WO2014063581A1 - 一种碱性复合离子液体及生物柴油制备方法 - Google Patents

一种碱性复合离子液体及生物柴油制备方法 Download PDF

Info

Publication number
WO2014063581A1
WO2014063581A1 PCT/CN2013/085261 CN2013085261W WO2014063581A1 WO 2014063581 A1 WO2014063581 A1 WO 2014063581A1 CN 2013085261 W CN2013085261 W CN 2013085261W WO 2014063581 A1 WO2014063581 A1 WO 2014063581A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
biodiesel
sodium
alkaline
sodium alkoxide
Prior art date
Application number
PCT/CN2013/085261
Other languages
English (en)
French (fr)
Inventor
吴峰
韦海斌
Original Assignee
Wu Feng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wu Feng filed Critical Wu Feng
Publication of WO2014063581A1 publication Critical patent/WO2014063581A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to an alkaline composite ionic liquid, and to a method of preparing biodiesel using the alkaline composite ionic liquid.
  • Biodiesel is a long-chain fatty acid methyl ester produced by acid exchange between animal and vegetable oils and low-carbon alcohols. It is usually produced by using acid and alkali as catalysts.
  • Traditional production methods have high cost, heterogeneous reaction and reaction time. Longer, higher energy consumption and other shortcomings.
  • various catalysts such as lipases, heterogeneous solid catalysts, ionic liquid catalysts, etc. have been developed, in which lipases are easily deactivated, high in cost, and difficult to industrialize; heterogeneous solid catalysts have low catalytic activity and are easily deactivated. , the reaction rate is slow and so on.
  • supercritical processes, membrane reactors, etc. have been developed. Supercritical processes require high equipment and require high temperature and high pressure reactions; membrane reactors require expensive membrane materials and high production costs. Therefore, it is imperative to develop an environmentally friendly biodiesel green production process, increase the reaction rate and energy utilization rate, and reduce production costs.
  • Ionic liquids are one of the emerging research fields of green chemistry in recent years. As a new type of environmentally friendly solvent and liquid catalyst, ionic liquids have the advantages of other organic and inorganic solvents and conventional catalysts, and can achieve higher reaction rate and selectivity, easy separation of products and less environmental pollution.
  • the production process technology still has the following defects: The methyl ester conversion rate is low, the phosphorus content, the content of the divalent metal (K, Na, Ca, Mg) and other quality indicators are not up to the US biodiesel standard ASTM D6751 and EU organisms. Requirements for diesel standard EN14214. Summary of the invention
  • One of the technical problems to be solved by the present invention is to provide an alkaline composite ionic liquid, which improves the catalytic efficiency of the production process of biodiesel and reduces the production cost.
  • the second technical problem to be solved by the present invention is to provide a biodiesel preparation method, which uses the alkaline composite ionic liquid of the invention as a catalyst to prepare biodiesel, and overcomes the existing biodiesel preparation method.
  • the quality of the methyl ester conversion rate, phosphorus content, and the content of mono- and divalent metals (K, Na, Ca, Mg) are not up to the defects of European and American standards.
  • the technical solution adopted by the present invention to solve one of the technical problems is to provide an alkaline composite ionic liquid, which comprises N_R_N_methylimidazolium hydroxide and sodium alkoxide, and the N_R_N_methylimidazolium hydrogen Oxide
  • R is d ⁇ 6 fluorenyl
  • the mass ratio of the N_R_N-methylimidazolium hydroxide to the sodium alkoxide is 1: 0.05 to: h 0.4.
  • the sodium alkoxide is one of sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide or a combination thereof.
  • the technical solution adopted by the present invention to solve the second technical problem is to provide a biodiesel preparation method, which is characterized in that it comprises the following steps:
  • biological oil pretreatment 100 parts of biological fat into the reactor according to the mass ratio, heated to 60 ⁇ 80 ° C, adding 0.17 ⁇ 0.85 parts of crystal phosphoric acid phosphoric acid, stirring 30 ⁇ 60min, then adding 0.5 ⁇ 5 a portion of alkaline solids and 0.5 to 2 parts of white clay, stirred, heated, controlled temperature at 50 ⁇ 90 ° C, after 15 to 30 minutes of reaction, filtered to remove the reaction residue;
  • transesterification 1 to 5 parts of alkaline complex ionic liquid, 100 parts of pretreated bio-oil and 15 to 40 parts of short-chain alcohol into the reactor, stirring, heating, control temperature is 50 ⁇ 80 ° C , the reaction is 20 ⁇ 90min ;
  • reaction solution is allowed to stand, gravity is settling, and the upper organic layer is separated by liquid separation to obtain crude biodiesel;
  • the composite ionic liquid comprises N_R_N_methylimidazolium hydroxide and sodium alkoxide, and the structural formula of the N_R_N_methylimidazolium hydroxide is:
  • R is d ⁇ 6 fluorenyl; the mass ratio of the N_R_N-methylimidazolium hydroxide to sodium alkoxide is 1: 0.05 ⁇ : h 0.4.
  • a step S5 of separating the glycerin in the filtered liquid from the alkaline complex ionic liquid is included.
  • a sodium alkoxide having a mass of 1 to 5% is added to the separated alkaline complex ionic liquid to obtain a reusable alkaline composite ionic liquid.
  • the sodium alkoxide is one of sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide or a combination thereof.
  • biodiesel product phosphorus content 6 ⁇ 9mg/kg, monovalent metal (K+Na) content 3 ⁇ 5 mg/kg, divalent metal (Ca +Mg) The content is 3 ⁇ 5 mg/kg, and the quality index reaches European and American standards;
  • the alkaline composite ionic liquid of the invention has high catalytic efficiency, the conversion rate of preparing biodiesel is 97 ⁇ 98%, the yield is 96% ⁇ 98%, and the selectivity is up to 100%, the alkali strength can be adjusted, and the application is applicable. wide range;
  • the alkaline composite ionic liquid catalyst is simple in synthesis, low in cost, low in corrosiveness to equipment, and the alkaline composite ionic liquid can be recycled, further reducing the cost;
  • the method of the invention has simple process and can directly separate the biodiesel finished product without water washing and distillation, has high production efficiency and low energy consumption; the oil does not saponify, the product separation is simple, the product purity and the yield are high, and at the same time, More environmentally friendly.
  • FIG. 1 is a flow chart showing a method of preparing biodiesel according to the present invention
  • R is d ⁇ 6 fluorenyl
  • N-R-N-methylimidazolium hydroxide and sodium alkoxide a good catalytic effect can be obtained by using 1:0.1, 1:0.2, 1:0.3, etc.
  • the above sodium alkoxide may be one of, but not limited to, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, or a combination thereof.
  • the method for preparing biodiesel by alkaline catalysis in the present invention includes bio-oil pretreatment, transesterification, product separation and adsorption, and filtration steps, as shown in the following examples.
  • phosphoric acid 500 g was added to the reactor, heated to 60-80 ° C (in other examples, heated to 65-75 ° C, the same below), adding 85% phosphoric acid 2.0 g (in other examples)
  • other concentrations of phosphoric acid may be added, for example, phosphoric acid may be added at a concentration of 15%, 20%, 30%, 50%, 60%, 70%, 80%, etc.
  • the amount of addition is required.
  • the phosphoric acid component in the phosphoric acid solution is added to account for 0.17 ⁇ 0.85% of the mass of the raw material oil (in this embodiment, the jatropha oil), the mixture is stirred for 40 minutes, and Na 2 C0 3 18g is added (in other implementations).
  • other basic solids such as NaOH, KOH, etc. may be added, and the amount may be determined by 0.5 to 5% of the mass of the raw material, the same as below), and 5 g of the activated clay (in other examples, the activated clay may be used as the raw material).
  • 0.5 ⁇ 2% of the quality of the hair oil is determined, the same as below), stirred, heated to 50 ⁇ 90 °C (in other examples, can be heated to 60 ⁇ 80 °C, the same below), stirred, reacted for 15 ⁇ 30min, Deacidification, degumming, dehydration, filtration and removal of reaction residues
  • the pretreated jatropha oil is placed in a reactor, and 100 g of methanol is added.
  • the mass ratio of the jatropha oil: composite ionic liquid catalyst is 1: 0.01 to 1: 0.05, and the above alkaline complex ionic liquid catalyst is added, 10 g, and heated.
  • stirring, control temperature is 50 ⁇ 80 ° C (in other embodiments, can be heated to 60 ⁇ 70 ° C, the same below), the reaction is 20 ⁇ 90min (in other embodiments, the reaction time can be 40 ⁇ 70min, The same below).
  • methanol may be replaced by a short-chain alcohol such as ethanol, propanol or butanol (the same applies hereinafter).
  • the reaction liquid was allowed to stand for stratification, and the upper layer was a crude biodiesel layer, and the lower layer of the glycerin catalyst layer was discharged to obtain crude biodiesel.
  • the crude biodiesel is heated to 80 ⁇ 120 °C (in other examples, it can be heated to 85 ⁇ 115 V, the same below), stirred, and 10g of acidic activated clay is added (the amount of acidic activated clay is usually added as crude biodiesel oil).
  • the weight is 0.5 to 5%, the same as below, and the adsorption is 30 to 60 minutes (in other embodiments, the adsorption time may be 40 to 50 minutes, the same below), and filtration is performed to obtain the finished biodiesel.
  • the conversion rate reached 97.5% and the yield reached 98%.
  • a 1 to 5% by weight of sodium alkoxide is added to the separated alkaline composite ionic liquid to obtain a reusable alkaline composite ionic liquid.
  • the sodium alkoxide includes, but is not limited to, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, and combinations thereof may be employed.
  • step 5 does not implement step 5, step 6, and does not affect the implementation of the object of the present invention.
  • the pretreated cottonseed oil is placed in a reactor, and 150 g of methanol is added.
  • the reaction liquid was allowed to stand for stratification, and the upper layer was a crude biodiesel layer, and the lower layer of the glycerin catalyst layer was discharged to obtain crude biodiesel.
  • the crude biodiesel is heated to 80 ⁇ 120 ° C, and 15 g of acidic activated clay is added with stirring.
  • the product is 30 ⁇ 60min and filtered to obtain the finished biodiesel.
  • the conversion rate was 98% and the yield was 96.8%.
  • a 1 to 5% sodium alkoxide is added in a mass ratio of the separated alkaline complex ionic liquid to obtain a reusable alkaline composite ionic liquid.
  • the pretreated rapeseed oil was placed in a reactor, and 125 g of methanol was added. According to the ratio of the rapeseed oil: alkaline complex ionic liquid catalyst: 1: 0.01 to 1: 0.05, the alkaline composite ionic liquid catalyst was added, and heated. , stirring, control temperature is 50 ⁇ 80 ° C, reaction 20 ⁇ 90min.
  • the reaction liquid was allowed to stand for stratification, and the upper layer was a crude biodiesel layer, and the lower layer of the glycerin catalyst layer was discharged to obtain crude biodiesel.
  • the crude biodiesel is heated to 80 ⁇ 120 ° C, and 10 g of acidic activated clay is added with stirring, and the adsorption time is 30 to 60 min, and the finished biodiesel is obtained by filtration.
  • the conversion rate was 97% and the yield was 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

本发明公开了一种碱性复合离子液体及生物柴油制备方法,碱性复合离子液体包括质量比按1:0.05∼1:0.4组配的N-R-N-甲基咪唑氢氧化物和醇钠;方法使用该碱性复合离子液体制备生物柴油,包括生物油脂预处理、酯交换反应、产物分离、吸附、过滤等歩骤。本发明制备的生物柴油产品磷含量、一价金属(K+Na)含量、二价金属(Ca+Mg)等达到欧洲、美国标准,具有离子液体合成简单,成本低,对设备腐蚀性低,可以循环使用,催化效率高,适用范围广;方法工艺简单,生物柴油转化率高、产率高;反应直接分离得到生物柴油成品,不需水洗、蒸馏,生产效率高,能耗低;油脂不发生皂化,产物分离简单、产品纯度及产率高并,同时更加环保等优点。

Description

一种碱性复合离子液体及生物柴油制备方法
技术领域
本发明涉及一种碱性复合离子液体, 还涉及使用该碱性复合离子液体制 备生物柴油的方法。
背景技术
生物柴油是由动植物油脂与低碳醇通过酸交换反应生成的长链脂肪酸甲 酯类物质, 通常采用酸、碱作为催化剂进行反应生成, 传统生产方法存在成本 高、 非均相反应、 反应时间较长、 能耗高等缺点。 为此, 人们开发出多种催化 剂如脂肪酶、 非均相固体催化剂、 离子液体催化剂等, 其中脂肪酶易失活, 成 本高, 难以工业化; 非均相固体催化剂存在催化活性低, 易失活, 反应速率慢 等问题。 此外还开发了超临界工艺、 膜反应器等, 超临界工艺对设备要求高, 需要在高温高压下进行反应;膜反应器则需要消耗昂贵的膜材料,生产成本高。 因此, 开发环境友好的生物柴油绿色生产工艺, 提高反应速率和能量利用率, 降低生产成本, 成为当务之急。
离子液体是近年来绿色化学新兴的研究领域之一。离子液体作为一种新型 的环境友好溶剂和液体催化剂, 具有其它有机、无机溶剂和传统催化剂所不具 备的优点, 可以获得更高的反应速率、 选择性, 产物易分离、 环境污染小。
张锁江等在专利 CN169248 "基于离子液体的生物柴油合成方法" 中, 采 用酸性和碱性离子液体作为催化剂制备生物柴油,转化率达到 95%。陈立功在 专利 CN101851562 "—种餐饮废油制备生物柴油的技术" 中, 采用碱性离子 液体作为催化剂对餐饮废油进行催化制备生物柴油, 不需要进行皂化、酸化等 工艺减少了工序, 节约了时间, 转化率可达到 75%〜85%。
上述采用碱性离子液体作为催化剂制备生物柴油的生产工艺大大提高了 转化效率, 降低了生产成本。但是, 该生产工艺技术仍然存在如下缺陷: 甲酯 转化率偏低, 磷含量、 一二价金属 (K、 Na、 Ca、 Mg) 含量等质量指标达不 到美国生物柴油标准 ASTM D6751和欧盟生物柴油标准 EN14214的要求。 发明内容
本发明要解决的技术问题之一在于,提供一种碱性复合离子液体,提高生 物柴油制备生产工艺的催化效率, 降低生产成本。
本发明要解决的技术问题之二在于,提供一种生物柴油制备方法,采用本 发明的碱性复合离子液体作为催化剂制备生物柴油,克服现有生物柴油制备方 法存在的甲酯转化率偏低、 磷含量、 一二价金属 (K、 Na、 Ca、 Mg) 含量等 质量指标达不到欧洲、 美国标准的缺陷。
本发明解决其技术问题之一所采用的技术方案是:提供一种碱性复合离子 液体, 其特征在于, 包括 N_R_N_甲基咪唑氢氧化物和醇钠, 所述 N_R _N_甲基咪唑氢氧化物的
Figure imgf000004_0001
其中, R为 d~6垸基;
所述 N_R_N—甲基咪唑氢氧化物和醇钠的质量比为 1 : 0.05〜: h 0.4。 在本发明的碱性复合离子液体中, 所述醇钠为甲醇钠、 乙醇钠、 丙醇钠、 丁醇钠中之一或其组合。
本发明解决其技术问题之二所采用的技术方案是:提供一种生物柴油制备 方法, 其特征在于, 包括如下歩骤:
51、 生物油脂预处理: 按质量比将 100 份生物油脂加入反应器中, 加热 至 60〜80°C, 加入相当于 0.17〜0.85份结晶磷酸的磷酸, 搅拌 30〜60min, 再 加入 0.5〜5份的碱性固体和 0.5〜2份白土, 搅拌, 加热, 控制温度在 50〜90 °C, 反应 15〜30min后过滤, 除去反应残渣;
52、 酯交换反应: 将 1〜5份碱性复合离子液体、 100份经预处理的生物 油脂和 15〜40份短链醇加入反应器内, 搅拌, 加热, 控制温度为 50〜80°C, 反应 20〜90min;
53、 产物分离: 将反应液静置, 重力沉降, 通过分液分出上层有机层, 得到粗品生物柴油;
54、 吸附、 过滤: 将粗品生物柴油加热至 80〜120°C, 加入粗品生物柴油 油重的 0.5〜5%的酸性活性白土, 吸附 30〜60min, 过滤, 得到合格的生物柴 所述碱性复合离子液体包括 N_R_N_甲基咪唑氢氧化物和醇钠, 所述 N_R_N_甲基咪唑氢氧化物的结构通式为:
Figure imgf000005_0001
其中, R为 d~6垸基; 所述 N_R_N—甲基咪唑氢氧化物和醇钠的质量比为 1 : 0.05〜: h 0.4。 在本发明的生物柴油制备方法中, 在歩骤 S4之后, 包括将过滤后的液体 中的甘油与碱性复合离子液体分离的歩骤 S5。
在本发明的生物柴油制备方法中, 在歩骤 S5之后, 包括在分离的碱性复 合离子液体中加入其质量的 1〜5%的醇钠,得到可重复使用的碱性复合离子液 体的歩骤。
在本发明的生物柴油制备方法中, 所述醇钠为甲醇钠、 乙醇钠、 丙醇钠、 丁醇钠中之一或其组合。
实施本发明的碱性复合离子液体及生物柴油制备方法, 与现有技术比较, 其有益效果是:
1. 使用本发明的碱性复合离子液体制备生物柴油, 生物柴油产品磷含 量 6〜9mg/kg, 一价金属 (K+Na)含量 3〜5 mg/kg, 二价金属 (Ca +Mg) 含量 3〜5 mg/kg, 质量指标达到欧洲、 美国标准;
2. 本发明的碱性复合离子液体的催化效率高, 制备生物柴油转化率达 97〜98%, 产率达 96%〜98%, 同时其选择性达 100%, 碱性强度可 调节, 适用范围广;
3. 碱性复合离子液体催化剂合成简单, 成本低廉, 对设备腐蚀性低, 同时该碱性复合离子液体可以循环使用, 进一歩降低了成本;
4. 本发明的方法工艺简单, 反应结束可直接分离得到生物柴油成品, 不需水洗、 蒸馏, 生产效率高, 能耗低; 油脂不发生皂化, 产物分 离简单、 产品纯度及产率高, 同时更加环保。
附图说明
图 1是本发明生物柴油制备方法的流程图。
具体实施方式
下面将结合附图及实施例对本发明作进一歩说明。 N_R_N_甲基咪唑氢氧化
Figure imgf000006_0001
其中, R为 d~6垸基;
1: 0.4。 例如,
N-R-N-甲基咪唑氢氧化物和醇钠的质: 比采用 1 : 0.1、 1: 0.2、 1: 0.3等, 均能取得良好的催化效果。
上述醇钠可采用包括但不限于甲醇钠、乙醇钠、丙醇钠、丁醇钠中的一种, 也可采用它们的组合。
如图 1所示,在本发明的碱性催化制备生物柴油的方法包括生物油脂预处 理、 酯交换反应、 产物分离和吸附、 过滤歩骤, 具体见如下实施例。
实施例一, 用小桐子油制备生物柴油:
1、 对小桐子毛油进行预处理
将小桐子毛油 500g加入反应器中, 加热至 60〜80°C (在其他实施例中, 可加热至 65~75°C, 下同), 加入 85%的磷酸 2.0g (在其他实施例中, 可以加 入其他浓度的磷酸, 例如可加入 15%、 20%、 30%、 50%、 60%、 70%、 80% 等浓度的磷酸。 当加入浓度低的磷酸时, 需增加添加量, 只要保证加入的磷酸 溶液中的磷酸成分占原料毛油 (本实施例为小桐子毛油) 质量的 0.17~0.85% 即可, 下同), 搅拌 40min, 加入 Na2C0318g (在其他实施例中, 可加入其他 碱性固体, 如 NaOH、 KOH等, 加入量可按原料毛油质量的 0.5~5%确定, 下 同), 活性白土 5g (在其他实施例中, 活性白土可按原料毛油质量的 0.5~2% 确定, 下同), 搅拌, 加热至 50〜90°C (在其他实施例中, 可加热至 60~80°C, 下同), 搅拌, 反应 15〜30min, 使油料脱酸、 脱胶、 脱水, 过滤除去反应残
2、 酯交换反应
将经过预处理的小桐子油置于反应器中, 加入甲醇 100g, 按照小桐子油: 复合离子液体催化剂的质量比为 1 : 0.01〜1: 0.05, 加入上述碱性复合离子液 体催化剂 10g, 加热, 搅拌, 控制温度为 50〜80°C (在其他实施例中, 可加热 至 60~70°C,下同),反应 20〜90min (在其他实施例中,反应时间可取 40~70min, 下同)。在其他实施例中, 甲醇可采用乙醇、丙醇、丁醇等短链醇代替(下同)。
3、 产物分离
加热回收过剩的甲醇。将反应液静置分层, 上层为粗品生物柴油层, 排出 下层的甘油催化剂层, 得到粗品生物柴油。
4、 吸附、 过滤
将粗品生物柴油加热到 80〜120°C (在其他实施例中, 可加热至 85~115 V, 下同), 搅拌, 加入 10g酸性活性白土 (酸性活性白土的添加量通常按粗 品生物柴油油重的 0.5〜5%计, 下同), 吸附 30〜60min (在其他实施例中, 吸附时间可取 40~50min, 下同),过滤,得到成品生物柴油。转化率达到 97.5%, 产率达到 98%。
5、 甘油与催化剂分离
将碱性复合离子液体催化剂与甘油分离, 可得到纯度 96.5%的甘油。
6、 催化剂再生
在分离的碱性复合离子液体中加入其质量的 1〜5%的醇钠, 得到可重复 使用的碱性复合离子液体。 醇钠包括但不限于甲醇钠、 乙醇钠、 丙醇钠、 丁醇 钠中的一种, 也可采用它们的组合, 下同。
上述实施例不实施歩骤 5、 歩骤 6, 不影响本发明目的的实现。
实例二, 用棉籽油制备生物柴油:
1、 对棉籽毛油进行预处理
将棉籽毛油 500g加入反应器中,加热至 60〜80°C,加入 85%的磷酸 3.0g, 搅拌 30min, 加入 Ca0 14g、 活性白土 10g, 搅拌, 加热至 50〜90°C, 搅拌, 反应 15〜30min, 使油料脱酸、 脱胶、 脱水, 过滤除去反应残渣。
2、 酯交换反应
将经过预处理的棉籽油置于反应器中, 加入甲醇 150g, 按照棉籽油: 碱 性复合离子液体催化剂的质量比为 1 : 0.01〜1: 0.05加入上述碱性复合离子液 体催化剂 15g, 加热, 搅拌, 控制温度为 50〜80°C, 反应 20〜90min。
3、 产物分离
加热回收过剩的甲醇。将反应液静置分层, 上层为粗品生物柴油层, 排出 下层的甘油催化剂层, 得到粗品生物柴油。
4、 吸附、 过滤
将粗品生物柴油加热到 80〜120°C, 搅拌加入 15g酸性活性白土, 吸附时 间为 30〜60min, 过滤得到成品生物柴油。 转化率达 98%, 产率达 96.8%。
5、 甘油与催化剂分离
将碱性复合离子液体催化剂与甘油分离, 可得到纯度 95.6%的甘油。
6、 催化剂再生
在分离的碱性复合离子液体中按质量比加入 1〜5%的醇钠, 得到可重复 使用的碱性复合离子液体。
实例三, 用菜籽油制备生物柴油:
1、 对菜籽毛油进行预处理
将菜籽毛油 500g加入反应器中,加热至 60〜80°C,加入 85%的磷酸 2.5g, 搅拌 60min, 加入 K2CO3 20g、 活性白土 10g, 搅拌, 加热至 50〜90°C, 搅拌, 反应 15〜30min, 使油料脱酸、 脱胶、 脱水, 过滤除去反应残渣。
2、 酯交换反应
将经过预处理的菜籽油置于反应器中, 加入甲醇 125g, 按照菜籽油: 碱 性复合离子液体催化剂的质量比为 1 : 0.01〜1: 0.05加入碱性复合离子液体催 化剂 20g, 加热, 搅拌, 控制温度为 50〜80°C, 反应 20〜90min。
3、 产物分离
加热回收过剩的甲醇。将反应液静置分层, 上层为粗品生物柴油层, 排出 下层的甘油催化剂层, 得到粗品生物柴油。
4、 吸附、 过滤
将粗品生物柴油加热到 80〜120°C, 搅拌加入 10g酸性活性白土, 吸附时 间为 30〜60min, 过滤得到成品生物柴油。 转化率达 97%, 产率达 98%。
5、 甘油与催化剂分离
将碱性复合离子液体催化剂与甘油分离, 可得到纯度 97%的甘油。
6、 催化剂再生
在分离的碱性复合离子液体中按质量比加入 1〜5%的醇钠, 得到可重复

Claims

权 利 要 求 书
1、 一种碱性复合离子液体, 其特征在于, 包括 N_R_N_甲基咪唑氢氧 化物和醇钠, 所述 N_R_ _甲基咪唑氢氧化物的结构通式为:
Figure imgf000009_0001
其中, R为 d~6垸基; 所述 N_R_N—甲基咪唑氢氧化物和醇钠的质量比为 1 : 0.05〜: h 0.4。
2、 如权利要求 1所述的碱性复合离子液体, 其特征在于, 所述醇钠为甲 醇钠、 乙醇钠、 丙醇钠、 丁醇钠中之一或其组合。
3、 一种生物柴油制备方法, 其特征在于, 包括如下歩骤:
51、 生物油脂预处理: 按质量比将 100 份生物油脂加入反应器中, 加热 至 60〜80°C, 加入相当于 0.17〜0.85份结晶磷酸的磷酸, 搅拌 30〜60min, 再 加入 0.5〜5份的碱性固体和 0.5〜2份白土, 搅拌, 加热, 控制温度在 50〜90 °C, 反应 15〜30min后过滤, 除去反应残渣;
52、 酯交换反应: 将 1〜5份碱性复合离子液体、 100份经预处理的生物 油脂和 15〜40份短链醇加入反应器内, 搅拌, 加热, 控制温度为 50〜80°C, 反应 20〜90min;
53、 产物分离: 将反应液静置, 重力沉降, 通过分液分出上层有机层, 得到粗品生物柴油;
54、 吸附、 过滤: 将粗品生物柴油加热至 80〜120°C, 加入粗品生物柴油 油重的 0.5〜5%的酸性活性白土, 吸附 30〜60min, 过滤, 得到合格的生物柴 所述碱性复合离子液体包括 N_R_N_甲基咪唑氢氧化物和醇钠, 所述 N_R_N_甲基咪唑氢氧化物的结构通式为:
Figure imgf000009_0002
其中, R为 d~6垸基; 所述 N_R_N—甲基咪唑氢氧化物和醇钠的质量比为 1 : 0.05〜: h 0.4。
4、 如权利要求 3所述的生物柴油制备方法, 其特征在于, 在歩骤 S4之 后, 包括将过滤后的液体中的甘油与碱性复合离子液体分离的歩骤 S5。
5、 如权利要求 4所述的生物柴油制备方法, 其特征在于, 在歩骤 S5之 后,包括在分离的碱性复合离子液体中加入其质量的 1〜5%的醇钠,得到可重 复使用的碱性复合离子液体的歩骤。
6、 如权利要求 5所述的生物柴油制备方法, 其特征在于, 所述醇钠为甲 醇钠、 乙醇钠、 丙醇钠、 丁醇钠中之一或其组合。
PCT/CN2013/085261 2012-10-23 2013-10-15 一种碱性复合离子液体及生物柴油制备方法 WO2014063581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210407002.3 2012-10-23
CN201210407002.3A CN102875471B (zh) 2012-10-23 2012-10-23 一种碱性复合离子液体及生物柴油制备方法

Publications (1)

Publication Number Publication Date
WO2014063581A1 true WO2014063581A1 (zh) 2014-05-01

Family

ID=47477026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085261 WO2014063581A1 (zh) 2012-10-23 2013-10-15 一种碱性复合离子液体及生物柴油制备方法

Country Status (2)

Country Link
CN (1) CN102875471B (zh)
WO (1) WO2014063581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777629A (zh) * 2017-11-13 2019-05-21 中国石油化工股份有限公司 生物柴油的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875471B (zh) * 2012-10-23 2016-05-04 吴峰 一种碱性复合离子液体及生物柴油制备方法
CN103406146B (zh) * 2013-07-16 2016-03-09 常州大学 一种固载化碱性离子液体催化剂的制备方法
CN109174176B (zh) * 2018-08-01 2021-07-06 沈阳工业大学 碱性离子液体催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696248A (zh) * 2005-07-08 2005-11-16 中国科学院过程工程研究所 基于离子液体的生物柴油合成方法
CN101323791A (zh) * 2008-07-24 2008-12-17 广东工业大学 一种用微波催化制备生物柴油的方法
CN101358140A (zh) * 2007-08-02 2009-02-04 姜皓 一种生物柴油的合成工艺及设备
CN102875471A (zh) * 2012-10-23 2013-01-16 吴峰 一种碱性复合离子液体及生物柴油制备方法
CN103031215A (zh) * 2013-02-18 2013-04-10 广西合众能源股份有限公司 生物柴油的连续生产设备及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492558A (zh) * 2011-11-28 2012-06-13 江南大学 一种在离子液体中制备生物柴油的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696248A (zh) * 2005-07-08 2005-11-16 中国科学院过程工程研究所 基于离子液体的生物柴油合成方法
CN101358140A (zh) * 2007-08-02 2009-02-04 姜皓 一种生物柴油的合成工艺及设备
CN101323791A (zh) * 2008-07-24 2008-12-17 广东工业大学 一种用微波催化制备生物柴油的方法
CN102875471A (zh) * 2012-10-23 2013-01-16 吴峰 一种碱性复合离子液体及生物柴油制备方法
CN103031215A (zh) * 2013-02-18 2013-04-10 广西合众能源股份有限公司 生物柴油的连续生产设备及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777629A (zh) * 2017-11-13 2019-05-21 中国石油化工股份有限公司 生物柴油的制备方法
CN109777629B (zh) * 2017-11-13 2022-07-08 中国石油化工股份有限公司 生物柴油的制备方法

Also Published As

Publication number Publication date
CN102875471B (zh) 2016-05-04
CN102875471A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN101906355B (zh) 一种利用餐厨垃圾回收油制取生物柴油的方法
CN102031202A (zh) 一种离子液体催化制备生物柴油的方法
WO2014063581A1 (zh) 一种碱性复合离子液体及生物柴油制备方法
CN102876465A (zh) 利用餐厨废弃油脂制备生物柴油的方法
CN111500373A (zh) 一种生物柴油的制备方法
CN103666773A (zh) 微结构反应器中生产生物柴油的方法
CN1844319A (zh) 一种亚临界—超临界流体转化制备生物柴油的方法
CN101691519B (zh) 以蚕蛹油为原料生产生物柴油的制备方法
CN105038997A (zh) 一种离子液体催化油脂同步制备生物柴油和碳酸甘油酯的方法
CN102816645A (zh) 一种生物柴油连续化制备方法
CN103436369A (zh) 甲醇促进同步制备生物柴油和碳酸甘油酯的方法
CN101402873A (zh) 樟树籽油制备轻质型生物柴油的方法
CN101787332B (zh) 制备脂肪酸混合酯的方法
CN105080606A (zh) 一种制备生物柴油的多金属氧酸盐催化剂
WO2014063582A1 (zh) 一种离子液体催化剂及脂肪酸制备方法
CN103436368A (zh) 碱土金属氧化物催化同步制备生物柴油和碳酸甘油酯的方法
CN101993784A (zh) 固体超强酸催化地沟油制备生物柴油的方法
CN102492558A (zh) 一种在离子液体中制备生物柴油的方法
CN100523130C (zh) 一种硅酸盐催化制备生物柴油的方法
CN102391914A (zh) 一种稀土氧化物介孔材料催化制备生物柴油的方法
Fereidooni et al. Improvement of methyl ester production through modified rice bran as a heterogeneous catalyst
CN202610209U (zh) 一种高酸值油脂制备生物柴油的装置
CN103614244A (zh) 一种以碳基磺酸功能化固体酸为催化剂制备生物柴油的方法
CN101982541A (zh) 一种联合生产生物柴油和乳酸的方法
CN102688780B (zh) 一种有机无机复合介孔固体碱催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848927

Country of ref document: EP

Kind code of ref document: A1