WO2014063943A2 - Verfahren zum bremsen eines fahrzeuges und ein ein solches verfahren verwendendes bremssystem - Google Patents

Verfahren zum bremsen eines fahrzeuges und ein ein solches verfahren verwendendes bremssystem Download PDF

Info

Publication number
WO2014063943A2
WO2014063943A2 PCT/EP2013/071401 EP2013071401W WO2014063943A2 WO 2014063943 A2 WO2014063943 A2 WO 2014063943A2 EP 2013071401 W EP2013071401 W EP 2013071401W WO 2014063943 A2 WO2014063943 A2 WO 2014063943A2
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
electric motor
vehicle
generated
braking
Prior art date
Application number
PCT/EP2013/071401
Other languages
English (en)
French (fr)
Other versions
WO2014063943A3 (de
Inventor
Markus Henzler
Armin Verhagen
Remco TEN ZWEEGE
Andreas Georgi
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US14/438,351 priority Critical patent/US9527488B2/en
Priority to CN201380055936.8A priority patent/CN104870238B/zh
Publication of WO2014063943A2 publication Critical patent/WO2014063943A2/de
Publication of WO2014063943A3 publication Critical patent/WO2014063943A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention relates to a method for braking a vehicle and a brake system using such a method, in particular a method for a brake system of a vehicle with electric and / or hybrid electric drive.
  • an electric vehicle with a hydraulic brake system wherein the electric vehicle has at least one electric motor for driving at least one wheel, but the electric motor can also be operated in a braking mode for braking the at least one wheel
  • a hydraulic brake system which is actuated by the driver and which, for example in an ABS or ESP driver assistance system, generates a braking force in a modulating manner. If a braking force generated by the electric motor is not required in addition, since the hydraulic brake system is sufficient in a certain driving situation, then the electric motor is deactivated as a braking force generator and is used as a generator, i. Rotational energy of at least one wheel is stored via the electric motor acting as a generator as electrical energy in a corresponding energy storage. This is called "regenerative or recuperative braking".
  • the invention proposes in a first aspect according to claim 1, a method for braking a vehicle, wherein a braking engagement is performed on at least one wheel of the vehicle, wherein a total braking force for the braking engagement is generated on the one hand by a hydraulic device in the vehicle, on the other hand by at least one a wheel associated electric motor which acts at all times supportive of the braking force generated by the hydraulic device, wherein the total braking force is generated both by a modulation of a braking force generated by the hydraulic device and by a modulation of the braking force generated by the electric motor to the at least one wheel wherein the braking force of the hydraulic device and the braking force of the electric motor add to the total braking force, and wherein an amount of the respective braking force in response to a driving situation of the vehicle is controlled by a controller.
  • the invention proposes a braking system for a vehicle with electric and / or hybrid electric drive, wherein the brake system of the vehicle operates according to the inventive method.
  • the advantage of the proposed method results from the fact that on the one hand an energy recovery by the generator operation (recuperation) in all driving situations is possible while simultaneously - regardless of the respective Fahrsitu- tion or braking situation - a modulation of the total braking force or the wheel torque, which resulting from the addition of hydraulically generated braking force and by the at least one electric motor generated braking force is possible. Since the electric motor is able to perform torque changes relatively quickly with respect to the hydraulic brake system, it is possible to respond quickly to requested torque changes (ie, brake interventions).
  • the hydraulic brake system for example in an ABS brake intervention of the brake system, less on the driver perceived “driving feeling”("stutteringbrake”, audible and perceptible brake intervention effects).
  • the hydraulic unit can be made simpler and a smaller hydraulic pump can be used.
  • the arranged on the wheels friction brakes can be made smaller and designed for a shorter life.
  • ABS or ESP braking interventions are perceived by the driver by the supporting modulating braking effect of the electric motor as smoother, because the electric motor, as already mentioned above, due to the relatively fast response behavior has a higher dynamic and more accurate behavior.
  • a rotational energy of the wheel coupled to the electric motor is used for storage in an electrical energy store in the vehicle.
  • rotational energy can be recuperated into electrical energy in order to then convert it into electrical energy Increase the range of the electric vehicle in a corresponding energy storage (eg battery pack) store.
  • the control sets a predetermined wheel torque threshold (i.e., required braking force value) to which a braking force generated by the electric motor will be applied in the event of a required wheel torque threshold (i.e., required braking force value) to which a braking force generated by the electric motor will be applied in the event of a required wheel torque threshold (i.e., required braking force value) to which a braking force generated by the electric motor will be applied in the event of a required wheel torque threshold (i.e., required braking force value) to which a braking force generated by the electric motor will be applied in the event of a required
  • Brake intervention is active in a modulating manner, while in non-activity of the braking force providing electric motor energy is stored by the electric motor in the manner of a generator in electrical form.
  • the hydraulic braking device can be temporarily deactivated completely if appropriate conditions exist.
  • a braking force including a modulation of this braking force is generated essentially by the hydraulic device.
  • a braking force i.e., wheel torque
  • wheel torque is mainly generated by the more effective hydraulic brake device.
  • the generated total braking force is used in conjunction with a vehicle assistance system for stabilizing a driving behavior of the vehicle, in conjunction with ABS and / or ESP and / or ASR and / or ACC and / or SBC. It is advantageous that for the corresponding assistance systems, the properties of an electric motor for braking force generation can be used, so that these assistance systems can be dimensioned correspondingly smaller and cheaper and can be completely eliminated under certain circumstances.
  • the controller comprises a low-pass filter or a correspondingly suitable filter device, low-frequency changes being associated with an activation of the hydraulic brake system and high-frequency changes being associated with an activation of the electrical system.
  • a predeterminable frequency threshold value can be assigned to the hydraulic brake system, so that at a value above the low-pass threshold value, the hydraulic like device is deactivated and the at least one electric motor generates a modulated braking force, depending on the particular driving situation of the vehicle.
  • the hydraulic brake system which is more suitable for low-frequency changes, can be disabled and only the electric motor takes over the function of braking force generation. That is, in high-frequency portions, the hydraulic device is deactivated, and the electric motor takes over the modulation.
  • the advantage with an electrical modulation is a relatively low noise.
  • the hydraulic device is active, ie modulated, in which case the electric motor can maximally recuperate.
  • Figures 1 a and 1 b each have a time-dependent plot of modulated
  • FIGS. 1 c and 1 d each show a time-dependent plot of modulated
  • FIGS. 1 e and 1 f each show a time-dependent plot of modulated
  • FIGS. 1 a and 1 b show a diagram of a conventional method for better explanation of the method according to the invention compared to the prior art, wherein in the diagrams in each case on a Y-axis 10 a wheel torque or a braking force in time Course, indicated in each case by an X-axis 20, are shown.
  • a threshold value 30 is entered, which indicates the maximum braking force generated by an electric motor.
  • a "standard situation” is shown, i. the required braking force is generated on the one hand hydraulically, which is indicated by the area 40, on the other hand by an electric motor, which is indicated by the hatched area 60, wherein the braking force generated by the electric motor continuously "stop", i. up to the threshold value 30.
  • the hydraulically generated braking force (region 40) is modulated, for example by an ABS braking intervention, which is indicated in FIG. 1a by the "modulated" curve 50.
  • FIG. 1 b shows, as already mentioned above, a driving situation with relatively low required braking force (ie, low " ⁇ "), wherein the proportion of braking force generated by the electric motor to the total braking force, wel This results from the addition of hydraulically and electrically generated braking force, is continuously relatively low (hatched area 60 in Figure 1 b), and the modulation (indicated by curve 50) of the total braking force by the hydraulically generated braking force (area 40) is generated.
  • relatively low required braking force ie, low " ⁇ "
  • Characteristic of the illustrated in the diagrams of Figures 1 a and 1 b conventional method is that the electric motor does not contribute to the modulation of the total braking force.
  • the diagrams shown in FIGS. 1 c and 1 d likewise show a method according to the prior art (described in the document DE 44 35 953 A1), and for better comparison, the same with reference to FIGS. 1 a and 1 b described driving situation.
  • the difference of this conventional method compared to the method described with reference to Figures 1 a and 1 b is that now also the braking force generated by the electric motor is "modulated", which in Figures 1 c and 1 d each with a curve 70th is indicated, due to the hydraulic modulation (curve 50).
  • a dotted region 80 results between the curve 70 and the threshold value 30 in which the electric motor or in this case generator can not recuperate rotational energy , and thus converted into electrical energy and stored.
  • FIGS. 1 e and 1 f serve to explain an embodiment of the method according to the invention.
  • FIG. 1 e In contrast to the diagrams of a conventional method shown in FIGS. 1 c and 1 d, in FIG. 1 e the dotted area 80 is smaller than that in the diagram shown in FIG. 1 c, which means that more energy is recuperated by the electric motor / generator can be, since the modulation (curve 50) in sections (sections I and II in Figure 1 e) is "taken over" by the hydraulic brake system, which is controlled by a (not shown) control.
  • the diagram shown in FIG. 1f is analogous to the diagram shown in FIG. 1d.
  • Figure 2 shows a flow chart of an embodiment of the invention, wherein the flow chart is composed of three parts A, B, C.
  • the electrically and hydraulically generated braking torques T em and T hfb are added in a step 100.
  • the sum thereof is added to a predetermined target braking torque Ttarget in a step 110, yielding ⁇ as a result.
  • a query is made as to whether the electric motor is capable of producing ⁇ . If NO, the process branches to step 130 where AT em is set to the maximum of ATem, max and AThfb to the difference of ⁇ and AT em , max, ie
  • step 160 it is again queried whether the hydraulic system is capable of AT S
  • This query in step 170 is performed because the hydraulic system is active for low frequency components. In other words, when a frequency is low and the hydraulic system is activatable, the hydraulic system performs the modulation and is maximally recuperated via the electric motor / generator (Sections I and II in Figure 1 e).
  • step 180 If “No”, the method branches to step 180, ie AT S
  • 0 w 0. If "yes”, the process branches to step 190, ie AT S
  • 0 w ⁇ ⁇ .
  • FIGS. 1 to 4 are not necessarily to scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird ein Verfahren zum Bremsen eines Fahrzeuges bereitgestellt, wobei ein Bremseingriff an wenigstens einem Rad des Fahrzeuges durchgeführt wird, wobei eine Gesamtbremskraft für den Bremseingriff einerseits durch eine Hydraulikeinrichtung im Fahrzeug erzeugt wird, andererseits durch wenigstens einen dem einen Rad zugeordneten Elektromotor, welcher jederzeit unterstützend für die durch die Hydraulikeinrichtung erzeugte Bremskraft wirkt, wobei die Gesamtbremskraft sowohl durch eine Modulation einer durch die Hydraulikeinrichtung erzeugten Bremskraft als auch durch eine Modulation der durch den Elektromotor erzeugten Bremskraft an dem wenigstens einen Rad erzeugt wird, wobei sich die Bremskraft der Hydraulikeinrichtung und die Bremskraft des Elektromotors zu der Gesamtbremskraft addieren, und wobei ein Betrag der jeweiligen Bremskraft in Abhängigkeit von einer Fahrsituation des Fahrzeuges von einer Steuerung gesteuert wird.

Description

Beschreibung Titel
Verfahren zum Bremsen eines Fahrzeuges und ein ein solches Verfahren verwendendes Bremssystem
Die vorliegende Erfindung betrifft ein Verfahren zum Bremsen eines Fahrzeuges und ein ein solches Verfahren verwendendes Bremssystem, insbesondere ein Verfahren für ein Bremssystem eines Fahrzeuges mit Elektro- und/oder Hybrid- Elektroantrieb.
Stand der Technik
Aus dem Dokument DE 44 35 953 A1 ist ein Elektrofahrzeug mit einem hydraulischen Bremssystem bekannt, wobei das Elektrofahrzeug wenigstens einen Elektromotor für einen Antrieb wenigstens eines Rades aufweist, wobei der Elektromotor jedoch auch in einem Bremsbetrieb zum Bremsen des wenigstens einen Ra- des betrieben werden kann, und zwar zusätzlich und unterstützend zu einem hydraulischen Bremssystem, welches durch den Fahrer betätigt wird und welches, beispielsweise bei einem ABS- oder ESP-Fahrassistenzsystem, in modulierender Weise eine Bremskraft erzeugt. Wird eine durch den Elektromotor erzeugte Bremskraft nicht zusätzlich benötigt, da das hydraulische Bremssystem in einer bestimmten Fahrsituation ausreichend ist, dann ist der Elektromotor als Bremskrafterzeuger deaktiviert und wird als Generator verwendet, d.h. rotatorische Energie wenigstens eines Rades wird über den als Generator arbeitenden Elektromotor als elektrische Energie in einem entsprechenden Energiespeicher gespeichert. Dies wird als "regeneratives bzw. rekuperatives Bremsen" bezeichnet.
Offenbarung der Erfindung Die Erfindung schlägt unter einem ersten Aspekt gemäß Anspruch 1 ein Verfahren zum Bremsen eines Fahrzeuges vor, wobei ein Bremseingriff an wenigstens einem Rad des Fahrzeuges durchgeführt wird, wobei eine Gesamtbremskraft für den Bremseingriff einerseits durch eine Hydraulikeinrichtung im Fahrzeug erzeugt wird, andererseits durch wenigstens einen dem einen Rad zugeordneten Elektromotor, welcher jederzeit unterstützend für die durch die Hydraulikeinrichtung erzeugte Bremskraft wirkt, wobei die Gesamtbremskraft sowohl durch eine Modulation einer durch die Hydraulikeinrichtung erzeugten Bremskraft als auch durch eine Modulation der durch den Elektromotor erzeugten Bremskraft an dem wenigs- tens einen Rad erzeugt wird, wobei sich die Bremskraft der Hydraulikeinrichtung und die Bremskraft des Elektromotors zu der Gesamtbremskraft addieren, und wobei ein Betrag der jeweiligen Bremskraft in Abhängigkeit von einer Fahrsituation des Fahrzeuges von einer Steuerung gesteuert wird. Unter einem zweiten Aspekt gemäß Anspruch 7 schlägt die Erfindung ein Bremssystem für ein Fahrzeug mit Elektro- und/oder Hybrid-Elektroantrieb vor, wobei das Bremssystem des Fahrzeuges nach dem erfindungsgemäßen Verfahren arbeitet. Vorteile der Erfindung
Der Vorteil der vorgeschlagenen Verfahren ergibt sich daraus, dass einerseits eine Energiegewinnung durch den Generatorbetrieb (Rekuperation) in allen Fahrsituationen möglich ist, während gleichzeitig - unabhängig von der jeweiligen Fahrsitu- ation bzw. Bremssituation - eine Modulation der Gesamtbremskraft bzw. des Raddrehmomentes, welche sich aus der Addition von hydraulisch erzeugter Bremskraft und durch den wenigstens einen Elektromotor erzeugter Bremskraft ergibt, möglich ist. Da der Elektromotor in der Lage ist, relativ schnell, bezogen auf das hydraulische Bremssystem, Drehmomentänderungen durchzuführen, ist es möglich, schnell auf angeforderte Drehmomentänderungen (d.h. Bremseingriffe) zu reagieren. Weiterhin wirkt sich durch die unterstützende und ebenfalls modulierende (Brems-)Wirkung des Elektromotors das hydraulische Bremssystem, z.B. bei einem ABS-Bremseingriff des Bremssystems, weniger auf das vom Fahrer empfundene "Fahrgefühl" aus ("stotternde Bremse", hör- und fühlbare Bremseingriff-Wirkungen).
Weiterhin kann aufgrund der Kombination der hydraulischen und elektrischen Mo- dulation in jeder Brems-Situation relativ mehr Energie wiedergewonnen werden, d.h. eine höhere Rekuperation erzielt werden, nicht zuletzt, da während eines ABS-Bremseingriffes das hydraulische Bremssystem aktiv ist. Somit ist für Elektro- fahrzeuge eine höhere Reichweite erzielbar, da mehr elektrische Energie rekuperiert werden kann.
Da der Elektromotor ein relativ schnelles Ansprechverhalten aufweist, ergibt sich ein dynamischeres Fahrverhalten während eines ABS-Bremseingriffes mit kürzeren Bremswegen und geringerer Geräuschentwicklung aufgrund der unterstützenden Wirkung des Elektromotors für das Bremsverhalten.
Auch kann durch die unterstützende modulierende Brems-Wirkung des Elektromotors die hydraulische Einheit einfacher ausgebildet sein und eine kleinere hydraulische Pumpe verwendet werden. Weiterhin können die an den Rädern angeordneten Reibungsbremsen kleiner dimensioniert und auf eine kürzere Lebensdauer ausgelegt werden.
ABS- bzw. ESP-Bremseingriffe werden vom Fahrer durch die unterstützende modulierende Brems-Wirkung des Elektromotors als gleichmäßiger bzw. "sanfter" wahrgenommen, da der Elektromotor, wie oben schon erwähnt, aufgrund des relativ schnellen Ansprechverhaltens ein höheres dynamischeres und genaueres Verhalten aufweist.
Weiterhin wird bevorzugt, dass bei Nicht-Betreiben des wenigstens einen Elektro- motors zur Erzeugung einer Bremskraft eine rotatorische Energie des mit dem Elektromotor gekoppelten Rades zur Speicherung in einem elektrischen Energiespeicher im Fahrzeug verwendet wird. Dadurch kann, wie oben schon erwähnt, rotatorische Energie in elektrische Energie rekuperiert werden, um diese dann zur Erhöhung der Reichweite des Elektrofahrzeuges in einem entsprechenden Energiespeicher (z.B. Batteriepack) zu speichern.
Vorzugsweise wird durch die Steuerung ein vorbestimmter Rad-Drehmoment- Schwellenwert (d.h. geforderter Bremskraftwert) vorgegeben, bis zu welchem eine durch den Elektromotor erzeugte Bremskraft für den Fall eines geforderten
Bremseingriffs in modulierender Weise aktiv ist, während bei Nicht-Aktivität des die Bremskraft bereitstellenden Elektromotors Energie durch den Elektromotor in der Art eines Generators in elektrischer Form gespeichert wird. Hierdurch kann beispielsweise die hydraulische Bremseinrichtung bei Vorliegen entsprechender Bedingungen zeitweise vollständig deaktiviert werden.
Vorteilhafterweise wird bei einem Überschreiten des vorbestimmten Rad- Drehmoment-Schwellenwertes eine Bremskraft einschließlich einer Modulation dieser Bremskraft im Wesentlichen durch die Hydraulikeinrichtung erzeugt. Hierdurch wird eine Bremskraft (d.h. Rad-Drehmoment) hauptsächlich durch die effektivere Hydraulik-Bremseinrichtung erzeugt.
Weiterhin wird bevorzugt, dass die erzeugte Gesamtbremskraft in Verbindung mit einem Fahrzeug-Assistenzsystem zur Stabilisierung eines Fahrverhaltens des Fahrzeuges verwendet wird, und zwar in Verbindung mit ABS und/oder ESP und/oder ASR und/oder ACC und/oder SBC. Hierbei ist von Vorteil, dass für die entsprechenden Assistenzsysteme die Eigenschaften eines Elektromotors zur Bremskraft-Erzeugung genutzt werden können, so dass diese Assistenzsysteme entsprechend kleiner und kostengünstiger dimensioniert werden können und unter Umständen vollständig entfallen können.
Vorzugsweise umfasst die Steuerung einen Tiefpassfilter bzw. eine entsprechend geeignete Filtereinrichtung, wobei niederfrequente Änderungen einer Aktivierung des hydraulischen Bremssystems und hochfrequente Änderungen einer Aktivierung des elektrischen Systems zugeordnet sind. Beispielsweise kann ein vorbestimmbarer Frequenz-Schwellenwert dem hydraulischen Bremssystem zugeordnet sein, so dass bei einem Wert oberhalb des Tiefpass-Schwellenwertes die Hydrau- likeinrichtung deaktiviert wird und der wenigstens eine Elektromotor eine modulierte Bremskraft erzeugt, und zwar in Abhängigkeit der jeweiligen Fahrsituation des Fahrzeuges. Auch hierbei ist von Vorteil, dass das hydraulische Bremssystem, welches eher für niedrig-frequente Änderungen geeignet ist, deaktiviert werden kann und lediglich der Elektromotor die Funktion der Bremskrafterzeugung übernimmt. D.h., bei hochfrequenten Anteilen ist die Hydraulikeinrichtung deaktiviert, und der Elektromotor übernimmt die Modulation. Der Vorteil bei einer elektrischen Modulation ist eine relativ niedrige Geräuschentwicklung. Bei niederfrequenten Anteilen ist die Hydraulikeinrichtung aktiv, d.h. moduliert, wobei dann der Elektro- motor maximal rekuperieren kann.
Kurze Beschreibung der Zeichnungen
Nachfolgend wird die Erfindung anhand von Ausführungsformen in Verbindung mit den Figuren erläutert, wobei:
Figuren 1 a und 1 b jeweils eine zeitlich abhängige Auftragung von modulierter
Gesamtbremskraft als Addition von elektrisch erzeugter Bremskraft und hydraulisch erzeugter Bremskraft nach dem Stand der Technik zeigen;
Figuren 1 c und 1 d jeweils eine zeitlich abhängige Auftragung von modulierter
Gesamtbremskraft als Addition von elektrisch erzeugter Bremskraft und hydraulisch erzeugter Bremskraft nach einem weiteren Stand der Technik zeigen;
Figuren 1 e und 1f jeweils eine zeitlich abhängige Auftragung von modulierter
Gesamtbremskraft als Addition von elektrisch erzeugter Bremskraft und hydraulisch erzeugter Bremskraft nach einer Ausführungsform der Erfindung zeigen; und
Figur 2 ein Flussdiagramm zur Veranschaulichung einer Ausführungsform der Erfindung zeigt. Ausführungsformen der Erfindung Figuren 1 a und 1 b zeigen zur besseren Erläuterung des erfindungsgemäßen Verfahrens im Vergleich zum Stand der Technik jeweils ein Diagramm eines herkömmlichen Verfahrens, wobei in den Diagrammen jeweils auf einer Y-Achse 10 ein Rad-Drehmoment bzw. eine Bremskraft im zeitlichen Verlauf, angedeutet jeweils durch eine X-Achse 20, dargestellt sind.
Allgemein zeigen die Diagramme der Figuren 1 b, 1 d, 1f (untere Reihe) Fahrsituationen mit relativ geringem gefordertem Rad-Drehmoment, im Vergleich zu den Diagrammen der Figurenl a, 1 c, 1 e (obere Reihe), wo jeweils ein relativ höheres Rad-Drehmoment gefordert wird, d.h. beispielsweise durch den Fahrer des Fahr- zeuges durch Betätigung des Bremspedales.
In allen Figuren 1 a bis 1f ist ein Schwellenwert 30 eingetragen, welcher die maximale durch einen Elektromotor erzeugte Bremskraft angibt. Ausgehend von dem in Figur 1 a dargestellten Diagramm, wird eine "Standardsituation" gezeigt, d.h. die geforderte Bremskraft wird einerseits hydraulisch erzeugt, was durch den Bereich 40 angedeutet ist, andererseits durch einen Elektromotor, was durch den schraffierten Bereich 60 angedeutet ist, wobei die vom Elektromotor erzeugte Bremskraft kontinuierlich "am Anschlag", d.h. bis zu dem Schwellen- wert 30, verläuft.
Wie an dem Diagramm in Figur 1 a zu erkennen ist, ist die hydraulisch erzeugte Bremskraft (Bereich 40) moduliert, beispielsweise durch einen ABS-Bremseingriff, was in Figur 1 a durch die "modulierte" Kurve 50 angedeutet ist.
Das in Figur 1 b dargestellte Diagramm zeigt, wie oben bereits erwähnt, eine Fahrsituation mit relativ geringer geforderter Bremskraft (d.h. geringes "μ"), wobei der Anteil der vom Elektromotor erzeugten Bremskraft an der Gesamtbremskraft, wel- che sich aus der Addition aus hydraulisch und elektrisch erzeugter Bremskraft ergibt, kontinuierlich relativ gering ist (schraffierter Bereich 60 in Figur 1 b), und die Modulation (angedeutet durch Kurve 50) der Gesamtbremskraft durch die hydraulisch erzeugte Bremskraft (Bereich 40) erzeugt wird.
Kennzeichnend für das in den Diagrammen der Figuren 1 a und 1 b dargestellte herkömmliche Verfahren ist, dass der Elektromotor nicht zur Modulation der Gesamtbremskraft beiträgt. Die in den Figuren 1 c und 1 d dargestellten Diagramme zeigen ebenfalls ein Verfahren nach dem Stand der Technik (beschrieben in dem Dokument DE 44 35 953 A1 ), und zwar - zum besseren Vergleich - für die gleiche in Bezug auf Figuren 1 a und 1 b beschriebene Fahrsituation. Der Unterschied dieses herkömmlichen Verfahrens im Vergleich zu dem mit Bezug auf Figuren 1 a und 1 b beschriebenen Verfahren ist der, dass nunmehr auch die vom Elektromotor erzeugte Bremskraft "moduliert" ist, was in den Figuren 1 c und 1 d jeweils mit einer Kurve 70 angedeutet ist, und zwar aufgrund der hydraulischen Modulation (Kurve 50).
Es sei an dieser Stelle bemerkt, dass, sofern verwendet, gleiche zuvor verwendete Bezugszeichen gleiche Komponenten/Bereiche/Größen in folgenden Figuren bzw. Diagrammen bedeuten sollen, auch wenn diese der Einfachheit halber nicht noch mal explizit erläutert werden.
Aus dem oben erwähnten Unterschied folgt, dass sich, mit Bezug auf das in Figur 1 c gezeigte Diagramm, ein punktierter Bereich 80 zwischen der Kurve 70 und dem Schwellenwert 30 ergibt, in welchem der Elektromotor bzw. in diesem Falle Generator keine rotatorische Energie rekuperieren kann, und somit in elektrische Ener- gie umgewandelt und gespeichert werden kann.
Ein weiterer Unterschied hinsichtlich der in den Figuren 1 a und 1 b gezeigten Diagrammen wird mit Bezug auf Figur 1 d ersichtlich, wo bei geringer geforderter Bremskraft (geringes "μ") lediglich mit der vom Elektromotor erzeugten und modulierten Bremskraft (schraffierter Bereich 60, Kurve 70) gebremst wird.
Die in den Figuren 1 e und 1f dargestellten Diagramme sollen dazu dienen, eine Ausführungsform des erfindungsgemäßen Verfahrens zu erläutern.
Im Unterschied zu den in den Figuren 1 c und 1 d dargestellten Diagrammen eines herkömmlichen Verfahrens ist in Figur 1 e der punktierte Bereich 80 kleiner als der in dem in Figur 1 c gezeigten Diagramm, was bedeutet, dass mehr Energie durch den Elektromotor/Generator rekuperiert werden kann, da die Modulation (Kurve 50) abschnittsweise (Abschnitte I und II in Figur 1 e) durch das hydraulische Bremssystem "übernommen" wird, was durch eine (hier nicht dargestellte) Steuerung gesteuert wird. Das in Figur 1f gezeigte Diagramm ist analog zu dem in Figur 1 d gezeigten Diagramm.
Figur 2 zeigt ein Flussdiagramm einer Ausführungsform der Erfindung, wobei sich das Flussdiagramm aus drei Teilen A, B, C zusammensetzt.
In Teil A des Flussdiagramms in Figur 2 werden in einem Schritt 100 die elektrisch und hydraulisch erzeugten Brems-Drehmomente Tem und Thfb addiert. Die Summe daraus wird in einem Schritt 1 10 zu einem vorbestimmten Soll-Brems- Drehmoment Ttarget hinzuaddiert, was als Ergebnis ΔΤ ergibt. In einem Schritt 120 findet eine Abfrage statt, ob der Elektromotor in der Lage ist, ΔΤ zu erzeugen. Bei "Nein" verzweigt das Verfahren zu Schritt 130, wo ATem auf das Maximum von ATem, max gesetzt wird und AThfb auf die Differenz von ΔΤ und ATem,max, d.h.
Figure imgf000010_0001
Bei "Ja" verzweigt das Verfahren zu Schritt 140, d.h. ATem=AT und AThfb=0, d.h. vollständige Änderungen können durch den Elektromotor durch- geführt werden.
In Teil B des Flussdiagramms werden die Summe aus Tem und Thfb sowie die Soll- Größe Target in einem Speicher 150 abgelegt, und in einem Schritt 160 tiefpassge- filtert, d.h. es werden nur Frequenzanteile der abgelegten Werte durchgelassen, die von einem vorbestimmten Tiefpassfilter durchgelassen werden: ΔΤ|Ρ (lp=low pass). In einem Schritt 170 wird wiederum abgefragt, ob das hydraulische System in der Lage ist, ATS|0w zu erzeugen, wobei sich "slow" auf die in den Figuren 1 b, 1 d, 1f dargestellte Fahrsituation bezieht. Diese Abfrage in Schritt 170 wird durchgeführt, da das hydraulische System für niederfrequente Anteile aktiv ist. Mit anderen Worten, wenn eine Frequenz niedrig ist und das hydraulische System aktivierbar ist, führt das hydraulische System die Modulation durch und es wird über den Elektromotor/Generator maximal rekuperiert (Abschnitte I und II in Figur 1 e).
Bei "Nein" verzweigt das Verfahren zu Schritt 180, d.h. ATS|0w = 0. Bei "Ja" verzweigt das Verfahren zu Schritt 190, d.h. ATS|0w = ΔΤιρ.
Die in den Teilen A und B gesetzten Bedingungen (Schritte 130, 140, 180, 190) fließen (angedeutet durch die Pfeile D, E) in den Teil C des Flussdiagramms ein, wo sich aus Schritten 200, 210 ATem und AThfb als Ergebnisse ergeben, die von einer Steuerung (nicht dargestellt) an das Bremssystem zur Umsetzung weiterge- geben werden.
Es sei an dieser Stelle bemerkt, dass in den Figuren 1 bis 4 dargestellte Dimensionen nicht notwendigerweise maßstabsgetreu sind.

Claims

Verfahren zum Bremsen eines Fahrzeuges, wobei ein Bremseingriff an wenigstens einem Rad des Fahrzeuges durchgeführt wird, wobei eine Gesamtbremskraft (1 1 ) für den Bremseingriff einerseits durch eine Hydraulikeinrichtung im Fahrzeug erzeugt wird, andererseits durch wenigstens einen dem einen Rad zugeordneten Elektromotor, welcher jederzeit unterstützend für die durch die Hydraulikeinrichtung erzeugte Bremskraft wirkt, wobei die Gesamtbremskraft (1 1 ) sowohl durch eine Modulation (50) einer durch die Hydraulikeinrichtung erzeugten Bremskraft als auch durch eine Modulation (70) der durch den Elektromotor erzeugten Bremskraft an dem wenigstens einen Rad erzeugt wird, wobei sich die Bremskraft der Hydraulikeinrichtung und die Bremskraft des Elektromotors zu der Gesamtbremskraft (1 1 ) addieren, und wobei ein Betrag der jeweiligen Bremskraft (12, 13) in Abhängigkeit von einer Fahrsituation des Fahrzeuges von einer Steuerung gesteuert wird.
Verfahren nach einem der vorangehenden Ansprüche, wobei bei NichtBetreiben des wenigstens einen Elektromotors zur Erzeugung einer Bremskraft eine rotatorische Energie des mit dem Elektromotor gekoppelten Rades zur Speicherung in einem elektrischen Energiespeicher im Fahrzeug verwendet wird.
Verfahren nach einem der vorangehenden Ansprüche, wobei durch die Steuerung ein vorbestimmter Rad-Drehmoment-Schwellenwert vorgegeben wird, bis zu welchem eine durch den Elektromotor erzeugte Bremskraft für den Fall eines geforderten Bremseingriffs in modulierender Weise aktiv ist, während bei Nicht-Aktivität des die Bremskraft (13) bereitstellenden Elektromotors Energie durch den Elektromotor in der Art eines Generators in elektrischer Form gespeichert wird.
Verfahren nach Anspruch 3, wobei bei einem Überschreiten des vorbestimmten Rad-Drehmoment-Schwellenwertes(30) eine Bremskraft einschließlich einer Modulation (50) dieser Bremskraft (12) im Wesentlichen durch die Hydraulikeinrichtung erzeugt wird.
Verfahren nach einem der vorangehenden Ansprüche, wobei die erzeugte Gesamtbremskraft (1 1 ) in Verbindung mit einem Fahrzeug-Assistenzsystem zur Stabilisierung eines Fahrverhaltens des Fahrzeuges verwendet wird, und zwar in Verbindung mit ABS und/oder ESP und/oder ASR und/oder ACC und/oder SBC.
Verfahren nach einem der vorangehenden Ansprüche, wobei die Steuerung bei niederfrequenten Anteilen eine Modulation der Hydraulikeinrichtung zuordnet, wobei der Elektromotor dann maximal rekuperieren kann, und bei hochfrequenten Anteilen eine Modulation dem Elektromotor zuordnet, während die Hydraulikeinrichtung deaktiviert ist.
Bremssystem für ein Fahrzeug mit Elektro- und/oder Hybrid-Elektroantrieb, wobei das Bremssystem des Fahrzeuges nach dem Verfahren der Ansprüche 1 bis 6 arbeitet.
PCT/EP2013/071401 2012-10-25 2013-10-14 Verfahren zum bremsen eines fahrzeuges und ein ein solches verfahren verwendendes bremssystem WO2014063943A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/438,351 US9527488B2 (en) 2012-10-25 2013-10-14 Method for braking a vehicle and a braking system using the method
CN201380055936.8A CN104870238B (zh) 2012-10-25 2013-10-14 用于对车辆进行制动的方法以及使用这种方法的制动系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102012219532 2012-10-25
DE102012219532.7 2012-10-25
DE102012221642 2012-11-27
DE102012221642.1 2012-11-27
DE102013201691.3 2013-02-01
DE102013201691.3A DE102013201691A1 (de) 2012-10-25 2013-02-01 Verfahren zum Bremsen eines Fahrzeuges und ein ein solches Verfahren verwendendes Bremssystem

Publications (2)

Publication Number Publication Date
WO2014063943A2 true WO2014063943A2 (de) 2014-05-01
WO2014063943A3 WO2014063943A3 (de) 2014-07-17

Family

ID=50479857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/071401 WO2014063943A2 (de) 2012-10-25 2013-10-14 Verfahren zum bremsen eines fahrzeuges und ein ein solches verfahren verwendendes bremssystem

Country Status (4)

Country Link
US (1) US9527488B2 (de)
CN (1) CN104870238B (de)
DE (1) DE102013201691A1 (de)
WO (1) WO2014063943A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102531602B1 (ko) 2016-08-31 2023-05-11 에이치엘만도 주식회사 차량 제어 장치 및 그 제어 방법
DE102017204000A1 (de) 2017-03-10 2018-09-13 Zf Friedrichshafen Ag Verfahren zur Antiblockierregelung eines Fahrzeugs und Fahrzeug
CN112319455B (zh) * 2020-02-24 2022-04-19 长城汽车股份有限公司 用于车辆的扭矩控制方法及装置
DE102020112597A1 (de) 2020-05-08 2021-11-11 Bayerische Motoren Werke Aktiengesellschaft Zentrale Steuereinheit zur Vorgabe radselektiver Soll-Antriebs- und/oder Soll-Bremsmomente
DE102020121635A1 (de) 2020-08-18 2022-02-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Bremssystems eines Fahrzeuges
DE102022119846A1 (de) 2022-08-08 2024-02-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Antriebs- und Bremssystems eines Fahrzeugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435953A1 (de) 1993-10-07 1995-05-04 Lucas Ind Plc Elektrofahrzeug mit einem hydraulischen Bremssystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014356A1 (de) * 1996-09-30 1998-04-09 Daimler-Benz Aktiengesellschaft Bremskraft-steuerungssystem für ein strassenfahrzeug
US5720533A (en) * 1996-10-15 1998-02-24 General Motors Corporation Brake control system
US6288508B1 (en) * 1997-11-05 2001-09-11 Yamaha Hatsudoki Kabushiki Kaisha Electric motor for a vehicle having regenerative braking and reverse excitation braking
JP2006311791A (ja) * 2005-03-31 2006-11-09 Advics:Kk 車両用ブレーキ制御装置
US7938494B2 (en) * 2006-03-08 2011-05-10 Ribbens William B Antilock braking systems and methods
KR100901591B1 (ko) * 2006-11-17 2009-06-08 현대자동차주식회사 전기자동차용 회생제동 제어 방법
JP2008222121A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 車輌の制動装置
DE102008001455B4 (de) * 2008-04-29 2021-09-23 Robert Bosch Gmbh Verfahren zur Steuerung eines dualen Pumpsystems in Hybridantrieben
DE102009053817C5 (de) * 2009-11-18 2016-07-07 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Fahrzeug mit einer Bremsmoment von Hinterrädern auf die Vorderräder übertragenden Bremseinrichtung mit Bremsschlupfregelung
JP5370594B2 (ja) * 2010-10-25 2013-12-18 トヨタ自動車株式会社 ブレーキ制御装置
US9919693B2 (en) * 2011-01-06 2018-03-20 Ford Global Technologies, Llc Regenerative braking feedback display and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435953A1 (de) 1993-10-07 1995-05-04 Lucas Ind Plc Elektrofahrzeug mit einem hydraulischen Bremssystem

Also Published As

Publication number Publication date
US20150283983A1 (en) 2015-10-08
WO2014063943A3 (de) 2014-07-17
DE102013201691A1 (de) 2014-04-30
CN104870238A (zh) 2015-08-26
CN104870238B (zh) 2018-07-03
US9527488B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
WO2014063943A2 (de) Verfahren zum bremsen eines fahrzeuges und ein ein solches verfahren verwendendes bremssystem
EP2621780B1 (de) Verfahren für die steuerung eines kraftfahrzeugbremssystems
DE10316090A1 (de) Verfahren und Vorrichtung zur Reduzierung der Bremslast an wenigstens einer Radbremse
DE102006055799B4 (de) Verfahren zum regenerativen Bremsen eines Fahrzeugs mit mehreren Bremssystemen
EP4054905B1 (de) Verfahren und vorrichtung zum bremsen eines nutzfahrzeugs mittels eines elektrischen antriebs
DE102005059373A1 (de) Verfahren zur Steuerung eines Bremssystems eines Kraftfahrzeuges
DE102014204804A1 (de) Fahrzeug und Verfahren zum Steuern des regenerativen Bremsens
DE102005058829A1 (de) Aktives Einstellen der Verlustleistung einer elektrischen Maschine im Rekuperationsbetrieb eines Hybrid-Fahrzeugs
DE102015202337A1 (de) Steuervorrichtung und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs
DE102011054290A1 (de) Verfahren und Vorrichtung zum Steuern eines Bremssystems für ein Kraftfahrzeug mit einer Bremseinrichtung
EP2743151A1 (de) Steuervorrichtung für ein rekuperatives Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines rekuperativen Bremssystems eines Fahrzeugs
DE102008020842A1 (de) Kraftfahrzeug mit Hybridantrieb
DE102012021057A1 (de) Verfahren zur Steuerung und/oder Regelung eines Fahrzeugbremssystems bei der Rekuperation sowie Fahrzeugbremssystem
DE102016007838B4 (de) Verfahren zum Steuern einer Bremsrekuperationsvorrichtung sowie Bremsrekuperationsvorrichtung
WO2017029017A1 (de) Verfahren und vorrichtung zum betreiben eines bremssystems eines kraftfahrzeugs, bremssystem
DE102013215670A1 (de) Verfahren zum Abbremsen eines Fahrzeugs sowie Fahrzeug
DE102013204913A1 (de) Rekuperation im Anhängerbetrieb
WO2015078557A1 (de) Vorrichtungen und verfahren zum verteilen einer gesamtsollmoment-vorgabe
EP3793871B1 (de) System für ein elektrisch angetriebenes fahrzeug sowie fahrzeug damit
DE102020121635A1 (de) Verfahren zum Betreiben eines Bremssystems eines Fahrzeuges
DE102015210297B4 (de) Kraftfahrzeug mit Rekuperationsbremse
DE102020110013A1 (de) Verfahren zum Betreiben eines Bremssystems eines Fahrzeuges
DE102016215499A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs, Kraftfahrzeug
DE102013019472A1 (de) Kraftfahrzeug und Verfahren zum Betrieb eines Bremssystems eines Kraftfahrzeugs
DE102016214134A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs, Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776488

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14438351

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13776488

Country of ref document: EP

Kind code of ref document: A2