WO2014064928A1 - 照明装置および点灯装置 - Google Patents

照明装置および点灯装置 Download PDF

Info

Publication number
WO2014064928A1
WO2014064928A1 PCT/JP2013/006257 JP2013006257W WO2014064928A1 WO 2014064928 A1 WO2014064928 A1 WO 2014064928A1 JP 2013006257 W JP2013006257 W JP 2013006257W WO 2014064928 A1 WO2014064928 A1 WO 2014064928A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
white
light emitting
white light
Prior art date
Application number
PCT/JP2013/006257
Other languages
English (en)
French (fr)
Inventor
光 前田
淳 高島
松田 賢治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201390000783.2U priority Critical patent/CN204669641U/zh
Publication of WO2014064928A1 publication Critical patent/WO2014064928A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Definitions

  • the present invention relates to a lighting device and a lighting device using light emitting elements such as LEDs (Light Emitting Diode), and more particularly to a technique for improving the light characteristics of illumination light in such a lighting device.
  • LEDs Light Emitting Diode
  • color temperature variable LED lighting has been proposed to realize illumination light according to various scenes.
  • the bulb color color temperature 3000K
  • day white color temperature 5000K
  • daylight color color temperature 6700K
  • this illumination device two types of light sources having different emission colors are provided as illumination light sources, and the color of the illumination light is changed by performing color adjustment by controlling the length of on-time of PWM control for each.
  • the present invention provides an illuminating apparatus that reproduces white light having different color temperatures by dimming, and can reduce the number of light emitting elements to be mounted without reducing the luminance of light emission. For the purpose.
  • an illumination device reproduces white light having different color temperatures by dimming, and includes a first light source that emits first white light, and the first light source.
  • a second light source that emits second white light having a color temperature lower than that of white light; a third light source that emits third white light having a color temperature higher than that of the first white light; and
  • a lighting circuit for changing a color temperature of the combined light by changing a light beam emitted from the second light source and a light beam emitted from the third light source.
  • the combined light is variable in a range from fourth white light showing a higher color temperature than the second white light to fifth white light showing a lower color temperature than the third white light.
  • the first white light may be configured to have a color temperature higher than that of the fourth white light and lower than that of the fifth white light.
  • the lighting circuit may be configured to keep a light flux of light emitted from the first light source constant.
  • the lighting circuit continuously applies a constant voltage to the first light source, and performs PWM control on the second light source and the third light source to thereby change the color of the combined light.
  • the structure characterized by changing temperature may be sufficient.
  • the lighting circuit includes the second light source and the third light source so that the increase and decrease of the light beam emitted from the second light source and the light beam emitted from the third light source change in a mutually contradictory manner.
  • the structure characterized by driving a light source may be sufficient.
  • the light beam emitted from the first light source is 28.7% to 48.48% of the total light beam emitted simultaneously from the first light source, the second light source, and the third light source.
  • the configuration may be characterized by being in the range of 8%.
  • the first white light, the second white light, and the third white light may be located in the vicinity of an arbitrary straight line on the chromaticity diagram. .
  • the second white light and the third white light may be located in the vicinity of the locus of the black body locus.
  • the lighting device includes a first light source that emits first white light, a second light source that emits second white light on a color temperature side lower than the first white light, A lighting device that turns on a third light source that emits third white light on a color temperature side higher than one white light, the first light source always emitting light, and the luminous flux of light emitted by the second light source and the light source
  • the light emission part may be provided with a lighting circuit that emits white light by adjusting the luminous fluxes of the light emitted from the third light source so as to oppose each other.
  • the lighting device can reduce the number of light-emitting elements to be mounted without reducing luminance of light emission in a lighting device that reproduces white light having different color temperatures by dimming.
  • FIG. 1 It is sectional drawing which shows the illuminating device 1 which concerns on the one aspect
  • (A) is a top view which shows the light emitting module 10 which concerns on the one aspect
  • the reproduction range of the color temperature during light emission of the lighting device 1 according to one aspect of the embodiment and the chromaticity of light emission of the first light source W1, the second light source W2, and the third light source W3 used in the light emitting module 10 are shown. It is a chromaticity diagram. It is the schematic of the dimming control with respect to each light source W1, W2, W3 in the illuminating device 1 which concerns on the one aspect
  • (A) is the specification of the illumination device, the light flux of each light source, the number of necessary light emitting elements, (b) is the number of light emitting elements necessary for each light source, and (c) is the necessary light flux of each light emitting element, light emission.
  • It is explanatory drawing which shows the required electric power and efficiency of an element single-piece
  • the illuminating device 1 which concerns on embodiment, it is a chromaticity diagram which shows Example 1 of the light emission simulation result of the toning range lighted by changing the dimming ratio with respect to each light source W1, W2, W3.
  • Example 2 shows the light emission simulation result of the toning range which changed and turned on the dimming ratio with respect to each light source in the illuminating device 1 which concerns on embodiment.
  • the illuminating device 1 which concerns on embodiment it is a chromaticity diagram which shows Example 2 of the light emission simulation result of the toning range turned on by changing the dimming ratio with respect to each light source.
  • Example 3 shows the light emission simulation result of the toning range which turned on by changing the dimming ratio with respect to each light source in the illuminating device 1 which concerns on embodiment.
  • the illuminating device 1 which concerns on embodiment, it is a chromaticity diagram which shows Example 3 of the light emission simulation result of the toning range lighted by changing the dimming ratio with respect to each light source. It is Example 4 which shows the light emission simulation result of the toning range which turned on by changing the dimming ratio with respect to each light source in the illuminating device 1 which concerns on embodiment. In the illuminating device 1 which concerns on embodiment, it is a chromaticity diagram which shows Example 4 of the light emission simulation result of the toning range lighted by changing the dimming ratio with respect to each light source.
  • light emission of the 1st light source which is two types of white light sources used for the light emitting module of the conventional illuminating device, and a 2nd light source. It is the schematic of the dimming control with respect to each light source in the conventional illuminating device. It is a comparative example which shows the light emission simulation result of the toning range which changed the dimming ratio with respect to each light source, and was lighted in the conventional illuminating device. It is a chromaticity diagram which shows the comparative example of the light emission simulation result of the toning range lighted by changing the dimming ratio with respect to each light source in the conventional illuminating device.
  • FIG. 1 is a cross-sectional view illustrating a lighting device 1 according to an aspect of an embodiment.
  • a lighting device 1 according to an aspect of the present invention is a downlight that is attached so as to be embedded in a ceiling 2, for example, an appliance 3, a circuit unit 4, a dimming unit 5, and A lamp unit 6 is provided.
  • the appliance 3 is made of metal, for example, and has a lamp housing portion 3a, a circuit housing portion 3b, and an outer casing portion 3c.
  • the lamp accommodating portion 3a is, for example, a bottomed cylindrical shape, and the lamp unit 6 is detachably attached to the inside.
  • the circuit housing part 3b extends, for example, on the bottom side of the lamp housing part 3a, and the lighting circuit unit 4 is housed therein.
  • the outer flange portion 3c is, for example, an annular shape, and extends outward from the opening of the lamp housing portion 3a.
  • the lamp housing portion 3a and the circuit housing portion 3b are embedded in the embedded hole 2a penetrating the ceiling 2, and the outer flange portion 3c is in contact with the peripheral portion of the embedded hole 2a on the lower surface 2b of the ceiling 2. In this state, it is attached to the ceiling 2 by, for example, an attachment screw (not shown).
  • the lighting circuit unit 4 is for receiving a dimming signal from a dimming unit 5 to be described later and lighting the lamp unit 6 in accordance with information on luminance and color temperature indicated by the dimming signal.
  • a power supply line 4a electrically connected to the lamp unit 6 is provided, and a connector 4b detachably connected to the connector 72 of the lead wire 71 of the lamp unit 6 is attached to the tip of the power supply line 4a.
  • the dimming unit 5 is for the user to adjust the brightness and color of the illumination light of the lamp unit 6, and is electrically connected to the lighting circuit unit 4. A signal is output to the lighting circuit unit 4.
  • FIG. 2 is a perspective view showing the lamp unit 6 according to one aspect of the embodiment.
  • FIG. 3 is an exploded perspective view showing the lamp unit 6 according to one aspect of the embodiment.
  • the lamp unit 6 includes, for example, a light emitting module 10, a base 20, a holder 30, a decorative cover 40, a cover 50, a cover pressing member 60, a wiring member 70, and the like.
  • FIG. 4A and 4B are diagrams illustrating a light-emitting module 10 according to one aspect of the embodiment, in which FIG. 4A is a plan view, FIG. 4B is a right side view, and FIG. 4C is a front view.
  • FIG. 5 is a wiring diagram for explaining a connection state between the light emitting module 10 and the lighting circuit unit 4 according to one aspect of the embodiment.
  • the light sources W1, W2, and W3 in FIG. 4 are given the same pattern for the same color and different patterns for the different light sources. is doing.
  • the light-emitting elements 12, the sealing members 13, the terminal portions 15 corresponding to the respective light sources, and the wirings 16 provided in the respective light sources W1, W2, and W3 to be described later have subscripts a, b, and c, respectively. To distinguish.
  • the light emitting module 10 includes a substrate 11, light emitting elements 12a to 12c, sealing members 13a to 13c, terminal portions 15a to 15d, and wirings 16a to 16d.
  • the substrate 11 has, for example, a rectangular plate shape and has a two-layer structure of an insulating layer made of a ceramic substrate or a heat conductive resin and a metal layer made of an aluminum plate or the like.
  • Light emitting elements 12 a to 12 c are mounted on the upper surface 11 a of the substrate 11.
  • the light emitting elements 12a to 12c are arranged so that, for example, a linear element array composed of 54 light emitting elements 12a to 12c is arranged in parallel with 6 lines.
  • Each of the light emitting elements 12a to 12c is, for example, a GaN-based LED that emits blue light having a main wavelength of about 460 nm, and is mounted face-up on the upper surface 11a of the substrate 11 using COB (Chip on Board) technology. ing.
  • the light-emitting element according to the present invention is, for example, a light-emitting package having a surface-mount package (Surface-Mount-Device (SMD)) structure using an LED, an LD (laser diode), or an EL element (electric luminescence element). Also good.
  • SMD Surface-Mount-Device
  • the sealing members 13a to 13c are elongate members made of, for example, a translucent material, and seal the light emitting elements 12a to 12c separately for each element row.
  • a translucent material for example, silicone resin, epoxy resin, fluorine resin, silicone-epoxy hybrid resin, urea resin, or the like can be used.
  • the first sealing member 13a, the second sealing member 13b, and the third sealing member 13c function as wavelength conversion members because the wavelength conversion material is mixed in the translucent material.
  • the first sealing member 13a is referred to as a first wavelength conversion member 13a
  • the second sealing member 13b is referred to as a second wavelength conversion member 13b
  • the third sealing member 13c is referred to as a third wavelength conversion member.
  • This is referred to as a wavelength conversion member 13c.
  • phosphor particles can be used as the wavelength conversion material.
  • the first light source W1, the second light source W2, and the third light source W3 are a predetermined quantity constituting one element row, for example, 54 light emitting elements 12a to 12c and 1 for sealing the light emitting elements 12a to 12c.
  • the two sealing members 13a to 13c are configured.
  • the shape of each light source W1, W2, W3 is a long shape depending on the shape of the sealing members 13a to 13c, and six are arranged in parallel with equal intervals so that both ends are aligned.
  • the first light source W1 is disposed between the first light source W3 and the third light source W3. Specifically, the third light source W2, the first light source W1, the second light source W2, the third light source W3, the first light source W1, and the second light source W2 are arranged in this order.
  • the first light source W1 includes a first light emitting element 12a and a first wavelength conversion member 13a that converts a part of the light of the first light emitting element 12a, and converts the unconverted light and the converted light. Emits first white light obtained by synthesis with light.
  • the first light emitting element 12a is, for example, an LED that emits blue light having a peak wavelength of 450 nm or more and 470 nm or less.
  • the first wavelength conversion member 13a converts the wavelength of part of the light from the second light emitting element 12a into light having a light emission peak in yellow light. Specifically, for example, wavelength conversion is performed to yellow light having a peak wavelength of 580 nm or more and 620 nm or less.
  • the phosphor constituting the first wavelength conversion member 13a for example, YAG phosphor that develops yellow color, for example, Y 3 Al 5 O 12 : Ce, or silicate phosphor that activates Eu 2+ , for example, Sr 2 SiO 4 : Eu or the like can be used.
  • the amount of the first wavelength conversion member 13a is adjusted so that the first white light is obtained in the combination of the blue light from the first light emitting element 12a and the yellow light from the first wavelength conversion member 13a.
  • the first white light is white light located near the black body locus in the CIExy chromaticity diagram and at a color temperature of 4000K. Details will be described later.
  • the second light source W2 includes a second light emitting element 12b and a second wavelength conversion member 13b that converts a part of light of the second light emitting element 12b, and converts the unconverted light and the converted light. Emits second white light obtained by synthesis with light.
  • the second light emitting element 12b is, for example, a blue light emitting element that emits blue light having a peak wavelength of 450 nm or more and 470 nm or less, similarly to the first light emitting element 12a.
  • the second wavelength conversion member 13b converts part of the light of the second light emitting element 12b into light having a light emission peak on the longer wavelength side than the light converted by the first wavelength conversion member 13a. Specifically, for example, wavelength conversion is performed to yellow light having a peak wavelength of 580 nm or more and 620 nm or less.
  • the phosphor constituting the second wavelength conversion member 13b for example, a YAG phosphor that develops a yellow color, such as a silicate phosphor that activates Y 3 Al 5 O 12 : Ce or Eu 2+ , for example, Sr 2 SiO 4 : Eu or the like can be used.
  • the amount of the second wavelength conversion member 13b is adjusted, and second white light is obtained in the combination of blue light from the second light emitting element 12b and yellow light from the second wavelength conversion member 13b.
  • the second light source W2 exhibiting a low color temperature has a lower blue light output from the light emitting element than the first light source W1 exhibiting a high color temperature, and the light output from the wavelength conversion member is less. high.
  • the second white light is white light located near the black body locus in the CIExy chromaticity diagram and at a color temperature of 2700K. Details will be described later.
  • the second wavelength conversion member 13b may use a different type of wavelength conversion material from the first wavelength conversion member 13a or the third wavelength conversion member 13c, or the same type of wavelength. It is good also as a structure arrange
  • the third light source W3 includes a third light emitting element 12c and a third wavelength conversion member 13c that converts the wavelength of a part of the light from the third light emitting element 12c, and converts the unconverted light and the converted light. Emits third white light obtained by synthesis with light.
  • the third light emitting element 12c is, for example, a blue light emitting element that emits blue light having a peak wavelength of 450 nm or more and 470 nm or less, similarly to the first light emitting element 12a.
  • the third wavelength conversion member 13c converts the wavelength of part of the light from the third light emitting element 12c into light having an emission peak on the shorter wavelength side than the light converted by the first wavelength conversion member 13a. Specifically, for example, wavelength conversion is performed to yellow light having a peak wavelength of 550 nm to 590 nm and a half width of 50 nm to 70 nm.
  • Examples of the phosphor constituting the third wavelength converting member 13c include a YAG phosphor that develops a yellow color, such as Y 3 Al 5 O 12 : Ce, and a silicate phosphor that activates Eu 2+ , for example. Sr 2 SiO 4 : Eu or the like can be used.
  • the amount of the third wavelength conversion member 13c is adjusted, and third white light is obtained in a combination of blue light from the third light emitting element 12c and yellow light from the third wavelength conversion member 13c.
  • the third white light is white light located near the black body locus in the CIExy chromaticity diagram and located at a color temperature of 6500K. Details will be described later.
  • the terminal portions 15a to 15d are constituted by conductor patterns formed on the substrate 11.
  • the terminal portion 15a and the terminal portion 15d function as a power supply to the first light emitting element 12a
  • the terminal portion 15b and the terminal portion 15d function as a power supply to the second light emitting element 12b
  • 15d functions as a power supply to the third light emitting element 12c.
  • Each of the terminal portions 15a to 15d is formed on the peripheral edge portion of the upper surface 11a of the substrate 11, as shown in FIG.
  • the wirings 16a to 16d are also constituted by conductor patterns formed on the substrate 11.
  • the wiring 16a electrically connects the first light emitting element 12a and the terminal portion 15a
  • the wiring 16b electrically connects the second light emitting element 12b and the terminal portion 15b
  • the wiring 16c is the third light emitting element. 12c and the terminal part 15c are electrically connected.
  • the wiring 16d electrically connects each light emitting element 12a to 12c and the terminal portion 15d.
  • the light emitting elements 12a to 12c are connected in a so-called series-parallel manner in 54 series and two series for each color of the light sources W1, W2, and W3 to which they belong. Specifically, 54 light emitting elements 12a to 12c constituting the same element array are connected in series, and the element arrays of the light sources W1, W2, and W3 of the same color are connected in parallel. The light sources W1, W2, and W3 are controlled to be lighted separately for each color.
  • the light emitting module as described above can emit illumination light having different color temperatures by performing dimming control on the light sources W1, W2, and W3 described later by the lighting circuit unit 4.
  • the base 20 is, for example, a disk shape made of aluminum die cast, and has a mounting portion 21 in the center on the upper surface side, and the light emitting module 10 is mounted on the mounting portion 21. Further, on the upper surface side of the base 20, screw holes 22 for screwing assembly screws 35 for fixing the holder 30 are provided on both sides of the mounting portion 21. An insertion hole 23, a boss hole 24, and a notch 25 are provided in the peripheral portion of the base 20. The roles of the insertion hole 23, the boss hole 24, and the notch 25 will be described later.
  • the holder 30 has, for example, a bottomed cylindrical shape, and includes a disc-shaped presser plate portion 31 and a cylindrical peripheral wall portion 32 extending from the periphery of the presser plate portion 31 toward the base 20.
  • the light emitting module 10 is fixed to the base 20 by pressing the light emitting module 10 against the mounting portion 21 with the pressing plate portion 31.
  • a window hole 33 for exposing the light sources W1, W2, and W3 of the light emitting module 10 is formed in the center of the pressing plate portion 31. Further, an opening 34 for preventing the lead wire 71 connected to the light emitting module 10 from interfering with the holder 30 is formed in the peripheral portion of the pressing plate portion 31 in communication with the window hole 33. Yes. Further, an insertion hole 36 for inserting the assembly screw 35 is provided in a circumferential portion of the holding plate portion 31 of the holder 30 at a position corresponding to the screw hole 22 of the base 20.
  • the substrate 11 of the light emitting module 10 is sandwiched between the base 20 and the holder 30 with the light sources W 1, W 2, W 3 exposed from the window holes 33 of the holder 30.
  • the assembly screw 35 is inserted into the screw insertion hole 36 from above the holding plate portion 31 of the holder 30 and screwed into the screw hole 22 of the base 20, so that the holder 30 is attached to the base 20.
  • the decorative cover 40 is, for example, an annular shape made of a non-translucent material such as a white opaque resin, and is disposed between the holder 30 and the cover 50, and the lead wire 71 exposed from the opening 34 or the like The assembly screw 35 and the like are covered and hidden.
  • a window hole 41 for exposing the light sources W1, W2, and W3 is formed in the center of the decorative cover 40.
  • the cover 50 is formed of a translucent material such as silicone resin, acrylic resin, or glass, for example, and light emitted from each of the light sources W1, W2, and W3 is transmitted through the cover 50 to the outside of the lamp unit 6. It is taken out.
  • the cover 50 has a dome shape covering each of the light sources W1, W2, and W3 and having a lens function, and an outer flange portion 52 extending outward from the peripheral edge of the main body portion 51. The outer flange portion 52 is fixed to the base 20.
  • the cover pressing member 60 is made of a non-translucent material such as a metal such as aluminum or a white opaque resin, for example, and has an annular plate shape so as not to block light emitted from the main body 51 of the cover 50. ing.
  • the outer flange portion 52 of the cover 50 is sandwiched and fixed between the cover pressing member 60 and the base 20.
  • a columnar boss portion 61 that protrudes toward the base 20 is provided on the lower surface side of the cover pressing member 60.
  • a semicircular cutout portion 53 for avoiding the boss portion 61 is formed in the outer flange portion 52 of the cover 50 at a position corresponding to the boss portion 61.
  • a boss hole 24 for inserting the boss portion 61 into a position corresponding to the boss portion 61 is formed in the peripheral portion of the base 20.
  • Semicircular notches 54 and 62 are formed at positions corresponding to the insertion hole 23 of the base 20 at the outer flange portion 52 of the cover 50 and the peripheral edge portion of the cover pressing member 60, respectively.
  • a mounting screw (not shown) to be inserted through the cover does not hit the cover pressing member 60 or the cover 50.
  • the wiring member 70 has a pair of lead wires 71 electrically connected to the light emitting module 10, and a connector 72 is attached to the end of the lead wire 71 opposite to the side connected to the light emitting module 10. It has been.
  • the lead wire 71 of the wiring member 70 connected to the light emitting module 10 is led out of the lamp unit 6 through the cutout portion 25 of the base 20.
  • the lighting circuit unit 4 is a lighting circuit unit including a lighting circuit unit 4c, a dimming ratio detection circuit unit 4d, a current amount detection unit 4e, and a control circuit unit 4f. It is electrically connected to an external commercial AC power source (not shown), and supplies a current input from the commercial AC power source to the light emitting module 10.
  • the light sources W1, W2, and W3 are controlled to be lit for each color, that is, the first light source W1, the second light source W2, and the third light source W3 are separately controlled.
  • the lighting circuit unit 4c is configured by a circuit including an AC / DC converter (not shown), and supplies power separately to the first light emitting element 12a, the second light emitting element 12b, and the third light emitting element 12c. .
  • an AC voltage from a commercial AC power source is converted into a DC voltage suitable for the first light emitting element 12a, a DC voltage suitable for the second light emitting element 12b, and a DC voltage suitable for the third light emitting element 12c.
  • the voltage is converted into voltage using an AC / DC converter.
  • a DC voltage suitable for each of the light emitting elements 12a to 12c is applied to each of the light emitting elements 12a to 12c as a forward voltage.
  • a diode bridge or the like is used as the AC / DC converter.
  • the dimming ratio detection circuit unit 4d acquires a dimming signal from the dimming unit 5.
  • the dimming unit 5 outputs a dimming signal to the dimming ratio detection circuit unit 4d in response to a user operation or the like.
  • the dimming signal is information indicating the color temperature and luminance of illumination light to be emitted by the illumination device.
  • the dimming ratio detection circuit unit 4d converts the dimming signal into a dimming ratio.
  • the dimming ratio is the luminous flux of each of the first light-emitting element 12a, the second light-emitting element 12b, and the third light-emitting element 12c constituting the first light source W1, the second light source W2, and the third light source W3. It is the ratio to the luminous flux when fully lit (100% lit). Information on the dimming ratio is output from the dimming ratio detection circuit unit 4d to the control circuit unit 4f.
  • the current amount detection unit 4e is, for example, a current detection resistor inserted in series on the current path to the first light emitting element 12a in the lighting circuit unit 4c, and the amount of current flowing through the first light emitting element 12a is calculated. To detect. The detection result is output to the control circuit unit 4f as current amount information. Note that the method of detecting the amount of current flowing through the third light emitting element 12c by the current amount detection unit 4e is not limited to the above.
  • the control circuit unit 4f includes a microprocessor and a memory.
  • the control circuit unit 4f uses a microprocessor to dimm the first light emitting element 12a, the second light emitting element 12b, and the third light emitting element 12c in accordance with the dimming ratio input from the dimming ratio detection circuit unit 4d. Control and adjust their brightness.
  • the control circuit unit 4f sets the application time ratios of the first light emitting element 12a, the second light emitting element 12b, and the third light emitting element 12c based on the dimming ratio, whereby the first light emitting element 12a, The second light emitting element 12b and the third light emitting element 12c are configured to perform PWM control.
  • FIG. 6 shows the reproduction range of the color temperature during light emission of the lighting device 1 according to one aspect of the embodiment, and the light emission colors of the first light source W1, the second light source W2, and the third light source W3 used in the light emitting module 10. It is a CIExy chromaticity diagram showing degrees. The numerical value shown at the point on the black body locus represents the color temperature of the emission color at each point.
  • the darkly shaded range on the phase locus is a toning range that can be reproduced as the lighting device 1.
  • the light emitting module 10 can emit illumination light in a range indicated by a one-dot chain line by performing dimming control on the light sources W 1, W 2, and W 3 by the lighting circuit unit 4.
  • the lighting device 1 can reproduce white light in a color temperature range from 3500K to 5000K.
  • the first white light emitted from the first light source W1 is located in the vicinity of the color temperature 4000K near the black body locus, and the first white light is within the toning range.
  • the second white light emitted from the second light source W1 is located at a color temperature of 2700K in the vicinity of the black body locus, and exhibits a color temperature lower than 3500K, which is the lower limit of the color temperature in the toning range.
  • the third white light emitted from the third light source W1 is located at a color temperature of 6500K in the vicinity of the black body locus, and indicates a color temperature higher than 5000K which is the upper limit of the color temperature in the toning range.
  • the chromaticity of the light emitted from each light source is located near the black body locus. More preferably, it may be within a range of duv ⁇ 0.02 from the black body locus.
  • FIG. 7 is a schematic diagram of dimming control for each of the light sources W1, W2, and W3 in the illumination device 1 according to one aspect of the embodiment.
  • the control circuit unit 4f sets the application time ratio of the voltage applied to the first light emitting element 12a, the second light emitting element 12b, and the third light emitting element 12c based on the dimming ratio for each of the light sources W1, W2, and W3.
  • each light emitting element 12a, 12b, 12c is comprised so that PWM control is possible.
  • the control circuit unit 4f sets an application time ratio of 100% over the entire toning range for the first light emitting element 12a, and continuously applies a predetermined voltage to the first light emitting element 12a. Apply.
  • predetermined continuous application refers to applying a pulse voltage at an application time ratio of 100%.
  • the control circuit unit 4f sets the application time ratio of the second light emitting element 12b and the third light emitting element 12c so as to change in the dimming range, and the second light emitting element 12b and the third light emitting element are set.
  • the element 12c is PWM controlled.
  • the first light source W1 always emits light with a light flux of a certain value or more over the entire toning range when the lighting device is turned on.
  • the ratio of the luminous flux of the first light source and the luminous flux of the second light source or the third light source is appropriately selected according to the toning range, the chromaticity of each light source, the efficiency of the light emitting element used for each light source, and the like.
  • the light beam emitted from the first light source W1 is selected from a range of about 25% to about 50% with respect to the total light beam emitted from the first light source W1, the second light source W2, and the third light source W3. can do. More preferably, it may be in the range of 28.7% to 48.8%.
  • the ratio of the luminous flux of the first light source and the luminous flux of the second light source or the third light source is not limited to the above numerical range, and can be appropriately selected according to the purpose.
  • a light emitting element having a higher light emission efficiency than the second light source and the third light source can be selected. Therefore, the efficiency of the illumination device can be increased by increasing the ratio of the luminous flux of the first light source to the total luminous flux. Can be increased. Further, the chromaticity of the synthesized light can be made closer to the black body locus.
  • the first light source W1 is controlled so as to obtain a constant luminous flux over the entire toning range.
  • the second light source W2 and the third light source W3 are controlled so that the luminous fluxes of the emitted light change in a mutually contradictory manner.
  • the lighting device 1 can reduce the number of light-emitting elements without reducing the luminance of light emission. Details will be described later.
  • the period of the PWM control when imaged with a video device is taken.
  • the flicker phenomenon caused by the deviation of the period of the video equipment can be prevented.
  • FIG. 8 shows the maximum value of the luminous flux per one of the first light emitting element 12a, the second light emitting element 12b, and the third light emitting element 12c constituting each light source.
  • FIG. 9 is a characteristic diagram showing the relationship between the current and luminous flux of the light emitting elements of the first light source W1, the second light source W2, and the third light source W3 in the illumination device 1 according to the embodiment.
  • FIG. 10 is a characteristic diagram showing the relationship between the current and voltage of the light emitting elements of the first light source W1, the second light source W2, and the third light source W3 in the illumination device 1 according to the embodiment.
  • FIG. 11 is an example 1 showing a light emission simulation result of a toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each of the light sources W1, W2, and W3.
  • 11A shows the specifications of the illumination device, the light flux of each light source, the number of necessary light emitting elements, FIG. 11B shows the number of light emitting elements necessary for each light source, and FIG. 11C shows the necessary light flux of the light emitting element alone. It is explanatory drawing which shows the required electric power and efficiency of a light emitting element single-piece
  • the toning range of the lighting device 1 is 3500K to 5000K as described above. As representative values, 3500K, 4000K, 4500K, and 5000K are shown.
  • the total luminous flux of the illumination device 1 is 10,000 lm over the entire toning range.
  • the ratio of the luminous flux of the first light source and the luminous flux of the second light source or the third light source depends on the toning range, the chromaticity of each light source, the efficiency of the light emitting element used for each light source, and the like. It can be selected appropriately.
  • the maximum light flux ratio of the first light source, the second light source, and the third light source is set to approximately 1: 2: 2.
  • the ratio of the luminous flux of the first light source to the total luminous flux of the illumination device is 28.7%.
  • the necessary light flux of each light source was calculated at each color temperature from the chromaticity xy necessary for the light emitted from the lighting device, the total light flux, and the chromaticity xy of each light source. Further, the number of light-emitting elements required for each light source at the color temperature was calculated by dividing the required light flux of each light source by the maximum value of the light flux per light-emitting element of each light source shown in FIG.
  • the first light source requires 54 light emitting elements throughout the toning range.
  • the number of light-emitting elements required at 3500K is the maximum, and 120 are required.
  • the number of light emitting elements required at 5000K is the maximum, and 111 are required.
  • the total number of light emitting elements required for each light source is 285 for each light source, as shown in FIG.
  • 86 heating elements can be reduced in Example 1 of the lighting device 1 according to the present embodiment, and the reduction rate Is about 23%.
  • the necessary light flux of the light emitting element alone when emitting the necessary light flux for each light source shown in FIG. It is calculated by dividing by the required quantity, as shown in FIG.
  • the light emitting element of the first light source is configured to emit light with the maximum luminous flux of the light emitting element shown in FIG. 8 in the entire toning range.
  • the second light source and the third light source have a configuration in which each element is dimmed within the range up to the maximum luminous flux of the light emitting element shown in FIG.
  • the current value for achieving the necessary luminous flux of the light emitting element is calculated from the luminous flux / current characteristic curve of the light emitting element shown in FIG. 9, and the voltage and power at that time are the voltage / current of the light emitting element shown in FIG. Calculated from the characteristic curve. Thereafter, the calculated required power for each light emitting element and the required quantity were multiplied to calculate the power required for the lighting device and the light emission efficiency (light flux / power). The result is shown in FIG.
  • Example 1 of the lighting device 1 according to the present embodiment the fluctuation range of the required power and the light emission efficiency in the entire toning range is reduced.
  • FIG. 12 is a chromaticity diagram illustrating Example 1 of a light emission simulation result of a toning range in which lighting is performed by changing the dimming ratio with respect to each of the light sources W1, W2, and W3 in the lighting device 1 according to the embodiment.
  • FIG. 11 shows the chromaticity of light emission when the lighting range is changed by changing the dimming ratios for the light sources W1, W2, and W3 under the conditions shown in FIG. 11A with respect to the toning range of 3500K to 5000K.
  • color matching along the black body locus becomes possible by performing color matching control using each of the light sources W1, W2, and W3. .
  • Example 2 Example 2
  • FIG. 13 is an example 2 showing a light emission simulation result of a toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each light source.
  • the specifications of each light source are the same as in the first embodiment.
  • the toning range and the total luminous flux of the lighting device 1 are the same as those of the first embodiment shown in FIG.
  • the ratio of the luminous flux of the first light source and the luminous flux of the second light source or the third light source can be appropriately selected.
  • the conditions are such that the ratio of the maximum luminous fluxes of the first light source, the second light source, and the third light source is approximately 1: 0.92: 1.
  • the ratio of the luminous flux of the first light source to the total luminous flux of the illumination device is 48.8%.
  • the required light flux of each light source was calculated at each color temperature. Further, the number of light emitting elements required for each light source at each color temperature was calculated. The result is shown in FIG. In the first light source, 92 light emitting elements are required throughout the toning range. In the second light source, the number of light emitting elements required at 3500K is the maximum, and 95 are required. In the third light source, the number of light emitting elements required at 5000K is the maximum, and 94 are required. As a result, the total number of light-emitting elements required for each light source is 281 for each light source, as shown in FIG. As described above, compared to the case where the conventional lighting device described later requires 371 heating elements, 90 heating elements can be reduced in Example 1 of the lighting device 1 according to the present embodiment. The reduction rate is about 24%.
  • Example 2 the power required for the entire lighting device and the luminous efficiency (light flux / power) were calculated in the same manner as in Example 1. The result is shown in FIG.
  • the light emitting element of the first light source is configured to emit light with the maximum luminous flux of the light emitting element shown in FIG. 8 in the entire toning range.
  • the second light source and the third light source have a configuration in which each element is dimmed within the range up to the maximum luminous flux of the light emitting element shown in FIG. Further, in comparison with the conventional lighting device described later, in Example 2, the fluctuation range of the required power and the light emission efficiency in the entire toning range is reduced.
  • FIG. 14 is a chromaticity diagram showing Example 2 of the light emission simulation result of the toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each light source.
  • FIG. 13 shows the chromaticity of light emission when the lighting range is changed by changing the dimming ratio for each of the light sources W1, W2, and W3 under the conditions shown in FIG. 13A with respect to the toning range from 3500K to 5000K.
  • FIG. 15 is a third example showing a light emission simulation result of a toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each light source.
  • the specifications of each light source are the same as in the first embodiment. As shown in FIG.
  • the toning range and the total luminous flux of the lighting device 1 are the same as those of the first embodiment shown in FIG. Also here, as in Example 1, the conditions were such that the ratio of the maximum luminous fluxes of the first light source, the second light source, and the third light source was approximately 1: 2: 2. The ratio of the luminous flux of the first light source to the total luminous flux of the illumination device is 28.7%. And the quantity of the light emitting element required for each light source in each color temperature was calculated. The result is the same as FIG. 11A and is shown in FIG. The number of light-emitting elements required for each light source throughout the entire toning range is 285 in total for each light source as shown in FIG.
  • Example 3 the number of light emitting elements used in the first light source is increased so that the light flux of the first light source is lower than the maximum light flux of the light emitting element shown in FIG. That is, in addition to the number of 285 light emitting elements required for each light source, 100 light emitting elements, which are approximately twice the required number of 54 light sources for the first light source, were mounted, and a total of 331 light emitting elements were mounted. Even in such a case, 40 heat generating elements are reduced in Example 3 of the lighting device 1 according to the present embodiment as compared with the case where the conventional lighting device described later requires 371 heat generating elements. The reduction rate is about 11%.
  • Example 3 the power required for the entire lighting device and the luminous efficiency (light flux / power) were calculated in the same manner as in Example 1. The result is shown in FIG.
  • the light emitting element of the first light source emits light with a luminous flux of about 54% of the maximum luminous flux of the light emitting element shown in FIG. 8 in the entire toning range.
  • the second light source and the third light source have a configuration in which each element is dimmed within the range up to the maximum luminous flux of the light emitting element shown in FIG.
  • FIG. 16 is a chromaticity diagram showing Example 3 of the light emission simulation result in the toning range in which lighting is performed by changing the dimming ratio with respect to each light source in lighting apparatus 1 according to the embodiment.
  • FIG. 15 shows the chromaticity of light emission when the lighting range is changed by changing the dimming ratio for each of the light sources W1, W2, and W3 under the conditions shown in FIG.
  • Example 4 FIG. 17 is an example 4 showing a light emission simulation result of a toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each light source.
  • the specifications of each light source are the same as in the first embodiment. As shown in FIG.
  • the toning range and the total luminous flux of the lighting device 1 are the same as those of the first embodiment shown in FIG. Also here, as in Example 2, the conditions were such that the ratio of the maximum luminous flux of the first light source, the second light source, and the third light source was approximately 1: 0.92: 1. The ratio of the luminous flux of the first light source to the total luminous flux of the illumination device is 48.8%. And the quantity of the light emitting element required for each light source in each color temperature was calculated. The result is the same as FIG. 13A and is shown in FIG. The total number of light-emitting elements required for each light source is 281 in total for each light source as shown in FIG.
  • Example 4 the number of light emitting elements used in the first light source is increased so that the light flux of the first light source is lower than the maximum light flux of the light emitting element shown in FIG. That is, in addition to 281 light emitting elements required for each light source, 140 light emitting elements, which are about 1.5 times the required quantity 92 in the first light source, are mounted, and a total of 329 light emitting elements are mounted. There is a feature in the point. Even in such a case, 42 heater elements are reduced in Example 3 of the illumination device 1 according to the present embodiment, compared to the case where the conventional illumination device described later requires 371 heater elements. The reduction rate is about 11%.
  • Example 4 the power required for the entire lighting device and the luminous efficiency (light flux / power) were calculated in the same manner as in Example 1. The result is shown in FIG.
  • the light emitting element of the first light source emits light with about 66% of the maximum light flux of the light emitting element shown in FIG. 8 in the entire toning range.
  • the second light source and the third light source have a configuration in which each element is dimmed within the range up to the maximum luminous flux of the light emitting element shown in FIG.
  • FIG. 18 is a chromaticity diagram showing Example 4 of the light emission simulation result in the toning range in which the lighting device 1 according to the embodiment is turned on by changing the dimming ratio with respect to each light source.
  • FIG. 17 shows the chromaticity of light emission when the lighting range is changed by changing the dimming ratios for the light sources W1, W2, and W3 under the conditions shown in FIG. (Comparative example)
  • the same simulation was performed by changing the dimming ratio for each light source.
  • FIG. 19 shows specifications relating to light emission of a first light source and a second light source, which are two types of white light sources used in a light emitting module of a conventional lighting device.
  • FIG. 19 shows the maximum value of the luminous flux per light-emitting element that constitutes each light source.
  • the relationship between the current of the light emitting elements of the first light source W1 and the second light source W2 and the luminous flux is the same as that of the light emitting element used in the example shown in FIG. Further, the relationship between the current and voltage of the light emitting element alone is the same as that of the light emitting element used in the example shown in FIG.
  • FIG. 20 is a schematic diagram of dimming control for each light source in a conventional lighting device.
  • the conventional lighting device is also configured to be able to perform PWM control of each light emitting element by setting the application time ratio of the voltage applied to the light emitting element based on the dimming ratio for each light source.
  • the application time ratio for the two types of light sources is set to change in the dimming range in a contradictory manner, and PWM control is performed.
  • the first light source and the second light source are controlled such that the light beams emitted from the respective light sources change in a mutually contradictory manner.
  • FIG. 21 is a comparative example showing a light emission simulation result in a toning range in which lighting is performed by changing the dimming ratio with respect to each light source in a conventional lighting device.
  • the toning range and the total luminous flux of the conventional lighting device are the same as those of the first embodiment shown in FIG.
  • the first light source and the second light source emit light by adjusting each element within the range up to the maximum luminous flux in the toning range, and the first light source at the upper and lower limits of the toning range.
  • the second light source outputs a total luminous flux.
  • the required light flux of each light source was calculated at each color temperature.
  • the required luminous flux of each light source was calculated for the number of light emitting elements required for each light source at each color temperature. The result is shown in FIG. In the first light source, the number of light emitting elements required at 3500K is the maximum, and 179 are required. In the second light source, the number of light emitting elements required at 5000K is the maximum, and 192 are required. As a result, the total number of light emitting elements required for each light source is 371 in total for each light source, as shown in FIG.
  • FIG. 22 is a chromaticity diagram illustrating a comparative example of a light emission simulation result in a toning range in which lighting is performed by changing a dimming ratio with respect to each light source in a conventional lighting device.
  • FIG. 21 shows the chromaticity of light emission in the case where the lighting is performed by changing the dimming ratio for each light source under the conditions shown in FIG. 21A in the toning range from 3500K to 5000K.
  • Modification> As mentioned above, although embodiment of the illuminating device 1 which concerns on this invention was described, the illustrated illuminating device 1 can also be deform
  • the first white light emitted from the first light source W1, the second white light emitted from the second light source W1, and the third white light emitted from the third light source W1 are: It was set as the structure located in the black body locus vicinity. However, it is sufficient that the light emitted from each light source is white and reproduces the toning range.
  • the following configuration may be used.
  • FIG. 23, FIG. 24, FIG. 25, and FIG. 26 are chromaticities that show the chromaticity of light emission of the first light source W1, the second light source W2, and the third light source W3 used in the light emitting module according to the modification of the embodiment.
  • FIG. 23 are chromaticities that show the chromaticity of light emission of the first light source W1, the second light source W2, and the third light source W3 used in the light emitting module according to the modification of the embodiment.
  • FIG. 23 shows that the first white light emitted from the first light source W1, the second white light emitted from the second light source W1, and the third white light emitted from the third light source W1 are positioned in substantially the same linear shape on the chromaticity diagram. It is the structure to do. It is preferable that the chromaticity of light emission of each light source is located in the vicinity of an arbitrary straight line. In this case, the chromaticity of the white light obtained by the synthesis is located in the vicinity of this straight line. With such a configuration, dimming control of each light source is simplified.
  • the straight line connecting the coordinates of the first white light emitted from the first light source W1 and the coordinates of the second white light emitted from the second light source W1 is located in the vicinity of the black body locus.
  • the light emission chromaticity of each light source is located in the vicinity of the black body locus. Further, it may be configured to be preferably located within a range of duv ⁇ 0.02 from the black body locus.
  • a straight line connecting the coordinates of the first white light emitted from the first light source W1 and the coordinates of the third white light emitted from the third light source W1 is also located almost on the black body locus. With such a configuration, dimming control of each light source is simplified.
  • the coordinates of the second white light emitted by and the coordinates of the third white light emitted by the third light source W1 are substantially located on the black body locus.
  • the coordinates of the second white light and the coordinates of the third white light are located in the vicinity of the black body locus. Further, it may be configured to be preferably located within a range of duv ⁇ 0.02 from the black body locus. In such a configuration, since the first light source W1 exists in the vicinity of the chromaticity showing the highest efficiency on the color coordinates, the light emission efficiency can be improved as an illumination device.
  • the coordinates of the second white light and the coordinates of the third white light may be more preferably located within a range of duv ⁇ 0.02 from the black body locus.
  • the white light obtained by the synthesis can be controlled so as to be positioned on the black body locus over the entire toning range.
  • the control circuit unit 4f sets a dimming ratio with an application time ratio of 100% over the entire toning range for the first light emitting element 12a, and the first light emitting element A predetermined voltage was continuously applied to 12a.
  • control circuit unit 4f sets a constant dimming ratio of less than 100% over the entire toning range for the first light emitting element 12a, and sets a predetermined dimming ratio at a time ratio according to the dimming ratio. It may be configured to apply a pulse voltage. By turning on the first light source W1 with a constant light flux over the entire toning range, the number of light emitting elements to be mounted can be reduced without lowering the luminance of light emission as the illumination device.
  • the control circuit unit 4f may be configured to set a dimming ratio that changes in the toning range for the first light emitting element 12a and apply a pulse voltage at a time ratio according to the dimming ratio. .
  • a dimming ratio that changes in the toning range for the first light emitting element 12a and apply a pulse voltage at a time ratio according to the dimming ratio.
  • control circuit unit 4f sets the dimming ratio at the application time ratio of 100% and applies the pulse voltage at the application time ratio of 100% to the first light emitting element 12a. It is also possible to simply apply a predetermined DC voltage over the entire range. By turning on the first light source W1 with a constant light flux over the entire toning range, the number of light emitting elements to be mounted can be reduced. Further, it is possible to prevent a flicker phenomenon caused by a deviation between the PWM control cycle and the video device cycle when the image is captured by the video device. (3) In the light emitting module 10 according to the above embodiment, there are two light sources of each color, but the number of each light source is arbitrary. For example, each color light source may be one, or three or more.
  • each color light source does not need to be the same, and the number of each color light source is arbitrary, for example, the first light source is double the second light source and the second light source. It is sufficient that at least one of each color exists.
  • the number of the light emitting elements which comprise each light source is arbitrary.
  • one light source may be configured with one light emitting element and one sealing member, or one light source with a plurality of light emitting elements and one sealing member other than the quantity shown in the embodiment. May be configured. Further, the number of light emitting elements of each light source does not have to be the same.
  • the light emitting module may include light sources of colors other than the first white color, the second white color, and the second white color.
  • the shape of the sealing member 13 is a long linear shape, but the shapes of the light sources W1, W2, and W3 according to the present invention are arbitrary. That is, it is not limited to a linear shape, and may be the same linear shape or a curved shape instead of a linear shape. Moreover, it may be a block shape instead of a linear shape. Furthermore, the shape which combined linear form, curvilinear form, block shape, etc. may be sufficient. In addition, the arrangement of the light sources W1, W2, and W3 is also arbitrary. Hereinafter, variations in the shape and arrangement of the light sources W1, W2, and W3 will be described.
  • subjected and description is simplified or abbreviate
  • the light sources W1, W2, and W3 have the same pattern on the same color and the different patterns on the different light sources. .
  • FIG. 27 is a view showing a light emitting module 110 according to a modification, in which (a) is a plan view, (b) is a right side view, and (c) is a front view.
  • the shape of each of the light sources W1, W2, and W3 is a rectangular parallelepiped that is a kind of block shape, and they are arranged in a matrix.
  • Each of the light sources W1, W2, and W3 includes a plurality of light emitting elements 112a to 112c arranged in a line in a straight line, and one sealing member 113a to 113c that seals the light emitting elements 112a to 112c. ing.
  • the light sources W1, W2, and W3 are staggered so that the same colors are not adjacent to each other. As described above, if the size of each of the light sources W1, W2, and W3 is reduced and the number of the light sources W1, W2, and W3 is increased, the light emitted from the color light sources W1, W2, and W3 is likely to be mixed uniformly. Is unlikely to occur.
  • FIG. 28 is a view showing a light emitting module 210 according to another modification, in which (a) is a plan view, (b) is a right side view, and (c) is a front view.
  • each of the light sources W1, W2, and W3 is a rectangular ring that is a kind of ring, and they are alternately arranged so that their ring axes coincide.
  • Each of the light sources W1, W2, and W3 includes a plurality of light emitting elements 212a to 212c arranged in an annular shape, and one rectangular annular sealing member 213a to 213c that seals the light emitting elements 212a to 212c. .
  • the light sources W1, W2, and W3 annular it is possible to emit illumination light with no color unevenness in all directions of 360 degrees around the ring axis.
  • FIG. 29 is a view showing a light emitting module 310 according to another modification, in which (a) is a plan view, (b) is a right side view, and (c) is a front view.
  • SMD Surface Mount Device
  • W1, W2, and W3 are disposed on the upper surface 311a of the circular plate-shaped substrate 311.
  • Light sources W1, W2, and W3 are arranged.
  • Each of the light sources W1, W2, and W3 has a substantially square shape when viewed from above the substrate 311 and includes one light emitting element 312a to 312c and one sealing member 313a to 313c.
  • the light emitting elements 12a, 12b, and 12c according to the present embodiment are not limited to blue light emitting elements that emit blue light having a peak wavelength of 450 nm or more and 470 nm or less.
  • a blue light emitting element that emits blue light having a wavelength other than the above may be used, or a light emitting element that emits ultraviolet light may be used.
  • wavelength conversion members 13a, 13b, and 13c according to the present invention are not limited to the wavelength conversion members having the configuration shown in the embodiment, and wavelength conversion that can obtain desired white light in combination with light emitting elements in each light source. Any member may be used.
  • the third wavelength conversion member 13b may use a different type of wavelength conversion material from the first wavelength conversion member 13a or the second wavelength conversion member 13b, or the same type of wavelength conversion material. It is good also as a structure arrange
  • the wavelength conversion material used for the 1st wavelength conversion member 13a, the 2nd wavelength conversion member 13b, and the 3rd wavelength conversion member 13b may be comprised with the single compound, and several compound May be mixed.
  • the illumination device 1 includes the first light source W1 that emits the first white light and the second light source that emits the second white light having a color temperature lower than that of the first white light.
  • W2 and a third light source W3 that emits third white light having a color temperature higher than that of the first white light, and a light flux of the light emitted from the second light source and a third light source while maintaining a constant light flux of the light emitted from the first light source.
  • a lighting circuit unit 4 that changes the color temperature of the light emitted from the lighting device 1 by changing the luminous flux of the light emitted from the lighting device 1.
  • the number of light emitting elements to be mounted can be reduced without reducing the luminance of light emission as the lighting device.
  • Lighting device 4 Lighting circuit unit (lighting device) 6 Lamp 10, 110, 210, 310 Light emitting module 12a, 112a, 212a, 312a First light emitting element 12b, 112b, 212b, 312b Second light emitting element 12c, 112c, 212c, 312c Third light emitting element 13a, 113a 213a, 313a First wavelength conversion member (first sealing member) 13b, 113b, 213b, 313b Second wavelength conversion member (second sealing member) W1 First light source W2 Second light source W3 Third light source

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 調光により色温度の異なる白色光を発する照明装置(1)において、第1白色光を発する第1光源(W1)と、第1白色光よりも低い色温度の第2白色光を発する第2光源(W2)と第1白色光よりも高い色温度の第3白色光を発する第3光源(W3)と、第1光源を常に発光させ、第2光源の発する光の光束及び第3光源の発する光の光束を変化させて合成光の色温度を変化させる点灯回路(4)とを備えたことを特徴とする。

Description

照明装置および点灯装置
 本発明は、LED(Light Emitting Diode)等の発光素子を利用した照明装置および点灯装置に関し、特に、そのような照明装置において照明光の光特性を改善する技術に関する。
 近年、空間照明では、様々なシーンに応じた照明光を実現する為、色温度可変LED照明が提案されている。照明光源の照明光には、日本工業規格JIS:Z9112で定められた5つの色(色温度)が存在する。それら5つの色のうち、電球色(色温度3000K)、昼白色(色温度5000K)および昼光色(色温度6700K)は、室内照明によく利用されており、電球色、昼光色および昼白色を調光によって再現できる照明装置が求められる。こうしたなか、白色のLED発光素子と電球色のLED発光素子とを用いて発光色を調整することができる照明装置が提案されている(特許文献1)。この照明装置では、照明光源として発光色の異なる2種類の光源を備え、各々に対するPWM制御のオン時間の長短を制御して調色を行うことで照明光の色を変化させている。
特開2010-282839号公報
 しかしながら、従来の方式では、再現する発光色によっては、白色の発光素子を用いた光源と電球色の発光素子を用いた光源の何れか一方しか点灯しない場合がある。このため、一定の光束を得るために搭載すべき発光素子の数量が多くなるという課題があった。
 本発明は、上記問題点に鑑み、調光により色温度の異なる白色光を再現する照明装置において、発光の輝度を低下させることなく、搭載すべき発光素子の数量を低減できる照明装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る照明装置は、調光により色温度の異なる白色光を再現する装置であって、第1白色光を発する第1光源と、前記第1白色光よりも低い色温度の第2白色光を発する第2光源と、前記第1白色光よりも高い色温度の第3白色光を発する第3光源と、前記第1光源を常に発光させ、前記第2光源の発する光の光束及び前記第3光源の発する光の光束を変化させて合成光の色温度を変化させる点灯回路と、を備えたことを特徴とする。
 また、別の態様では、前記合成光は、前記第2白色光よりも高い色温度を示す第4白色光から前記第3白色光よりも低い色温度を示す第5白色光までの範囲において可変であり、前記第1白色光は、前記第4白色光よりも色温度が高く前記第5白色光よりも色温度が低く設定されていることを特徴とする構成であってもよい。
 また、別の態様では、前記点灯回路は、前記第1光源の発する光の光束を一定に保つことを特徴とする構成であってもよい。
 また、別の態様では、前記点灯回路は、前記第1光源に対し一定の電圧を連続的に印加し、前記第2光源及び前記第3光源に対しPWM制御を行うことで前記合成光の色温度を変化させることを特徴とする構成であってもよい。
 また、別の態様では、前記点灯回路は、前記第2光源の発する光の光束及び前記第3光源の発する光の光束の増減が互いに相反して変化するように前記第2光源及び前記第3光源を駆動することを特徴とする構成であってもよい。
 また、別の態様では、前記第1光源の発する光の光束が、前記第1光源、前記第2光源、及び前記第3光源が同時に発する光の光束の総和に対し28.7%から48.8%の範囲内であることを特徴とする構成であってもよい。
 また、別の態様では、前記第1白色光、第2白色光、及び前記第3白色光は、色度図上において任意の直線の近傍に位置することを特徴とする構成であってもよい。
 また、別の態様では、前記第1白色光は、色度図上において座標x=0.365、y=0.446から黒体軌跡へ降ろした法線の近傍であって前記座標と黒体軌跡との間の範囲にあり、第2白色光及び前記第3白色光は、黒体軌跡近傍に位置することを特徴とする構成であってもよい。
 また、本発明の一態様に係る点灯装置は、第1白色光を発する第1光源と、 前記第1白色光よりも低い色温度側にある第2白色光を発する第2光源と、 前記第1白色光よりも高い色温度側にある第3白色光を発する第3光源とを点灯させる点灯装置であって、前記第1光源を常に発光させ、前記第2光源の発する光の光束及び前記第3光源の発する光の光束を互いに相反するように調光することにより、前記発光部に白色光を発光させる点灯回路を備えたことを特徴とする構成であってもよい。
 本発明の一態様に係る照明装置は、調光により色温度の異なる白色光を再現する照明装置において、発光の輝度を低下させることなく、搭載すべき発光素子の数量を低減できる。
実施の形態の一態様に係る照明装置1を示す断面図である。 実施の形態の一態様に係るランプユニット6を示す斜視図である。 実施の形態の一態様に係るランプユニット6を示す分解斜視図である。 (a)は、実施の形態の一態様に係る発光モジュール10を示す平面図、(b)は、右側面図、(c)は、正面図である。 実施の形態の一態様に係る発光モジュール10と点灯回路ユニット4との接続状態を説明するための配線図である。 実施の形態の一態様に係る照明装置1の発光時の色温度の再現範囲と、発光モジュール10に用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。 実施の形態の一態様に係る照明装置1における、各光源W1、W2、W3に対する調光制御の概略図である。 実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光に関する仕様である。 実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光素子単体の電流と光束との関係を示す特性図である。 実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光素子単体の電流と電圧との関係を示す特性図である。 実施の形態に係る照明装置1において、各光源W1、W2、W3に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例1である。(a)は、照明装置の仕様、各光源の光束、必要な発光素子の数量、(b)は、各光源において必要な発光素子の数量、(c)は、発光素子単体の必要光束、発光素子単体と照明装置の必要電力と効率を示す説明図である。 実施の形態に係る照明装置1において、各光源W1、W2、W3に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例1を示す色度図である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例2である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例2を示す色度図である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例3である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例3を示す色度図である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例4である。 実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例4を示す色度図である。 従来の照明装置の発光モジュールに用いた2種類の白色光源である第1光源および第2光源の発光に関する仕様である。 従来の照明装置における、各光源に対する調光制御の概略図である。 従来の照明装置において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す比較例である。 従来の照明装置において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の比較例を示す色度図である。 実施の形態の変形例に係る発光モジュールに用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。 実施の形態の変形例に係る発光モジュールに用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。 実施の形態の変形例に係る発光モジュールに用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。 実施の形態の変形例に係る発光モジュールに用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。 変形例に係る発光モジュール110を示す図である。 変形例に係る発光モジュール210を示す図である。 変形例に係る発光モジュール310を示す図である。
≪実施の形態≫
 <照明装置1>
 以下、本発明の一態様に係る照明装置1、ランプユニット6および発光モジュール10について、図面を参照しながら説明する。なお、各図面における部材の縮尺は実際のものとは異なる。
 図1は、実施の形態の一態様に係る照明装置1を示す断面図である。図1に示すように、本発明の一態様に係る照明装置1は、例えば、天井2に埋め込むようにして取り付けられるダウンライトであって、器具3、回路ユニット4、調光ユニット5、および、ランプユニット6を備える。
 器具3は、例えば、金属製であって、ランプ収容部3a、回路収容部3bおよび外鍔部3cを有する。ランプ収容部3aは、例えば有底円筒状であって、内部にランプユニット6が着脱自在に取り付けられる。回路収容部3bは、例えばランプ収容部3aの底側に延設されており、内部に点灯回路ユニット4が収容されている。外鍔部3cは、例えば円環状であって、ランプ収容部3aの開口部から外方へ向けて延設されている。器具3は、ランプ収容部3aおよび回路収容部3bが天井2に貫設された埋込穴2aに埋め込まれ、外鍔部3cが天井2の下面2bにおける埋込穴2aの周部に当接された状態で、例えば取付ねじ(不図示)によって天井2に取り付けられる。
 点灯回路ユニット4は、後述する調光ユニット5から調光信号を受信し調光信号の示す輝度や色温度に関する情報に応じてランプユニット6を点灯させるためのものである。ランプユニット6と電気的に接続される電源線4aを有し、当該電源線4aの先端にはランプユニット6のリード線71のコネクタ72と着脱自在に接続されるコネクタ4bが取り付けられている。
 調光ユニット5は、ユーザーがランプユニット6の照明光の輝度や色味を調整するためのものであって、点灯回路ユニット4と電気的に接続されており、ユーザーの操作を受けて調光信号を点灯回路ユニット4に出力する。
 <ランプユニット6>
 図2は、実施の形態の一態様に係るランプユニット6を示す斜視図である。図3は、実施の形態の一態様に係るランプユニット6を示す分解斜視図である。図2および図3に示すように、ランプユニット6は、例えば、発光モジュール10、ベース20、ホルダ30、化粧カバー40、カバー50、カバー押え部材60、および、配線部材70等を備える。
 (発光モジュール10)
 図4は、実施の形態の一態様に係る発光モジュール10を示す図であって、(a)は平面図、(b)は右側面図、(c)は正面図である。図5は、実施の形態の一態様に係る発光モジュール10と点灯回路ユニット4との接続状態を説明するための配線図である。なお、各光源W1、W2、W3の配置を理解し易いように、図4の各光源W1、W2、W3には、同色のものには同じ模様を付し、異なるものには異なる模様を付している。また、後述する各光源W1、W2、W3に配設された発光素子12、封止部材13、各光源に対応する端子部15、および、配線16には、各々添字a、b、cを付して区別している。
 図4および図5に示すように、発光モジュール10は、基板11、発光素子12a~12c、封止部材13a~13c、端子部15a~15d、および、配線16a~16dを備える。
 基板11は、例えば、方形板状であって、セラミック基板や熱伝導樹脂等からなる絶縁層とアルミ板等からなる金属層との2層構造を有する。基板11の上面11aには発光素子12a~12cが実装されている。
 発光素子12a~12cは、例えば、54個の発光素子12a~12cで構成される直線状の素子列が、6条平行に並ぶように配置されている。各発光素子12a~12cは、例えば、約460nmに主波長を有する青色光を出射するGaN系のLEDであって、基板11の上面11aにCOB(Chip on Board)技術を用いてフェイスアップ実装されている。なお、本発明に係る発光素子は、例えば、LEDを用いた表面実装型パッケージ(Surface Mount Device(SMD))構造の発光パッケージ、LD(レーザダイオード)や、EL素子(エレクトリックルミネッセンス素子)であってもよい。
 封止部材13a~13cは、例えば、透光性材料で形成された長尺状の部材であって、発光素子12a~12cを素子列ごと別々に封止している。透光性材料としては、例えばシリコーン樹脂、エポキシ樹脂、フッソ樹脂、シリコーン・エポキシのハイブリッド樹脂、ユリア樹脂等を用いることができる。第1の封止部材13a、第2の封止部材13b及び第3の封止部材13cは、透光性材料に波長変換材料が混入されているため、波長変換部材として機能する。以下では、第1の封止部材13aを第1の波長変換部材13aと称し、第2の封止部材13bを第2の波長変換部材13bと称し、第3の封止部材13cを第3の波長変換部材13cと称する。なお、波長変換材料としては、例えば蛍光体粒子を利用することができる。
 第1光源W1、第2光源W2、第3光源W3は、1条の素子列を構成する所定の数量、例えば54個の発光素子12a~12cと、それら発光素子12a~12cを封止する1つの封止部材13a~13cとによって構成されている。各光源W1、W2、W3の形状は、封止部材13a~13cの形状に依存した長尺状であり、両端が揃うようにして6つが等間隔を空けて平行に配置されている。光源W1、W2、W3は、各色2つずつ存在しており、発光モジュール10の色むらを防止するために、同じ色の光源W1、W2、W3が隣り合わないよう、且つ、第2光源W2と第3光源W3との間に第1光源W1が位置するよう配置されている。具体的には、第3光源W2、第1光源W1、第2光源W2、第3光源W3、第1光源W1、第2光源W2の順で配置されている。
 次に、各光源W1、W2、W3の構成と発光色について説明する。
 第1光源W1は、第1の発光素子12aと、当該第1の発光素子12aの光の一部を波長変換する第1の波長変換部材13aとを有し、未変換の光と変換後の光との合成により得られる第1白色光を発する。第1の発光素子12aは、例えば、ピーク波長が450nm以上470nm以下の青色光を出射するLEDである。第1の波長変換部材13aは、第2の発光素子12aの光の一部を、黄色光に発光ピークを有する光に波長変換する。具体的には、例えば、ピーク波長が580nm以上620nm以下の黄色光に波長変換する。第1の波長変換部材13aを構成する蛍光体としては、例えば、黄色に発色する、YAG蛍光体、例えば、Y3Al512:Ceや、Eu2+付活とするシリケート蛍光体、例えば、Sr2SiO4:Eu等を用いることができる。第1の波長変換部材13aの量を調整し、第1の発光素子12aからの青色光と第1の波長変換部材13aからの黄色光との組み合わせにおいて第1白色光が得られるよう構成する。第1白色光は、CIExy色度図における黒体軌跡近傍であって色温度4000Kに位置する白色光である。詳細については、後述する。
 第2光源W2は、第2の発光素子12bと、当該第2の発光素子12bの光の一部を波長変換する第2の波長変換部材13bとを有し、未変換の光と変換後の光との合成により得られる第2白色光を発する。第2の発光素子12bは、例えば、第1の発光素子12aと同じく、ピーク波長が450nm以上470nm以下の青色光を出射する青色発光素子である。第2の波長変換部材13bは、第2の発光素子12bの光の一部を、第1の波長変換部材13aによる変換後の光よりも長波長側に発光ピークを有する光に波長変換する。具体的には、例えば、ピーク波長が580nm以上620nm以下の黄色光に波長変換する。
 第2の波長変換部材13bを構成する蛍光体としては、例えば、黄色に発色する、YAG蛍光体、例えば、Y3Al512:Ceや、Eu2+付活とするシリケート蛍光体、例えば、Sr2SiO4:Eu等を用いることができる。第2の波長変換部材13bの量を調整し、第2の発光素子12bからの青色光と第2の波長変換部材13bからの黄色光との組み合わせにおいて第2白色光が得られる。ここで、低い色温度を示す第2光源W2の方が、上述の高い色温度を示す第1光源W1よりも、発光素子からの青色光の出力が低く、波長変換部材からの光の出力が高い。第2白色光は、CIExy色度図における黒体軌跡近傍であって色温度2700Kに位置する白色光である。詳細については、後述する。
 また、第2の波長変換部材13bには、第1の波長変換部材13a又は第3の波長変換部材13cとはとは異なる種類の波長変換材料が用いられていてもよいし、同じ種類の波長変換材料を用い波長変換部材の量を異ならしめて配設する構成としてもよい。
 第3光源W3は、第3の発光素子12cと、当該第3の発光素子12cの光の一部を波長変換する第3の波長変換部材13cとを有し、未変換の光と変換後の光との合成により得られる第3白色光を発する。第3の発光素子12cは、例えば、第1の発光素子12aと同じく、ピーク波長が450nm以上470nm以下の青色光を出射する青色発光素子である。第3の波長変換部材13cは、第3の発光素子12cの光の一部を、第1の波長変換部材13aによる変換後の光よりも短波長側に発光ピークを有する光に波長変換する。具体的には、例えば、ピーク波長が550nm以上590nm以下且つ半値幅が50nm以上70nm以下の黄色光に波長変換する。
 第3の波長変換部材13cを構成する蛍光体としては、例えば、黄色に発色する、YAG蛍光体、例えば、Y3Al512:Ceや、Eu2+付活とするシリケート蛍光体、例えば、Sr2SiO4:Eu等を用いることができる。第3の波長変換部材13cの量を調整し、第3の発光素子12cからの青色光と第3の波長変換部材13cからの黄色光との組み合わせにおいて第3白色光が得られる。第3白色光は、CIExy色度図における黒体軌跡近傍であって色温度6500Kに位置する白色光である。詳細については、後述する。
 端子部15a~15dは、基板11に形成された導体パターンにより構成されている。端子部15aおよび端子部15dが第1の発光素子12aへの給電用として機能し、端子部15bおよび端子部15dが第2の発光素子12bへの給電用として機能し、端子部15cおよび端子部15dが第3の発光素子12cへの給電用として機能する。各端子部15a~15dは、図4に示すように、基板11の上面11aにおける周縁部に形成されている。
 配線16a~16dも、基板11に形成された導体パターンにより構成されている。配線16aは第1の発光素子12aと端子部15aとを電気的に接続し、配線16bは第2の発光素子12bと端子部15bとを電気的に接続し、配線16cは第3の発光素子12cと端子部15cとを電気的に接続している。また、配線16dは、各発光素子12a~12cと端子部15dとをそれぞれ電気的に接続している。
 発光素子12a~12cは、属する光源W1、W2、W3の色ごとに、54直2並で所謂直並列接続されている。具体的には、同じ素子列を構成する54個の発光素子12a~12cがそれぞれ直列接続され、同色の光源W1、W2、W3の素子列同士が並列接続されている。そして、光源W1、W2、W3は、色ごと別々に点灯制御される。
 以上のような発光モジュールは、点灯回路ユニット4によって後述する光源W1、W2、W3に対し調光制御を行うことで、色温度の異なる照明光を発することができる。
 (ベース)
 図3に戻って、ベース20は、例えば、アルミダイキャスト製の円板状であって、上面側の中央に搭載部21を有し、当該搭載部21に発光モジュール10が搭載されている。また、ベース20の上面側には、搭載部21を挟んだ両側に、ホルダ30固定用の組立ねじ35を螺合するためのねじ孔22が設けられている。ベース20の周部には、挿通孔23、ボス孔24および切欠部25が設けられている。それら挿通孔23、ボス孔24および切欠部25の役割については後述する。
 (ホルダ)
 ホルダ30は、例えば、有底円筒状であって、円板状の押え板部31と、当該押え板部31の周縁からベース20側に延設された円筒状の周壁部32とを有する。押え板部31で発光モジュール10を搭載部21に押えつけることによって、発光モジュール10はベース20に固定されている。
 押え板部31の中央には、発光モジュール10の各光源W1、W2、W3を露出させるための窓孔33が形成されている。また、押え板部31の周部には、発光モジュール10に接続されたリード線71がホルダ30に干渉するのを防止するための開口部34が、窓孔33と連通した状態で形成されている。さらに、ホルダ30の押え板部31の周部には、ベース20のねじ孔22に対応する位置に、組立ねじ35を挿通するための挿通孔36が貫設されている。
 ホルダ30をベース20に取り付ける際には、まず、各光源W1、W2、W3がホルダ30の窓孔33から露出する状態で、ベース20とホルダ30とで発光モジュール10の基板11を挟持する。次に、組立ねじ35を、ホルダ30の押え板部31の上方からねじ挿通孔36に挿通し、ベース20のねじ孔22に螺合させることによって、ホルダ30をベース20に取り付ける。
 (化粧カバー)
 化粧カバー40は、例えば、白色不透明の樹脂等の非透光性材料からなる円環状であって、ホルダ30とカバー50との間に配置されており、開口部34から露出したリード線71や組立ねじ35等を覆い隠している。化粧カバー40の中央には、各光源W1、W2、W3を露出させるための窓孔41が形成されている。
 (カバー)
 カバー50は、例えば、シリコーン樹脂、アクリル樹脂、ガラス等の透光性材料により形成されており、各光源W1、W2、W3から出射された光はカバー50を透過してランプユニット6の外部へ取り出される。当該カバー50は、各光源W1、W2、W3を覆うドーム状であってレンズ機能を有する本体部51と、当該本体部51の周縁部から外方へ延設された外鍔部52とを有し、当該外鍔部52がベース20に固定されている。
 (カバー押え部材)
 カバー押え部材60は、例えば、アルミニウム等の金属や白色不透明の樹脂のような非透光性材料からなり、カバー50の本体部51から出射される光を妨げないように円環板状になっている。カバー50の外鍔部52は、カバー押え部材60とベース20とで挟持され固定されている。
 カバー押え部材60の下面側には、ベース20側へ突出する円柱状のボス部61が設けられている。また、カバー50の外鍔部52には、ボス部61に対応する位置にボス部61を避けるための半円状の切欠部53が形成されている。さらに、ベース20の周縁部には、ボス部61に対応する位置にボス部61を挿通するためのボス孔24が形成されている。カバー押え部材60をベース20に固定する際は、カバー押え部材60のボス部61をベース20のボス孔24に挿通させ、ベース20の下側からボス部61の先端部にレーザ光を照射して、先端部をボス孔24から抜けない形状に塑性変形させる。これにより、カバー押え部材60がベース20に固定される。
 カバー50の外鍔部52、および、カバー押え部材60の周縁部には、ベース20の挿通孔23に対応する位置にそれぞれ半円状の切欠部54、62が形成されており、挿通孔23に挿通させる取付ねじ(不図示)がカバー押え部材60やカバー50に当たらないようになっている。
 (配線部材)
 配線部材70は、発光モジュール10と電気的に接続された一組のリード線71を有し、リード線71の発光モジュール10に接続された側とは反対側の端部にはコネクタ72が取り付けられている。発光モジュール10に接続された配線部材70のリード線71は、ベース20の切欠部25を介してランプユニット6の外部へ導出される。
 <点灯制御>
 (回路構成)
 図5に示すように、点灯回路ユニット4は、点灯回路部4c、調光比検出回路部4d、電流量検出部4e、および制御回路部4fを含む点灯回路をユニット化したものである。外部の商用交流電源(不図示)と電気的に接続されており、商用交流電源から入力される電流を発光モジュール10に供給する。そして、光源W1、W2、W3を色ごとに、すなわち第1光源W1と第2光源W2と第3光源W3とを別々に点灯制御する。
 点灯回路部4cは、AC/DCコンバータ(図示せず)を備える回路で構成され、第1の発光素子12a、第2の発光素子12b、第3の発光素子12cにそれぞれ別々に電力を供給する。具体的には、商用交流電源からの交流電圧を、第1の発光素子12aに適した直流電圧と、第2の発光素子12bに適した直流電圧と、第3の発光素子12cに適した直流電圧とに、AC/DCコンバータを用いてそれぞれ変換する。そして、制御回路部4fからの指示に基づいて、各発光素子12a~12cに適した直流電圧を順電圧として各発光素子12a~12cに印加する。なお、AC/DCコンバータとしては、例えばダイオードブリッジ等が用いられる。
 調光比検出回路部4dは、調光ユニット5から調光信号を取得する。調光ユニット5は、ユーザーの操作等を受けて調光信号を調光比検出回路部4dに出力する。調光信号とは、照明装置が発すべき照明光の色温度や輝度を示す情報である。調光比検出回路部4dは調光信号を調光比に変換する。調光比とは、第1光源W1、第2光源W2、第3光源W3を構成する、第1の発光素子12a、第2の発光素子12bおよび第3の発光素子12cの各々の光束の、全点灯時(100%点灯時)の光束に対する比である。調光比の情報は、調光比検出回路部4dから制御回路部4fに出力される。
 電流量検出部4eは、例えば、点灯回路部4cにおける、第1の発光素子12aへの電流経路上に直列に挿入された電流検出抵抗であって、第1の発光素子12aに流れる電流量を検出する。そして、検出結果は電流量情報として制御回路部4fに出力される。なお、電流量検出部4eにより第3の発光素子12cに流れる電流量を検出する方法は上記に限定されない。
 制御回路部4fは、マイクロプロセッサとメモリとを備えている。制御回路部4fは、マイクロプロセッサを用いて、調光比検出回路部4dから入力された調光比に従って第1の発光素子12a、第2の発光素子12bおよび第3の発光素子12cを調光制御し、それらの輝度を調整する。制御回路部4fは、調光比に基づいて第1の発光素子12a、第2の発光素子12b及び第3の発光素子12cの各印加時間比率を設定することによって、第1の発光素子12a、第2の発光素子12b及び第3の発光素子12cをPWM制御する構成を有する。このようにして、制御回路部4fは、調光比に基づいて照明装置1の発する光の色温度を調整する調色制御を行う。
(調色制御)
 図6は、実施の形態の一態様に係る照明装置1の発光時の色温度の再現範囲と、発光モジュール10に用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示したCIExy色度図である。黒体軌跡上の点に示した数値は、各点における発光色の色温度を表す。
 図6における、濃く相軌跡上の一点鎖線が付された範囲は、照明装置1として再現可能な調色範囲である。照明装置1において、発光モジュール10は、点灯回路ユニット4によって各光源W1、W2、W3に対し調光制御を行うことで、一点鎖線が付された範囲の照明光を発することができる。本実施の形態では、照明装置1は3500Kから5000Kまでの色温度の範囲の白色光を再現することができる。
 また、図6に示すように、第1光源W1の発する第1白色光は、黒体軌跡近傍の色温度4000K付近に位置し、第1白色光は調色範囲の内部にある。また、第2光源W1の発する第2白色光は、黒体軌跡近傍の色温度2700Kに位置し、調色範囲における色温度の下限である3500Kよりも低い色温度を示す。また、第3光源W1の発する第3白色光は、黒体軌跡近傍の色温度6500Kに位置し、調色範囲における色温度の上限である5000Kよりも高い色温度側を示す。このように、各光源の発する光の色度は黒体軌跡近傍に位置する。また、さらに好ましくは、黒体軌跡からduv±0.02の範囲内であってもよい。
 次に、調色範囲における各光源W1、W2、W3に対する調光制御の概要について説明する。図7は、実施の形態の一態様に係る照明装置1における、各光源W1、W2、W3に対する調光制御の概略図である。制御回路部4fは、各光源W1、W2、W3に対する調光比に基づいて第1の発光素子12a、第2の発光素子12bおよび第3の発光素子12cに印加する電圧の印加時間比率を設定し、各発光素子12a、12b、12cをPWM制御できるよう構成されている。この回路において、制御回路部4fは、第1の発光素子12aに対して調色範囲全体に渡って100%の印加時間比率を設定し、第1の発光素子12aに所定の電圧を連続的に印加する。ここで、所定の連続的に印加するとは、パルス電圧を100%の印加時間比率で印加することを指す。他方、制御回路部4fは、第2の発光素子12bおよび第3の発光素子12cの印加時間比率を調光範囲において相反して変化するよう設定し、第2の発光素子12bおよび第3の発光素子12cをPWM制御する。ここで、第1光源W1は、照明装置の点灯時には、調色範囲全体に渡って常に一定値以上の光束で発光させる。また、第1光源の光束と、第2光源又は第3光源との光束の比率は、調色範囲と各光源の色度や各光源に用いる発光素子の効率等に応じて、適宜選択することができる。例えば、第1光源W1の発する光の光束が、第1光源W1、第2光源W2及び第3光源W3が同時に発する光の光束の総和に対し、約25%から約50%の範囲内から選択することができる。また、より好ましくは、28.7%から48.8%の範囲内であってもよい。
 しかしながら、第1光源の光束と、第2光源又は第3光源との光束の比率は、上記数値範囲に限定されるものではなく、目的に応じて適宜選択することができる。例えば、第1光源では、第2光源及び第3光源に比べて発光効率が高い発光素子を選択することができるので、全光束に占める第1光源の光束の比率を高めることで照明装置の効率を高めることができる。また、合成光の色度をより黒体軌跡に近付けることができる。この場合、全光束に占める第1光源の光束の比率を高め、第2光源と第3光源との光束を等価とすることで、調色範囲全体に渡って均一に調色しやすくなる。他方、第2光源及び第3光源からの光束の比率を高めると調色範囲を広くすることができる。
 このように制御することで、図7に示すように、照明装置1では、第1光源W1は、調色範囲全体に渡って一定の光束が得られるよう制御される。また、第2光源W2及び第3光源W3は、発する光の光束が互いに相反して変化するように制御される。このような構成によって、照明装置1では、発光の輝度を低下させることなく発光素子の数量を低減できる。詳細については後述する。
 また、第1光源W1に対して調色範囲全体に渡って100%の印加時間比率を設定し、所定の電圧を連続的に印加することで、映像機器で撮像した場合に上記PWM制御の周期と映像機器の周期のズレによって生じるフリッカー現象を防止できる。
 また、調色範囲全体に渡って第1光源W1を構成する第1の発光素子12aの全てが点灯することで発光素子の粒感が目立たず、照明装置全体として発光の均一性が向上する。以下、具体例を用いて詳細を説明する。
<照明装置1の発光シミュレーション結果>
 以上、説明した実施の形態に係る照明装置1により、所定の調色範囲について、各光源W1、W2、W3に対する調光比を変えて各光源を点灯させるシミュレーションを行った。以下、その結果について図面を用いて説明する。
(実施例1)
 図8は、実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光に関する仕様である。図8に示すとおり、第1光源W1の発する第1白色光は、図8に示した色度x=0.382、y=0.380で示される黒体軌跡近傍の色温度4000Kを示す。第2光源W1の発する第2白色光は、同じく、色度x=0.458、y=0.410で示される黒体軌跡近傍の色温度2700Kを示す。第3光源W3の発する第3白色光は、色度x=0.312、y=0.328で示される黒体軌跡近傍の色温度6500Kを示す。また、図8に、各光源を構成する、第1の発光素子12a、第2の発光素子12bおよび第3の発光素子12cの1個あたりの光束の最大値を示す。
 図9は、実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光素子単体の電流と光束との関係を示す特性図である。また、図10は、実施の形態に係る照明装置1における、第1光源W1、第2光源W2および第3光源W3の発光素子単体の電流と電圧との関係を示す特性図である。
 図11は、実施の形態に係る照明装置1において、各光源W1、W2、W3に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例1である。図11(a)は、照明装置の仕様、各光源の光束、必要な発光素子の数量、(b)は、各光源において必要な発光素子の数量、(c)は、発光素子単体の必要光束、発光素子単体と照明装置の必要電力と効率を示す説明図である。
 図11(a)に示すように、照明装置1の調色範囲は、上記したように3500Kから5000Kである。代表値として、3500K、4000K、4500K、5000Kを示す。照明装置1の全光束は、調色範囲全体に渡って10000lmである。そして、上述のように第1光源の光束と、第2光源又は第3光源の光束との比率は、調色範囲と各光源の色度や各光源に用いる発光素子の効率等に応じて、適宜選択することができる。ここでは、図11(a)に示すように第1光源、第2光源、第3光源の最大光束の比率がほぼ1:2:2となる条件とした。照明装置の全光束に占める第1光源の光束の比率は28.7%となる。そして、照明装置が発する光に必要な色度xy、全光束および各光源の色度xyとから、各色温度において各光源の必要光束を算出した。さらに、各光源の必要光束を、図8に示した各光源の発光素子1個当たりの光束の最大値で除して、色温度において各光源に必要な発光素子の数量を算出した。
 その結果を、図11(a)に示す。第1光源では、調色範囲を通して54個の発光素子が必要となる。第2光源では、3500Kにおいて必要な発光素子の数量は最大となり、120個が必要となる。第3光源では、5000Kにおいて必要な発光素子の数量は最大となり、111個が必要となる。その結果、調色範囲全体を通して、各光源に必要な発光素子の数量は、図11(b)に示すとおり、各光源のトータルでは285個となる。後述する従来の照明装置では371個の発熱素子が必要であることと比較すると、本実施の形態に係る照明装置1の実施例1では86個の発熱素子を削減することができ、その削減率は約23%となる。
 次に、照明装置全体に必要な電力と発光効率を算出した。図11(b)に示す数量の発光素子を搭載した場合、図11(a)に示した各光源毎の必要光束を発したときの発光素子単体の必要光束は、各光源毎に必要光束を必要数量で除して算出され、図11(c)に示すとおりとなる。第1光源の発光素子は、調色範囲の全範囲において、図8に示した発光素子の最大光束で発光させる構成となる。他方、第2光源及び第3光源は、図8に示した発光素子の最大光束までの範囲で各素子を調光して発光させる構成となる。その場合の発光素子の必要光束を達成する電流値を、図9に示した発光素子の光束/電流特性曲線から算出し、その際の電圧、電力を図10に示した発光素子の電圧/電流特性曲線から算出した。その後、算出した発光素子単位の必要電力と必要数量を掛け合わせ、照明装置に必要な電力、及び発光効率(光束/電力)を算出した。その結果を、図11(c)に示す。このように、後述する従来の照明装置と比較すると、本実施の形態に係る照明装置1の実施例1では、調色範囲全体での必要電力及び発光効率の変動幅が減少する。
 図12は、実施の形態に係る照明装置1において、各光源W1、W2、W3に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例1を示す色度図である。3500Kから5000Kの調色範囲に対し、図11(a)の示す条件で各光源W1、W2、W3に対する調光比を変えて点灯させた場合の発光の色度を示す。後述する従来の照明装置では2種類の光源を用いたことと比較すると、各光源W1、W2、W3を用いて調色制御を行うことによって、より黒体軌跡に沿った調色が可能となる。
(実施例2)
 図13は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例2である。各光源の仕様は実施例1と同じである。図13(a)に示すように、照明装置1の調色範囲および全光束は図11に示す実施例1と同じである。実施例1と同様に、第1光源の光束と、第2光源又は第3光源の光束との比率は、適宜選択することが可能である。ここでは、図13(a)に示すように、第1光源、第2光源、第3光源の最大光束の比率がほぼ1:0.92:1となる条件とした。照明装置の全光束に占める第1光源の光束の比率は48.8%となる。そして、実施例1と同様に各色温度において各光源の必要光束を算出した。さらに、各色温度において各光源に必要な発光素子の数量を算出した。その結果を、図13(a)に示す。第1光源では、調色範囲を通して92個の発光素子が必要となる。第2光源では、3500Kにおいて必要な発光素子の数量は最大となり、95個が必要となる。第3光源では、5000Kにおいて必要な発光素子の数量は最大となり、94個が必要となる。その結果、調色範囲全体を通して、各光源に必要な発光素子の数量は、図13(b)に示すとおり、各光源のトータルでは281個となる。このように、後述する従来の照明装置では371個の発熱素子が必要であることと比較すると、本実施の形態よいに係る照明装置1の実施例1では90個の発熱素子を削減することができ、その削減率は約24%となる。
 次に、照明装置全体に必要な電力、及び発光効率(光束/電力)を、実施例1と同様に算出した。その結果を、図13(c)に示す。実施例2では、実施例1と同様に、第1光源の発光素子は、調色範囲の全範囲において、図8に示した発光素子の最大光束で発光させる構成となる。他方、第2光源及び第3光源は、図8に示した発光素子の最大光束までの範囲で各素子を調光して発光させる構成となる。また、後述する従来の照明装置と比較すると、実施例2では調色範囲全体での必要電力及び発光効率の変動幅が減少する。
 図14は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例2を示す色度図である。3500Kから5000Kの調色範囲に対し、図13(a)の示す条件で各光源W1、W2、W3に対する調光比を変えて点灯させた場合の発光の色度を示す。
(実施例3)
 図15は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例3である。各光源の仕様は実施例1と同じである。図15(a)に示すように、照明装置1の調色範囲および全光束は図11に示す実施例1と同じである。そして、ここでも、実施例1と同様に第1光源、第2光源、第3光源の最大光束の比率がほぼ1:2:2となる条件とした。照明装置の全光束に占める第1光源の光束の比率は28.7%となる。そして、各色温度において各光源に必要な発光素子の数量を算出した。その結果は、図11(a)と同じであり、図15(a)に示す。そして、調色範囲全体を通して、各光源に必要な発光素子の数量は、図11(b)に示すとおり各光源のトータルでは285個となる。実施例3では、第1光源の光束を、図8に示した発光素子の最大光束よりも低い光束とするために、第1光源において使用する発光素子の個数を増加する構成とした。すなわち、各光源に必要な発光素子の数量285個に加えて、第1光源において必要数量54個の約2倍となる100個の発光素子を搭載し、トータル331個の発光素子を搭載した。このような場合でも、後述する従来の照明装置では371個の発熱素子が必要であることと比較すると、本実施の形態に係る照明装置1の実施例3では40個の発熱素子を削減することができ、その削減率は約11%となる。
 次に、照明装置全体に必要な電力、及び発光効率(光束/電力)を、実施例1と同様に算出した。その結果を、図15(c)に示す。実施例3では、第1光源の発光素子は、調色範囲の全範囲において、図8に示した発光素子の最大光束の約54%の光束で発光させる構成となる。他方、第2光源及び第3光源は、図8に示した発光素子の最大光束までの範囲で各素子を調光して発光させる構成となる。かかる構成としたことによって、図11(c)に示した実施例1との比較において、調色範囲全体に渡って照明装置全体に必要な電力が減少し、発光効率が向上する。また、後述する従来の照明装置と比較すると、実施例3では調色範囲全体での必要電力及び発光効率の変動幅が減少する。
 図16は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例3を示す色度図である。3500Kから5000Kの調色範囲に対し、図15(a)の示す条件で各光源W1、W2、W3に対する調光比を変えて点灯させた場合の発光の色度を示す。
(実施例4)
 図17は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す実施例4である。各光源の仕様は実施例1と同じである。図17(a)に示すように、照明装置1の調色範囲および全光束は図11に示す実施例1と同じである。そして、ここでも、実施例2と同様に第1光源、第2光源、第3光源の最大光束の比率がほぼ1:0.92:1となる条件とした。照明装置の全光束に占める第1光源の光束の比率は48.8%となる。そして、各色温度において各光源に必要な発光素子の数量を算出した。その結果は、図13(a)と同じであり、図17(a)に示す。そして、調色範囲全体を通して、各光源に必要な発光素子の数量は、図13(b)に示すとおり各光源のトータルでは281個となる。実施例4では、第1光源の光束を、図8に示した発光素子の最大光束よりも低い光束とするために、第1光源において使用する発光素子の個数を増加する構成とした。すなわち、各光源に必要な発光素子の数量281個に加えて、第1光源において必要数量92個の約1.5倍となる140個の発光素子を搭載し、トータル329個の発光素子を搭載した点に特徴がある。このような場合でも、後述する従来の照明装置では371個の発熱素子が必要であることと比較すると、本実施の形態に係る照明装置1の実施例3では42個の発熱素子を削減することができ、その削減率は約11%となる。
 次に、照明装置全体に必要な電力、及び発光効率(光束/電力)を、実施例1と同様に算出した。その結果を、図17(c)に示す。実施例4では、第1光源の発光素子は、調色範囲の全範囲において、図8に示した発光素子の最大光束の約66%の光束で発光させる構成となる。他方、第2光源及び第3光源は、図8に示した発光素子の最大光束までの範囲で各素子を調光して発光させる構成となる。かかる構成としたことによって、図13(c)に示した実施例2との比較において、調色範囲全体に渡って照明装置全体に必要な電力が減少し、発光効率が向上する。また、後述する従来の照明装置と比較すると、実施例4では調色範囲全体での必要電力及び発光効率の変動幅が減少する。
 図18は、実施の形態に係る照明装置1において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の実施例4を示す色度図である。3500Kから5000Kの調色範囲に対し、図17(a)の示す条件で各光源W1、W2、W3に対する調光比を変えて点灯させた場合の発光の色度を示す。
(比較例)
 比較例として、2種類の光源を用いた従来の照明装置において、各光源に対する調光比を変えて、同様のシミュレーションを行った。
 図19は、従来の照明装置の発光モジュールに用いた2種類の白色光源である第1光源および第2光源の発光に関する仕様である。図19に示すとおり、第1光源の発する白色光は、図19に示した色度x=0.407、y=0.392で示される黒体軌跡近傍の色温度3500Kを示す。第2光源の発する白色光は、同じく、色度x=0.345、y=0.355で示される黒体軌跡近傍の色温度5000Kを示す。また、図19に、各光源を構成する、発光素子1個あたりの光束の最大値を示す。また、比較例における、第1光源W1、第2光源W2の発光素子単体の電流と光束との関係は図9を示す実施例に用いた発光素子と同じである。また、発光素子単体の電流と電圧との関係は図10を示す実施例に用いた発光素子と同じである。
 図20は、従来の照明装置における、各光源に対する調光制御の概略図である。従来の照明装置でも、各光源に対する調光比に基づいて発光素子に印加する電圧の印加時間比率を設定し、各発光素子をPWM制御できるよう回路構成されている。従来の照明装置では、図20に示すように、2種類の光源に対する印加時間比率を調光範囲において相反して変化するよう設定しPWM制御する。このように制御することで、第1光源及び第2光源は、各々の光源の発する光の光束が互いに相反して変化するように制御される。
 図21は、従来の照明装置において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果を示す比較例である。図21(a)に示すように、従来の照明装置の調色範囲および全光束は図11に示す実施例1と同じである。比較例では、実施例と同様、調色範囲において第1光源及び第2光源は最大光束までの範囲で各素子を調光して発光させる構成とし、調色範囲の上限及び下限で第1光源又は第2光源が全光束を出力する構成とした。そして、実施例1と同様に各色温度において各光源の必要光束を算出した。さらに、各光源の必要光束を、各色温度において各光源に必要な発光素子の数量を算出した。その結果を、図21(a)に示す。第1光源では、3500Kにおいて必要な発光素子の数量は最大となり、179個が必要となる。第2光源では、5000Kにおいて必要な発光素子の数量は最大となり、192個が必要となる。その結果、調色範囲全体を通して、各光源に必要な発光素子の数量は、図21(b)に示すとおり、各光源のトータルでは371個となる。
 次に、従来の照明装置全体に必要な電力、及び発光効率(光束/電力)を算出した。その結果を、図21(c)に示す。
 図22は、従来の照明装置において、各光源に対する調光比を変えて点灯させた調色範囲の発光シミュレーション結果の比較例を示す色度図である。3500Kから5000Kの調色範囲に対し、図21(a)の示す条件で各光源に対する調光比を変えて点灯させた場合の発光の色度を示す。
<変形例>
 以上、本発明に係る照明装置1の実施形態を説明したが、例示した照明装置1を以下のように変形することも可能であり、本発明が上述の実施形態で示した通りの照明装置1に限られないことは勿論である。
(1)上記実施の形態では、図6に示すように、第1光源W1の発する第1白色光、第2光源W1の発する第2白色光及び第3光源W1の発する第3白色光は、黒体軌跡近傍に位置する構成とした。しかしながら、各光源の発する光は白色であって調色範囲を再現するものであれば足り、例えば、以下に示す構成であってもよい。図23、図24、図25、図26は、実施の形態の変形例に係る発光モジュールに用いられる第1光源W1、第2光源W2、第3光源W3の発光の色度を示した色度図である。
 図23は、第1光源W1の発する第1白色光、第2光源W1の発する第2白色光及び第3光源W1の発する第3白色光が、色度図上においてほぼ同一の直線状に位置する構成である。各光源の発光の色度が任意の直線の近傍に位置することが好ましい。この場合、合成によって得られる白色光の色度はこの直線の近傍に位置する。このような構成では、各光源の調光制御が簡易となる。
 図24では、第1光源W1の発する第1白色光の座標と第2光源W1の発する第2白色光の座標とを結んだ直線がほぼ黒体軌跡近傍に位置する構成である。各光源の発光の色度が、黒体軌跡近傍に位置する。さらに、好ましくは黒体軌跡からduv±0.02の範囲内に位置する構成であってもよい。その上で、第1光源W1の発する第1白色光の座標と第3光源W1の発する第3白色光の座標とを結んだ直線もほぼ黒体軌跡上に位置する。このような構成では、各光源の調光制御が簡易となる。
 図25は、第1光源W1の発する第1白色光の座標は、黒体軌跡から緑色方向にシフトした座標(x=0.365、y=0.446)付近に位置し、第2光源W1の発する第2白色光の座標と第3光源W1の発する第3白色光の座標は、ほぼ黒体軌跡上に位置する構成である。第2白色光の座標と第3白色光の座標は、黒体軌跡近傍に位置する。さらに、好ましくは黒体軌跡からduv±0.02の範囲内に位置する構成であってもよい。このような構成では、第1光源W1が色座標上で最高効率を示す色度の付近に存するので照明装置として発光効率を向上できる。
 図26では、第1光源W1の発する第1白色光の座標は、図25に示した第1白色光の座標(x=0.365、y=0.446)と黒体軌跡との間の範囲に位置する。そして、第2光源W1の発する第2白色光の座標と第3光源W1の発する第3白色光の座標は、ほぼ黒体軌跡近傍に位置する構成である。具体的には、第1白色光の座標は、座標(x=0.365、y=0.446)から黒体軌跡へ降ろした法線の近傍であって当該座標と黒体軌跡との間の範囲に位置することが好ましい。また、第2白色光の座標と第3白色光の座標は、さらに好ましくは、黒体軌跡からduv±0.02の範囲内に位置すること構成であってもよい。このような構成では、合成によって得られる白色光は調色範囲全体に渡って黒体軌跡上に位置するよう制御することができる。
(2)上記実施の形態では、制御回路部4fは、第1の発光素子12aに対して調色範囲全体に渡って100%の印加時間比率の調光比を設定し、第1の発光素子12aに所定の電圧を連続的に印加する構成とした。しかしながら、制御回路部4fは、第1の発光素子12aに対して、調色範囲全体に渡って100%未満の一定の調光比を設定し、その調光比に応じた時間割合で所定のパルス電圧を印加する構成としてもよい。第1光源W1において、調色範囲全体に渡って一定の光束で点灯させることにより、照明装置としての発光の輝度を低下させることなく、搭載すべき発光素子の数量を低減できる。
 また、制御回路部4fは、第1の発光素子12aに対して、調色範囲で変化する調光比を設定し、その調光比に応じた時間割合でパルス電圧を印加する構成としてもよい。調色範囲全体に渡って、第1の発光素子12aを必ず点灯させることにより、照明装置としての発光の輝度を低下させることなく、搭載すべき発光素子の数量を低減できる。
 また、制御回路部4fは、第1の発光素子12aに対して、100%の印加時間比率の調光比を設定しパルス電圧を100%の印加時間比率で印加する構成に替えて、調色範囲全体に渡って単に所定の直流電圧を印加する構成としてもよい。第1光源W1において、調色範囲全体に渡って一定の光束で点灯させることにより、搭載すべき発光素子の数量を低減できる。また、映像機器で撮像した場合に上記PWM制御の周期と映像機器の周期のズレによって生じるフリッカー現象を防止できる。
(3)上記実施の形態に係る発光モジュール10では、各色光源が2つずつ存在したが、各光源の数は任意である。例えば、各色光源が1つずつであってもよいし、3つ以上ずつであってもよい。また、各色光源は同じ数である必要はなく、例えば第1光源を第2光源及び第2光源の2倍にするなど、各色光源の数はそれぞれ任意である。少なくとも各色1つずつ存在すればよい。
(4)また、各光源を構成する発光素子の数は任意である。例えば、1つの発光素子と1つの封止部材とによって1つの光源が構成されていてもよいし、実施の形態で示した数量以外の複数の発光素子と1つの封止部材とで1つの光源が構成されていてもよい。また、各光源の発光素子の数が同じである必要もない。
(5)また、発光モジュールには、第1の白色、第2の白色、および、第2の白色以外の色の光源が含まれていてもよい
(6)また、上記実施の形態に係る発光モジュール10では、封止部材13の形状が長尺直線状であったが、本発明に係る光源W1、W2、W3の形状は任意である。すなわち、直線状に限定されず、同じ線状であっても直線状ではなく曲線状であってもよい。また、線状ではなくブロック状であってもよい。さらに、直線状、曲線状、ブロック状等が組み合わされた形状であってもよい。加えて、光源W1、W2、W3の配置も任意である。以下に、光源W1、W2、W3の形状や配置のバリエーションについて説明する。なお、既に説明した部材と同じ部材が使用されている場合は、その部材と同じ符号を付して説明を簡略若しくは省略している。また、各光源W1、W2、W3の配置を理解し易いように、各光源W1、W2、W3には、同色のものには同じ模様を付し、異なるものには異なる模様を付している。
 図27は、変形例に係る発光モジュール110を示す図であって、(a)は平面図、(b)は右側面図、(c)は正面図である。例えば、図27に示す変形例に係る発光モジュール110では、各光源W1、W2、W3の形状が、ブロック状の一種である直方体であり、それらがマトリックス状に並べて配置されている。各光源W1、W2、W3は、直線状に1列に並べて配置された複数の発光素子112a~112cと、それら発光素子112a~112cを封止する1つの封止部材113a~113cとで構成されている。そして、光源W1、W2、W3は、同じ色が隣り合わないように千鳥配置されている。このように、個々の光源W1、W2、W3の大きさを小さくすると共に光源W1、W2、W3の数を増やせば、各色光源W1、W2、W3が発する光が均一に混ざり易いため、色むらが生じ難い。
 図28は、別の変形例に係る発光モジュール210を示す図であって、(a)は平面図、(b)は右側面図、(c)は正面図である。図28に示す変形例に係る発光モジュール210では、各光源W1、W2、W3が環状の一種である方形環状であって、それらが環軸が一致するように交互に配置されている。各光源W1、W2、W3は、環状に配置された複数の発光素子212a~212cと、それら発光素子212a~212cを封止する1つの方形環状の封止部材213a~213cとで構成されている。このように、光源W1、W2、W3を環状にすることで、環軸を中心として360度全方向に対して色むらのない照明光を発することができる。
 図29は、別の変形例に係る発光モジュール310を示す図であって、(a)は平面図、(b)は右側面図、(c)は正面図である。図29に示す変形例に係る発光モジュール310では、円形板状の基板311の上面311aに、SMD(SuW3face Mount Device)型の光源W1、W2、W3が配置されている。光源W1、W2、W3が配置されている。各光源W1、W2、W3は、基板311の上方から見た平面視において略正方形であって、1つの発光素子312a~312cと、1つの封止部材313a~313cとで構成されている。それら光源W1、W2、W3は、同じ色が隣り合わないように千鳥配置されているため、各色光源W1、W2、W3が発する光が均一に混ざり易く、色むらが生じ難い。
(7)本実施の形態に係る発光素子12a,12b,12cは、ピーク波長が450nm以上470nm以下の青色光を出射する青色発光素子に限定されない。上記以外の波長の青色光を出射する青色発光素子であっても良く、紫外光を出射する発光素子であってもよい。
 また、本発明に係る波長変換部材13a,13b,13cは、実施の形態で示した構成の波長変換部材に限定されず、各光源において発光素子との組み合わせにおいて所望の白色光が得られる波長変換部材であればよい。
 また、第3の波長変換部材13bには、第1の波長変換部材13a又は第2の波長変換部材13bとは異なる種類の波長変換材料が用いられていてもよいし、同じ種類の波長変換材料を用い波長変換部材の量を異ならしめて配設する構成としてもよい。
 また、第1の波長変換部材13a、第2の波長変換部材13bおよび第3の波長変換部材13bに使用される波長変換材料は、単一の化合物で構成されていてもよいし、複数の化合物を混合したものであってもよい。
≪まとめ≫
 以上、説明したとおり、本発明の一実施形態に係る照明装置1は、第1白色光を発する第1光源W1と、第1白色光よりも低い色温度の第2白色光を発する第2光源W2と第1白色光よりも高い色温度の第3白色光を発する第3光源W3と、第1光源の発する光の光束を一定値に保ち、第2光源の発する光の光束及び第3光源の発する光の光束を変化させて照明装置1の発する光の色温度を変化させる点灯回路ユニット4とを備えたことを特徴とする。このような構成により、照明装置としての発光の輝度を低下させることなく、搭載すべき発光素子の数量を低減できる。
≪補足≫
 以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない工程については、より好ましい形態を構成する任意の構成要素として説明される。
 また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 さらに、照明装置においては基板上に回路部品、リード線等の部材も存在するが、電気的配線、電気回路について照明装置等の技術分野における通常の知識に基づいて様々な態様を実施可能であり、本発明の説明として直接的には無関係のため、説明を省略している。尚、上記示した各図は模式図であり、必ずしも厳密に図示したものではない。
 1 照明装置
 4 点灯回路ユニット(点灯装置)
 6 ランプ
 10、110、210、310 発光モジュール
 12a、112a、212a、312a 第1の発光素子
 12b、112b、212b、312b 第2の発光素子
 12c、112c、212c、312c 第3の発光素子
 13a、113a、213a、313a 第1の波長変換部材(第1の封止部材)
 13b、113b、213b、313b 第2の波長変換部材(第2の封止部材)
 W1 第1光源
 W2 第2光源
 W3 第3光源

Claims (9)

  1.  調光により色温度の異なる白色光を再現する照明装置であって、
     第1白色光を発する第1光源と、
     前記第1白色光よりも低い色温度の第2白色光を発する第2光源と
     前記第1白色光よりも高い色温度の第3白色光を発する第3光源と、
     前記第1光源を常に発光させ、前記第2光源の発する光の光束及び前記第3光源の発する光の光束を変化させて合成光の色温度を変化させる点灯回路と、
    を備えたことを特徴とする照明装置。
  2.  前記合成光は、前記第2白色光よりも高い色温度を示す第4白色光から前記第3白色光よりも低い色温度を示す第5白色光までの範囲において可変であり、
     前記第1白色光は、前記第4白色光よりも色温度が高く前記第5白色光よりも色温度が低く設定されていることを特徴とする請求項1記載の照明装置。
  3.  前記点灯回路は、前記第1光源の発する光の光束を一定に保つことを特徴とする請求項1記載の照明装置。
  4.  前記点灯回路は、前記第1光源に対し一定の電圧を連続的に印加し、前記第2光源及び前記第3光源に対しPWM制御を行うことで前記合成光の色温度を変化させることを特徴とする請求項3記載の照明装置。
  5.  前記点灯回路は、前記第2光源の発する光の光束及び前記第3光源の発する光の光束の増減が互いに相反して変化するように前記第2光源及び前記第3光源を駆動することを特徴とする請求項1記載の照明装置。
  6.  前記第1光源の発する光の光束が、前記第1光源、前記第2光源、及び前記第3光源が同時に発する光の光束の総和に対し28.7%から48.8%の範囲内であることを特徴とする請求項1記載の照明装置。
  7.  前記第1白色光、第2白色光、及び前記第3白色光は、色度図上において任意の直線の近傍に位置することを特徴とする請求項1記載の照明装置。
  8.  前記第1白色光は、色度図上において座標x=0.365、及びy=0.446から黒体軌跡へ降ろした法線の近傍であって前記座標と黒体軌跡との間の範囲にあり、第2白色光及び前記第3白色光は、黒体軌跡近傍に位置することを特徴とする請求項1記載の照明装置。
  9.  第1白色光を発する第1光源と、
     前記第1白色光よりも低い色温度側にある第2白色光を発する第2光源と
     前記第1白色光よりも高い色温度側にある第3白色光を発する第3光源と、
    を点灯させる点灯装置であって、
     前記第1光源を常に発光させ、前記第2光源の発する光の光束及び前記第3光源の発する光の光束を互いに相反するように調光することにより、前記発光部に白色光を発光させる点灯回路を備えたことを特徴とする点灯装置。
PCT/JP2013/006257 2012-10-24 2013-10-23 照明装置および点灯装置 WO2014064928A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201390000783.2U CN204669641U (zh) 2012-10-24 2013-10-23 照明装置以及点亮装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-234362 2012-10-24
JP2012234362A JP2014086271A (ja) 2012-10-24 2012-10-24 照明装置および点灯装置

Publications (1)

Publication Number Publication Date
WO2014064928A1 true WO2014064928A1 (ja) 2014-05-01

Family

ID=50544313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006257 WO2014064928A1 (ja) 2012-10-24 2013-10-23 照明装置および点灯装置

Country Status (3)

Country Link
JP (1) JP2014086271A (ja)
CN (1) CN204669641U (ja)
WO (1) WO2014064928A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147072A (ja) * 2016-02-16 2017-08-24 シチズン時計株式会社 Ledモジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243301B2 (ja) * 2014-07-08 2017-12-06 日立アプライアンス株式会社 照明装置
JP6470927B2 (ja) * 2014-09-03 2019-02-13 株式会社キルトプランニングオフィス 照明装置
CN107455015B (zh) * 2014-09-12 2019-11-26 飞利浦照明控股有限公司 照明组件、led条带、照明设备以及制造照明组件的方法
JP6544676B2 (ja) 2015-03-11 2019-07-17 パナソニックIpマネジメント株式会社 照明装置
JP6707728B2 (ja) * 2015-06-24 2020-06-10 東芝マテリアル株式会社 医療施設照明用白色光源システム
JP2017033841A (ja) * 2015-08-04 2017-02-09 ミネベア株式会社 光源駆動装置および調光調色制御方法
JP6748977B2 (ja) 2015-12-10 2020-09-02 パナソニックIpマネジメント株式会社 発光装置及び照明器具
JP6806030B2 (ja) * 2017-10-24 2020-12-23 豊田合成株式会社 照明装置
CN109587893B (zh) * 2019-01-08 2022-06-03 青岛易来智能科技股份有限公司 一种调光方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252944A (ja) * 2005-03-10 2006-09-21 Toshiba Lighting & Technology Corp 照明装置
JP2007059260A (ja) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp 照明装置及び照明器具
WO2011136007A1 (ja) * 2010-04-26 2011-11-03 シャープ株式会社 照明装置
JP2012113958A (ja) * 2010-11-24 2012-06-14 Panasonic Corp 発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2427983C2 (ru) * 2006-10-06 2011-08-27 Конинклейке Филипс Электроникс Н.В. Переключаемая матрица световых элементов и способ действия
US8410714B2 (en) * 2007-11-12 2013-04-02 Mitsubishi Chemical Corporation Illuminating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252944A (ja) * 2005-03-10 2006-09-21 Toshiba Lighting & Technology Corp 照明装置
JP2007059260A (ja) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp 照明装置及び照明器具
WO2011136007A1 (ja) * 2010-04-26 2011-11-03 シャープ株式会社 照明装置
JP2012113958A (ja) * 2010-11-24 2012-06-14 Panasonic Corp 発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147072A (ja) * 2016-02-16 2017-08-24 シチズン時計株式会社 Ledモジュール

Also Published As

Publication number Publication date
JP2014086271A (ja) 2014-05-12
CN204669641U (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014064928A1 (ja) 照明装置および点灯装置
US8766555B2 (en) Tunable white color methods and uses thereof
JP6074703B2 (ja) Led照明装置及びled発光モジュール
US7821194B2 (en) Solid state lighting devices including light mixtures
US8664846B2 (en) Solid state lighting device including green shifted red component
US9198251B2 (en) Tunable correlated color temperature LED-based white light source with mixing chamber and remote phosphor exit window
US20060221606A1 (en) Led-based lighting retrofit subassembly apparatus
JP5654328B2 (ja) 発光装置
US20140232288A1 (en) Solid state lighting apparatuses and related methods
JP2009231027A (ja) 照明装置
JP2012113959A (ja) 発光装置
JP2014143307A (ja) 発光モジュールおよび照明装置
JP2013229492A (ja) 発光モジュール、ランプユニットおよび照明装置
JP6008290B2 (ja) 発光モジュール、照明装置および照明器具
WO2014057635A1 (ja) 照明器具、照明装置および発光モジュール
JP2013257985A (ja) 発光モジュール、ランプユニット、及びそれを用いた照明装置
JP6074704B2 (ja) 照明器具
JP6064227B2 (ja) 照明器具
JP2015170417A (ja) 光源ユニットおよび照明器具
US20200245426A1 (en) Light apparatus
JP5999497B2 (ja) 照明器具、照明装置および発光モジュール
JP5891423B2 (ja) 照明器具、照明装置および発光モジュール
WO2022208922A1 (ja) 発光モジュール、及び、照明装置
US12133304B2 (en) Light emitting module, and lighting device
JP2014194858A (ja) Led照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000783.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849658

Country of ref document: EP

Kind code of ref document: A1