の遮断はアウトレット11毎に行われる。電力供給を遮断すべき端末5、7は、上記のように、優先度を参照して決定される。このことから、遮断制御処理には、対象とするアウトレット11を変更しながら、電力供給を遮断すべき端末5、7への電力供給を遮断するための処理ループ(S70)を含む処理ループ(S60)が存在する。そのS60の処理ループは、対象とする優先度を順次、上げながら、その優先度以下の端末5、7への電力供給を遮断するためのものである。
 S60の処理ループでは、優先度として1が初期設定される。図7では、これを「優先度P←1」の表記により表している。以降、「優先度P」は現在、対象としている優先度を表す用語として用いる。S70の処理ループでは、アウトレット番号が最小のアウトレット11が最初の対象となる。
 先ず、制御部22は、現在値(合計)と節電目標値の大小関係を判定する(S71)。現在値(合計)が節電目標値以下であった場合、その旨がS71で判定され、これ以上の電力供給の遮断は不要として、ここで遮断制御処理が終了する。現在値(合計)が節電目標値より大きい場合、その旨がS71で判定され、S72に移行する。
 S72では、制御部22は、現在、対象とするアウトレット11の優先度(OLx)と優先度Pの大小関係を判定する。その優先度(OLx)が優先度P以下であった場合、その旨がS72で判定される。その場合、制御部22は、対象とするアウトレット11のブレーカー25を制御して、電力供給を遮断させる(S73)。その後は、電力供給を遮断させた結果を確認するために、制御部22は測定処理を実行する(S75)。
 一方、優先度(OLx)が優先度Pより大きい場合、その旨がS72で判定される。その場合、制御部22は、通信部21に指示して、対象とするアウトレット11の下流側に優先度Pを送信させる(S74)。その優先度Pの送信は、下流側に他の電力中継器1が接続されているのが前提である。電力中継器1が送信する優先度(合計)は、優先度(OLx)のなかの最大値であることから、優先度Pより小さい優先度(OLx)のアウトレット11が存在する可能性がある。それにより、優先度Pを受信した電力中継器1は、その優先度Pより優先度(OLx)が小さいアウトレット11からの電力供給の遮断を行う。このことから、その後はS75に移行する。
 S75の測定処理を実行した後は、S70の処理ループにより、他に対象とすべきアウトレット11が存在するか否かの判定が行われる。それにより、他に対象とすべきアウトレット11が存在する場合、対象とするアウトレット11を変更し、再度、S71の処理が実行される。他に対象とすべきアウトレット11が存在しない場合、S70の処理ループが終了し、S60の処理ループにより、現在の優先度Pが最大値か否かの判定が行われる。その優先度Pが最大値でない場合、優先度Pを1つ大きい値に変更し、対象とするアウトレット11を最小のアウトレット番号のアウトレット11に変更して、再度、S71が実行される。その優先度Pが最大値であった場合、ここで遮断制御処理が終了する。その終了は、必要な消費電力の低減が行えなかったことを意味する。
 S74の処理により優先度Pが送信された電力中継器1は、図7に表すような遮断制御処理を実行する。しかし、S60の処理ループは存在せず、優先度Pは受信した優先度Pのみが対象となる。これは、受信した優先度Pより大きい優先度(OLx)のアウトレット11での電力供給の遮断を行わせないためである。下流側に他の電力中継器1が接続されたアウトレット11には、受信した優先度Pが送信される。
 このようにして、例え端末5、7への電力供給を遮断する場合であっても、優先度の低いほうから必要な台数の端末5、7への電力供給が遮断されることになる。そのため、重要性がより低い、最小限の端末5、7のみ電力供給が遮断される。
 図8は、実際に使用された電力中継器、及び各電力中継器に接続された端末の例を説明する図である。
 図8に表す例では、5個のアウトレット11-1~11-5を備えた電源タップである電力中継器1-4-1に、2個のアウトレット11-1、11-2を備えた2つの電源タップである電力中継器1-4-2、1-4-3が接続されている。電源中継器1-4-2、1-4-3はそれぞれ、電力中継器1-4-1のアウトレット11-1、11-5に接続されている。電力中継器1-4-1のアウトレット11-2~11-4には、端末5-3、7-1、及び7-2がそれぞれ接続されている。
 電力中継器1-4-2のアウトレット11-1、11-2には、端末5-1、5-2がそれぞれ接続されている。電力中継器1-4-3のアウトレット11-1、11-2には、端末7-3、5-4がそれぞれ接続されている。
 端末5-1は、優先度が1、現在値が1320W、定格値が1500W、節電値が1000Wの電気機器である。端末5-2は、優先度が2、現在値が2200W、定格値が2500W、節電値が2000Wの電気機器である。端末5-3は、優先度が2、現在値が600W、定格値が750W、節電値が460Wの電気機器である。端末5-4は、優先度が2、現在値が290W、定格値が350W、節電値が150Wの電気機器である。
 一方、端末7-1~7-3は、現在値がそれぞれ1190W、850W、150Wの電気機器である。これらの端末7-1~7-3は、接続された電力中継器1-4との通信機能を備えていない非対応機器であるため、優先度としては1が設定される。
 図9は、図8に表す接続構成の場合に、各電力中継器に保持される電力管理情報の内容を説明する図である。この図9において、電力管理情報には、符号として23a1~23a3のうちの何れかを付している。23a1は、電力中継器1-4-1に保持される電力管理情報を表している。同様に、23a2、及び23a3は、電力中継器1-4-2,及び1-4-3にそれぞれ保持される電力管理情報を表している。図9に表すように、端末7-1~7-3では、定格値、及び節電値は現在値と同じとなっている。
 図8に表す接続構成において、節電目標値が電力中継器1-4-1に入力された場合、各電力中継器1-4-1~1-4-3は、以下のように動作する。節電目標値の例を挙げて、具体的に説明する。
 先ず、節電目標値として6000Wが入力された場合について、図10A~図10Dを参照して具体的に説明する。図10A~図10Dは、節電目標値として6000Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1及び1-4-2に保持される電力管理情報の内容の変化を説明する図である。
 電力中継器1-4-1は、図9に表すように、現在値(合計)が6600Wであることから、節電目標値として6000Wが入力された場合、アウトレット11-1に接続された電力中継器1-4-2に送信すべき節電目標値を計算する。節電目標値としては、式(1)により、3120Wが計算される。計算された節電目標値は、電力中継器1-4-2に送信される。
 電力中継器1-4-2は、節電目標値の受信により、アウトレット11-1に接続された端末5-1を節電モードに移行させる。その結果、図10Aに表すように、アウトレット11-1の現在値は節電値と同じ1000Wに低下する。しかし、アウトレット11-1の現在値が1000Wに下がっても、現在値(合計)は3200Wであり、節電目標値である3120Wより大きい。このため、電力中継器1-4-2は、アウトレット11-2に接続された端末5-2を節電モードに移行させる。その結果、図10Bに表すように、アウトレット11-2の現在値は節電値と同じ2000Wに低下し、現在値(合計)は3000Wとなって、節電目標値である3120W以下となる。
 電力中継器1-4-1は、測定処理の実行により、アウトレット11-1から供給される電力量が3000Wであることを確認し、図10Cに表すように、電力管理情報を更新する。しかし、現在値(合計)は6060Wであり、節電目標値である6000Wより大きい。このため、電力中継器1-4-1は、アウトレット11-2に接続された端末5-3に対する節電目標値を計算し、端末5-3に節電モードへの移行を指示する。このとき、計算される節電目標値は560Wである。
 端末5-3は、電力中継器1-4-1からの節電モードへの移行指示により、節電モードに移行させる。その結果、電力中継器1-4-1は、測定処理の実行により、アウトレット11-2から供給される電力量が460Wであることを確認し、図10Dに表すように、電力管理情報を更新する。更新後の現在値(合計)は5940Wであり、節電目標値である6000Wより小さい。このため、電力中継器1-4-1は、節電処理を終了することになる。
 次に、節電目標値として5600Wが入力された場合について、図11A~図11Dを参照して具体的に説明する。図11A~図11Dは、節電目標値として5600Wが入力された場合に、電力中継器1-4-1が節電処理を実行することによって電力中継器1-4-1~1-4-3に保持される電力管理情報の内容の変化を説明する図である。
 電力中継器1-4-1がアウトレット11-2に接続された端末5-3を節電モードに移行させても、節電目標値である5600W以下とはならない。このため、電力中継器1-4-1は、アウトレット11-5に接続された電力中継器1-4-3に送信すべき節電目標値を計算し、計算した節電目標値を電力中継器1-4-3に送信する。それにより、電力中継器1-4-3は、アウトレット11-2に接続された端末5-4を節電モードに移行させる。この結果、電力中継器1-4-1は、図11Aに表すように、アウトレット11-5の現在値(OL5)を440Wから300Wに更新し、現在値(合計)を5940Wから5800Wに更新する。電力中継器1-4-3は、図11Bに表すように、アウトレット11-2の現在値(OL2)を300Wから150Wに更新し、現在値(合計)を440Wから300Wに更新する。
 図11Aに表すように更新された後の現在値(合計)である5800Wは、節電目標値として入力された5600Wより大きい。これは、電力中継器1-4-1に直接、或いは間接的に接続された全ての端末5-1~5-4を節電モードに移行させても、現在値(合計)は5600W以下にならないことを意味する。このため、電力中継器1-4-1は、図7に表す遮断制御処理を実行することになる。その結果、電力中継器1-4-1は、電力中継器1-4-2に1の値の優先度Pを送信する。
 電力中継器1-4-2は、1の値の優先度Pの受信により、アウトレット11-1のブレーカー25を制御し、アウトレット11-1からの電力供給を遮断させる。その結果、電力中継器1-4-2は、図11Cに表すように、アウトレット11-1の現在値(OL1)を1000Wから0Wに更新し、現在値(合計)を3000Wから2000Wに更新する。電力中継器1-4-1は、図11Dに表すように、アウトレット11-1の現在値(OL1)を3000Wから2000Wに更新し、現在値(合計)を5800Wから4800Wに更新する。5800Wは5600W以下であるため、遮断制御処理はここで終了することとなる。
 上記のように、端末5-1~5-4、及び端末7-1~7-3全体の消費電力は、先ず、端末5-1~5-4を節電モードに移行させることで低減させる。全ての端末5-1~5-4を節電モードに移行させても消費電力の低減量が不十分であった場合、端末5-1~5-4、及び端末7-1~7-3のなかで優先度の低いほうから十分な低減量が得られるまで電力供給を遮断させる。そのようにして、端末5-1~5-4、及び端末7-1~7-3への電力供給の遮断を必要最小限に抑えるようにしている。
 節電状態の解除、つまり端末5の節電モードから通常モードへの移行、或いは/及び、電力供給の再開は、例えばキー群26を備えた電力中継器1からその解除を要求するコマンドを入力させることで行わせれば良い。端末5、及び端末7の状況の変化に対応させるために、各電力中継器1に節電モードから通常モードへの移行、或いは/及び、電力供給の再開を行わせ、その結果から、必要な節電モードへの移行、更には電力供給の遮断を再度、行わせるようにしても良い。
 なお、本実施形態では、電力中継器1は電力線を介して端末5に節電モードへの移行を指示するようになっているが、これは電力中継器1と端末5を接続する別の信号線を不要にするためである。別の信号線を不用にすることにより、電力中継器1を配置するうえでの利便性、及びそのコストの抑制等の面で有利である。電力線を介した通信機能を搭載していない端末5に対応するために、別の信号線により節電モードへの移行を指示できるようにしても良い。
 また、本実施形態では、端末5に情報として優先度を保持させているが、この優先度は、端末5以外の外部装置から直接、或いは間接的に各電力中継器1に取得させるようにしても良い。端末5の節電モードへの移行は、全端末5を対象に行っているが、必要な台数の端末5のみを節電モードに移行させるようにしても良い。

Claims (6)

  1.  電力を下流側に供給するための1つ以上の出力口と、
     前記出力口毎に、該出力口と接続されている下流側と通信を行うための通信手段と、
     前記通信手段を用いて、前記出力口毎に、該出力口の下流側に位置する電気機器のなかで節電機能を備える第1の電気機器に前記節電機能の動作を要求可能な制御手段と、
     を有することを特徴とする電力中継器。
  2.  供給可能な電力量を表す電力量情報を入力するための入力手段、を更に有し、
     前記制御手段は、前記入力手段が前記電力情報を入力した場合に、前記通信手段により前記第1の前記電気機器が接続されている出力口を特定し、該特定した出力口に接続されている前記第1の電気機器に前記要求を行うことができる、
     ことを特徴とする請求項1記載の電力中継器。
  3.  前記制御手段は、前記通信手段により他の電力中継器が接続されている出力口を特定し、該特定した出力口に接続されている前記他の電力中継器に送信すべき前記電力量情報を作成し、該作成した前記電力情報を前記他の電力中継器に送信させる、
     ことを特徴とする請求項1、または2記載の電力中継器。
  4.  前記出力口毎に、該出力口から供給される電力量を測定するための測定手段と、
     前記出力口毎に、該出力口への電力の供給を遮断するための遮断手段と、を更に有し、
     前記制御手段は、前記要求、及び前記電力量情報の送信のうちの少なくとも一方を行った結果、前記測定手段により得られる総電力量が前記電力量情報の表す電力量を越える場合に、前記電力の供給を遮断すべき出力口を特定し、該特定した出力口への前記電力の供給を前記遮断手段により遮断させる、
     ことを特徴とする請求項2、または3記載の電力中継器。
  5.  前記電気機器のなかに前記電力の供給を遮断するうえでの優先度を表す優先度情報を保持する第2の電気機器が存在する場合に、前記制御手段は、前記通信手段を用いて、前記第2の電気機器が保持する前記優先度情報を確認し、該確認結果を前記電力供給を遮断すべき出力口の特定に反映させる、
     ことを特徴とする請求項4記載の電力中継器。
  6.  電力を下流側に供給するための1つ以上の出力口を備えた電力中継器を1つ以上、用いて、
     何れかの電力中継器から前記電力が供給される電気機器のなかで節電機能を備える第1の電気機器に前記節電機能を動作させ、
     前記第1の電気機器に前記節電機能を動作させた結果、全電気機器に供給される電力量が所定の電力量を超えていた場合に、前記全電気機器のなかで電力の供給を遮断すべき電気機器を特定し、該特定した電気機器への電力の供給を遮断させる、
     ことを特徴とする消費電力低減方法。
PCT/JP2012/078544 2012-11-02 2012-11-02 電力中継器、及び消費電力低減方法 WO2014068775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014544186A JP6098642B2 (ja) 2012-11-02 2012-11-02 電力中継器、及び消費電力低減方法
PCT/JP2012/078544 WO2014068775A1 (ja) 2012-11-02 2012-11-02 電力中継器、及び消費電力低減方法
US14/693,423 US20150229129A1 (en) 2012-11-02 2015-04-22 Power relay device, and power consumption reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078544 WO2014068775A1 (ja) 2012-11-02 2012-11-02 電力中継器、及び消費電力低減方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/693,423 Continuation US20150229129A1 (en) 2012-11-02 2015-04-22 Power relay device, and power consumption reduction method

Publications (1)

Publication Number Publication Date
WO2014068775A1 true WO2014068775A1 (ja) 2014-05-08

Family

ID=50626738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078544 WO2014068775A1 (ja) 2012-11-02 2012-11-02 電力中継器、及び消費電力低減方法

Country Status (3)

Country Link
US (1) US20150229129A1 (ja)
JP (1) JP6098642B2 (ja)
WO (1) WO2014068775A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019426A (ja) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 電力管理装置
JP7474628B2 (ja) 2020-03-30 2024-04-25 大和ハウス工業株式会社 電力供給システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190036378A1 (en) * 2017-07-25 2019-01-31 Middle Atlantic Products, Inc. Power sequencer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115623A (ja) * 1995-10-13 1997-05-02 Ricoh Elemex Corp 商用電源供給タップ
WO2005109595A1 (ja) * 2004-05-07 2005-11-17 Inter-Db., Ltd. 電力制御システム
JP2007189878A (ja) * 2006-01-16 2007-07-26 Canon Inc 消費電力制御方法とそれを実現する電力供給システム、接続装置及び機器の電力制御手段
JP2007218499A (ja) * 2006-02-16 2007-08-30 Hitachi Ltd 空気調和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335574B2 (en) * 2008-12-09 2012-12-18 Andy Middlemiss Power controlling device and methods of use
CN102782973B (zh) * 2010-01-05 2014-10-15 贝尔金国际股份有限公司 改进型电源和与其有关的方法
US8692409B2 (en) * 2010-12-02 2014-04-08 Astronics Advanced Electronic Systems Corp. Enhanced load management and distribution system
TW201303571A (zh) * 2011-07-12 2013-01-16 瀚宇彩晶股份有限公司 節能開關裝置以及方法
US20140252856A1 (en) * 2013-03-06 2014-09-11 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D Power consuming management system
US20140265577A1 (en) * 2013-03-15 2014-09-18 Christopher V. Beckman Electrical power switching techniques
US9728977B2 (en) * 2014-05-07 2017-08-08 Electronic Theatre Controls, Inc. Control of power distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115623A (ja) * 1995-10-13 1997-05-02 Ricoh Elemex Corp 商用電源供給タップ
WO2005109595A1 (ja) * 2004-05-07 2005-11-17 Inter-Db., Ltd. 電力制御システム
JP2007189878A (ja) * 2006-01-16 2007-07-26 Canon Inc 消費電力制御方法とそれを実現する電力供給システム、接続装置及び機器の電力制御手段
JP2007218499A (ja) * 2006-02-16 2007-08-30 Hitachi Ltd 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019426A (ja) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 電力管理装置
JP7474628B2 (ja) 2020-03-30 2024-04-25 大和ハウス工業株式会社 電力供給システム

Also Published As

Publication number Publication date
JP6098642B2 (ja) 2017-03-22
JPWO2014068775A1 (ja) 2016-09-08
US20150229129A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
KR101114335B1 (ko) 세탁기와 건조기의 전원공급방법
JP6098642B2 (ja) 電力中継器、及び消費電力低減方法
EP2905857B1 (en) Zone selective interlocking device
US20140214232A1 (en) Network monitoring device
JP2010140241A (ja) ネットワーク中継装置、ネットワーク中継装置の電力制御方法、および、そのためのコンピュータプログラム
EP2811606B1 (en) System for a circuit breaker control
CN102123070A (zh) 一种实现主从框级联保护及负荷分担的系统
JPH066935A (ja) 電流制限システム
JP2014120845A (ja) 通信システム
CN111224388B (zh) 一种适用于多种供电方式的节点联锁保护方法
JP5167911B2 (ja) 給電回路および給電方法
JP2008078007A (ja) 動作基準電流値の設定方法
JP4041825B2 (ja) 配電線の遮断制御装置
JP2017060249A (ja) 系統安定化システム
JP2009159086A (ja) 分電盤、電源タップ及びコンセント
JP6536002B2 (ja) アンペアブレーカ及び電力管理システム
JP6574604B2 (ja) 通信遮断装置および通信システム
JP6294744B2 (ja) 通信システムおよび方法
JP2010063314A (ja) 配電システム、配電システムの制御方法、及び負荷接続用アダプタ
JP2009130536A (ja) 回線接続装置及び通信システム
JP2008244702A (ja) 電力線搬送通信システム
JP5354619B2 (ja) 回路遮断器の動作基準電流値設定コントローラ
WO2011077393A2 (en) Improvements to electrical systems with auxiliary generating means
KR100643865B1 (ko) 이상 진단 기능을 구비하는 모스트 경로 확장장치
JP2015142433A (ja) 電力系統の保護システム及び電力系統の保護方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887496

Country of ref document: EP

Kind code of ref document: A1