CN104103180B - 城市快速路入匝道与主线协同信号控制系统及方法 - Google Patents

城市快速路入匝道与主线协同信号控制系统及方法 Download PDF

Info

Publication number
CN104103180B
CN104103180B CN201410333667.3A CN201410333667A CN104103180B CN 104103180 B CN104103180 B CN 104103180B CN 201410333667 A CN201410333667 A CN 201410333667A CN 104103180 B CN104103180 B CN 104103180B
Authority
CN
China
Prior art keywords
main line
ring road
time
detector
enter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410333667.3A
Other languages
English (en)
Other versions
CN104103180A (zh
Inventor
孙剑
李宙峰
李克平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201410333667.3A priority Critical patent/CN104103180B/zh
Publication of CN104103180A publication Critical patent/CN104103180A/zh
Application granted granted Critical
Publication of CN104103180B publication Critical patent/CN104103180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种快速路入匝道与主线协同信号控制系统及方法。该系统包括:入匝道上、下游检测器、主线上、下游检测器;入匝道及主线信号灯;处理控制中心。处理控制中心根据主线上、下游检测器检测的速度和时间占有率,判断主线是否堵塞,主线堵塞启动入匝道与主线的协同信号控制;处理控制中心根据匝道检测器检测的流量和主线及匝道需求量,确定控制的配时方案;周期结束后,处理控制中心根据主线上游检测器检测的速度和时间占有率,判断主线堵塞是否结束,若堵塞,则继续信号控制;否则关闭。本发明在快速路堵塞时段通过协同信号轮流放行主线和匝道车辆,将两股无序的冲突流变成有序的饱和流,提高了主线瓶颈点通行能力,大大改善了汇入安全性。

Description

城市快速路入匝道与主线协同信号控制系统及方法
技术领域
本发明属于快速路交通控制领域,具体涉及一种城市快速路入匝道与主线协同信号控制系统及方法。
背景技术
快速路系统在大城市交通中起着主骨架路网的作用,承担了城市大量的机动车出行,保障快速路系统的高效运行一直是交通管理部门重中之重的工作。
入匝道是城市快速路连续流和地面道路间断流转换的通道。在快速路主线位于入匝道汇入点的下游,由于匝道车流的汇入,而主线车道数没有相应增加,因此成为了制约快速路通行能力的瓶颈,在高峰时段,常常会诱发快速路堵塞;同时由于匝道车辆汇入造成车辆之间的相互抢道和互不让行行为,引起大量事故。
目前,对于快速路主线汇入瓶颈点的管理,主要是采取入口匝道控制的方法。快速路入口匝道控制是指通过对入匝道上行驶的车辆采取一系列的控制措施,如限速、信号控制等,从而调节汇入主线的车流量,以达到减少快速路主线交通拥堵、提升整体使用性能的目的,目前上海、北京等大城市陆续实施了快速路入口匝道控制。然而,随着我国大、中城市机动车保有量不断增加,快速路车流量激增,特别是在早、晚高峰时段,快速路路网已经呈现出饱和或接近饱和的状态,在这样的情况下,单一的入口匝道控制主要存在以下问题:
1.主线汇入瓶颈点通行能力利用不足
在堵塞时段,主线流量很大,此时入匝道车辆的汇入会对主线车流产生严重干扰。相关实证研究表明,在主线堵塞时段,入匝道车辆的汇入会造成主线汇入瓶颈点单车道的通行能力损失约16%-25%;
2.入匝道车辆汇入发生事故可能性大
在堵塞时段,主线车流车头空距较小,入匝道车辆汇入时需小心翼翼,极易造成车辆之间的相互碰撞。
本发明针对上述存在的问题,提出一种快速路入匝道与主线协同信号控制系统及方法,来具体解决堵塞时段快速路主线汇入瓶颈点管理中的实际问题。
发明内容
本发明所要解决的技术问题是克服快速路主线汇入瓶颈点在堵塞时段通行能力利用不足、汇入安全性差的问题,提供一种城市快速路入匝道与主线协同信号控制系统及方法。
为解决上述技术问题,本发明采用如下技术方案予以实现。技术方案中的城市快速路入匝道与主线协同信号控制系统,由以下部分组成:
1)在快速路汇流处设置主线停车线和入匝道停车线;
2)在主线设置上游检测器和下游检测器,下游检测器设置于主线停车线附近;上游检测器和下游检测器之间的距离根据协同信号控制系统的最大周期时间C max、主线和入匝道的平均需求量之比进行确定;同时考虑匝道排队长度对主线信号控制的影响,一般取200米以内为宜;
3)在入匝道设置入匝道上游检测器和入匝道下游检测器,其中下游检测器设置在入匝道停车线附近;入匝道上游检测器设置在入匝道所能允许的最大排队位置处;
4)在主线停车线下游设置主线信号灯及信号机,在入匝道停车线下游设置匝道信号灯及信号机;
5)处理控制中心,它包括根据主线下游检测器和入匝道下游检测器检测的流量数据所建立的历史流量数据库,处理控制中心具备如下功能:
(1)根据主线下游检测器所检测的平均速度和时间占有率数据,判断主线当前是否处于堵塞状态,并在主线处于堵塞状态时启动主线和入匝道的协同信号控制;
(2)根据入匝道下游检测器所检测的流量,并结合从历史流量数据库所获取的主线和入匝道需求量数据,确定信号控制的配时方案,包括周期时间和主线及入匝道的绿灯时间;
(3)根据主线上游检测器所检测的平均速度和时间占有率数据,判断主线堵塞是否结束,并在主线堵塞结束时关闭信号控制;
6)将所述主线上游检测器、主线下游检测器、匝道上游检测器、匝道下游检测器、主线信号机及信号灯、入匝道信号灯及信号机分别通过光缆和/或电线和/或无线等通信系统与处理控制中心相连接。
本发明提出一种快速路入匝道与主线协同信号控制方法,包括以下步骤:
1)获取当前时刻主线上游检测器和主线下游检测器所检测到的平均速度和时间占有率数据,并将该数据传输给处理控制中心;
2)处理控制中心根据两个不等式VV*和OCCOCC*来判断当前时刻主线是否处于堵塞状态,其中VOCC分别是主线上游检测器/主线下游检测器当前时刻检测的平均速度和时间占有率,V*和OCC*分别是堵塞状态下速度和时间占有率的临界值。若从步骤1)中获取的主线上游检测器和主线下游检测器的数据都能使这两个不等式同时成立,则处理控制中心判断当前时刻主线处于堵塞状态;否则判断当前时刻主线处于非堵塞状态;
3)若当前时刻主线处于堵塞状态,处理控制中心则立即启动对入匝道和主线的协同信号控制,转入步骤4);否则不启动信号控制,返回步骤1);
4)处理控制中心确定协同信号控制的配时方案,将配时方案传输给信号机,信号机根据配时方案指挥信号灯工作,配时方案的确定包括如下步骤:
(1)根据入匝道检测器检测的流量和查询历史流量数据库所确定的当前时刻主线需求量和匝道需求量,计算主线排队车辆和入匝道排队车辆以饱和流量消散所需的时间,同时考虑最大、最小周期时间的约束,确定一个合适的周期时间;
(2)根据所确定的周期时间和当前时刻的主线需求量和匝道需求量,采取按需求量均分绿灯时间的原则,同时考虑入匝道最大排队车辆数的约束,确定主线和入匝道绿灯时间;
5)周期时间结束后,处理控制中心根据当前时刻主线上游检测器检测的平均速度和时间占有率数据,判断主线堵塞是否结束,从而决定是否继续实施协同信号控制:
(1)若当前时刻主线上游检测器的检测数据能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线仍处于堵塞中,继续实施协同信号控制,返回步骤4);
(2)若当前时刻主线上游检测器的检测数据不能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线堵塞结束,关闭入匝道和主线的协同信号控制,返回步骤1)。
本发明中,所述的确定周期时间,具体计算步骤如下:
1)数据采集
(1)查询主线和入匝道历史流量数据库,确定当前时刻的主线需求量D 1(辆/s)和匝道需求量D 2(辆/s);
(2)采取实际观测或理论模型计算或微观仿真的方法确定入匝道的通行能力Q(辆/s);
(3)根据入匝道上游检测器和入匝道下游检测器所检测的流量数据,利用排队长度计算方法,例如利用流量累计变形曲线法,确定当前时刻处在这两个检测器之间的匝道排队车辆数l(辆);
2)计算周期时间
(1)根据相关设计规范和实际操作经验,确定周期时间的最大值C max(s)和最小值C min(s),以及绿灯间隔时间(或黄灯时间)I(s);
(2)根据入匝道排队车辆数l和通行能力Q,按公式(lQ)计算得到入匝道车辆消散所需绿灯时间t 1(s);根据t 1及主线与入匝道的需求量之比D 1D 2,按公式(t 1*D 1D 2)可计算得到主线绿灯时间t 2(s);根据t 1t 2I,按公式(t 1+t 2+2I)计算得到周期时间C(s);
(3)为了使绿灯时间能够充分利用,此时要求周期时间不能大于C,同时考虑到最大周期时间的约束,取CCC max中的较小者,更新C的值;
(4)为了保证周期时间不小于最小值,取CCC min中的较大者,更新C的值,将此时的C值作为最终确定的周期时间C
本发明中,所述的确定主线及入匝道绿灯时间,具体计算步骤如下:
1)数据采集
(1)获取当前时刻的主线需求量D 1(辆/s)和匝道需求量D 2(辆/s);
(2)获取入匝道的通行能力Q(辆/s),同时根据入匝道的实际几何条件确定入匝道所能容纳的最大排队车辆数L(辆);
2)计算主线和入匝道的绿灯时间
(1)根据计算得到的周期时间C判断下列不等式是否成立:
式中:θ入匝道排队最大容忍度系数,取值范围为[0,1],其值越大,表明所容忍的最大匝道排队长度越长,当其取值为1时,表示容忍匝道车辆排队到最大排队位置处;
若不等式成立转入步骤(2),否则转入步骤(3);
(2)在此种情况下,若根据主线和入匝道需求量按比例均分绿灯时间,不会致使入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,此时按照以下公式计算主线和匝道上的绿灯时间:
式中:主线绿灯时间;
入匝道绿灯时间;
(3)在此种情况下,若根据主线和入匝道需求量按比例均分绿灯时间,入匝道所分配得到的绿灯时间不足,会造成入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,因此需要给予入匝道车辆更多的绿灯时间,此时按照以下公式计算主线和匝道上的绿灯时间:
作为对上述技术方案的完善和补充,本发明进一步采取如下技术措施:当运行入匝道与主线的协同信号控制时,在主线和入匝道上通过提示标志,提醒驾驶员前方有信号灯工作。
本发明的有益效果是:
1.本发明所述的快速路入匝道与主线协同信号控制方法,在快速路堵塞时段通过入匝道和主线的协同信号轮流放行主线和入匝道的车辆,将两股无序的冲突流变成有序的饱和流,提高了主线瓶颈点的通行能力,消除了冲突,大大改善了汇入安全性;
2.本发明所述的确定周期时间,从两个方面进行了考虑:一方面由于相位切换的需要,过小的周期会使得单位小时内因相位切换造成损失时间增加;另一方面,过大的周期可能会使得绿灯时间不能得到充分利用。为了克服这一矛盾,本发明通过实时检测的和历史的主线及入匝道流量数据,选取了使主线车辆和入匝道车辆在绿灯时间内都能以饱和流量通过的周期时间的最大值作为确定值,这既提高了绿灯利用率,同时也尽可能减少了通行损失时间,起到了提高通行能力的作用;
3.本发明所述的确定主线及入匝道绿灯时间,考虑到了实际通行条件下入匝道所能容忍的最大排队车辆数,在分配入匝道绿灯时间时控制匝道排队长度让其不超过允许值,消除了因入匝道车辆排队过长而对上游地面交通造成影响的隐患;
4.本发明根据实时的检测器数据来检测堵塞、实施信号控制、确定信号配时方案和停止信号控制,能够很好的适应交通流的动态变化,具有较强的实用性。
附图说明
下面结合附图对本发明作进一步说明:
图1为本发明所述的城市快速路入匝道与主线信号协同控制系统的安装位置示意图;
图2为本发明所述的城市快速路入匝道与主线信号协同控制方法的基本工作流程图;
图3为本发明所述的确定周期时间的计算流程图;
图4为本发明所述的确定主线及入匝道绿灯时间的计算流程图。
图中标号:1为主线车辆停车线,2为入匝道车辆停车线,3为主线信号灯及信号机,4为入匝道信号灯及信号机,5为主线上游检测器,6为主线下游检测器,7为匝道上游检测器,8为匝道下游检测器,9为主线提示标志,10为入匝道提示标志。
具体实施方式
下面结合附图对本发明做详细的描述。
实施例1:附图1给出了一个实际的城市快速路入匝道与主线示意图,基本几何条件为:主线为单向2车道,车道宽为3.5米;入口匝道为单向2车道,车道宽为3.5米;合流后的主线车道数与车道宽度保持不变。
本发明首先需要在入匝道和主线上安装相关的硬件设施,见附图1所示,这些设施包括:设置于汇流鼻端附近的主线停车线1和入匝道停车线2,设置于停车线下游的主线信号灯及信号机3和入匝道信号灯及信号机4,设置于主线停车线上游的主线上游检测器5和主线停车线前的主线下游检测器6,其中主线上、下有检测器之间的距离为200米,设置于入匝道停车线上游的入匝道上游检测器7和入匝道停车线前的入匝道下游检测器8,其中入匝道上游检测器7设置在入匝道所能允许的最大排队位置处;设置于停车线上游的主线提示标志9和入匝道提示标志10。
本系统的处理控制中心包括一个根据主线检测器6和入匝道检测器8检测的流量数据所建立的历史流量数据库,查询历史流量数据库即可得到一天中各个时刻主线和入匝道的需求量。为了实现主线堵塞的识别、控制信号灯的工作与停止等功能,需用光缆和/或电线和/或无线等通信系统将所述主线上游检测器5、主线下游检测器6、匝道上游检测器7、匝道下游检测器8、主线信号机及信号灯3、入匝道信号灯及信号机4分别与处理控制中心相连接。
本发明的基本控制思路为:在主线和入匝道同时安装信号灯,在主线发生堵塞时启亮信号灯,通过协同信号轮流放行主线和入匝道车辆,让其有序通过瓶颈点;通过检测器检测的流量数据,精确确定主线和入匝道需求量,以此计算周期时间和绿灯时间,给予主线方向和入匝道方向足够但又不过量的绿灯时间;在主线拥堵结束时,停止信号控制。下面结合附图2、3和4对本发明的具体实施方法进行说明:
快速路入匝道与主线协同信号控制方法的工作流程参阅图2。入匝道与主线协同信号控制方法根据实际的主线交通运行状况,在堵塞时段启动信号控制,并根据实际需求量选择合适的周期时间和绿灯时间,其工作流程为:
1)获取当前时刻主线上游检测器5和主线下游检测器6所检测到的平均速度和时间占有率数据,并将该数据传输给处理控制中心;
2)处理控制中心根据两个不等式VV*和OCCOCC*来判断当前时刻主线是否处于堵塞状态,其中VOCC分别是主线上游检测器5/主线下游检测器6当前时刻检测的平均速度和时间占有率,V*和OCC*分别是堵塞状态下速度和时间占有率的临界值。V*和OCC*的值可以通过实地观测或仿真进行标定,本例中分别取为25km/h和0.5。本发明采用两个主线检测器的数据来对主线的交通状态进行判定,是为了保重判断结果的准确性。若从步骤1)中获取的主线上游检测器5和主线下游检测器6的数据都能使这两个不等式同时成立,则处理控制中心判断当前时刻主线处于堵塞状态;否则判断当前时刻主线处于非堵塞状态;
3)根据2)中的判断结果,若当前时刻主线处于堵塞状态,处理控制中心则立即启动对入匝道和主线的协同信号控制,转入步骤4);否则不启动信号控制,返回步骤1);
4)处理控制中心确定协同信号控制的配时方案,将配时方案传输给主线信号灯及信号机3、入匝道信号灯及信号机4,主线信号灯及信号机3、入匝道信号灯及信号机4根据配时方案指挥相应的信号灯工作,配时方案的确定包括确定周期时间和确定主线及入匝道的绿灯时间:
(1)周期时间的确定
参阅图3,图中所示周期时间的计算过程:
①数据输入:查询历史流量数据库确定当前时刻主线需求量D 1(辆/s)和匝道需求量D 2(辆/s);采取实际观测或理论模型计算或微观仿真的方法确定入匝道的通行能力Q(辆/s);根据入匝道上游检测器7和入匝道下游检测器8所检测到的实时流量数据,采用流量累计变形曲线法,确定当前时刻处在这两个检测器之间的匝道排队车辆数l(辆);周期时间的最大值C max(s)和最小值C min(s),分别取为90和60;绿灯间隔时间I(s),取为3;
②将周期时间C初始化为C max
③比较C两者的大小,其中为使入匝道车辆在绿灯时间内能以饱和流量通过所确定的周期时间,将C的值更新为两者中的较小值,保证匝道绿灯时间能充分利用;
④考虑到信号控制的周期时间不能太短,还需考虑最小周期时间C min的约束,若上述步骤确定的C小于C min,则将C更新为C min,否则C不变;
⑤数据输出:经上述步骤确定的C值,是使主线和入匝道绿灯时间都能充分利用的周期时间的最大值,将C值作为周期时间输出。
(2)主线及入匝道绿灯时间的确定
①数据输入:当前时刻主线需求量D 1(辆/s)和匝道需求量D 2(辆/s);入匝道的通行能力Q(辆/s);根据入匝道的实际长度和车道数确定的入匝道所能容纳的最大车辆数L(辆);入匝道排队最大容忍度系数θ,取为0.9;周期时间C;绿灯间隔时间I
②判断不等式是否成立,其中不等式左边为入匝道在周期时间内的最大排队车辆数,若不等式成立则转入步骤3);否则转入步骤4);
③在此种情况下,根据主线和入匝道需求量按比例分配绿灯时间,不会致使入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,因此按照以下公式计算主线和匝道上的绿灯时间:
④在此种情况下,根据主线和入匝道需求量按比例分配绿灯时间,入匝道所分配得到的绿灯时间不足,会造成入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,因此需要给予入匝道车辆更多的绿灯时间,则按照以下公式计算主线和匝道上的绿灯时间:
⑤数据输出:将g g 的值分别作为主线绿灯时间和入匝道绿灯时间进行输出。
5)当协同信号控制的周期时间结束后,处理控制中心再根据当前时刻主线上游检测器5检测的平均速度和时间占有率数据,判断主线堵塞是否结束,从而决定是否继续实施协同信号控制:
(1)若当前时刻主线上游检测器5的检测数据能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线仍处于堵塞中,继续实施协同信号控制,返回步骤4),确定下一个控制的配时方案;
(2)若当前时刻主线上游检测器5的检测数据不能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线堵塞结束,关闭入匝道和主线的协同信号控制,返回步骤1),继续对堵塞状态进行识别。

Claims (3)

1.一种城市快速路入匝道与主线协同信号控制系统的控制方法,所述控制方法通过城市快速路入匝道与主线协同信号控制系统实现,系统组成包括如下部分:
a)在快速路汇流处设置主线停车线和入匝道停车线;
b)在主线设置上游检测器和下游检测器,下游检测器设置于主线停车线附近;上游检测器和下游检测器之间的距离根据协同信号控制系统的最大周期时间C max、主线和入匝道的平均需求量之比进行确定;
c)在入匝道设置入匝道上游检测器和入匝道下游检测器,其中下游检测器设置在入匝道停车线附近,入匝道上游检测器设置在入匝道所能允许的最大排队位置处;
d)在主线停车线下游设置主线信号灯及信号机,在入匝道停车线下游设置匝道信号灯及信号机;
e)处理控制中心,它包括根据主线下游检测器和入匝道下游检测器检测的流量数据所建立的历史流量数据库,处理控制中心具备如下功能:
(1)根据主线下游检测器所检测的平均速度和时间占有率数据,判断主线当前是否处于堵塞状态,并在主线处于堵塞状态时启动主线和入匝道的协同信号控制;
(2)根据入匝道下游检测器所检测的流量,并结合从历史流量数据库所获取的主线和入匝道需求量数据,确定信号控制的配时方案,包括周期时间和主线及入匝道的绿灯时间;
(3)根据主线上游检测器所检测的平均速度和时间占有率数据,判断主线堵塞是否结束,并在主线堵塞结束时关闭信号控制;
f)将所述主线上游检测器、主线下游检测器、匝道上游检测器、匝道下游检测器、主线信号机及信号灯、入匝道信号灯及信号机分别通过光缆、电线或无线通信系统中任一种与处理控制中心相连接;
其特征在于具体步骤如下:
1)获取当前时刻主线上游检测器和主线下游检测器所检测到的平均速度和时间占有率数据,并将该数据传输给处理控制中心;
2)处理控制中心根据两个不等式VV*和OCCOCC*来判断当前时刻主线是否处于堵塞状态,其中VOCC分别是主线上游检测器/主线下游检测器当前时刻检测的平均速度和时间占有率,V*和OCC*分别是堵塞状态下速度和时间占有率的临界值;若从步骤1)中获取的主线上游检测器和主线下游检测器的数据都能使这两个不等式同时成立,则处理控制中心判断当前时刻主线处于堵塞状态;否则判断当前时刻主线处于非堵塞状态;
3)若当前时刻主线处于堵塞状态,处理控制中心则立即启动对入匝道和主线的协同信号控制,转入步骤4);否则不启动信号控制,返回步骤1);
4)处理控制中心确定协同信号控制的配时方案,将配时方案传输给信号机,信号机根据配时方案指挥信号灯工作,配时方案的确定包括如下步骤:
(1)根据入匝道检测器检测的流量和查询历史流量数据库所确定的当前时刻主线需求量和匝道需求量,计算主线排队车辆和入匝道排队车辆以饱和流量消散所需的时间,同时考虑最大、最小周期时间的约束,确定一个合适的周期时间;
(2)根据所确定的周期时间和当前时刻的主线需求量和匝道需求量,采取按需求量均分绿灯时间的原则,同时考虑入匝道最大排队车辆数的约束,确定主线和入匝道绿灯时间;
5)周期时间结束后,处理控制中心根据当前时刻主线上游检测器检测的平均速度和时间占有率数据,判断主线堵塞是否结束,从而决定是否继续实施协同信号控制:
(1)若当前时刻主线上游检测器的检测数据能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线仍处于堵塞中,继续实施协同信号控制,返回步骤4);
(2)若当前时刻主线上游检测器的检测数据不能够使得两个不等式VV*和OCCOCC*同时成立,则判定主线堵塞结束,关闭入匝道和主线的协同信号控制,返回步骤1)。
2.根据权利要求1所述的控制方法,其特征在于所述的确定周期时间,具体计算步骤如下:
1)数据采集
(1)查询主线和入匝道历史流量数据库,确定当前时刻的主线需求量D 1,单位为辆/s和匝道需求量D 2,单位为辆/s;
(2)采取实际观测或理论模型计算或微观仿真的方法确定入匝道的通行能力Q,单位为辆/s;
(3)根据入匝道上游检测器和入匝道下游检测器所检测的流量数据,利用排队长度计算方法,确定当前时刻处在这两个检测器之间的匝道排队车辆数l,单位为辆;
2)计算周期时间
(1)根据相关设计规范和实际操作经验,确定周期时间的最大值C max,单位为s和最小值C min,单位为s,以及绿灯间隔时间或黄灯时间I,单位为s;
(2)根据入匝道排队车辆数l和通行能力Q,按公式lQ计算得到入匝道车辆消散所需绿灯时间t 1,单位为s;根据入匝道车辆消散所需绿灯时间t 1及主线与入匝道的需求量之比D 1D 2,按公式t 1*D 1D 2计算得到主线绿灯时间t 2,单位为s;根据入匝道车辆消散所需绿灯时间t 1、主线绿灯时间t 2和绿灯间隔时间I,按公式t 1+t 2+2I计算得到周期时间C,单位为s;
(3)为使绿灯时间能够充分利用,要求周期时间不能大于C,同时考虑到最大周期时间的约束,取CCC max中的较小者,更新C的值;
(4)为保证周期时间C不小于最小值,取CCC min中的较大者,更新C的值,将此时的C值作为最终确定的周期时间C
3.根据权利要求1所述的控制方法,其特征在于所述的确定主线及入匝道绿灯时间,具体计算步骤如下:
1)数据采集
(1)获取当前时刻的主线需求量D 1,单位为辆/s和匝道需求量D 2,单位为辆/s;
(2)获取入匝道的通行能力Q,单位为辆/s,同时根据入匝道的实际几何条件确定入匝道所能容纳的最大排队车辆数L,单位为辆;
2)计算主线和入匝道的绿灯时间
(1)根据计算得到的周期时间C判断下列不等式是否成立:
式中:θ入匝道排队最大容忍度系数,取值范围为[0,1],其值越大,表示所容忍的最大匝道排队长度越长,当其取值为1时,表示容忍匝道车辆排队到最大排队位置处;
若不等式成立转入步骤(2),否则转入步骤(3);
(2)若根据主线和入匝道需求量按比例均分绿灯时间,不会致使入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,按照以下公式计算主线和匝道上的绿灯时间:
式中:主线绿灯时间;
入匝道绿灯时间;
(3)若根据主线和入匝道需求量按比例均分绿灯时间,入匝道所分配得到的绿灯时间不足,会造成入匝道上的排队车辆数在周期时间内超过所设定的最大容忍值,因此需要给予入匝道车辆更多的绿灯时间,按照以下公式计算主线和匝道上的绿灯时间:
CN201410333667.3A 2014-07-15 2014-07-15 城市快速路入匝道与主线协同信号控制系统及方法 Active CN104103180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410333667.3A CN104103180B (zh) 2014-07-15 2014-07-15 城市快速路入匝道与主线协同信号控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410333667.3A CN104103180B (zh) 2014-07-15 2014-07-15 城市快速路入匝道与主线协同信号控制系统及方法

Publications (2)

Publication Number Publication Date
CN104103180A CN104103180A (zh) 2014-10-15
CN104103180B true CN104103180B (zh) 2016-04-06

Family

ID=51671290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410333667.3A Active CN104103180B (zh) 2014-07-15 2014-07-15 城市快速路入匝道与主线协同信号控制系统及方法

Country Status (1)

Country Link
CN (1) CN104103180B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762901B (zh) * 2015-04-02 2017-02-22 西南交通大学 城市快速路升降式隔离桩汇入控制系统
CN104835319B (zh) * 2015-04-07 2017-02-22 同济大学 一种高等级道路瓶颈区入匝道车辆汇入行为估计方法
CN106355905B (zh) * 2016-10-28 2018-11-30 银江股份有限公司 一种基于卡口数据的高架信号控制方法
CN107146406B (zh) * 2017-05-23 2020-04-24 东南大学 一种高速公路合流区禁止汇入线的设置方法
CN109326121B (zh) * 2017-07-31 2020-10-27 交通运输部公路科学研究所 高速公路施工区上游车辆合流控制方法
CN108122418A (zh) * 2017-12-19 2018-06-05 公安部交通管理科学研究所 城市快速路主线与匝道协同控制方法及系统
CN108320535B (zh) * 2018-04-10 2020-10-13 哈尔滨工业大学 一种道路合流区交织车辆的通行控制方法
CN108510762B (zh) * 2018-05-24 2020-07-31 金陵科技学院 一种快速路多线交汇区智能信号灯优化控制方法
CN109448402B (zh) * 2018-12-24 2021-02-09 成都四方伟业软件股份有限公司 匝道控制方法及装置
CN112085954A (zh) * 2019-06-12 2020-12-15 张雷 一种分级联动互通管控方法
CN110503836A (zh) * 2019-10-08 2019-11-26 北京工业大学 一种基于双检测器的过饱和交叉口反溢流控制方法
CN111681431B (zh) * 2020-06-02 2022-05-03 南京慧尔视智能科技有限公司 一种基于大区域微波雷达的匝道控制系统及方法
CN111754790B (zh) * 2020-06-04 2021-11-26 南京慧尔视智能科技有限公司 一种基于雷达的匝道入口交通控制系统及方法
CN111785022B (zh) * 2020-07-13 2023-09-05 上海市城市建设设计研究总院(集团)有限公司 城市快速路主辅系统交通布置结构及控制方法
CN112435473B (zh) * 2020-11-14 2022-05-27 公安部交通管理科学研究所 一种结合历史数据的快速路交通流溯源及匝道调控方法
CN112447051A (zh) * 2020-11-16 2021-03-05 公安部交通管理科学研究所 面向快速路常发拥堵点段的多模式协同控制方法及系统
CN112885085B (zh) * 2021-01-15 2022-04-29 北京航空航天大学 一种应用于改扩建高速公路施工区的合流控制策略
CN112837544B (zh) * 2021-01-21 2022-03-22 中国第一汽车股份有限公司 一种停车场汇流交叉口车辆通行控制装置及控制方法
CN113506452B (zh) * 2021-06-23 2022-08-09 同济大学 一种基于车群事故风险的快速路多匝道协同控制方法
CN114613125B (zh) * 2021-12-16 2023-04-28 浙江中控信息产业股份有限公司 一种快速路多匝道分层协同控制方法
CN114446061B (zh) * 2022-02-10 2024-01-05 上海市城市建设设计研究总院(集团)有限公司 道岔式匝道合流控制装置
CN114999187B (zh) * 2022-06-01 2023-08-01 宁波崛马信息科技有限公司 一种基于感应反馈的匝道入口信号协调控制方法
CN117079480B (zh) * 2023-10-13 2024-01-09 之江实验室 一种快速路上匝道交通信号灯的控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299298A (zh) * 2008-06-30 2008-11-05 上海电科智能系统股份有限公司 一种道路自适应入口匝道汇入控制设备与方法
CN101789183A (zh) * 2010-02-10 2010-07-28 北方工业大学 一种入口匝道的自适应控制系统及方法
CN101958049A (zh) * 2010-09-21 2011-01-26 隋亚刚 城市快速路匝道出口与相邻交叉路口信号灯联动控制系统
CN102542787A (zh) * 2010-12-30 2012-07-04 同济大学 城市快速路入口匝道柔性控制系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150481A (ja) * 2000-11-14 2002-05-24 Mitsubishi Electric Corp 下位装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299298A (zh) * 2008-06-30 2008-11-05 上海电科智能系统股份有限公司 一种道路自适应入口匝道汇入控制设备与方法
CN101789183A (zh) * 2010-02-10 2010-07-28 北方工业大学 一种入口匝道的自适应控制系统及方法
CN101958049A (zh) * 2010-09-21 2011-01-26 隋亚刚 城市快速路匝道出口与相邻交叉路口信号灯联动控制系统
CN102542787A (zh) * 2010-12-30 2012-07-04 同济大学 城市快速路入口匝道柔性控制系统及方法

Also Published As

Publication number Publication date
CN104103180A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
CN104103180B (zh) 城市快速路入匝道与主线协同信号控制系统及方法
CN104778845B (zh) 多相位跳变和车辆全动态诱导交通控制方法
CN103186984B (zh) 一种城市交叉口可变导向车道转向功能变换触发方法
CN103680157B (zh) 一种面向城市瓶颈路段的车辆排队溢流预判方法
CN103280113B (zh) 一种自适应的交叉口信号控制方法
CN102568215B (zh) 一种基于检测器的车辆排队检测方法
CN103985261B (zh) 基于车辆排队长度测算的交通信号灯控制方法及系统
CN104036646B (zh) 交叉口信号配时时段的划分方法
CN104575038B (zh) 一种考虑多路公交优先的交叉口信号控制方法
CN103700251B (zh) 一种快速道路上可变限速与匝道控制协调优化控制方法
CN106251655B (zh) 一种基于出口剩余容量约束的交叉口信号控制方法
CN100495471C (zh) 城市交通信号控制系统中检测器的布设方法
CN104575034B (zh) 一种基于卡口数据的单点交叉口信号配时参数优化方法
CN103531031A (zh) 一种基于交通干线软封闭区视频检测识别实现绿波带通行控制的研究
CN201278215Y (zh) 一种道路自适应入口匝道汇入控制设备
CN103236164B (zh) 一种保障公交车辆优先通行的车辆调控方法
CN107610486A (zh) 一种高速公路收费系统与衔接信号交叉口的协调控制系统
CN101299298A (zh) 一种道路自适应入口匝道汇入控制设备与方法
CN107085951A (zh) 一种交叉口进口道直左共用可变车道预信号控制方法
CN104269066A (zh) 一种信号交叉路口过饱和状态判别方法
CN205050347U (zh) 一种基于plc控制的智能延时交通信号灯系统
CN103514747A (zh) 一种公路交叉道口交通信号灯的智能控制方法
CN104318787B (zh) 一种提高搭接相位交叉口空间资源利用效率的方法
CN104778844B (zh) 一种高速公路封闭施工区域借道通行的交通信号控制方法
CN105336183A (zh) 一种基于路段通行能力的交通拥堵控制方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant