WO2014063545A1 - 一种交通自适应控制方法和装置 - Google Patents
一种交通自适应控制方法和装置 Download PDFInfo
- Publication number
- WO2014063545A1 WO2014063545A1 PCT/CN2013/083823 CN2013083823W WO2014063545A1 WO 2014063545 A1 WO2014063545 A1 WO 2014063545A1 CN 2013083823 W CN2013083823 W CN 2013083823W WO 2014063545 A1 WO2014063545 A1 WO 2014063545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- straight
- green light
- intersection
- traffic
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
Definitions
- the present invention relates to the field of traffic signal control, and in particular, to a traffic adaptive control method and apparatus.
- BACKGROUND OF THE INVENTION Urban traffic adaptive control systems have been increasingly introduced into Chinese urban traffic signal control systems, including the UK's Green Cycle Ratio, Period, Offset Optimizing Technique (SCOOT) and Australia.
- the Sydney Coordinated Adaptive Traffic System (SCATS) is a relatively mature technology.
- SCATS Sydney Coordinated Adaptive Traffic System
- a relatively simple implementation method is to release information to guide the driver's driving behavior.
- This green wave control method shifts the control object from the signal light group to the vehicle driver, avoids complicated optimization calculation of the signal light group, can form a certain green wave effect, reduces the number of vehicle stops, but does not improve the road traffic.
- the control effect of the ability, and the control strategy controlled by the driver cannot be guaranteed, because the driver can choose to ignore the driving advice posted on the information bulletin board.
- An object of the embodiments of the present invention is to provide a traffic adaptive control method and apparatus.
- the road traffic saturation is between 0.6 and 0.9, the green light on time and the green light duration of the signal light are adjusted, so that as many vehicles as possible can not stop. The intersection of multiple signal lights through the green wave band.
- an embodiment of the present invention provides a traffic adaptive control method for controlling a plurality of traffic lights in a green wave band, including: collecting traffic conditions of a first straight phase with a green wave direction of a current intersection Corresponding first type of traffic condition parameter; collecting a second type of traffic condition parameter corresponding to the traffic condition of the first straight phase of the green wave at the upstream intersection; according to the first type of traffic condition parameter and the second type a traffic condition parameter, determining a first green light on time of the first straight phase of the current intersection; determining the first straight phase of the current intersection according to the first type of traffic condition parameter and the second type of traffic condition parameter Corresponding first green light duration; when the first green light is turned on, the green light of the first straight phase of the current intersection is turned on, and the green light duration is controlled by the first green light duration.
- the first type of traffic condition parameter comprises: a traffic flow parameter and an occupancy rate parameter;
- the second type of traffic condition parameter comprises: a green light on time corresponding to a first straight phase in a green wave direction, a green light duration, and Vehicle queue length.
- the traffic flow parameter is specifically a ratio of the traffic flow to the corresponding road capacity.
- the determining, according to the first type of traffic condition parameter and the second type of traffic condition parameter, the first green light on time of the first straight phase of the current intersection comprises: according to the first type of traffic Calculating a phase difference between the status parameter and the second type of traffic condition parameter; the phase difference is a time difference between a current intersection and an upstream intersection at a green light on a first straight phase in a green wave direction; the current intersection is at a first moment When the time difference of the green light on the upstream direction of the upstream intersection in the direction of the green wave reaches the phase difference, the first time is determined as the first green light on time of the first straight phase of the current intersection.
- the determining, according to the first type of traffic condition parameter and the second type of traffic condition parameter, that the first green light on time of the first straight line of the current intersection further comprises: according to the current intersection The first type of traffic condition parameter determines a corrected phase difference; when the time difference between the current time interval and the upstream intersection of the upstream intersection in the green wave direction and the green light on time reaches the phase difference, the first time is determined as the current intersection number
- the first green light of the phase is always on The first time that the time difference between the current intersection and the upstream intersection in the green wave direction and the green light on time is reached at the target phase difference, determining that the first time is the first green light on time of the first straight phase;
- the target phase difference is a sum of the phase difference and the corrected phase difference.
- the phase difference ⁇ is: Where L is the distance between the current intersection and the upstream intersection, 1 is the length of the vehicle queue in the green wave direction of the upstream intersection, Vf is the vehicle speed when the traffic volume is approximately zero, Q is the traffic flow, k is the maximum traffic density, t Q is Time loss due to vehicle acceleration from standstill to hook speed.
- the straight traveling phase includes a straight traveling direction and a right rotating direction; and the first green light duration corresponding to the first straight traveling phase is a maximum of a green light duration in a straight direction and a green light duration in a corresponding right turn direction.
- the green light duration of the first straight-line phase straight-direction direction is the sum of the first release duration of the straight-line vehicle in the direction of the green wave in the current intersection and the second release duration of the straight-going vehicle in the direction of the green wave in the upstream direction;
- the first release duration is determined by a first traffic condition parameter corresponding to a first straight phase of the current intersection;
- the second release duration is a product of a green light duration of the upstream intersection on the first straight phase and a proportional coefficient
- the green light duration of the first straight phase right turn direction is determined by a first type of traffic condition parameter corresponding to the first straight phase of the current intersection.
- an embodiment of the present invention further provides a traffic adaptive control device for controlling a plurality of traffic lights in a green wave band, including: a first acquisition module, configured to collect and current intersection green The second type of traffic condition corresponding to the traffic condition of the first straight phase of the wave direction; the second acquisition module is configured to collect the second type of traffic condition corresponding to the traffic condition of the first straight phase of the green wave direction of the upstream intersection a green light on time determination module, configured to determine a first green light on time of the first straight phase of the current intersection according to the first type of traffic condition parameter and the second type of traffic condition parameter; a green light duration determining module, configured to determine, according to the first type of traffic condition parameter and the second type of traffic condition parameter, a first green light duration corresponding to the first straight line phase of the current intersection; the control module is set to When the first green light is turned on, the green light of the first straight phase of the current intersection is turned on, and the green light duration is controlled by the first green light duration.
- a traffic adaptive control device for controlling
- the first type of traffic condition parameter comprises: a traffic flow parameter and an occupancy rate parameter;
- the second type of traffic condition parameter comprises: a green light on time corresponding to a first straight phase in a green wave direction, a green light duration, and Vehicle queue length.
- the traffic flow parameter is specifically a ratio of the traffic flow to the corresponding road capacity.
- the green light on-time determining module specifically includes: a phase difference calculating module, configured to calculate a phase difference according to the first type of traffic condition parameter and the second type of traffic condition parameter; The time difference between the green light on the first straight line of the intersection and the upstream intersection in the direction of the green wave; the determining sub-module is set to the time difference between the current time of the current intersection and the green light on the upstream direction of the upstream intersection in the direction of the green wave
- the first time is determined as the first green light on time of the first straight phase of the current intersection.
- the green light on-time determining module specifically includes: a phase difference correction module, configured to determine a corrected phase difference according to the first type of traffic condition parameter of the current intersection; the determining sub-module is specifically set to be at the current intersection Determining, at a first moment when the time difference of the green light on time in the direction of the green wave in the direction of the green wave reaches the target phase difference, determining that the first time is the first green light on time of the first straight phase; the target phase difference The sum of the phase difference and the corrected phase difference.
- a phase difference correction module configured to determine a corrected phase difference according to the first type of traffic condition parameter of the current intersection
- the determining sub-module is specifically set to be at the current intersection Determining, at a first moment when the time difference of the green light on time in the direction of the green wave in the direction of the green wave reaches the target phase difference, determining that the first time is the first green light on time of the first straight phase
- the target phase difference The sum of the phase difference and the corrected phase difference
- the phase difference ⁇ is: Where L is the distance between the current intersection and the upstream intersection, 1 is the length of the vehicle queue in the green wave direction of the upstream intersection, Vf is the vehicle speed when the traffic volume is approximately zero, Q is the traffic flow, k is the maximum traffic density, t Q is Time loss due to vehicle acceleration from standstill to hook speed.
- the straight traveling phase includes a straight traveling direction and a right rotating direction; and the first green light duration corresponding to the first straight traveling phase is a maximum of a green light duration in a straight direction and a green light duration in a corresponding right turn direction.
- the green light duration of the first straight-line phase straight-direction direction is the sum of the first release duration of the straight-line vehicle in the direction of the green wave in the current intersection and the second release duration of the straight-going vehicle in the direction of the green wave in the upstream direction;
- the first release duration is determined by a first traffic condition parameter corresponding to a first straight phase of the current intersection;
- the second release duration is a product of a green light duration of the upstream intersection on the first straight phase and a proportional coefficient
- the green light duration of the first straight phase right turn direction is determined by a first type of traffic condition parameter corresponding to the first straight phase of the current intersection.
- the embodiments of the present invention have the following beneficial effects:
- the plurality of intersections are decomposed into a plurality of subsystems, and the optimization method of the subsystem as the control target avoids the overall optimization.
- FIG. 1 is a flow chart showing a traffic adaptive control method according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of system partitioning according to an embodiment of the present invention
- 3a-3d are schematic flowcharts of respective fuzzy controllers according to an embodiment of the present invention
- FIGS. 4a-4c are schematic diagrams of membership functions of fuzzy variables according to an embodiment of the present invention
- FIG. 5 is a traffic flow according to an embodiment of the present invention.
- the traffic adaptive control method includes: Step 11, collecting and current intersection green The first type of traffic condition parameter corresponding to the traffic condition of the first straight phase of the wave direction; Step 12, collecting the second type of traffic condition parameter corresponding to the traffic condition of the first straight phase of the green wave of the upstream intersection; Step 13 Determining, according to the first type of traffic condition parameter and the second type of traffic condition parameter, a first green light on time of the first straight phase of the current intersection; Step 14, according to the first type of traffic condition parameter and Determining, according to the second type of traffic condition parameter, a first green time duration corresponding to the first straight line phase of the current intersection; Step 15: turning on the green light of the first straight line phase of the current intersection at the first green light opening time, And controlling the green light duration to be the first green light duration.
- the above method separately collects a first type of traffic condition parameter corresponding to the traffic condition of the first straight phase of the green wave direction of the current intersection, and a second type of traffic condition corresponding to the traffic condition of the first straight phase of the upstream intersection green wave direction And determining, according to the first type and the second type of traffic condition parameters, a first green light on time of the first straight line of the current intersection, a corresponding first green light duration, and being turned on at the first green light start time
- the green light of the first straight phase of the current intersection, and the duration of the green light is the duration of the first green light.
- the above method divides the green wave band into several subsystems, and each subsystem has two intersections. If there are N intersections in the green wave band, the number of subsystems is Nl.
- intersections in the green wave band there are 4 intersections in the green wave band, namely intersection A, intersection B, intersection C, and intersection D.
- the number of subsystems in the green wave band is 3, and intersection A and intersection B belong to the sub-port.
- System 1 intersection B and intersection C belong to subsystem 2
- intersection C and intersection D belong to subsystem 3.
- the green wave band is optimized for each subsystem, so that the green wave band is not required to be optimized as a whole.
- the overall optimization is generally carried out at the central processing unit, and the traffic parameters of the various intersections must be aggregated to the central processing unit, which increases the transmission of the data stream.
- the intersection signal of the general adaptive control system is an industrial computer with certain processing capability, which can perform a certain amount of calculation itself.
- the industrial control unit of the SCATS system has a processing capacity in the degraded mode at the millisecond level.
- the green light on time and the green light duration of the intersection in the green wave band are only related to the traffic conditions of the intersections inside the subsystem, so the green wave start intersection only needs to rely on its own control machine to complete the calculation; the non-initial intersection needs itself
- the control unit and the upstream intersection control unit exchange information to complete the calculation and reduce the transmission of the data stream.
- the first traffic condition parameter includes: a traffic flow parameter and an occupancy rate parameter
- the second traffic condition parameter includes: a green light on time corresponding to a first straight phase in a green wave direction, and a green light duration And the length of the vehicle queue.
- the vehicle traffic parameter is specifically a ratio of the traffic flow to the corresponding road capacity.
- the ratio of the traffic volume to the corresponding road capacity is used instead of the traffic flow. This is because the design capacity of different roads is different.
- step 13 may be specifically: Step 131: Calculate a phase difference according to the first type of traffic condition parameter and the second type of traffic condition parameter; the phase difference is a green light on time of the first straight line phase of the current intersection and the upstream intersection in the green wave direction Time difference; Step 132, when the time difference between the current intersection and the upstream intersection of the upstream intersection in the green wave direction and the green light on time reaches the phase difference, determining that the first time is the first green light of the first straight phase of the current intersection Turn on the moment.
- the vehicle in the green wave direction from the upstream intersection will travel to the current intersection after a period of time.
- the green light of the first straight phase in the green wave direction of the upstream intersection should be opened for a certain period of time. Turn on the green light of the first straight phase in the direction of the green wave at the current intersection.
- phase difference is a time difference between the current intersection and the upstream intersection at the green light on the first straight phase of the green wave direction, and the green wave direction at the upstream intersection is first After the green light of the straight phase phase opens the phase difference period, the green light of the first straight phase of the green wave direction of the current intersection should be turned on.
- Step 13 in the method may further be: Step 131, calculating a phase difference according to the first type of traffic condition parameter and the second type of traffic condition parameter; the phase difference is a green wave between the current intersection and the upstream intersection The time difference of the green light on time in the direction of the first straight line phase; Step 132, determining a corrected phase difference according to the first type of traffic condition parameter of the current intersection; Step 133, in the straight line of the current intersection and the upstream intersection in the direction of the green wave Determining that the first time is the first green light on time of the first straight phase; the target phase difference is the phase difference and the corrected phase The sum of the difference.
- the phase difference ⁇ is: Where L is the distance between the current intersection and the upstream intersection, 1 is the length of the vehicle queue in the green wave direction of the upstream intersection, v f is the vehicle speed when the traffic volume is approximately zero, Q is the traffic flow, k is the maximum traffic density, t Q It is the time loss caused by the vehicle accelerating from standstill to hook speed.
- the speed of driving between adjacent two intersections is generally related to the road design speed and traffic density.
- a phase difference fuzzy control logic is formed according to the process of determining the phase difference. As shown in FIG. 3a, a phase difference of three inputs and one output is designed by the traffic flow parameter FlwRate, the occupancy parameter Occupancy, and the head time distance HeadWay. The fuzzy control logic corrects the phase difference.
- the speed of normal driving vehicles is generally around 50km/h.
- the membership function of the phase difference [9, 9] can basically describe the fluctuation range of the phase difference, as shown in Fig. 4a.
- the output value ⁇ ' of the phase difference fuzzy control logic is a correction value, and finally the target phase difference between the two intersections is determined to be ⁇ + ⁇ '.
- the value of the phase difference can reflect changes in road traffic conditions.
- the above process divides the solution of the phase difference into two processes. The first is to solve a rough range value ⁇ , and then further correct by establishing the phase difference optimization fuzzy control logic output value ⁇ '.
- the factors affecting the phase difference have the distance between the two adjacent intersections, the traffic flow, the occupancy rate, and the signal light on the green wave direction of the upstream intersection, it is difficult to express it by a formula.
- the general numerical solution and graphical method use distance and average velocity to solve, and the average speed from the original data mining is relatively troublesome, and the average speed is a statistical concept. It is inevitable that there is a certain error in characterizing the phase difference.
- the input variables of fuzzy logic solution use occupancy rate and traffic flow. This variable is easy to solve, and can dynamically reflect traffic conditions, which can more accurately characterize the change of phase difference. When the current intersection is released by a vehicle other than the first straight phase, it can be selected according to the traffic volume to release the phase with the largest traffic flow.
- the waiting time of each phase is not too long, that is, the waiting time of other phases except the first straight phase does not exceed a set threshold t lmt , according to different For grade intersections, the threshold is typically in the range t lmt [60,90]s.
- Set a timer for each phase When the phase is changed from green to red, the Timer turns on and turns from red to red. The timer is cleared when it is green. If the Timer of a phase exceeds the set threshold during phase transition, the decision result has a higher priority than the decision of the traffic characteristic.
- the embodiment of the present invention forms a related functional entity, that is, a phase sequence optimization controller, which is responsible for optimizing the release phase of the single intersection, and its main function is to release the phase with the most traffic of the single intersection, and to ensure that even if some There are fewer waiting vehicles in the phase, and the driver does not have to wait too long, and at the same time, it needs to form a green wave band with the upstream intersection.
- the designed fuzzy control variables adopt variables such as duty cycle, vehicle flow and head distance that are easy to collect by the adaptive control system.
- the design of the phase sequence optimization controller adopts a priority allocation method.
- the highest level is to ensure the formation of a green wave band, and the second is to ensure that any phase can be released in a certain period of time.
- the phase of the release is calculated according to the flow characteristics of each phase.
- the k-phase green light in Output max ⁇ Flowi, ..., Flow k ⁇ is turned on.
- the straight phase includes a straight direction and a right turn direction; and the first green light duration corresponding to the first straight phase is a green light duration in a straight direction and a maximum value in a green light duration in a corresponding right turn direction.
- the right turn phase is generally not set separately, so the straight phase generally includes a straight direction and a right turn direction.
- the embodiment of the present invention calculates the traffic flow in the straight direction direction and the traffic flow in the right direction as the input parameters of the green light duration fuzzy controller, and takes the maximum values of the two.
- the calculation of the phase is guaranteed to be more accurate.
- the straight-line phase is divided into a straight-line direction and a right-turn direction, respectively. This is considering whether the control effect is good or not, not only whether a good green wave band can be formed, but also all the import directions of the intersections in the green wave band. Comprehensive delay time and minimum parking rate.
- select the output in the straight and right directions The maximum value of the value is used as a timing parameter to ensure that the phase releases as many vehicles as possible, and the overall delay time is minimized.
- the green light duration of the first straight-line phase straight-direction direction is the sum of the first release duration of the straight-line vehicle in the direction of the current intersection green wave release and the second release duration of the outgoing upstream intersection in the green-wave direction;
- the first release duration is determined by a first traffic condition parameter corresponding to a first straight phase of the current intersection;
- the second release duration is a green light duration and a proportional coefficient of the upstream intersection on the first straight phase a product;
- the green light duration of the first straight phase right turn direction is determined by a first type of traffic condition parameter corresponding to the first straight phase of the current intersection.
- the first green light duration fuzzy control logic corresponding to the first straight phase of the green wave direction is not only related to the traffic condition of the intersection, but also has the traffic condition of the upstream intersection. The relationship is thus decomposed into the first release duration of the vehicle at the intersection and the second release duration of the green-wave vehicle from the upstream intersection.
- different green light duration fuzzy control logic design schemes are adopted for the starting intersection and the non-initial intersection. The intersection of the starting terminal system, the phase green light duration of the green wave belt direction and the intersection itself The traffic condition is related to each other.
- the green-light duration fuzzy controller of each phase of the green wave band at the intersection is designed to use only two fuzzy variables of traffic flow and lane occupancy as input parameters.
- the green light release time of the phase of the non-initial intersection in the green wave direction is not only related to the flow rate and occupancy rate of the four inlet directions of the intersection, but also related to the traffic flow from the upstream intersection. The following are as follows: (1) The green light duration of the non-green wave direction of the starting intersection and the non-initial intersection is selected as the input variable of the traffic controller flow and the occupancy Occupancy as the fuzzy controller.
- the flow-related input variables use the ratio of traffic flow to road capacity FlwRate:
- the membership function is selected as shown in the figure
- the green light duration of the left-turn phase can be determined by the output length of such a fuzzy controller.
- the straight phase release time should calculate the green light duration from the traffic parameters of the two lanes respectively, and the final green light duration is determined by the maximum value of the two. This ensures that both the straight and right-turning vehicles waiting for this phase on the stop line can be released.
- the right-turn lane is generally on the outside of the road, it will be affected to some extent.
- the lane capacity will decrease from the inside to the outside. It can be seen from the traffic engineering manual that the lane capacity can be multiplied by a fixed ratio based on the straight-line capacity. The coefficient ", «., as shown in Figure 3c.
- the green light direction of the non-initial intersection Green light duration The non-starting intersection green light opening time and opening time of the green wave direction are affected by the upstream intersection. Therefore, the release time of the phase is decomposed into the duration of the vehicle at the intersection and the duration of the green wave vehicle from the upstream intersection.
- the green wave vehicles that are released at the upstream intersection arrive at the downstream intersection after a certain travel time. This time is called the phase difference.
- the phase difference ⁇ can be determined by the phase difference fuzzy control logic.
- the vehicles on the parking line at the intersection are first released, and a green wave vehicle is reserved for a certain period of time. The time required to release the vehicle on the parking line is solved by the green light duration fuzzy control logic of the intersection.
- the time required to release the green wave vehicle requires the straight-through vehicle proportional coefficient parameter of the previous intersection.
- the parameter is within a certain length of time, in a certain specific
- the road can be considered a constant. Since some vehicles may pass left or turn right at the next intersection after the green wave vehicle passes through a junction, the proportionality coefficient of the straight-through vehicle can be used to solve the vehicle flow that continues straight after passing through a junction, and because the green wave vehicle is generally driven. Maintain a certain speed, so it can be considered that the release time of the green wave vehicle is proportional to the traffic flow, then the green wave vehicle release time of the next intersection is GTime, and the decision process of the green light duration of the non-starting intersection green wave direction is shown in Figure 3d. .
- the ratio of the direct traffic flow at the previous intersection to the sum of the traffic flow in the import direction is the ratio of the direct traffic flow at the previous intersection to the sum of the traffic flow in the import direction.
- a green wave band includes 8 intersections, and the vehicle time for each intersection is 60s, which is 0.4.
- the sequence consisting of the green light duration corresponding to the first straight phase of the green wave direction of each intersection is still convergent.
- the method divides the green wave band into a plurality of two-way port subsystems, and uses a green light duration fuzzy controller, a phase sequence optimization controller, and a phase difference fuzzy controller to optimize each parameter in the dual-port subsystem, and completes the internal parameters of the subsystem. optimization.
- the independent calculation between the various subsystems finally completes the optimal configuration of the entire green wave band.
- Each controller also has its own characteristics - the green light duration fuzzy control logic takes into account the straight direction and the right turn direction in the straight phase, and uses the traffic flow in both directions as the input of the fuzzy controller to calculate the green light duration, and take the maximum of both
- the final signal configuration parameters ensure that all vehicles in the import direction can be released.
- the phase difference fuzzy control logic solves the problem that the multi-factor variable affecting the phase difference is difficult to describe with a formula.
- the solution of the phase difference is divided into two parts. The macroscopic flow rate and the distance between adjacent intersections are used to solve the approximate range of the phase difference, and the correction amount of the phase difference is calculated by the real-time parameter of the vehicle flow rate and the occupancy rate;
- the phase sequence optimization controller considers that the green wave band has the highest priority in the trunk line.
- the controller needs to interact with the green light duration fuzzy control logic and the phase difference fuzzy control logic.
- parameters such as various intersection signals are configured step by step from the initial intersection, and finally the parameter optimization configuration of the entire green wave band is completed.
- Green wave coordinated control requires each subsystem to cooperate with each other. Therefore, the green light duration fuzzy control logic, phase difference fuzzy control logic and phase sequence optimization controller need to define the respective working logic sequence: Green light of the first intersection of the green wave band The phase is determined by the phase sequence optimization controller of the intersection.
- each controller between the two intersections in the subsystem can be transmitted to the other party through the cable or wireless communication device, as shown in Figure 2, the phase sequence optimization of the intersection A
- the controller determines the output order of the intersection phase;
- the phase difference optimization controller of the intersection B calculates the time ⁇ + ⁇ ′ required to release the vehicle to the downstream intersection in the green wave direction of the upstream intersection at the time of the section, if the phase sequence optimization control of the current intersection ⁇
- the output phase of the device is the straight phase of the green wave direction, the intersection B opens the phase difference optimization controller and calculates ⁇ + ⁇ ′, and the intersection ⁇ simultaneously turns on the green light duration fuzzy control logic; if the phase optimization controller of the intersection ⁇ is after ⁇ + ⁇ ′ time
- the output is in the direction of the green wave, and the phase sequence is optimized because the highest priority is ensured to form the green wave.
- the phase sequence optimization controller of the intersection ⁇ detects each phase Whether there is a timeout, if there is a timeout, the phase is released, otherwise the corresponding phase and phase duration are released according to the flow rate; since the basis of the correlation degree is related to the distance, according to the actual intersection data analysis, ⁇ + ⁇ ' is generally no more than one The length of the straight phase, so the release phase of each intersection can be calculated in the order of the green wave direction.
- each intersection in the green wave band calculates the respective release phase and the release green time, and completes the configuration of the parameters of the entire green band.
- the embodiment of the present invention further provides a traffic adaptive control device for controlling a plurality of traffic lights in a green wave band. As shown in FIG.
- the traffic adaptive control device includes: a first acquisition module, and a setting The first type of traffic condition parameter corresponding to the traffic condition of the first straight phase of the green wave direction of the current intersection; the second collection module is configured to collect the traffic condition corresponding to the first straight phase of the green wave direction of the upstream intersection a second type of traffic condition parameter; a green light on time determination module, configured to determine, according to the first type of traffic condition parameter and the second type of traffic condition parameter, that the first green light of the first straight line of the current intersection is open a green light duration determining module, configured to determine a first green light duration corresponding to the first straight phase of the current intersection according to the first type of traffic condition parameter and the second type of traffic condition parameter; control module, setting Turning on the green light of the first straight phase of the current intersection at the time when the first green light is turned on, and controlling the green light duration to be the first Long lamp.
- the traffic adaptive control device wherein the first traffic condition parameter comprises: a traffic flow parameter and an occupancy parameter; and the second traffic condition parameter comprises: corresponding to a first straight phase in a green wave direction Green light on time, green light duration, and vehicle queue length.
- the traffic flow parameter is specifically a ratio of a traffic flow to a corresponding road capacity.
- the traffic adaptive control device wherein the green light on-time determination module specifically includes: a phase difference calculation module, configured to calculate a phase difference according to the first type of traffic condition parameter and the second type of traffic condition parameter
- the phase difference is a time difference between the current intersection and the upstream intersection at the green light on the first straight phase of the upstream intersection; the determining sub-module is set to be a green light at the first intersection and the upstream intersection in the green wave direction at the first intersection
- the first time is determined as the first green light opening time of the first straight phase of the current intersection.
- the green light on-time determination module specifically includes: a phase difference correction module, configured to determine a corrected phase difference according to the first type of traffic condition parameter of the current intersection;
- the target phase difference is the phase difference and the corrected phase difference Sum.
- the phase difference ⁇ is: Where L is the distance between the current intersection and the upstream intersection, 1 is the length of the vehicle queue in the green wave direction of the upstream intersection, Vf is the vehicle speed when the traffic volume is approximately zero, Q is the traffic flow, k is the maximum traffic density, t Q is Time loss due to vehicle acceleration from standstill to hook speed.
- the traffic adaptive control device wherein the straight phase includes a straight direction and a right turn direction; the first green light duration corresponding to the first straight phase is a green light duration in a straight direction and a corresponding green light duration in a right turn direction The maximum value in .
- the green light duration of the first straight-line phase straight-direction direction is the first release time of the straight-line vehicle in the direction of the green wave at the current intersection, and the second release of the straight-line vehicle in the green wave direction at the release upstream intersection.
- the first release duration is determined by a first type of traffic condition parameter corresponding to a first straight phase of the current intersection; and the second release duration is a green light of the upstream intersection on the first straight phase
- the product of the duration and the proportional coefficient; the duration of the green light in the right direction of the first straight phase is determined by the first type of traffic condition parameter corresponding to the first straight phase of the current intersection.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
一种交通自适应控制方法和装置,该方法包括:采集与当前路口绿波方向第一直行相位的交通状况对应的第一类交通状况参数(11);采集与上游路口绿波方向所述第一直行相位的交通状况对应的第二类交通状况参数(12);根据所述第一类交通状况参数和所述第二类交通状况参数,确定当前路口所述第一直行相位的第一绿灯开启时刻(13);根据所述第一类交通状况参数和所述第二类交通状况参数,确定当前路口所述第一直行相位对应的第一绿灯时长(14);在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿灯,且控制绿灯时长为所述第一绿灯时长(15)。该方法调节信号灯的绿灯开启时刻、时长,使得尽量多的车辆能够不停车的通过绿波带的多个信号灯路口。
Description
一种交通自适应控制方法和装置 技术领域 本发明涉及交通信号控制领域, 尤其涉及一种交通自适应控制方法和装置。 背景技术 城市交通自适应控制系统已经越来越多的被引入中国城市信号灯控制系统中, 其 中英国的绿信比、 周期、 相位差优化技术(Split Cycle Offset Optimizing Technique, 简 称为 SCOOT) 和澳大利亚的悉尼自适应交通控制系统 (Sydney Coordinated Adaptive Traffic System, 简称为 SCATS) 是较为成熟的技术。 然而该系统目前存在两个重要问 题: 相位差实时优化能力差和备选方案固化, 限制了该自适应控制系统应用在干线绿 波协调控制中。 有学者提出了一些的解决方案。 一种较为简单的实现方法是发布信息指导驾驶员的驾驶行为, 当检测到车辆能够 以当前车速通过下游交叉路口时, 向驾驶员推荐一个稳定的行驶车速; 当检测到车辆 无法以当前车速通过时, 给出一个减速建议, 使车辆在下游交叉口能够尽量减少停车 等待时间, 从而降低油耗。 这种绿波控制方法把控制对象从信号灯组转移到车辆驾驶 员, 避免了对信号灯组的复杂优化计算, 能够形成一定的绿波效果, 减少了车辆的停 车次数, 但是却没有提高道路的通行能力, 并且以驾驶员为控制对象的控制策略的控 制效果无法保证, 因为驾驶员可以选择忽略信息公告栏上发布的行驶建议。 大部分以信号灯组为控制目标的控制策略仍然以经典的数解法和图解法为基础, 需要确定绿波带内各路口的公共周期, 各个路口以此公共周期运行。 该方法能够简化 绿波方向相位差的设计, 但是由于各路口车流量特性不一致, 会造成某些绿灯时间的 浪费, 不利于提高路口的所有进口方向车辆的整体通行能力。 以整条绿波带为研究目 标的绿波控制通常需要各个路口和中央控制机相互通信, 并最终将配置参数回传给信 号灯组, 整个过程需要在中央控制机和各路口控制机间传送大量的数据, 并且以原始 数据为基础的整体优化方法计算量大, 不利于实现实时的绿波控制。 发明内容 本发明实施例的目的是提供一种交通自适应控制方法和装置, 当路面交通饱和度 在 0.6~0.9时,通过调节信号灯的绿灯开启时刻和绿灯时长,使得尽量多的车辆能够不 停车的通过绿波带的多个信号灯路口。
为实现上述目的, 本发明实施例提供了一种交通自适应控制方法, 用于控制一绿 波带内的多个交通信号灯, 包括- 采集与当前路口绿波方向第一直行相位的交通状况对应的第一类交通状况参数; 采集与上游路口绿波方向所述第一直行相位的交通状况对应的第二类交通状况参 数; 根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路口所述第 一直行相位的第一绿灯开启时刻; 根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路口所述第 一直行相位对应的第一绿灯时长; 在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿灯, 且控制绿灯时 长为所述第一绿灯时长。 优选地, 所述第一类交通状况参数包括: 车流量参数和占有率参数; 所述第二类交通状况参数包括:在绿波方向第一直行相位上对应的绿灯开启时刻、 绿灯时长以及车辆排队长度。 优选地, 所述车流量参数具体为车流量和对应的道路通行能力的比值。 优选地, 所述根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当 前路口所述第一直行相位的第一绿灯开启时刻具体包括: 根据所述第一类交通状况参数和所述第二类交通状况参数计算得到一相位差; 所 述相位差为当前路口与上游路口在绿波方向第一直行相位上绿灯开启时刻的时间差; 当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯开启时刻的时间差达 到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一绿灯开启时刻。 优选地, 所述根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当 前路口所述第一直行相位的第一绿灯开启时刻具体还包括: 根据所述当前路口的第一类交通状况参数确定一修正相位差; 所述当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯开启时刻的时间 差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一绿灯开启时刻具
体为在当前路口与上游路口在绿波方向直行相位上绿灯开启时刻的时间差达到目标相 位差的第一时刻, 确定所述第一时刻为所述第一直行相位的第一绿灯开启时刻; 所述 目标相位差为所述相位差与所述修正相位差之和。 优选地, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排队长度, Vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, tQ是由于车辆由 静止加速至勾速行驶而导致的时间损耗。 优选地, 所述直行相位包括直行方向和右转方向; 所述第一直行相位对应的第一 绿灯时长为直行方向的绿灯时长和对应的右转方向的绿灯时长中的最大值。 优选地, 所述第一直行相位直行方向的绿灯时长为放行当前路口绿波方向直行车 辆的第一放行时长和放行上游路口在绿波方向直行车辆的第二放行时长之和; 其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况参数确 定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和一比例系数的 乘积; 所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第一类交 通状况参数确定。 为了实现本发明的目的, 本发明实施例还提供了一种交通自适应控制装置, 用于 控制一绿波带内的多个交通信号灯, 包括- 第一采集模块, 设置为采集与当前路口绿波方向第一直行相位的交通状况对应的 第一类交通状况参数; 第二采集模块, 设置为采集与上游路口绿波方向所述第一直行相位的交通状况对 应的第二类交通状况参数; 绿灯开启时刻确定模块, 设置为根据所述第一类交通状况参数和所述第二类交通 状况参数, 确定当前路口所述第一直行相位的第一绿灯开启时刻;
绿灯时长确定模块, 设置为根据所述第一类交通状况参数和所述第二类交通状况 参数, 确定与当前路口所述第一直行相位对应的第一绿灯时长; 控制模块, 设置为在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿 灯, 且控制绿灯时长为所述第一绿灯时长。 优选地, 所述第一类交通状况参数包括: 车流量参数和占有率参数; 所述第二类交通状况参数包括:在绿波方向第一直行相位上对应的绿灯开启时刻、 绿灯时长以及车辆排队长度。 优选地, 所述车流量参数具体为车流量和对应的道路通行能力的比值。 优选地, 所述绿灯开启时刻确定模块具体包括: 相位差计算模块, 设置为根据所述第一类交通状况参数和所述第二类交通状况参 数计算得到一相位差; 所述相位差为当前路口与上游路口在绿波方向第一直行相位上 绿灯开启时刻的时间差; 确定子模块, 设置为当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯 开启时刻的时间差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一 绿灯开启时刻。 优选地, 所述绿灯开启时刻确定模块具体还包括: 相位差修正模块, 设置为根据所述当前路口的第一类交通状况参数确定一修正相 位差; 所述确定子模块具体设置为在当前路口与上游路口在绿波方向直行相位上绿灯开 启时刻的时间差达到目标相位差的第一时刻, 确定所述第一时刻为所述第一直行相位 的第一绿灯开启时刻; 所述目标相位差为所述相位差与所述修正相位差之和。 优选地, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排队长度, Vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, tQ是由于车辆由 静止加速至勾速行驶而导致的时间损耗。 优选地, 所述直行相位包括直行方向和右转方向; 所述第一直行相位对应的第一 绿灯时长为直行方向的绿灯时长和对应的右转方向的绿灯时长中的最大值。 优选地, 所述第一直行相位直行方向的绿灯时长为放行当前路口绿波方向直行车 辆的第一放行时长和放行上游路口在绿波方向直行车辆的第二放行时长之和; 其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况参数确 定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和一比例系数的 乘积; 所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第一类交 通状况参数确定。 本发明实施例具有以下有益效果: 本发明实施例, 通过调节当前路口信号灯的绿灯开启时刻和绿灯时长, 使得尽量 多的车辆能够不停车的通过绿波带的多个信号灯路口, 从而减少车辆的平均延误时间 和停车次数, 同时减少车辆停车和延误带来的油耗和环境污染; 本发明实施例, 将多个路口分解成若干个子系统, 以子系统为控制目标的优化方 法, 避免了整体优化方法的复杂算法, 同时减少了路口控制机和中央控制机之间的数 据交换; 通过本发明实施例, 避免了绿波带全局优化带来的巨大计算量, 能够满足实时性 的要求; 本发明实施例, 考虑了在直行相位中直行车道和右转车道分离的情况下, 直行相 位放行时长应该由两个车道的交通参数分别计算绿灯时长, 并由两者的最大值决定最 终绿灯时长, 保证该相位在停车线等待的直行和右转车辆都能够被放行。 附图说明 图 1是根据本发明实施例中交通自适应控制方法的流程示意图; 图 2是根据本发明实施例子系统划分示意图;
图 3a-3d是根据本发明实施例中各模糊控制器的流程示意图; 图 4a-4c是根据本发明实施例中各模糊变量的隶属度函数示意图; 图 5是根据本发明实施例中交通自适应控制装置的结构示意图。 具体实施方式 为使本发明实施例要解决的技术问题、 技术方案和优点更加清楚, 下面将结合附 图及具体实施例进行详细描述。 本发明实施例的一种交通自适应控制方法, 用于控制一绿波带内的多个交通信号 灯, 如图 1所示, 所述交通自适应控制方法包括: 步骤 11, 采集与当前路口绿波方向第一直行相位的交通状况对应的第一类交通状 况参数; 步骤 12, 采集与上游路口绿波方向所述第一直行相位的交通状况对应的第二类交 通状况参数; 步骤 13, 根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路 口所述第一直行相位的第一绿灯开启时刻; 步骤 14, 根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路 口所述第一直行相位对应的第一绿灯时长; 步骤 15, 在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿灯, 且控 制绿灯时长为所述第一绿灯时长。 上述方法分别采集与当前路口绿波方向第一直行相位的交通状况对应的第一类交 通状况参数、 与上游路口绿波方向所述第一直行相位的交通状况对应的第二类交通状 况参数, 根据所述的第一类和第二类交通状况参数共同确定当前路口所述第一直行相 位的第一绿灯开启时刻、 对应的第一绿灯时长, 在所述第一绿灯开启时刻开启当前路 口所述第一直行相位的绿灯, 且控制绿灯时长为所述第一绿灯时长。 上述方法将绿波带划分为若干个子系统, 每个子系统内部都有两个路口, 如果绿 波带内共有 N个路口, 则子系统的个数为 N-l。
如图 2所示, 绿波带内共有 4个路口, 分别为路口 A、 路口 B、 路口 C、 路口 D, 则该绿波带内的子系统个数为 3, 路口 A和路口 B属于子系统 1, 路口 B和路口 C属 于子系统 2, 路口 C和路口 D属于子系统 3。 在将绿波带内的路口逐一划分为双路口的子系统后, 针对每个子系统做绿波带优 化, 这样就不需要像大多数处理方法那样将绿波带做整体优化。 整体优化一般在中央 处理机进行, 必须将各个路口的交通参数汇聚到中央处理机, 这就增加了数据流的传 输。 而一般自适应控制系统的路口信号机都是有一定处理能力的工控机, 本身能够进 行一定量的计算。例如 SCATS系统的工控机的在降级模式下的处理能力在毫秒级。所 述绿波带内的路口的绿灯开启时刻和绿灯时长只与子系统内部的各路口交通状况有 关, 因此绿波带起始路口只需要依靠自身的控制机完成计算; 非起始路口需要本身控 制机和上游路口控制机进行信息交互, 以完成计算, 减少了数据流的传输。 上述方法中, 所述第一类交通状况参数包括: 车流量参数和占有率参数; 所述第二类交通状况参数包括:在绿波方向第一直行相位上对应的绿灯开启时刻、 绿灯时长以及车辆排队长度。 在选择与当前路口绿波方向第一直行相位的交通状况对应的第一类交通状况参数 时, 选择车流量参数和占有率参数来进行描述, 避免选取排队长度、 车流密度这些参 数, 因为从 SCATS系统直接输出的数据中计算排队长度、车流密度是一个很繁琐的过 程, 并且难以保证计算结果的精度, 在某些文献中采用的其他变量需要间接求解, 而 求解模型目前并不成熟; 在选择与上游路口绿波方向第一直行相位的交通状况对应的 第二类交通状况参数时, 选择绿波方向第一直行相位上对应的绿灯开启时刻、 绿灯时 长以及车辆排队长度来进行描述, 该方法避免了绿波带全局优化带来的巨大计算量, 能够满足实时性的要求。 上述方法中, 为了适用于不同道路, 将所述的车流量参数具体为车流量和对应的 道路通行能力的比值。 本发明实施例中用车流量和对应的道路通行能力的比值来代替车流量, 这是因为 不同道路的设计通行能力不一样, 不能仅仅用车流量衡量道路的拥挤程度, 采用车流 量和对应的道路通行能力的比值可以满足不同道路都可以采用同一种隶属度函数。 上述方法中, 步骤 13可以具体为:
步骤 131, 根据所述第一类交通状况参数和所述第二类交通状况参数计算得到一 相位差; 所述相位差为当前路口与上游路口在绿波方向第一直行相位上绿灯开启时刻 的时间差; 步骤 132, 当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯开启时刻 的时间差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一绿灯开启 时刻。 从上游路口的绿波方向的车辆经过一段时间行驶到当前路口, 要保障绿波车辆不 停车的经过当前路口, 就应在上游路口的绿波方向第一直行相位的绿灯开启一定时间 后, 开启当前路口绿波方向第一直行相位的绿灯。 根据当前路口、 上游路口的交通状 况确定一相位差, 所述的相位差为当前路口与上游路口在绿波方向第一直行相位上绿 灯开启时刻的时间差, 在上游路口的绿波方向第一直行相位的绿灯开启了所述相位差 时间段后, 应开启当前路口的绿波方向第一直行相位的绿灯。 同时, 考虑到只根据所述相位差确定当前路口与上游路口在绿波方向第一直行相 位进行放行的时间差, 可能不够准确, 应根据当前路口的交通状况对所述相位差进行 修正, 上述方法中的步骤 13还可以具体为: 步骤 131, 根据所述第一类交通状况参数和所述第二类交通状况参数计算得到一 相位差; 所述相位差为当前路口与上游路口在绿波方向第一直行相位上绿灯开启时刻 的时间差; 步骤 132, 根据所述当前路口的第一类交通状况参数确定一修正相位差; 步骤 133, 在当前路口与上游路口在绿波方向直行相位上绿灯开启时刻的时间差 达到目标相位差的第一时刻, 确定所述第一时刻为所述第一直行相位的第一绿灯开启 时刻; 所述目标相位差为所述相位差与所述修正相位差之和。 上述方法中, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排队长度, vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, tQ是由于车辆由 静止加速至勾速行驶而导致的时间损耗。
在相邻两路口间行驶的速度一般与道路设计时速和车流密度有关系, 我们采取经 验公式计算绿波车辆到达下游路口所需时间 ΔΦ:
式中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排队长度, vf为车流量近似为零时的车速, 城市交通中一般该车速为 40~60km/h, Q为车流量, k 表示最大车流密度, to是由于车辆由静止加速至勾速行驶而导致的时间损耗, 车辆在 交叉路口若遇到绿灯直接通过, 此时 tQ=0s, 若遇到红灯则需要停止等待, 所以值一般 取 t0=3s。 当上个路口绿波方向上绿灯开启 ΔΦ时间后下一个路口的直行相位绿灯开启, 可 以根据所述当前路口的第一类交通状况参数确定一修正相位差 Φ', 目标相位差为 ΔΦ+Φ', 本发明实施例根据相位差的确定过程形成一相位差模糊控制逻辑, 如图 3a所 示, 通过车流量参数 FlwRate、 占有率参数 Occupancy以及车头时距 HeadWay设计一 个三输入一输出的相位差模糊控制逻辑修正相位差。 正常行驶的车辆速度一般在 50km/h左右, 两个相邻路口若在一个绿波带内, 一般距离小于 800米, 则相位差肯定 小于 50秒。 因此相位差的隶属度函数取 [-9,9]则能够基本描述相位差的波动范围, 如 图 4a所示。 相位差模糊控制逻辑的输出值 Φ'为修正值, 最终确定两个交叉路口之间 的目标相位差为 ΔΦ+Φ'。 相位差的取值能够反映道路交通状况的变化。 上述过程将相位差的求解分为两个过程, 首先是求解大致的一个范围值 ΔΦ, 然 后通过建立相位差优化模糊控制逻辑的输出值 Φ'进一步修正。 因为影响相位差的因素 有两相邻路口之间距离、 车流量、 占有率、 上游路口绿波方向的信号灯开启状态, 很 难用一个公式表达。 一般的数解法、 图解法采用距离、 平均速度求解, 而从原始数据 挖掘平均速度相对麻烦, 且平均速度是一个统计意义上的概念, 表征相位差难免有一 定的误差。 模糊逻辑求解的输入变量采用占有率、 车流量, 该变量易于求解, 且能够 动态反应交通状况, 能够更精确的表征相位差的变化。 当前路口在进行除第一直行相位外的其他相位的车辆放行时, 可以根据车流量大 小进行选择, 放行车流量最大的相位。 同时, 考虑到驾驶员的心理因素, 应保证各相 位的等待时间不会过长, 即确保除第一直行相位外的其他相位的等待时间都不超过一 个设定的阈值 tlmt, 根据不同等级的交叉路口, 该阈值的范围一般为 tlmt [60,90]s。 为 每个相位设置一个计时器 Timer, 该相位由绿灯转换为红灯时, Timer开启, 由红灯转
为绿灯时该计时器清零。 若某个相位的 Timer在相位转换时超过设定的阈值, 则此决 策结果的优先级高于流量特性的决策结果。 同时当前路口的相位开启时间还要配合上 游路口形成绿波带, 优先满足当前路口绿波方向第一直行相位的放行。 本发明实施例根据上述过程形成了一种相关功能实体, 即相序优化控制器, 用于 负责优化单路口的放行相位, 其主要功能是放行单路口流量最多的相位, 并且要保证 即使某个相位的等待车辆较少, 驾驶员也不必等待过长的时间, 同时还要配合上游路 口形成绿波带。 设计的模糊控制变量采取了自适应控制系统易于采集的占空比、 车流量和车头距 等变量, 同时, 为了满足形成绿波的要求, 相序优化控制器的设计采取优先级分配的 方法。 最高级是要保证形成绿波带, 其次是保证任何相位在一定的时间内都能够被放 行, 当上述条件都满足时, 才根据各个相位的流量特性计算放行的相位。 具体决策过程, 如图 3b所示:
IF ΔΦ+Φ'前上游路口开启直行相位绿灯,
Output 开启下游路口直行相位绿灯; Elseif Time ≥tlmt,
Output 开启下游路口 k相位绿灯;
Else
Output max{Flowi, …, Flowk}中的 k相位绿灯开启。 上述方法中, 所述直行相位包括直行方向和右转方向; 所述第一直行相位对应的 第一绿灯时长为直行方向的绿灯时长和对应的右转方向的绿灯时长中的最大值。 在城市交通中一般不单独设置右转相位, 因此直行相位一般包括直行方向和右转 方向。 在不考虑直行方向和右转方向车道重叠的情况下, 本发明实施例将直行方向车 流量和右转方向车流量分别作为绿灯时长模糊控制器的输入参数做计算, 并取两者的 最大值作为该相位的绿灯时长, 如图 3c所示, 保证该相位的计算更为精确。 将直行相位分为直行方向和右转方向分别处理, 这是考虑到控制效果的好坏不仅 仅是能否形成一个好的绿波带, 还应该是绿波带内各路口的所有进口方向的综合延误 时间、 停车率最小。 在计算直行相位的绿灯时长时, 选取直行方向和右转方向的输出
值的最大值作为配时参数, 能够保证该相位放行尽量多的车辆, 尽量减少整体的延误 时间。 上述方法中, 所述第一直行相位直行方向的绿灯时长为放行当前路口绿波方向直 行车辆的第一放行时长和放行上游路口在绿波方向直行车辆的第二放行时长之和; 其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况参数确 定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和一比例系数的 乘积; 所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第一类交 通状况参数确定。 在一个绿波带内的路口为非起始路口时, 绿波方向第一直行相位对应的第一绿灯 时长模糊控制逻辑不仅仅和该路口交通状况有关系,还和上游路口的交通状况有关系, 因此将所述第一绿灯时长分解为放行本路口车辆的第一放行时长和放行从上游路口来 的绿波车辆的第二放行时长。 为了形成完整的绿波控制系统, 对起始路口和非起始路口采取不同的绿灯时长模 糊控制逻辑设计方案, 起始端子系统的路口, 其绿波带方向的相位绿灯时长只和该路 口自身的交通状况有关系, 因此绿波带起始端路口的各相位绿灯时长模糊控制器的设 计只采用车流量、 车道占有率两个模糊变量作为输入参数即可。 而非起始端路口在绿 波方向上的相位的绿灯放行时长则不仅仅和该路口四个进口方向的流量、占有率有关, 还和其上游路口汇聚而来的车流量有关系, 具体实现方式如下: (1)起始路口和非起始路口非绿波方向绿灯时长 选取交通参数车流量 Flow和占有率 Occupancy作为模糊控制器的输入变量。为了 将本算法适用于不同道路, 和流量有关的输入变量采用车流量与道路通行能力的比值 FlwRate: ,
FlwRate=Flow/Ns, Ν8=3600φ8((ΐ§-ΐι)/ΐ18- 1 )/tc, 上式是道路交通工程中道路交通通行能力设计公式。 其中 tc表示信号周期, tg表 示信号周期内的绿灯时长, ^表示绿灯后第一辆车启动并通过停车线的时间, tls表示 直行或右转车辆通过停止线的平均间隔时间, (^取0.9。本发明实施例中, 公式中的变 量都取上一个周期中个变量的值, 并作为决策依据, 处理后输入模糊控制器。 两个模 糊变量可以被分割成五个模糊语言 {PL,PS,ZO,NS,NL}, 隶属度函数的选取分别为如图
4b、 4c所示的三角形隶属函数。 这样就构成了一个两输入一输出的模糊控制逻辑。 左 转相位的绿灯时长就可以由这样的模糊控制器输出时长决定。 本发明实施例考虑了在直行相位中直行车道和右转车道分离的情况下, 直行相位 放行时长应该由两个车道的交通参数分别计算绿灯时长, 并由两者的最大值决定最终 绿灯时长, 这样能够保证该相位在停车线等待的直行和右转车辆都能够被放行。 但是 由于右转车道一般在道路的外侧, 会受到一定的影响, 车道通行能力从内侧到外侧一 次递减, 由交通工程手册可知, 该车道通行能力可以在直行车道通行能力的基础上乘 以一个固定比例系数 《, «., 如图 3c所示。
(2) 非起始路口绿波方向绿灯时长 非起始路口绿波方向的绿灯开启时刻和开启时长都要受到上游交叉路口的影响。 因此将该相位的放行时长分解为放行本路口车辆时长和放行从上游路口来的绿波车辆 时长。 上游路口放行的绿波车辆经过一定的旅行时间到达下游路口。 该时间被称为相 位差。 可以通过相位差模糊控制逻辑确定相位差 ΔΦ。 当前路口首先放行该路口停车 线上的车辆, 并预留一定时间放行绿波车辆。 放行停车线上的车辆所需时间由该路口 的绿灯时长模糊控制逻辑求解, 放行绿波车辆所需时间需要上个路口的直行车辆比例 系数参数, 该参数在一定的时长内、 在某条特定的道路上可以认为是一个常数。 由于 绿波车辆通过一个路口后有部分车辆可能在下一个路口左转或右转, 所以可以由直行 车辆的比例系数 求解出经过一个路口后仍然继续直行的车辆流量,且由于绿波车辆行 驶时一般保持一定的速度, 所以可以认为绿波车辆放行时间和车流量成正比关系, 则 下个路口绿波车辆放行时间为 GTime, 非起始路口绿波方向相位绿灯时长的决策过 程如图 3d所示。其中处理模块实现直行车道的绿灯时长求解。假设上个路口和下个路 口的直行逻辑输出值分别为 GTimeDrct, ,、 GTimeDrct, 1+1, 下个路口右转逻辑输出值为 GTimeRlght, 1+1。 下个路口直行相位绿灯放行时长为: T = GTimeDrct . + GTimeDrct .+l
(T > GTimeRght i+1)
(T < GTimeRght M)
例如: 假设一绿波带内包括 8个路口, 放行每个路口的车辆时间均为 60s, 为 0.4,要形成绿波带必须保证尽量多的车辆能够不停车的通过绿波带的 8个信号灯路口, 对应每个路口的绿波方向第一直行相位的绿灯时长分别为: 第一路口, 第二路口,
第三路口, t3=60+ t2*0.4=93.6s; 第四路口, t4=60+ t3*0.4=97.4s; 第五路口, t5=60+ t4*0.4=99s; 第六路口, t6=60+ t5*0.4=99.6s; 第七路口, t7=60+ t6*0.4=99.8s; 第八路口, t8=60+ t7*0.4=99.9s; 随着绿波带内路口的增加, 对应每个路口的绿波方向第一直行相位的绿灯时长差 值越来越小, 该计算方法能够保证在 GTime和恒定不变的极端条件下, 由每个路口的 绿波方向第一直行相位对应的绿灯时长组成的序列仍然是收敛的。 本方法通过将绿波带分割成若干个双路口子系统, 在双路口子系统内部分别采用 绿灯时长模糊控制器、 相序优化控制器、 相位差模糊控制器优化各个参数, 完成子系 统内部的优化。 各个子系统之间独立计算, 最终完成整个绿波带的优化配置。 各个控 制器也有其特点- 绿灯时长模糊控制逻辑考虑了直行相位中的直行方向和右转方向, 分别用两个方 向的车流量作为模糊控制器的输入计算绿灯时长, 并取两者最大值作为最终信号灯配 置参数, 从而保证任何进口方向车辆都能够被全部放行; 相位差模糊控制逻辑解决了影响相位差的多因素变量难以用一个公式描述的问 题, 将相位差的求解分成两个部分, 首先通过宏观的流量、 相邻路口之间的距离求解 相位差的大致范围, 在通过车流量、 占有率实时参数计算相位差的校正量;
相序优化控制器考虑了干线上形成绿波带的优先级最高, 其次是尽量保证任何相 位的放行等待时间在驾驶员能够容忍的范围之内, 最后再通过各相位流量特性决定放 行相位和放行相位时长, 该控制器需要和绿灯时长模糊控制逻辑、 相位差模糊控制逻 辑交互式工作。 本发明实施例从起始路口开始逐级配置各个路口信号等参数, 最终完成整个绿波 带的参数优化配置。 下面具体说明一下整个交通自适应控制的过程。 绿波协调控制需要各个子系统相互配合, 因此绿灯时长模糊控制逻辑、 相位差模 糊控制逻辑和相序优化控制器之间需要明确各自的工作逻辑顺序: 绿波带的第一个路口放行的绿灯相位由该路口的相序优化控制器决定, 子系统内 部两个路口之间的各控制器的输出结果都可以通过线缆或者无线通信设备传输给对 方, 如图 2中的路口 A相序优化控制器决策该路口相位的输出顺序; 路口 B的相位差优化控制器计算该段时刻上游路口绿波方向放行车辆到下游路口 所需要的时间 ΔΦ+Φ',如果当前路口 Α的相序优化控制器输出相位为绿波方向直行相 位, 路口 B开启相位差优化控制器并计算 ΔΦ+Φ', 路口 Β同时开启绿灯时长模糊控制 逻辑; 如果路口 Β的相位优化控制器在 ΔΦ+Φ'时间后输出的是绿波方向直行相位, 由于 确保形成绿波的优先级最高, 因此忽略相序优化的输出结果, ΔΦ+Φ'时间后放行绿波 方向直行相位; 如果 ΔΦ+Φ'时间后相序优化控制器输出相序为非绿波方向直行相位,路口 Β的相 序优化控制器检测各相位是否有超时, 若有超时, 则放行该相位, 否则根据流量大小 放行相应的相位和相位时长; 由于关联度划分的依据和距离有关, 根据实际路口数据分析, ΔΦ+Φ'—般不超过 一个直行相位的时间长度, 所以可以按照绿波方向的顺序分别计算各个路口的放行相 位, 当路口 Β在 ΔΦ+Φ'后执行了放行相位, 路口 C开始开启其各控制器, 并计算它的 放行相位和相位时长; 按照顺序, 绿波带内的各个路口分别计算各自的放行相位和放行绿灯时长, 完成 整个绿波带的各参数的配置。
本发明实施例还提供了一种交通自适应控制装置, 用于控制一绿波带内的多个交 通信号灯, 如图 5所示, 所述交通自适应控制装置包括: 第一采集模块, 设置为采集与当前路口绿波方向第一直行相位的交通状况对应的 第一类交通状况参数; 第二采集模块, 设置为采集与上游路口绿波方向所述第一直行相位的交通状况对 应的第二类交通状况参数; 绿灯开启时刻确定模块, 设置为根据所述第一类交通状况参数和所述第二类交通 状况参数, 确定当前路口所述第一直行相位的第一绿灯开启时刻; 绿灯时长确定模块, 设置为根据所述第一类交通状况参数和所述第二类交通状况 参数, 确定与当前路口所述第一直行相位对应的第一绿灯时长; 控制模块, 设置为在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿 灯, 且控制绿灯时长为所述第一绿灯时长。 上述的交通自适应控制装置, 其中, 所述第一类交通状况参数包括: 车流量参数 和占有率参数; 所述第二类交通状况参数包括:在绿波方向第一直行相位上对应的绿灯开启时刻、 绿灯时长以及车辆排队长度。 上述的交通自适应控制装置, 其中, 所述车流量参数具体为车流量和对应的道路 通行能力的比值。 上述的交通自适应控制装置, 其中, 所述绿灯开启时刻确定模块具体包括: 相位差计算模块, 设置为根据所述第一类交通状况参数和所述第二类交通状况参 数计算得到一相位差; 所述相位差为当前路口与上游路口在绿波方向第一直行相位上 绿灯开启时刻的时间差; 确定子模块, 设置为当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯 开启时刻的时间差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一 绿灯开启时刻。 上述的交通自适应控制装置, 其中, 所述绿灯开启时刻确定模块具体还包括:
相位差修正模块, 设置为根据所述当前路口的第一类交通状况参数确定一修正相 位差;
启时刻的时间差达到目标相位差的第一时刻, 确定所述第一时刻为所述第一直行相位 的第一绿灯开启时刻; 所述目标相位差为所述相位差与所述修正相位差之和。 上述的交通自适应控制装置, 其中, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排队长度, Vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, tQ是由于车辆由 静止加速至勾速行驶而导致的时间损耗。 上述的交通自适应控制装置, 其中, 所述直行相位包括直行方向和右转方向; 所 述第一直行相位对应的第一绿灯时长为直行方向的绿灯时长和对应的右转方向的绿灯 时长中的最大值。 上述的交通自适应控制装置, 其中, 所述第一直行相位直行方向的绿灯时长为放 行当前路口绿波方向直行车辆的第一放行时长和放行上游路口在绿波方向直行车辆的 第二放行时长之和; 其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况参数确 定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和一比例系数的 乘积; 所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第一类交 通状况参数确定。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人 员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。
工业实用性 本发明实施例提供的技术方案可以应用于城市信号灯控制系统领域, 解决了绿波 带全局优化带来的巨大计算量的问题, 满足了实时性的要求;
Claims
权 利 要 求 书
1. 一种交通自适应控制方法, 用于控制一绿波带内的多个交通信号灯, 包括: 采集与当前路口绿波方向第一直行相位的交通状况对应的第一类交通状况 参数;
采集与上游路口绿波方向所述第一直行相位的交通状况对应的第二类交通 状况参数;
根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路口 所述第一直行相位的第一绿灯开启时刻;
根据所述第一类交通状况参数和所述第二类交通状况参数, 确定当前路口 所述第一直行相位对应的第一绿灯时长;
在所述第一绿灯开启时刻开启当前路口所述第一直行相位的绿灯, 且控制 绿灯时长为所述第一绿灯时长。
2. 如权利要求 1所述的交通自适应控制方法, 其中, 所述第一类交通状况参数包 括: 车流量参数和占有率参数;
所述第二类交通状况参数包括: 在绿波方向第一直行相位上对应的绿灯开 启时刻、 绿灯时长以及车辆排队长度。
3. 如权利要求 2所述的交通自适应控制方法, 其中, 所述车流量参数具体为车流 量和对应的道路通行能力的比值。
4. 如权利要求 3所述的交通自适应控制方法, 其中, 所述根据所述第一类交通状 况参数和所述第二类交通状况参数, 确定当前路口所述第一直行相位的第一绿 灯开启时刻具体包括:
根据所述第一类交通状况参数和所述第二类交通状况参数计算得到一相位 差; 所述相位差为当前路口与上游路口在绿波方向第一直行相位上绿灯开启时 刻的时间差;
当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯开启时刻的时 间差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一绿灯开 启时刻。
如权利要求 4所述的交通自适应控制方法, 其中, 所述根据所述第一类交通状 况参数和所述第二类交通状况参数, 确定当前路口所述第一直行相位的第一绿 灯开启时刻具体还包括:
根据所述当前路口的第一类交通状况参数确定一修正相位差; 所述当前路口在第一时刻与上游路口在绿波方向直行相位上绿灯开启时刻 的时间差达到所述相位差时, 确定第一时刻为当前路口第一直行相位的第一绿 灯开启时刻具体为在当前路口与上游路口在绿波方向直行相位上绿灯开启时刻 的时间差达到目标相位差的第一时刻, 确定所述第一时刻为所述第一直行相位 的第一绿灯开启时刻; 所述目标相位差为所述相位差与所述修正相位差之和。
6. 如权利要求 4或 5所述的交通自适应控制方法, 其中, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排 队长度, vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, to 是由于车辆由静止加速至勾速行驶而导致的时间损耗。
7. 如权利要求 1或 2所述的交通自适应控制方法, 其中, 其中, 所述直行相位包 括直行方向和右转方向; 所述第一直行相位对应的第一绿灯时长为直行方向的 绿灯时长和对应的右转方向的绿灯时长中的最大值。
8. 如权利要求 7所述的交通自适应控制方法, 其中, 所述第一直行相位直行方向 的绿灯时长为放行当前路口绿波方向直行车辆的第一放行时长和放行上游路口 在绿波方向直行车辆的第二放行时长之和;
其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况 参数确定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和 一比例系数的乘积;
所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第 一类交通状况参数确定。
9. 一种交通自适应控制装置, 用于控制一绿波带内的多个交通信号灯, 包括: 第一采集模块, 设置为采集与当前路口绿波方向第一直行相位的交通状况 对应的第一类交通状况参数;
第二采集模块, 设置为采集与上游路口绿波方向所述第一直行相位的交通 状况对应的第二类交通状况参数;
绿灯开启时刻确定模块, 设置为根据所述第一类交通状况参数和所述第二 类交通状况参数, 确定当前路口所述第一直行相位的第一绿灯开启时刻; 绿灯时长确定模块, 设置为根据所述第一类交通状况参数和所述第二类交 通状况参数, 确定与当前路口所述第一直行相位对应的第一绿灯时长;
控制模块, 设置为在所述第一绿灯开启时刻开启当前路口所述第一直行相 位的绿灯, 且控制绿灯时长为所述第一绿灯时长。
10. 如权利要求 9所述的交通自适应控制装置, 其中, 所述第一类交通状况参数包 括: 车流量参数和占有率参数;
所述第二类交通状况参数包括: 在绿波方向第一直行相位上对应的绿灯开 启时刻、 绿灯时长以及车辆排队长度。
11. 如权利要求 10所述的交通自适应控制装置,其中,所述车流量参数具体为车流 量和对应的道路通行能力的比值。
12. 如权利要求 11所述的交通自适应控制装置,其中,所述绿灯开启时刻确定模块 具体包括:
相位差计算模块, 设置为根据所述第一类交通状况参数和所述第二类交通 状况参数计算得到一相位差; 所述相位差为当前路口与上游路口在绿波方向第 一直行相位上绿灯开启时刻的时间差;
确定子模块, 设置为当前路口在第一时刻与上游路口在绿波方向直行相位 上绿灯开启时刻的时间差达到所述相位差时, 确定第一时刻为当前路口第一直 行相位的第一绿灯开启时刻。
13. 如权利要求 12所述的交通自适应控制装置,其中,所述绿灯开启时刻确定模块 具体还包括:
相位差修正模块, 设置为根据所述当前路口的第一类交通状况参数确定一 修正相位差;
所述确定子模块具体设置为在当前路口与上游路口在绿波方向直行相位上 绿灯开启时刻的时间差达到目标相位差的第一时刻, 确定所述第一时刻为所述
第一直行相位的第一绿灯开启时刻; 所述目标相位差为所述相位差与所述修正 相位差之和。 如权利要求 12或 13所述的交通自适应控制装置, 其中, 所述相位差 ΔΦ为:
其中, L为当前路口与上游路口间的距离, 1为上游路口绿波方向上车辆排 队长度, vf为车流量近似为零时的车速, Q为车流量, k表示最大车流密度, to 是由于车辆由静止加速至勾速行驶而导致的时间损耗。
15. 如权利要求 9或 10所述的交通自适应控制装置, 其中, 其中, 所述直行相位包 括直行方向和右转方向; 所述第一直行相位对应的第一绿灯时长为直行方向的 绿灯时长和对应的右转方向的绿灯时长中的最大值。
16. 如权利要求 15所述的交通自适应控制装置,其中,所述第一直行相位直行方向 的绿灯时长为放行当前路口绿波方向直行车辆的第一放行时长和放行上游路口 在绿波方向直行车辆的第二放行时长之和;
其中, 所述第一放行时长由当前路口第一直行相位对应的第一类交通状况 参数确定; 所述第二放行时长为上游路口在所述第一直行相位上的绿灯时长和 一比例系数的乘积;
所述第一直行相位右转方向的绿灯时长由当前路口第一直行相位对应的第 一类交通状况参数确定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210415463.5 | 2012-10-26 | ||
CN201210415463.5A CN103778791B (zh) | 2012-10-26 | 2012-10-26 | 一种交通自适应控制方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014063545A1 true WO2014063545A1 (zh) | 2014-05-01 |
Family
ID=50543982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/083823 WO2014063545A1 (zh) | 2012-10-26 | 2013-09-18 | 一种交通自适应控制方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103778791B (zh) |
WO (1) | WO2014063545A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104299430A (zh) * | 2014-10-13 | 2015-01-21 | 上海市城市建设设计研究总院 | 基于车路协同的路外绿波车速引导方法 |
CN107204120A (zh) * | 2017-07-19 | 2017-09-26 | 济南全通信息科技有限公司 | 一种利用旅行时间进行交通信号相位设计的方法及其装置 |
CN108230701A (zh) * | 2016-12-22 | 2018-06-29 | 孟卫平 | 交通信号两维绿波模式控制方法 |
CN109544945A (zh) * | 2018-11-30 | 2019-03-29 | 江苏智通交通科技有限公司 | 基于车道饱和度的区域控制相位配时优化方法 |
CN111524374A (zh) * | 2020-03-18 | 2020-08-11 | 阿里巴巴集团控股有限公司 | 一种信息处理方法、装置及电子设备 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104021685B (zh) * | 2014-06-26 | 2017-03-22 | 广东工业大学 | 一种含混合交通流的交叉口交通控制方法 |
CN104134356B (zh) * | 2014-06-30 | 2017-02-01 | 南京航空航天大学 | 城市交叉口模型参考自适应信号的控制方法 |
CN104036647B (zh) * | 2014-07-02 | 2018-01-02 | 重庆市城投金卡信息产业股份有限公司 | 基于射频识别技术的交通信号全局控制方法及系统 |
CN104882006B (zh) * | 2014-07-03 | 2017-05-03 | 中国科学院沈阳自动化研究所 | 一种基于消息的复杂网络交通信号优化控制方法 |
CN106023607A (zh) * | 2015-03-25 | 2016-10-12 | 贵州省交通规划勘察设计研究院股份有限公司 | 一种红绿灯控制方法及其系统 |
US9633560B1 (en) * | 2016-03-30 | 2017-04-25 | Jason Hao Gao | Traffic prediction and control system for vehicle traffic flows at traffic intersections |
CN106297331B (zh) * | 2016-08-29 | 2019-05-14 | 安徽科力信息产业有限责任公司 | 利用平面感知技术减少路口机动车停车次数的方法和系统 |
CN106251659B (zh) * | 2016-10-20 | 2019-07-16 | 南京莱斯信息技术股份有限公司 | 一种基于干线绿波的公交优先控制方法 |
CN108074406A (zh) * | 2016-11-16 | 2018-05-25 | 杭州海康威视数字技术股份有限公司 | 一种信号控制方法及系统 |
CN108428348B (zh) * | 2017-02-15 | 2022-03-18 | 阿里巴巴集团控股有限公司 | 一种道路交通优化方法、装置以及电子设备 |
CN106875702B (zh) * | 2017-04-11 | 2017-09-29 | 冀嘉澍 | 一种基于物联网的十字路口交通灯控制方法 |
CN108806284A (zh) * | 2017-05-03 | 2018-11-13 | 东软集团股份有限公司 | 调整信号灯配时的方法、装置和存储介质以及电子设备 |
CN107481531A (zh) * | 2017-08-25 | 2017-12-15 | 安徽实运信息科技有限责任公司 | 一种城市交通信号灯控制系统 |
CN107680393B (zh) * | 2017-11-07 | 2021-07-09 | 长沙理工大学 | 一种基于时变论域的十字路口交通信号灯的智能控制方法 |
CN109979191B (zh) * | 2017-12-28 | 2022-02-11 | 杭州海康威视系统技术有限公司 | 交通信号控制方法、装置、电子设备及计算机可读存储介质 |
CN109035780B (zh) * | 2018-09-07 | 2021-04-30 | 江苏智通交通科技有限公司 | 信号控制路口相位绿时感应区间的优化配置方法 |
CN109087517B (zh) * | 2018-09-19 | 2021-02-26 | 山东大学 | 基于大数据的智能信号灯控制方法和系统 |
CN110728844B (zh) * | 2019-09-11 | 2022-02-22 | 平安科技(深圳)有限公司 | 红绿灯自适应控制方法、装置、交通控制设备及存储介质 |
CN112802326B (zh) * | 2019-11-13 | 2022-03-04 | 阿波罗智联(北京)科技有限公司 | 交通方案控制方法和装置 |
CN110766958B (zh) * | 2019-12-04 | 2023-05-02 | 上海新微技术研发中心有限公司 | 交通信号灯智能控制系统 |
CN110930742B (zh) * | 2019-12-04 | 2021-08-24 | 上海新微技术研发中心有限公司 | 一种交通信号灯智能控制方法 |
CN111063205B (zh) * | 2019-12-31 | 2021-09-28 | 腾讯云计算(北京)有限责任公司 | 信号灯的控制方法、装置、设备及存储介质 |
CN111429721B (zh) * | 2020-03-27 | 2021-11-09 | 江苏智通交通科技有限公司 | 基于排队消散时间的路口交通信号方案优化方法 |
CN111724588B (zh) * | 2020-06-01 | 2022-08-02 | 青岛海信网络科技股份有限公司 | 交通信号控制方法和通信终端 |
CN113178086A (zh) * | 2021-04-21 | 2021-07-27 | 杭州达港电气有限公司 | 基于车流量传感器实现区域交通绿波带的控制装置及方法 |
CN113470387A (zh) * | 2021-07-17 | 2021-10-01 | 广东汇通信息科技股份有限公司 | 一种智能交通控制方法及装置 |
CN115035716B (zh) * | 2022-05-31 | 2024-04-12 | 上海商汤智能科技有限公司 | 控制信号相位差确定方法及装置、电子设备和存储介质 |
CN116153115B (zh) * | 2022-12-30 | 2025-07-01 | 江苏航天大为科技股份有限公司 | 多系统信号控制机的协调相位差修正方法及系统 |
CN116403401A (zh) * | 2023-03-22 | 2023-07-07 | 浙江大华技术股份有限公司 | 一种基于信号控制的多点协调自适应方法及装置 |
CN117727191B (zh) * | 2024-02-07 | 2024-05-10 | 深圳市震有智联科技有限公司 | 一种基于ai视觉分析的智慧交通控制方法、装置及介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020116118A1 (en) * | 1999-12-17 | 2002-08-22 | Stallard Charlie Monroe | Generalized adaptive signal control method and system |
CN101145282A (zh) * | 2007-08-24 | 2008-03-19 | 南京莱斯大型电子系统工程有限公司 | 行人过街交通信号控制的系统及方法 |
CN101515408A (zh) * | 2009-03-12 | 2009-08-26 | 昆明理工大学 | 绿波带显示交通流信号控制装置 |
CN102622887A (zh) * | 2012-04-05 | 2012-08-01 | 郭海锋 | 一种路段有效容量的计算方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2531987A4 (en) * | 2010-02-01 | 2015-05-13 | Miovision Technologies Inc | SYSTEM AND METHOD FOR MODELING AND OPTIMIZING THE PERFORMANCE OF TRANSPORT NETWORKS |
CN102298846B (zh) * | 2010-06-25 | 2014-06-25 | 建程科技股份有限公司 | 群组路口实时交通号制控制方法及所需绿灯时间预测方法 |
CN101976509A (zh) * | 2010-10-15 | 2011-02-16 | 深圳职业技术学院 | 一种智能交通的综合管控方法 |
-
2012
- 2012-10-26 CN CN201210415463.5A patent/CN103778791B/zh active Active
-
2013
- 2013-09-18 WO PCT/CN2013/083823 patent/WO2014063545A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020116118A1 (en) * | 1999-12-17 | 2002-08-22 | Stallard Charlie Monroe | Generalized adaptive signal control method and system |
CN101145282A (zh) * | 2007-08-24 | 2008-03-19 | 南京莱斯大型电子系统工程有限公司 | 行人过街交通信号控制的系统及方法 |
CN101515408A (zh) * | 2009-03-12 | 2009-08-26 | 昆明理工大学 | 绿波带显示交通流信号控制装置 |
CN102622887A (zh) * | 2012-04-05 | 2012-08-01 | 郭海锋 | 一种路段有效容量的计算方法 |
Non-Patent Citations (1)
Title |
---|
HE, YONGMING: "Green Wave Fuzzy Control Method of Urban Traffic Based on 2-Intersection Split", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 12, no. 34, December 2012 (2012-12-01), pages 9442 - 9446 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104299430A (zh) * | 2014-10-13 | 2015-01-21 | 上海市城市建设设计研究总院 | 基于车路协同的路外绿波车速引导方法 |
CN108230701A (zh) * | 2016-12-22 | 2018-06-29 | 孟卫平 | 交通信号两维绿波模式控制方法 |
CN107204120A (zh) * | 2017-07-19 | 2017-09-26 | 济南全通信息科技有限公司 | 一种利用旅行时间进行交通信号相位设计的方法及其装置 |
CN107204120B (zh) * | 2017-07-19 | 2019-12-31 | 济南全通信息科技有限公司 | 一种利用旅行时间进行交通信号相位设计的方法及其装置 |
CN109544945A (zh) * | 2018-11-30 | 2019-03-29 | 江苏智通交通科技有限公司 | 基于车道饱和度的区域控制相位配时优化方法 |
CN109544945B (zh) * | 2018-11-30 | 2021-06-01 | 江苏智通交通科技有限公司 | 基于车道饱和度的区域控制相位配时优化方法 |
CN111524374A (zh) * | 2020-03-18 | 2020-08-11 | 阿里巴巴集团控股有限公司 | 一种信息处理方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN103778791B (zh) | 2016-02-10 |
CN103778791A (zh) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014063545A1 (zh) | 一种交通自适应控制方法和装置 | |
CN110085037B (zh) | 一种车路协同环境下交叉口信号控制及车速引导系统 | |
CN107730886B (zh) | 一种车联网环境下城市交叉口交通信号动态优化方法 | |
CN104103180B (zh) | 城市快速路入匝道与主线协同信号控制系统及方法 | |
CN110136455B (zh) | 一种交通信号灯配时方法 | |
CN105976621A (zh) | 一种基于车辆速度诱导策略引导车辆不停车通过交叉口的装置及方法 | |
CN110910663A (zh) | 一种车路协同环境下多智能车交叉口通行协调控制方法 | |
CN107331182A (zh) | 一种面向连续信号交叉口的网联环境下自动驾驶车速控制方法 | |
CN109949587B (zh) | 一种相邻交叉口公交专用道信号协调控制优化方法 | |
CN112037540B (zh) | 一种潮汐交通状态干线信号协调设计方法与装置 | |
CN109637160B (zh) | 一种动态交通条件下的单点控制方法 | |
CN105788301B (zh) | 借道左转交叉口预停车线及预信号设置方法 | |
CN105139668B (zh) | 一种基于路段速度区间的城市干线双向绿波控制优化方法 | |
CN106875700B (zh) | 一种消除起动损失时间的进口道设计与信号优化方法 | |
CN108831166B (zh) | 车路协同环境下交叉口可变导向车道功能变换方法 | |
CN104077919A (zh) | 一种需求车道组合相位的优化方法 | |
CN111091722A (zh) | 人机混合驾驶环境下交叉口信号控制参数的优化方法 | |
CN113506442B (zh) | 一种基于预期收益估计的城市路网交通信号灯控制方法 | |
CN114627647A (zh) | 一种基于可变限速与换道结合的混合交通流优化控制方法 | |
CN103021195A (zh) | 一种相邻交叉口协调控制相位差的优化方法 | |
CN107886742A (zh) | 一种用于道路交叉口的交通信号控制方法 | |
CN113516855A (zh) | 一种并行流交叉口的渠化设计优化方法 | |
CN111932910A (zh) | 一种智能车路协同环境下实时动态可变车道安全控制方法 | |
CN110889967A (zh) | 一种基于干道分割的溢流风险平衡信号控制优化方法 | |
CN206194129U (zh) | 一种基于车辆速度诱导策略引导车辆不停车通过交叉口的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13848170 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13848170 Country of ref document: EP Kind code of ref document: A1 |