WO2014061507A1 - 建設機械の油圧駆動装置 - Google Patents

建設機械の油圧駆動装置 Download PDF

Info

Publication number
WO2014061507A1
WO2014061507A1 PCT/JP2013/077364 JP2013077364W WO2014061507A1 WO 2014061507 A1 WO2014061507 A1 WO 2014061507A1 JP 2013077364 W JP2013077364 W JP 2013077364W WO 2014061507 A1 WO2014061507 A1 WO 2014061507A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
oil passage
hydraulic
valves
Prior art date
Application number
PCT/JP2013/077364
Other languages
English (en)
French (fr)
Inventor
圭文 竹林
高橋 究
和繁 森
夏樹 中村
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US14/423,868 priority Critical patent/US9828746B2/en
Priority to JP2014542065A priority patent/JP5984164B2/ja
Priority to KR1020157005180A priority patent/KR101719676B1/ko
Priority to EP13847113.1A priority patent/EP2910797B1/en
Priority to CN201380044896.7A priority patent/CN104603468B/zh
Publication of WO2014061507A1 publication Critical patent/WO2014061507A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a hydraulic drive device for a construction machine such as a hydraulic excavator, and in particular, performs load sensing control of the discharge flow rate of the hydraulic pump so that the discharge pressure of the hydraulic pump is higher than the maximum load pressure of a plurality of actuators by a target differential pressure.
  • the present invention relates to a hydraulic drive device for a construction machine.
  • Some hydraulic drive devices for construction machines such as hydraulic excavators control the discharge flow rate of the hydraulic pump so that the discharge pressure of the hydraulic pump (main pump) is higher than the maximum load pressure of multiple actuators by the target differential pressure, This control is called load sensing control.
  • load sensing control In the hydraulic drive device that performs this load sensing control, the differential pressure across the plurality of flow control valves is held at a predetermined differential pressure by the pressure compensation valve, and the load pressure of each actuator is controlled during the combined operation of simultaneously driving the plurality of actuators.
  • pressure oil can be supplied to a plurality of actuators at a ratio corresponding to the opening area of each flow control valve.
  • the load sensing differential pressure decreases depending on the degree of saturation.
  • the target compensation differential pressure of the pressure compensation valve that is, the differential pressure across the flow control valve
  • the discharge flow rate of the hydraulic pump can be redistributed to the ratio of the required flow rate by each actuator.
  • the pressure compensation valve of the hydraulic drive device that performs load sensing control is normally configured to operate in the direction of decreasing the opening area and fully close when the spool reaches the stroke end, as described in Patent Document 1. Yes.
  • JP 2007-24103 A Japanese Patent Laid-Open No. 7-78661
  • the flow control valve of the flow control valve can be operated regardless of the load pressure during the combined operation of simultaneously driving a plurality of actuators.
  • Pressure oil can be supplied to a plurality of actuators at a ratio corresponding to the opening area.
  • a spare actuator provided in an attachment such as a crusher used in exchange for a bucket has a high load pressure, and is driven simultaneously with other actuators (eg, boom, arm, bucket hydraulic cylinder).
  • other actuators eg, boom, arm, bucket hydraulic cylinder.
  • An object of the present invention is to prevent the pressure compensation valve on the low load pressure side from closing when a saturation occurs in a composite operation in which the difference in load pressure between two actuators is large in a hydraulic drive device that performs load sensing control. Prevents deceleration and stop of the actuator on the low load pressure side, and if saturation occurs due to a combined operation that makes the difference between the load pressures of the two actuators particularly large, apply the required amount of pressure oil to the actuator on the high load pressure side.
  • the object is to provide a hydraulic drive device for a construction machine that is secured to prevent deceleration and stop of a high load pressure side actuator and to obtain good composite operability.
  • the present invention provides a variable displacement hydraulic pump, a plurality of actuators driven by pressure oil discharged from the hydraulic pump, and the hydraulic pump supplied to the plurality of actuators.
  • a plurality of operations including a plurality of flow control valves for controlling the flow rate of the pressure oil and a remote control valve provided corresponding to the plurality of actuators and generating an operation pilot pressure for driving the plurality of flow control valves.
  • the plurality of actuators include a specific actuator that is on a high load pressure side in a combined operation that is driven simultaneously with other actuators, and the pressures of the other actuators
  • the passage area of the oil passage portion is reduced when a specific operation device corresponding to the specific actuator among the plurality of operation devices is operated in either the upstream or downstream oil passage portion of the compensation valve. It is assumed that a switching valve is provided.
  • the plurality of pressure compensation valves are respectively arranged in a plurality of parallel oil passages branched from a supply oil passage connected to the hydraulic pump, and the oil passage portion where the switching valve is arranged is, for example, the plurality of parallel oil passages It is a parallel oil passage where the pressure compensation valve of other actuators is arranged.
  • the oil passage portion in which the switching valve is disposed may be a portion of the supply oil passage, and may be an oil passage portion upstream of the branch position of the parallel oil passage in which the pressure compensation valve of another actuator is disposed. .
  • FIG. 1 is an enlarged view showing an operation device and a pilot circuit portion of a hydraulic drive device for a hydraulic excavator according to a first embodiment of the present invention. It is a figure which shows the external appearance of the hydraulic shovel which is a construction machine. It is a figure which shows the relationship between the lever operation amount and operating pilot pressure (hydraulic signal) of the operating device for driving
  • FIG. 2 shows the external appearance of the hydraulic excavator.
  • a hydraulic excavator well known as a work machine includes an upper swing body 300, a lower traveling body 301, and a swing type front work machine 302.
  • the front work machine 302 includes a boom 306, an arm 307, The bucket 308 is configured.
  • the upper swing body 300 can swing the lower traveling body 301 by the rotation of the swing motor 7.
  • a swing post 303 is attached to the front portion of the upper swing body 300, and a front work machine 302 is attached to the swing post 303 so as to be movable up and down.
  • the swing post 303 can be rotated in the horizontal direction with respect to the upper swing body 300 by expansion and contraction of the swing cylinder 9 (see FIG. 1).
  • FIG. 1A shows a hydraulic drive device for a hydraulic excavator according to the first embodiment of the present invention.
  • the control valve 4 is connected to the supply oil passage 2a of the main pump 2, and has a plurality of valve sections 13, 14, 15, 16, 17 for controlling the direction and flow rate of the pressure oil supplied from the main pump 2 to each actuator. , 18, 19, 20 and a plurality of actuators 5, 6, 7, 8, 9, 10, 11, 12 to select the highest load pressure (hereinafter referred to as the maximum load pressure) PLmax and signal oil
  • a plurality of shuttle valves 22 a, 22 b, 22 c, 22 d, 22 e, 22 f, and 22 g that are output to the passage 21 are connected to the supply oil passage 4 a that is connected to the supply oil passage 2 a of the main pump 2.
  • a main relief valve 23 that limits the maximum discharge pressure (maximum pump pressure) and a pilot hydraulic pressure source 33 (described later), and signals the pressure in the supply oil passage 4a and the signal oil passage 21.
  • the pressure is input as a pressure, and is connected to a differential pressure reducing valve 24 that outputs a differential pressure PLS between the discharge pressure (pump pressure) Pd of the main pump 2 and the maximum load pressure PLmax as an absolute pressure, and a supply oil passage 4a in the valve,
  • the pressure of the oil passage 4a and the signal oil passage 21 is input as a signal pressure, and when the differential pressure PLS between the pump pressure Pd and the maximum load pressure PLmax exceeds a certain value set by the spring 25a, the discharge of the main pump 2
  • An unload valve 25 is provided that returns a part of the flow rate to the tank T and keeps the differential pressure PLS below a predetermined value set by the spring 25a.
  • the outlet sides of the unload valve 25 and the main relief valve 23 are connected to a tank oil
  • the pressure compensation valves 27a to 27h are respectively connected to a plurality of parallel oil passages 41a to 41f branched from the in-valve supply oil passage 4a connected to the supply oil passage 2a of the main pump 2 on the upstream side of the flow control valves 26a to 26h. Has been placed.
  • the flow control valves 26a to 26h control the direction and flow rate of the pressure oil supplied from the main pump 2 to the actuators 5 to 12, respectively.
  • the pressure compensation valves 27a to 27h are differential pressures before and after the flow control valves 26a to 26h. To control each.
  • the pressure compensating valves 27a to 27h have valve-opening side pressure receiving portions 28a, 28b, 28c, 28d, 28e, 28f, 28g, and 28h for setting a target differential pressure.
  • the pressure receiving portions 28a to 28h include a differential pressure reducing valve 24.
  • the target compensation differential pressure is set by the absolute pressure of the differential pressure PLS between the hydraulic pump pressure Pd and the maximum load pressure PLmax (hereinafter referred to as the absolute pressure PLS).
  • the absolute pressure PLS the absolute pressure of the differential pressure PLS between the hydraulic pump pressure Pd and the maximum load pressure PLmax
  • Control is performed so as to be equal to the differential pressure PLS with respect to the load pressure PLmax.
  • the discharge flow rate of the main pump 2 is distributed according to the opening area ratio of the flow rate control valves 26a to 26h regardless of the load pressure of the actuators 5 to 12. Combined operability can be ensured.
  • the differential pressure PLS decreases according to the degree of supply shortage, and the pressure compensation valves 27a to 27h control accordingly.
  • the discharge flow rate of the main pump 2 can be distributed to ensure composite operability.
  • the hydraulic drive device is connected to the supply oil passage 3 a of the pilot pump 3, and outputs the absolute pressure according to the discharge flow rate of the pilot pump 3, and the downstream side of the engine speed detection valve 30.
  • a pilot hydraulic pressure source 33 having a pilot relief valve 32 that keeps the pressure of the pilot oil passage 31 constant, and a flow rate that is connected to the pilot oil passage 31 and uses the pressure of the pilot hydraulic pressure source 32 as an original pressure (pilot primary pressure).
  • Operating pilot pressures (pilot secondary pressures) a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p for operating the control valves 26a to 26h
  • Operating device 34a provided with remote control valves 34a-2, 34b-2, 34c-2, 34d-2, 34e-2, 34f-2, 34g-2, 34h-2 (see FIG. 1B) 34b, and includes 34c, 34d, 34e, 34f, 34g, and 34h.
  • the engine speed detection valve 30 includes a throttle element (fixed throttle part) 30f provided in an oil path connecting the supply oil path 3a of the pilot pump 3 to the pilot oil path 31, and a flow rate connected in parallel to the throttle element 30f. It has a detection valve 30a and a differential pressure reducing valve 30b.
  • the input side of the flow rate detection valve 30 a is connected to the supply oil passage 3 a of the pilot pump 3, and the output side of the flow rate detection valve 30 a is connected to the pilot oil passage 31.
  • the flow rate detection valve 30a has a variable throttle portion 30c that increases the opening area as the passing flow rate increases, and the discharge oil of the pilot pump 3 passes through both the throttle element 30f and the variable throttle portion 30c of the flow rate detection valve 30a.
  • a differential pressure increases and decreases as the passing flow rate increases in the throttle element 30f and the variable throttle portion 30c of the flow rate detection valve 30a, and the differential pressure reducing valve 30b outputs the differential pressure as the absolute pressure Pa.
  • the discharge flow rate of the pilot pump 3 varies depending on the rotation speed of the engine 1
  • the discharge flow rate of the pilot pump 3 can be detected by detecting the differential pressure across the throttle element 30f and the variable throttle portion 30c. The number of rotations can be detected.
  • the variable throttle portion 30c increases the opening area as the passing flow rate increases (as the front-rear differential pressure increases), so that the degree of increase in the front-rear differential pressure becomes milder as the passing flow rate increases. It is configured as follows.
  • the main pump 2 is a variable displacement hydraulic pump, and includes a pump control device 35 for controlling the tilt angle (capacity) thereof.
  • the pump control device 35 includes a pump torque control unit 35A and an LS control unit 35B.
  • the pump torque control unit 35A includes a torque control tilt actuator 35a, and the torque control tilt actuator 35a is configured so that the tilt angle (capacity) of the main pump 2 decreases as the discharge pressure of the main pump 2 increases.
  • the swash plate (capacity variable member) 2s is driven, and the input torque of the main pump 2 is limited so as not to exceed the preset maximum torque. Thereby, the horsepower consumption of the main pump 2 is limited, and the stop (engine stall) of the engine 1 due to overload is prevented.
  • the LS control unit 35B includes an LS control valve 35b and an LS control tilt actuator 35c.
  • the LS control valve 35b has pressure receiving portions 35d and 35e facing each other, and the pressure receiving portion 35d receives the absolute pressure Pa generated by the differential pressure reducing valve 30b of the engine speed detection valve 30 via the oil passage 40.
  • the absolute pressure PLS (the differential pressure PLS between the discharge pressure Pd of the main pump 2 and the maximum load pressure PLmax) generated by the differential pressure reducing valve 24 in the pressure receiving portion 35e is guided as a target differential pressure (target LS differential pressure). Guided as feedback differential pressure.
  • the absolute pressure PLS becomes higher than the absolute pressure Pa (PLS> Pa)
  • the LS control valve 35b guides the pressure of the pilot hydraulic source 33 to the LS control tilt actuator 35c, and the absolute pressure PLS becomes lower than the absolute pressure Pa.
  • the LS control tilt actuator 35c is communicated with the tank T.
  • the LS control tilt actuator 35c drives the swash plate 2s of the main pump 2 so that the tilt angle of the main pump 2 decreases when the pressure of the pilot hydraulic power source 33 is guided.
  • the swash plate 2s of the main pump 2 is driven so as to increase the tilt angle.
  • the tilt angle (capacity) of the main pump 2 is controlled so that the discharge pressure Pd of the main pump 2 becomes higher than the maximum load pressure PLmax by the absolute pressure Pa (target differential pressure).
  • the set pressure of the spring 25a of the unload valve 25 is the absolute pressure Pa (target differential pressure for load sensing control) generated by the differential pressure reducing valve 30b of the engine speed detecting valve 30 when the engine 1 is at the rated maximum speed. ) Is set to be slightly higher.
  • FIG. 1B is an enlarged view of the operation devices 34a, 34b, 34c, 34d, 34e, 34f, 34g, and 34h and their pilot circuit portions.
  • the operating device 34a has an operating lever 34a-1 and a remote control valve 34a-2, and the remote control valve 34a-2 includes a pair of pressure reducing valves PVa and PVb.
  • the pressure reducing valve PVa of the remote control valve 34a-2 is activated to generate an operation pilot pressure a having a magnitude corresponding to the operation amount of the operation lever 34a-1
  • the operation lever 34a When -1 is operated in the left direction in the figure, the pressure reducing valve PVb of the remote control valve 34a-2 is activated to generate an operating pilot pressure b having a magnitude corresponding to the operating amount of the operating lever 34a-1.
  • the operating pilot pressures d, f, h, j, l having magnitudes corresponding to the operating amounts of the levers 34b-1, 34c-1, 34d-1, 34e-1, 34f-1, 34g-1, 34h-1 n and p are generated.
  • the switching valves 100f, 100g, and 100h each have two positions, a fully open communication position and a throttle position that reduces the opening area.
  • the fully open position on the left side of the drawing is illustrated.
  • the throttle position on the right side of the figure is switched.
  • the switching valves 100f, 100g, and 100h are respectively switched to the throttle positions, thereby reducing the passage areas of the parallel oil passages 41f, 41g, and 41h that are the oil passage portions on the upstream side of the pressure compensation valves 27f, 27g, and 27h. .
  • the hydraulic drive device further includes an operation detection device 43 that detects the operation of the travel operation devices 34a and 34b.
  • the operation detection device 43 includes shuttle valves 48a, 48b, and 48c that detect an operation pilot pressure (traveling operation pilot pressure) generated by the traveling operation devices 34a and 34b and output the detected operation pilot pressure as a hydraulic pressure signal. (See FIG. 1B).
  • the switching valves 100f, 100g, and 100h are hydraulic switching valves that are switched by the hydraulic signal (operating pilot pressure for traveling), and the hydraulic signals are guided to the pressure receiving portions 101f, 101g, and 101h of the switching valves 100f, 100g, and 100h. .
  • FIG. 3A is a diagram showing the relationship between the lever operation amount of the operation devices 34a and 34b and the operation pilot pressure (hydraulic signal), and FIG. 3B shows the operation pilot pressure and the flow control valve 26a. It is a figure which shows the relationship between the opening area of meter-in and meter-out of 26b, and FIG. 3C is a figure which shows the relationship between the operation pilot pressure and the opening area of switching valve 100f, 100g, 100h.
  • the operation pilot pressure increases from the minimum pressure Ppmin to the maximum pressure Ppmax (FIG. 3A), and the meter-in and meter-out opening areas of the flow control valves 26a and 26b increase as the operation pilot pressure increases. It increases from zero to a maximum Amax (FIG. 3B).
  • Xa in FIG. 3A is a switching lever operation amount of the switching valves 100f, 100g, and 100h
  • Ppa and Aa-in in FIGS. 3A to 3C are an operation pilot pressure and a meter-in opening area corresponding to the switching lever operation amount Xa
  • A100-max is an opening area when the switching valves 100f, 100g, and 100h are in the communication position
  • A100-lim is an opening area when the switching valves 100f, 100g, and 100h are in the throttle position.
  • the travel operation pilot pressure is not generated, so that the switching valves 100f, 100g, and 100h are in the communication positions on the left side in the drawing. .
  • the opening areas of the switching valves 100f, 100g, and 100h are A100-max.
  • the oil discharged from the main pump 2 is supplied to the supply oil passages 2a and 4a, and the pressure in the supply oil passages 2a and 4a increases.
  • the supply oil passage 4a is provided with an unload valve 25.
  • the pressure in the supply oil passage 2a becomes higher than the maximum load pressure PLmax (in this case, the tank pressure) by more than the set pressure of the spring 25a.
  • the pressure oil in the supply oil passage 2a is returned to the tank in an open state, and the increase in the pressure in the supply oil passage 2a is restricted. Thereby, the discharge pressure of the main pump 2 is controlled to the minimum pressure Pmin.
  • the differential pressure reducing valve 24 outputs a differential pressure PLS between the discharge pressure Pd of the main pump 2 and the maximum load pressure PLmax (in this case, tank pressure) as an absolute pressure.
  • the output pressure of the engine speed detection valve 30 and the output pressure of the differential pressure reducing valve 24 are guided to the LS control valve 35b of the LS control unit 35B of the main pump 2, and the discharge pressure of the main pump 2 increases.
  • the LS control valve 35b is switched to the right position in the figure, and the pressure of the pilot hydraulic power source 33 is applied to the LS control tilt actuator 35c. It is guided and controlled so that the tilt angle of the main pump 2 becomes small.
  • the main pump 2 is provided with a stopper (not shown) that defines the minimum tilt angle, the main pump 2 is held at the minimum tilt angle qmin defined by the stopper, and the minimum flow rate is maintained. Qmin is discharged.
  • the load pressure of the boom cylinder 10 is detected as the maximum load pressure by the shuttle valves 22a to 22g and transmitted to the differential pressure reducing valve 24 and the unload valve 25.
  • the flow control valves 26f and 26g are switched.
  • the pressure oil is supplied to the boom cylinder 10 and the arm cylinder 11, and the boom cylinder 10 and the arm cylinder 11 are driven.
  • the higher pressure of the load pressures of the boom cylinder 10 and the arm cylinder 11 is detected as the maximum load pressure PLmax by the shuttle valves 22a to 22g and transmitted to the differential pressure reducing valve 24 and the unloading valve 25.
  • the output pressure of the engine speed detection valve 30 and the output pressure of the differential pressure reducing valve 24 are guided to the LS control valve 35b of the LS control unit 35B of the main pump 2, and the boom cylinder 10 is driven independently.
  • the discharge pressure of the main pump 2 pressure in the supply oil passages 2a and 4a
  • the output pressure (target differential pressure) of the engine speed detection valve 30 So-called load sensing control is performed in which the flow rate required by the flow rate control valves 26f and 26g is supplied to the boom cylinder 10 and the arm cylinder 11.
  • the output pressure of the differential pressure reducing valve 24 is guided to the pressure compensating valves 27a to 27h as the target compensating differential pressure, and the pressure compensating valves 27f and 27g use the differential pressure before and after the flow control valves 26f and 26g to the main pump 2. Control is made to be equal to the differential pressure between the discharge pressure and the maximum load pressure PLmax. As a result, pressure oil is supplied to the boom cylinder 10 and the arm cylinder 11 at a ratio corresponding to the opening area of the meter-in throttle portions of the flow control valves 26f and 26g regardless of the load pressure of the boom cylinder 10 and the arm cylinder 11. Can do.
  • the pressure compensation valves 27a to 27h are configured not to be fully closed at the stroke end in the direction of decreasing the opening area (left direction in the drawing), the other is operated during the operation of one of the boom cylinder 10 and the arm cylinder 11. Even if saturation occurs due to the combined operation, and the pressure compensation valve on the low load side moves greatly in the direction of decreasing the opening area, the pressure compensation valve on the low load pressure side is prevented from closing and the pressure oil is completely shut off Therefore, it is possible to prevent the actuator on the low load pressure side from being decelerated and stopped.
  • the flow control valve 26g is switched and the arm cylinder 11 is switched. Also, pressure oil is supplied to drive the arm cylinder 11.
  • the pressure compensation valve is a type of pressure compensation valve that does not fully close at the stroke end in the direction of decreasing the opening area
  • another driven member for example, boom, arm, bucket
  • the pressure compensation valve of low-load actuators such as boom cylinders, arm cylinders, and bucket cylinders, which have a lower load pressure than the traveling motor, will open even when the stroke end is reached. Therefore, all the discharge flow rate of the hydraulic pump flows through the low-load actuator, and traveling may be decelerated and stopped.
  • the switching valves 100f and 100g are operated.
  • 100h are switched to the throttle position on the right side of the drawing, and the passage areas of the parallel oil passages 41f, 41g, 41h, which are the oil passage portions upstream of the pressure compensation valves 27f, 27g, 27h, are reduced.
  • the switching lever operation amount Xa of the switching valves 100f, 100g, and 100h is set as a value near the maximum operation amount Full, the lever operation amount in the low-speed traveling combined operation on the flat ground. Is less than Xa, and when the operating levers 34a-1, 34b-1 of the operating devices 34a, 34b for traveling are operated, the switching valves 100f, 100g, 100h are not switched to the throttle position, and the boom cylinder 10, the arm cylinder 11 The pressure oil flow rate supplied to the bucket cylinder 12 is not suppressed. As a result, the movement of the front work machine 302 is delayed, and workability is prevented from being lowered.
  • the switching lever operation amount Xa of the switching valves 100f, 100g, and 100h is set as a value near the maximum operation amount Full, the movement of the front work machine 302 is not slow in the low-speed traveling combined operation on a flat ground, and the workability is improved. A decrease can be prevented.
  • the switching valves 100f, 100g, and 100h are arranged in the parallel oil passages 41f, 41g, and 41h, when the operation levers 34a-1 and 34b-1 of the travel operation devices 34a and 34b are operated, the parallel oil passages 41f, Since the flow rate of pressure oil supplied only to the actuators corresponding to 41g and 41h (boom cylinder 10, arm cylinder 11, bucket cylinder 12) is suppressed, and the flow rate of pressure oil supplied to other actuators is not suppressed, The combined operation of driving the travel motors 5 and 6 and the other actuators can prevent a decrease in operability due to a decrease in the speed of the other actuators.
  • the hydraulic drive device in the parallel oil passages 41f, 41g, 41h in which the pressure compensating valve 27f for the boom, the pressure compensating valve 27g for the arm, and the pressure compensating valve 27h for the bucket are arranged.
  • the switching valves 100f, 100g, and 100h are arranged, the hydraulic drive device according to the present embodiment is an oil passage portion of the supply oil passage 4a connected to the supply oil passage 2a of the main pump 2, and is used for the boom.
  • a valve 100 is arranged.
  • the switching valve 100 like the switching valves 100f, 100g, and 100h, has two positions, a fully open communication position and a throttle position with a reduced opening area, and when the travel operation devices 34a and 34b are not operated.
  • a hydraulic signal operating pilot pressure for traveling
  • the switching valve 100 is switched to the throttle position, the passage area of the oil passage portion 42 is reduced, and the passage flow rates of the flow control valves 26f, 26g, and 26h are limited.
  • the flow rate of the pressure oil supplied to the plurality of actuators by one switching valve 100 is suppressed, and the above-described effect can be obtained. Therefore, the number of components can be reduced and the effect can be obtained at a lower cost. be able to.
  • FIG. 5 shows a hydraulic drive device for a hydraulic excavator according to a third embodiment of the present invention.
  • the same components as those shown in FIG. The present embodiment is different from the first embodiment in the switching method of the switching valve provided in the oil passage portion on the upstream side of the pressure compensation valve.
  • the hydraulic drive apparatus in the present embodiment includes electromagnetic switching valves 46f, 46g, 46h and a controller 71 instead of the hydraulic switching valves 100f, 100g, 100h in the first embodiment, and an operation detection device.
  • a pressure for detecting an operation pilot pressure generated by the remote control valves 34a and 34b of the travel operation device among a plurality of operation devices and outputting an electric signal A sensor 72 is provided.
  • the electrical signal of the pressure sensor 72 is input to the controller 71, and the controller 71 calculates an operation pilot pressure from the electrical signal.
  • the operation pilot pressure exceeds Ppa (see FIG. 3A)
  • the drive signal is transmitted to the electromagnetic switching valves 46f and 46g. , 46h.
  • the electromagnetic switching valves 46f, 46g, 46h are in the communication position on the left side of the figure when the operating devices (specific operating devices) 34a, 34b for driving are not operated and no drive signal is output from the controller 71, When the operation devices 34a and 34b are operated and a drive signal is output from the controller 71, the control device switches to the aperture position on the right side of the figure.
  • the electromagnetic switching valves 46f, 46g, and 46h are switched to the throttle positions to reduce the passage areas of the parallel oil passages 41f, 41g, and 41h, and the flow rates of the flow control valves 26f, g, and h are limited.
  • the switching valves 100f, 100g, and 100h in FIG. 1 are replaced with electromagnetic switching valves.
  • the switching valve 100 in FIG. 4 is replaced with an electromagnetic switching valve, and the same pressure as in this embodiment is used. It is also possible to provide a sensor and a controller so that the electromagnetic switching valve is switched by an electrical signal from the controller.
  • FIG. 6 shows a hydraulic drive device for a hydraulic excavator according to a fourth embodiment of the present invention.
  • the configuration for guiding the traveling pilot pressure to the switching valves 100f, 100g, and 100h is different from that of the first embodiment.
  • the hydraulic drive device further includes a manual selection device 81 that can be switched between the first position and the second position.
  • the manual selection device 81 is, for example, a switch that outputs an electrical signal corresponding to the switching position.
  • the hydraulic pressure signal detected by the operation detection device 43 is disposed in the oil passage 48 that guides the hydraulic pressure signals detected by the operation detection device 43 to the pressure receiving portions 101f, 101g, and 101h of the switching valves 100f, 100g, and 100h.
  • an electromagnetic switching valve 83 that operates based on the electrical signal from is provided.
  • the electromagnetic switching valve 83 When the manual selection device 81 is in the first position and no electrical signal is output, the electromagnetic switching valve 83 is in the first position on the lower side in the figure, and in this first position, the hydraulic signal detected by the operation detection device 43. Can be guided to the pressure receiving portions 101f, 101g, 101h of the switching valves 100f, 100g, 100h, the manual selection device 81 is switched to the second position, and an electric signal is output to the solenoid 83a of the electromagnetic switching valve 83. To the second position on the upper side of the figure so that the hydraulic signal detected by the operation detection device 43 is not guided to the pressure receiving portions 101f, 101g, 101h of the switching valves 100f, 100g, 100h.
  • the manual selection device 81 when the manual selection device 81 is switched to the second position, the supply of pressure oil by the switching valves 100f, 100g, 100h when the operation devices (specific operation devices) 34a, 34b for traveling are operated is suppressed.
  • the function becomes invalid, and even when the traveling combined operation is performed, the pressure oil is not suppressed for the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12, and the conventional operation becomes possible.
  • FIG. 7 shows a hydraulic drive device for a hydraulic excavator according to a fifth embodiment of the present invention.
  • the switching valve disposed in the oil passage portion on the upstream side of the pressure compensation valve supplies not only the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 but also the blade cylinder 8 by a traveling combined operation.
  • the flow rate to be controlled can be suppressed.
  • the switching valve 100d has two positions, that is, a fully open communication position and a throttle position that reduces the opening area, and when the traveling operation devices 34a and 34b are not operated.
  • the hydraulic signal traveling operation pilot pressure
  • the passage area of the parallel oil passage 41d decreases, and the passage flow rate of the flow control valve 26d is limited.
  • the pressure compensating valve is a type of pressure compensating valve that does not fully close at the stroke end in the direction of decreasing the opening area. Since the pressure oil flows, the running is decelerated and a shock is produced sensibly and the operation feeling is impaired.
  • the flow rate of the pressure oil supplied to the blade cylinder 8 is the same as when the operation lever of any one of the operation devices of the boom, arm, and bucket is operated for the front operation during traveling. Since it is suppressed by the switching valve 100d, a necessary amount of pressure oil to the traveling motors 5 and 6 is ensured, the traveling deceleration is prevented, and the operation feeling can be improved.
  • FIG. 8 shows a hydraulic drive device for a hydraulic excavator according to the fifth embodiment of the present invention.
  • the same components as those shown in FIG. by changing the arrangement position of the switching valve in the second embodiment shown in FIG. 4, not only the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12, but also all the actuators 7 other than traveling The flow rate supplied by the traveling combined operation to ⁇ 12 can be suppressed.
  • the travel operation pilot pressure is generated so that the switching valve 100A is switched to the throttle position on the lower side in the figure.
  • the passage flow rate of the flow control valves 26d to 26h is limited, the pressure oil supplied to all the actuators 7 to 12 of the actuators other than the traveling is suppressed. Therefore, the necessary amount of pressure oil to the travel motors 5 and 6 in the travel combined operation is secured for all the actuators 7 to 12 other than the travel, so that the travel is prevented from being stopped and good composite operability is achieved. Obtainable.
  • FIG. 9A is another example of the switching valve disposed in the parallel oil passage 41f and the like
  • FIG. 9B is a switching disposed in the oil passage portion 42 of the supply oil passage 4a connected to the supply oil passage 2a of the main pump 2.
  • the bypass oil passage 48 or 49 is provided in the oil passage portion 42 of the parallel oil passage 41f or the supply oil passage 4a, and the passage area of the bypass oil passage 48 or 49 is set to the parallel oil passage 41f or the supply oil passage.
  • 4a is made smaller than the passage area of the oil passage portion 42, and the bypass oil passage 48 or 49 is made to have the same throttle effect as when the switching valve 100f is in the throttle position.
  • the switching valve 101fB or 100B has two positions, a fully open communication position and a fully closed close position, and is in a fully open communication position when the travel operation devices 34a and 34b are not operated.
  • the operation devices 34a and 34b are operated, the operation devices 34a and 34b are switched to the closed position.
  • the switching valve 101fB or 100B is switched to the closed position, the upstream and downstream portions of the switching valve 101fB or 100B of the parallel oil passage 41f or the oil passage portion 42 communicate with only the bypass oil passage 48 or 49 having a throttling effect.
  • the switching valve 101fB or 100B can reduce the passage area of the parallel oil passage 41f or the oil passage portion 42 of the supply oil passage 4a when a specific operation device is operated, and the switching valve 100f or the like The same effect as when the switching valve 100 or the like is used can be obtained.
  • the specific actuator is a travel motor
  • a hydraulic drive apparatus including a pressure compensation valve that does not fully close at the stroke end in the opening area decreasing direction, If saturation occurs due to a compound operation that makes the load pressure difference particularly large, the actuator may be stopped because the majority of the discharge flow rate of the main pump is taken away by the actuator on the low load pressure side
  • a reserve actuator provided in an attachment such as a crusher often has a high load pressure.
  • the construction machine is a hydraulic excavator
  • the present invention is applied to construction machines other than the hydraulic excavator (for example, a hydraulic crane, a wheeled excavator, etc.) to obtain the same effect. Can do.

Abstract

2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合に、低負荷圧側の圧力補償弁の閉じ切りを防止して低負荷圧側のアクチュエータの減速、停止を防止するとともに、2つのアクチュエータの負荷圧の差が特に大きくなる複合操作でサチュレーションが生じた場合に、高負荷圧側のアクチュエータへの必要な量の圧油を確保して高負荷圧側アクチュエータの減速、停止を防止するため、並列油路41f,41g,41hのそれぞれに、走行用の操作装置34a,34bが操作されたときに並列油路41f,41g,41hの通路面積を減少させる切換弁100f,100g,100hを配置する。

Description

建設機械の油圧駆動装置
 本発明は、油圧ショベル等の建設機械の油圧駆動装置に係わり、特に、油圧ポンプの吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量をロードセンシング制御する建設機械の油圧駆動装置に関する。
 油圧ショベル等の建設機械の油圧駆動装置には、油圧ポンプ(メインポンプ)の吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量を制御するものがあり、この制御はロードセンシング制御と呼ばれている。このロードセンシング制御を行う油圧駆動装置では、複数の流量制御弁の前後差圧をそれぞれ圧力補償弁により所定差圧に保持し、複数のアクチュエータを同時に駆動する複合操作時にそれぞれのアクチュエータの負荷圧の大小に係わらず各流量制御弁の開口面積に応じた比率で圧油を複数のアクチュエータに供給できるようにしている。
 このようなロードセンシング制御を行う油圧駆動装置において、例えば特許文献1記載の油圧駆動装置では、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下ロードセンシング差圧という)を目標補償差圧として圧力補償弁の開口面積増加方向作動の受圧部に導き、圧力補償弁のそれぞれの目標補償差圧をロードセンシング差圧相当の同じ値に設定して、流量制御弁の前後差圧がそのロードセンシング差圧に保持されるようにしている。これにより複数のアクチュエータを同時に駆動する複合操作時に、油圧ポンプの吐出流量が不足する状態(以下サチュレーションという)が生じた場合でも、サチュレーションの程度に応じてロードセンシング差圧が低下する結果、複数の圧力補償弁の目標補償差圧(すなわち流量制御弁の前後差圧)が一律に小さくなり、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求流量の比に再分配することができる。
 また、ロードセンシング制御を行う油圧駆動装置の圧力補償弁は、通常、特許文献1に記載のように、開口面積減少方向に動作してスプールがストロークエンドに達すると全閉するように構成されている。
 これに対し、特許文献2には、開口面積減少方向に動作してスプールがストロークエンドに達しても、圧力補償弁が全閉しないように構成した油圧駆動装置が記載されている。
特開2007-24103号公報 特開平7-76861号公報
 しかしながら、上記従来技術には次のような問題がある。
 上述したように従来(例えば特許文献1記載)のロードセンシング制御を行う油圧駆動装置では、圧力補償弁を設けることで、複数のアクチュエータを同時に駆動する複合操作時に負荷圧に係わらず流量制御弁の開口面積に応じた比率で圧油を複数のアクチュエータに供給できるようにしている。
 また、特許文献1記載の油圧駆動装置では、ロードセンシング差圧を目標補償差圧として設定しているため、複数のアクチュエータを同時に駆動する複合操作時にサチュレーションが生じた場合でも、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配できるようにしている。
 しかし、特許文献1記載の油圧駆動装置では、圧力補償弁が開口面積減少方向のストロークエンドで全閉するように構成されているため、2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合は、低負荷圧側の圧力補償弁が極端に絞られたり閉じたりして、低負荷側のアクチュエータが減速、停止する可能性がある。
 特許文献2に記載の油圧駆動装置では、圧力補償弁は開口面積減少方向のストロークエンドで全閉しないように構成されているため、上記のような複合操作でサチュレーションが生じても、低負荷側の圧力補償弁が極端に絞られたり閉じ切ることが無く、低負荷側のアクチュエータが減速、停止することを防止することができる。
 しかし、特許文献2に記載の油圧駆動装置では、2つのアクチュエータの負荷圧の差が特に大きくなる複合操作でサチュレーションが生じた場合は、低負荷圧側のアクチュエータの圧力補償弁が閉じないため、低負荷圧側のアクチュエータにメインポンプの吐出油の大部分を奪われてしまい、高負荷圧側のアクチュエータが減速或いは停止してしまうという問題がある。
 例えば、登坂走行中にフロント作業機の姿勢を変えるためブーム、アーム、バケットのいずれかの油圧シリンダを駆動したときは、走行モータの負荷圧は極めて高く、走行モータとフロント作業機のアクチュエータの負荷圧の差が特に大きくなるため、低負荷側のアクチュエータであるフロント作業機のアクチュエータに油圧ポンプの吐出油が全て流れてしまい、走行が停止してしまうことがある。
 また、平地の走行であっても、走行中にブレードの姿勢を変えるためブレードを急操作した場合は、やはり走行モータとブレードシリンダの負荷圧の差は特に大きくなるため、低負荷側のアクチュエータであるブレードシリンダに油圧ポンプの吐出油の大部分が流れてしまい、走行が減速して操作フィーリングを損ねてしまう。
 走行モータ以外でも、例えばバケットと交換して使用される破砕機等のアタッチメントに備えられる予備のアクチュエータは負荷圧が高くなり、他のアクチュエータ(例えばブーム、アーム、バケットの油圧シリンダ)と同時に駆動される複合操作で負荷圧の差が特に大きくなるため、同様の問題を生じる。
 本発明の目的は、ロードセンシング制御を行う油圧駆動装置において、2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合に、低負荷圧側の圧力補償弁の閉じ切りを防止して低負荷圧側のアクチュエータの減速、停止を防止するとともに、2つのアクチュエータの負荷圧の差が特に大きくなる複合操作でサチュレーションが生じた場合に、高負荷圧側のアクチュエータへの必要な量の圧油を確保して高負荷圧側アクチュエータの減速、停止を防止し、良好な複合操作性が得られる建設機械の油圧駆動装置を提供することである。
 上記目的を達成するために、本発明は、可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される複数のアクチュエータと、前記油圧ポンプから前記複数のアクチュエータに供給される圧油の流量を制御する複数の流量制御弁と、前記複数のアクチュエータに対応して設けられ、前記複数の流量制御弁を駆動するための操作パイロット圧を生成するリモコン弁を備えた複数の操作装置と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記油圧ポンプの容量をロードセンシング制御するポンプ制御装置とを備え、前記複数の圧力補償弁は、開口面積減少方向のストロークエンドにおいて全閉しないタイプの圧力補償弁である建設機械の油圧駆動装置において、前記複数のアクチュエータは、他のアクチュエータと同時に駆動される複合操作において高負荷圧側となる特定のアクチュエータを含み、前記他のアクチュエータの圧力補償弁の上流側及び下流側のいずれかの油路部分に、前記複数の操作装置のうち前記特定のアクチュエータに対応する特定の操作装置が操作されたときに前記油路部分の通路面積を減少させる切換弁を配置したものとする。
 このように複数の圧力補償弁を、開口面積減少方向のストロークエンドにおいて全閉しないタイプの圧力補償弁とすることにより、2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合に、低負荷圧側の圧力補償弁の閉じ切りが防止され、低負荷圧側のアクチュエータの減速、停止を防止することができる。
 また、他のアクチュエータと同時に駆動される複合操作において高負荷圧側となるアクチュエータを特定のアクチュエータと定義するとき、他のアクチュエータの圧力補償弁の上流側及び下流側のいずれかの油路部分に、複数の操作装置のうち当該特定のアクチュエータに対応する特定の操作装置が操作されたときに前記油路部分の通路面積を減少させる切換弁を配置することにより、特定の操作装置が操作されたときは、切換弁が油路部分の通路面積を減少させる。これにより特定のアクチュエータと他のアクチュエータとの複合操作が負荷圧の差が特に大きくなる複合操作でありかつその複合操作でサチュレーションが生じた場合に、他のアクチュエータ(低負荷圧側のアクチュエータ)に供給される圧油の流量は抑制されるため、特定のアクチュエータ(高負荷圧側のアクチュエータ)への必要な量の圧油が確保され、特定のアクチュエータ(高負荷圧アクチュエータ)の減速或いは停止を防止し、良好な複合操作性が得られる。
 複数の圧力補償弁は、油圧ポンプに接続された供給油路から分岐する複数の並列油路にそれぞれ配置されており、切換弁が配置される油路部分は、例えば、当該複数の並列油路のうち他のアクチュエータの圧力補償弁が配置される並列油路である。
 これにより特定の操作装置が操作されたとき、並列油路に対応するアクチュエータのみに供給される圧油の流量が抑制され、それ以外のアクチュエータに供給される圧油の流量は抑制されないため、特定のアクチュエータとそれ以外のアクチュエータとの複合操作でそれ以外のアクチュエータの速度低下による操作性の低下を防止することができる。
 切換弁が配置される油路部分は、前記供給油路の一部分であって、他のアクチュエータの圧力補償弁が配置される並列油路の分岐位置より上流側の油路部分であってもよい。
 これにより他のアクチュエータが複数ある場合でも、1つの切換弁で複数のアクチュエータに供給される圧油の流量が抑制され、上述した効果が得られるため、構成部品数を抑え、より安価に効果を得ることができる。
 油圧駆動装置は、特定の操作装置の操作を検出する操作検出装置として、例えば、特定の操作装置のリモコン弁が生成する操作パイロット圧を検出して油圧信号として出力するシャトル弁を備え、この場合は、切換弁は当該油圧信号により切り換えられる油圧切換弁とすることができる。また、油圧駆動装置は、特定の操作装置のリモコン弁が生成する操作パイロット圧を検出して電気信号を出力する圧力センサを備え、切換弁は電気信号に基づいて動作する電磁切換弁であってもよい。
 また、油圧駆動装置は、第1位置と第2位置とに切り換え可能な手動選択装置と、手動選択装置が第1位置にあるときは、特定の操作装置が操作されたときの切換弁の前記油路部分の通路面積を減少させる機能を有効とし、手動選択装置が第2位置に切り換えられると、特定の操作装置が操作されたときの切換弁の前記油路部分の通路面積を減少させる機能を無効とする制御装置とを更に備えていてもよい。
 これによりオペレータの好みや作業の種類に応じて本発明の機能を利用するかどうかを自由に選択することができる。
 特定のアクチュエータは、例えば、建設機械の走行体を駆動する走行モータであり、他のアクチュエータは、例えば、建設機械のフロント作業機を動かす複数の油圧シリンダのいずれかか、ブレードを動かすブレードシリンダである。
 これにより上り坂の登坂走行中にフロント作業機の姿勢を変えるため複数の油圧シリンダのいずれかの油圧シリンダを駆動したときは、この油圧シリンダに供給される圧油の流量が切換弁により抑制されるため、走行モータへの必要な量の圧油が確保され、走行が減速、停止することが防止され、良好な複合操作性を得ることができる。また、平地の走行中にブレードの姿勢を変えるためブレードを急操作した場合は、ブレードシリンダに供給される圧油の流量が切換弁により抑制されるため、走行モータへの必要な量の圧油が確保され、走行の減速が防止され、操作フィーリングを向上することができる。
 本発明によれば、ロードセンシング制御を行う油圧駆動装置において、2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合に、低負荷圧側の圧力補償弁の閉じ切りを防止して低負荷圧側のアクチュエータの減速、停止を防止するとともに、2つのアクチュエータの負荷圧の差が特に大きくなる複合操作でサチュレーションが生じた場合に、高負荷圧側のアクチュエータへの必要な量の圧油を確保して高負荷圧側アクチュエータの減速、停止を防止し、良好な複合操作性が得られる。
本発明の第1の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 本発明の第1の実施の形態に係わる油圧ショベルの油圧駆動装置における操作装置とそのパイロット回路部分を拡大して示す図である。 建設機械である油圧ショベルの外観を示す図である。 走行用の操作装置のレバー操作量と操作パイロット圧(油圧信号)との関係を示す図である。 走行用の操作パイロット圧と走行用の流量制御弁のメータイン及びメータアウトの開口面積との関係を示す図である。 走行用の操作パイロット圧と切換弁の開口面積との関係を示す図である。 本発明の第2の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 本発明の第3の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 本発明の第4の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 本発明の第5の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 本発明の第6の実施の形態に係わる油圧ショベルの油圧駆動装置を示す図である。 特定の操作装置が操作されたときに油路部分の通路面積を減少させる切換弁であって、並列油路に配置される切換弁の変形例を示す図である。 特定の操作装置が操作されたときに油路部分の通路面積を減少させる切換弁であって、メインポンプの供給油路に接続されたバルブ内供給油路に配置される切換弁の変形例を示す図である。
 以下、本発明の実施の形態を図面に従い説明する。
<油圧ショベル>
 図2に油圧ショベルの外観を示す。
 図2において、作業機械としてよく知られている油圧ショベルは、上部旋回体300と、下部走行体301と、スイング式のフロント作業機302を備え、フロント作業機302は、ブーム306、アーム307、バケット308から構成されている。上部旋回体300は下部走行体301を旋回モータ7の回転によって旋回可能である。上部旋回体300の前部にはスィングポスト303が取り付けられ、このスィングポスト303にフロント作業機302が上下動可能に取り付けられている。スイングポスト303はスイングシリンダ9(図1参照)の伸縮により上部旋回体300に対して水平方向に回動可能であり、フロント作業機302のブーム306、アーム307、バケット308はブームシリンダ10、アームシリンダ11、バケットシリンダ12の伸縮により上下方向に回動可能である。下部走行体301は中央フレーム304を備え、この中央フレーム304にはブレードシリンダ8(図1A参照)の伸縮により上下動作を行うブレード305が取り付けられている。下部走行体301は、走行モータ5,6の回転により左右の履帯310,311を駆動することによって走行を行う。
<第1の実施の形態>
 図1Aに本発明の第1の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。
 ~基本構成~
 まず、本実施の形態に係わる油圧駆動装置の基本構成を説明する。
 本実施の形態における油圧駆動装置は、エンジン1と、エンジン1によって駆動されるメインの油圧ポンプ(以下メインポンプという)2と、メインポンプ2と連動してエンジン1により駆動されるパイロットポンプ3と、メインポンプ2から吐出された圧油により駆動される複数のアクチュエータ5,6,7,8,9,10,11,12である左右の走行モータ5,6、旋回モータ7、ブレードシリンダ8、スイングシリンダ9、ブームシリンダ10、アームシリンダ11、バケットシリンダ12と、コントロールバルブ4とを備えている。本実施形態に係わる油圧ショベルは、例えば油圧ミニショベルである。
 コントロールバルブ4は、メインポンプ2の供給油路2aに接続され、メインポンプ2から各アクチュエータに供給される圧油の方向と流量をそれぞれ制御する複数のバルブセクション13,14,15,16,17,18,19,20と、複数のアクチュエータ5,6,7,8,9,10,11,12の負荷圧のうち最も高い負荷圧(以下、最高負荷圧という)PLmaxを選択して信号油路21に出力する複数のシャトル弁22a,22b,22c,22d,22e,22f,22gと、メインポンプ2の供給油路2aに接続されたバルブ内供給油路4aに接続され、メインポンプ2の最高吐出圧(最高ポンプ圧)を制限するメインリリーフ弁23と、パイロット油圧源33(後述)に接続され、供給油路4a及び信号油路21の圧力を信号圧力として入力し、メインポンプ2の吐出圧(ポンプ圧)Pdと最高負荷圧PLmaxとの差圧PLSを絶対圧として出力する差圧減圧弁24と、バルブ内供給油路4aに接続され、供給油路4a及び信号油路21の圧力を信号圧力として入力し、ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSがバネ25aにより設定されたある一定値を超えたときにメインポンプ2の吐出流量の一部をタンクTに戻し、差圧PLSをバネ25aにより設定された一定値以下に保つアンロード弁25とを有している。アンロード弁25及びメインリリーフ弁23の出口側はバルブ内タンク油路29に接続され、この油路29を介してタンクTに接続されている。
 バルブセクション13は流量制御弁26aと圧力補償弁27aとから構成され、バルブセクション14は流量制御弁26bと圧力補償弁27bとから構成され、バルブセクション15は流量制御弁26cと圧力補償弁27cとから構成され、バルブセクション16は流量制御弁26dと圧力補償弁27dとから構成され、バルブセクション17は流量制御弁26eと圧力補償弁27eとから構成され、バルブセクション18は流量制御弁26fと圧力補償弁27fとから構成され、バルブセクション19は流量制御弁26gと圧力補償弁27gとから構成され、バルブセクション20は流量制御弁26hと圧力補償弁27hとから構成されている。圧力補償弁27a~27hは、流量制御弁26a~26hの上流側において、メインポンプ2の供給油路2aに接続されたバルブ内供給油路4aから分岐する複数の並列油路41a~41fにそれぞれ配置されている。
 流量制御弁26a~26hは、メインポンプ2からそれぞれのアクチュエータ5~12に供給される圧油の方向と流量をそれぞれ制御し、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧をそれぞれ制御する。
 圧力補償弁27a~27hは目標差圧設定用の開弁側受圧部28a,28b,28c,28d,28e,28f,28g,28hを有し、この受圧部28a~28hには差圧減圧弁24の出力圧が導かれ、油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSの絶対圧(以下絶対圧PLSという)により目標補償差圧が設定される。このように流量制御弁26a~26hの前後差圧を同じ差圧PLSという値に制御することにより、圧力補償弁27a~27hは流量制御弁26a~26hの前後差圧が油圧ポンプ圧Pdと最高負荷圧PLmaxとの差圧PLSに等しくなるように制御する。これにより複数のアクチュエータを同時に駆動する複合操作時は、アクチュエータ5~12の負荷圧の大小に係わらず、流量制御弁26a~26hの開口面積比に応じてメインポンプ2の吐出流量を分配し、複合操作性を確保することができる。また、メインポンプ2の吐出流量が要求流量に満たないサチュレーション状態になった場合は、差圧PLSはその供給不足の程度に応じて低下し、これに応じて圧力補償弁27a~27hが制御する流量制御弁26a~26hの前後差圧が同じ割合で低下して流量制御弁26a~26hの通過流量が同じ割合で減少するため、この場合も流量制御弁26a~26hの開口面積比に応じてメインポンプ2吐出流量を分配し、複合操作性を確保することができる。
 圧力補償弁27a~27hは、図1Aのシンボル表示から分かるように、開口面積減少方向(図示左方向)のストロークエンドにおいて全閉しないタイプの圧力補償弁である。
 また、油圧駆動装置は、パイロットポンプ3の供給油路3aに接続され、パイロットポンプ3の吐出流量に応じて絶対圧を出力するエンジン回転数検出弁30と、エンジン回転数検出弁30の下流側に接続され、パイロット油路31の圧力を一定に保つパイロットリリーフ弁32を有するパイロット油圧源33と、パイロット油路31に接続され、パイロット油圧源32の圧力を元圧(パイロット一次圧)として流量制御弁26a~26hを操作するための操作パイロット圧(パイロット二次圧)a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,pを生成するためのリモコン弁34a-2,34b-2,34c-2,34d-2,34e-2,34f-2,34g-2,34h-2(図1B参照)を備えた操作装置34a,34b,34c,34d,34e,34f,34g,34hとを備えている。
 エンジン回転数検出弁30は、パイロットポンプ3の供給油路3aをパイロット油路31に接続する油路に設けられた絞り要素(固定絞り部)30fと、絞り要素30fに並列に接続された流量検出弁30aと、差圧減圧弁30bとを有している。流量検出弁30aの入力側はパイロットポンプ3の供給油路3aに接続され、流量検出弁30aの出力側はパイロット油路31に接続されている。流量検出弁30aは通過流量が増大するにしたがって開口面積を大きくする可変絞り部30cを有し、パイロットポンプ3の吐出油は絞り要素30f及び流量検出弁30aの可変絞り部30cの両方を通過してパイロット油路31側へと流れる。このとき、絞り要素30fと流量検出弁30aの可変絞り部30cには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁30bはその前後差圧を絶対圧Paとして出力する。パイロットポンプ3の吐出流量はエンジン1の回転数によって変化するため、絞り要素30f及び可変絞り部30cの前後差圧を検出することにより、パイロットポンプ3の吐出流量を検出することができ、エンジン1の回転数を検出することができる。また、可変絞り部30cは、通過流量が増大するにしたがって(前後差圧が高くなるにしたがって)開口面積を大きくすることにより、通過流量が増大するにしたがって前後差圧の上昇度合いが緩やかになるように構成されている。
 メインポンプ2は可変容量型の油圧ポンプであり、その傾転角(容量)を制御するためのポンプ制御装置35を備えている。ポンプ制御装置35はポンプトルク制御部35AとLS制御部35Bとで構成されている。
 ポンプトルク制御部35Aはトルク制御傾転アクチュエータ35aを有し、トルク制御傾転アクチュエータ35aはメインポンプ2の吐出圧が高くなるとメインポンプ2の傾転角(容量)が減るようにメインポンプ2の斜板(容量可変部材)2sを駆動し、メインポンプ2の入力トルクが予め設定した最大トルクを越えないように制限する。これによりメインポンプ2の消費馬力が制限され、過負荷によるエンジン1の停止(エンジンストール)が防止される。
 LS制御部35Bは、LS制御弁35b及びLS制御傾転アクチュエータ35cを有している。
 LS制御弁35bは対向する受圧部35d,35eを有し、受圧部35dには油路40を介してエンジン回転数検出弁30の差圧減圧弁30bで生成された絶対圧Paがロードセンシング制御の目標差圧(目標LS差圧)として導かれ、受圧部35eに差圧減圧弁24で生成された絶対圧PLS(メインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧PLS)がフィードバック差圧として導かれる。LS制御弁35bは、絶対圧PLSが絶対圧Paよりも高くなると(PLS>Pa)、パイロット油圧源33の圧力をLS制御傾転アクチュエータ35cに導き、絶対圧PLSが絶対圧Paよりも低くなると(PLS<Pa)、LS制御傾転アクチュエータ35cをタンクTに連通させる。LS制御傾転アクチュエータ35cは、パイロット油圧源33の圧力が導かれると、メインポンプ2の傾転角が減るようにメインポンプ2の斜板2sを駆動し、タンクTに連通すると、メインポンプ2の傾転角が増えるようにメインポンプ2の斜板2sを駆動する。これによりメインポンプ2の吐出圧Pdが最高負荷圧PLmaxよりも絶対圧Pa(目標差圧)だけ高くなるようにメインポンプ2の傾転角(容量)が制御される。
 ここで、絶対圧Paはエンジン回転数に応じて変化する値であるため、絶対圧Paをロードセンシング制御の目標差圧として用い、圧力補償弁27a~27hの目標補償差圧をメインポンプ2の吐出圧Pdと最高負荷圧PLmaxとの差圧の絶対圧PLSにより設定することにより、エンジン回転数に応じたアクチュエータスピードの制御が可能となる。
 アンロード弁25のバネ25aの設定圧は、エンジン1が定格最高回転数にあるときのエンジン回転数検出弁30の差圧減圧弁30bで生成された絶対圧Pa(ロードセンシング制御の目標差圧)よりも少し高くなるように設定されている。
 図1Bは、操作装置34a,34b,34c,34d,34e,34f,34g,34hとそのパイロット回路部分を拡大して示す図である。
 操作装置34aは、操作レバー34a-1とリモコン弁34a-2を有し、リモコン弁34a-2は1対の減圧弁PVa,PVbを備えている。操作レバー34a-1を図示右方向に操作するとリモコン弁34a-2の減圧弁PVaが作動して操作レバー34a-1の操作量に応じた大きさの操作パイロット圧aを生成し、操作レバー34a-1を図示左方向に操作するとリモコン弁34a-2の減圧弁PVbが作動して操作レバー34a-1の操作量に応じた大きさの操作パイロット圧bを生成する。
 操作装置34b~34hも同様に構成されている。すなわち、操作装置34b~34hは、それぞれ、操作レバー34b-1,34c-1,34d-1,34e-1,34f-1,34g-1,34h-1とリモコン弁34b-2,34c-2,34d-2,34e-2,34f-2,34g-2,34h-2を有し、操作レバー34b-1,34c-1,34d-1,34e-1,34f-1,34g-1,34h-1を図示右方向に操作するとリモコン弁34b-2,34c-2,34d-2,34e-2,34f-2,34g-2,34h-2の減圧弁PVc,PVe,PVg,PVi,PVk,PVm,PVoがそれぞれ作動して操作レバー34b-1,34c-1,34d-1,34e-1,34f-1,34g-1,34h-1の操作量に応じた大きさの操作パイロット圧c,e,g,i,k,m,oを生成し、操作レバー34b-1,34c-1,34d-1,34e-1,34f-1,34g-1,34h-1を図示左方向に操作するとリモコン弁34b-2,34c-2,34d-2,34e-2,34f-2,34g-2,34h-2の減圧弁PVd,PVf,PVh,PVj,PVl,PVn,PVpがそれぞれ作動して操作レバー34b-1,34c-1,34d-1,34e-1,34f-1,34g-1,34h-1の操作量に応じた大きさの操作パイロット圧d,f,h,j,l,n,pを生成する。
 ~特徴的構成~
 次に、本実施の形態に係わる油圧駆動装置の特徴的構成を説明する。
 本実施の形態に係わる油圧駆動装置は、その特徴的構成として、ブーム用の圧力補償弁27fの上流側の油路部分である並列油路41f、アーム用の圧力補償弁27gの上流側の油路部分である並列油路41g、バケット用の圧力補償弁27hの上流側の油路部分である油路部分41hのそれぞれに配置され、走行用の操作装置34a,34bが操作されたときに並列油路41f,41g,41hの通路面積を減少させる切換弁100f,100g,100hを備えている。
 切換弁100f,100g,100hは、それぞれ、全開の連通位置と開口面積を減少させた絞り位置の2位置を有し、走行用の操作装置34a,34bが操作されていないときは図示左側の全開の連通位置にあり、走行用の操作装置34a,34bが操作されるときは図示右側の絞り位置に切り換わる。切換弁100f,100g,100hは、それぞれ、絞り位置に切換えられることで、圧力補償弁27f,27g,27hの上流側の油路部分である並列油路41f,41g,41hの通路面積を減少させる。
 また、本実施の形態に係わる油圧駆動装置は、走行用の操作装置34a,34bの操作を検出する操作検出装置43を更に備えている。この操作検出装置43は、走行用の操作装置34a,34bが生成する操作パイロット圧(走行用の操作パイロット圧)を検出して油圧信号として出力するシャトル弁48a,48b,48cを有している(図1B参照)。切換弁100f,100g,100hはその油圧信号(走行用の操作パイロット圧)により切り換えられる油圧切換弁であり、切換弁100f,100g,100hの受圧部101f,101g,101hにその油圧信号が導かれる。走行用の操作装置34a,34bが操作されておらず、走行の操作パイロット圧が生成されていないときは、切換弁100f,100g,100hは図示左側の連通位置にあり、走行用の操作装置34a,34bが操作され、走行用の操作パイロット圧が油圧信号として切換弁100f,100g,100hの受圧部101f,101g,101hに導かれると、切換弁100f,100g,100hは図示右側の絞り位置に切り換わる。
 図3Aは、操作装置34a,34bのレバー操作量と操作パイロット圧(油圧信号)との関係を示す図であり、図3Bは、操作パイロット圧と走行用の流量制御弁26a.26bのメータイン及びメータアウトの開口面積との関係を示す図であり、図3Cは、操作パイロット圧と切換弁100f,100g,100hの開口面積との関係を示す図である。レバー操作量が増大するにしたがって操作パイロット圧は最小圧力Ppminから最大圧力Ppmaxまで増大し(図3A)、操作パイロット圧が増大するにしたがって流量制御弁26a,26bのメータイン及びメータアウトの開口面積はゼロから最大Amaxまで増大する(図3B)。
 図3AのXaは切換弁100f,100g,100hの切換レバー操作量であり、図3A~図3CのPpa,Aa-inは切り換えレバー操作量Xaに対応する操作パイロット圧及びメータイン開口面積であり、図3CのA100-maxは切換弁100f,100g,100hが連通位置にあるときの開口面積、A100-limは切換弁100f,100g,100hが絞り位置にあるときの開口面積である。走行の操作装置34a,34bの操作レバー34a-1,34b-1が操作されていないときは、走行の操作パイロット圧が生成されないため、切換弁100f,100g,100hは図示左側の連通位置にある。このとき、切換弁100f,100g,100hの開口面積はA100-maxである。走行の操作装置34a,34bの操作レバー34a-1,34b-1が操作されると、走行の操作パイロット圧が生成され、走行用の流量制御弁26a.26bのメータイン開口面積が増大して走行モータ5,6に供給される圧油の流量が増加する。しかし、レバー操作量がXa以下で、走行の操作パイロット圧がPpa以下であるときは、切換弁100f,100g,100hは切り換わらず、図示左側の連通位置に保持され、切換弁100f,100g,100hの開口面積はA100-maxのままである。レバー操作量がXaを超え、操作パイロット圧がPpaより高くなると、切換弁100f,100g,100hは図示右側の絞り位置に切り換わり、切換弁100f,100g,100hの開口面積はA100-limに減少する。ここで、切換弁100f,100g,100hの切り換えレバー操作量Xaは、最大操作量Full近くの値に設定され、このとき、切り換えレバー操作量Xaに対応する操作パイロット圧Ppa及びメータイン開口面積Aa-inはそれぞれ最大圧力Ppmax及び最大開口面積Ain-max近くの値である。切り換えレバー操作量Xaは、例えば、最大操作量Fullの70~95%程度の値が好ましく、より好ましくは、最大操作量Fullの80~90%程度の値である。また、図示の如く、操作パイロット圧がPpaからPpmaxにステップ的に上昇する特性がある場合は、操作パイロット圧がステップ的に上昇するときの操作量に合わせるか,直前の操作量とすることが好ましい。
 ここで、登坂走行中にブームシリンダ10、アームシリンダ11、バケットシリンダ12のいずれかを駆動する複合操作を行った場合、走行モータ5,6とブームシリンダ10、アームシリンダ11、バケットシリンダ12との負荷圧の差は特に大きくなり、低負荷圧側のアクチュエータであるブームシリンダ10、アームシリンダ11、バケットシリンダ12の圧力補償弁は開口面積減少方向のストロークエンド近くにまで動作する。このような負荷圧の差が特に大きくなる複合操作でサチュレーションが生じた場合は、低負荷圧側のアクチュエータにメインポンプの吐出流量の大部分を奪われて、走行モータ5,6は停止してしまう可能性がある。このような負荷圧の差は特に大きくなる複合操作において、高負荷圧側のアクチュエータを本願明細書では「特定のアクチュエータ」と言う。特定のアクチュエータの例として、後述する如く、走行モータ以外に、破砕機等のアタッチメントに備えられる予備のアクチュエータがある。
 ~基本構成の動作~
 まず、本実施の形態の油圧駆動装置の基本構成の動作を説明する。
 <全ての操作レバーが中立のとき>
 全ての操作装置34a~34hの操作レバー34a-1~34h-1が中立位置にある場合、全ての流量制御弁26a~26hは中立位置にあり、アクチュエータ5~12に圧油は供給されない。また、流量制御弁26a~26hが中立位置にあるときは、シャトル弁22a~22gにより検出される最高負荷圧PLmaxはタンク圧となる。
 メインポンプ2からの吐出油は供給油路2a,4aに供給され、供給油路2a,4aの圧力が上昇する。供給油路4aにはアンロード弁25が設けられており、アンロード弁25は、供給油路2aの圧力が最高負荷圧PLmax(今の場合はタンク圧)よりバネ25aの設定圧以上高くなると、開状態になって供給油路2aの圧油をタンクに戻し、供給油路2aの圧力の上昇を制限する。これによりメインポンプ2の吐出圧は最低圧力Pminに制御される。
 差圧減圧弁24は、メインポンプ2の吐出圧Pdと最高負荷圧PLmax(今の場合はタンク圧)の差圧PLSを絶対圧として出力している。メインポンプ2のLS制御部35BのLS制御弁35bには、エンジン回転数検出弁30の出力圧と差圧減圧弁24の出力圧が導かれており、メインポンプ2の吐出圧が上昇し、差圧減圧弁24の出力圧がエンジン回転数検出弁30の出力圧よりも大きくなると、LS制御弁35bは図示右側の位置に切り換わり、LS制御傾転アクチュエータ35cにパイロット油圧源33の圧力が導かれ、メインポンプ2の傾転角が小さくなるよう制御される。しかし、メインポンプ2には、その最小傾転角を規定するストッパ(図示せず)が設けられているため、メインポンプ2はそのストッパにより規定される最小傾転角qminに保持され、最少流量Qminを吐出する。
 <操作レバーを操作した場合>
 任意の被駆動部材、例えばブーム用の操作装置34fの操作レバー34f-1を操作した場合は、ブーム用の流量制御弁26fが切り換わり、ブームシリンダ10に圧油が供給され、ブームシリンダ10が駆動される。
 流量制御弁26fを流れる流量は、流量制御弁26fのメータイン絞りの開口面積とメータイン絞りの前後差圧によって決まり、メータイン絞りの前後差圧は圧力補償弁27fによって差圧減圧弁24の出力圧と等しくなるように制御されるため、流量制御弁26fを流れる流量(したがってブームシリンダ10の駆動速度)は操作レバーの操作量に応じて制御される。
 一方、ブームシリンダ10の負荷圧がシャトル弁22a~22gによって最高負荷圧として検出され、差圧減圧弁24及びアンロード弁25に伝えられる。
 アンロード弁25にブームシリンダ10の負荷圧が最高負荷圧として導かれると、それに応じてアンロード弁25のクラッキング圧力(アンロード弁25が開き始める圧力)は上昇し、供給油路2aの圧力が過渡的に最高負荷圧よりバネ25aの設定圧以上高くなると、アンロード弁25は開弁して供給油路4aの圧油をタンクに戻す。これにより供給油路2a,4aの圧力が最高負荷圧PLmaxよりもバネ25aの設定圧以上に上昇することが制限される。
 ブームシリンダ10が動き始めると、一時的に供給油路2a,4aの圧力が低下する。このとき、供給油路2aの圧力とブームシリンダ10の負荷圧の差が、差圧減圧弁24の出力圧として出力されるため、差圧減圧弁24の出力圧が低下する。
 メインポンプ2のLS制御部35BのLS制御弁35bには、エンジン回転数検出弁30の出力圧と差圧減圧弁24の出力圧とが導かれており、差圧減圧弁24の出力圧がエンジン回転数検出弁30の出力圧よりも低下すると、LS制御弁35bは図示左側の位置に切り換わり、LS制御傾転アクチュエータ35cをタンクTに連通させてLS制御傾転アクチュエータ35c圧油をタンクに戻し、メインポンプ2の傾転角が増加するよう制御され、メインポンプ2の吐出流量が増加する。このメインポンプ2の吐出流量の増加は、差圧減圧弁24の出力圧がエンジン回転数検出弁30の出力圧と等しくなるまで継続する。これらの一連の働きにより、メインポンプ2の吐出圧(供給油路2a,4aの圧力)が最高負荷圧PLmaxよりもエンジン回転数検出弁30の出力圧(目標差圧)だけ高くなるよう制御され、ブーム用の流量制御弁26fが要求する流量をブームシリンダ10に供給する、いわゆるロードセンシング制御が行われる。
 2つ以上の被駆動部材の操作装置、例えばブーム用の操作装置34fとアーム用の操作装置34gの操作レバー34f-1,34g-1を操作した場合は、流量制御弁26f,26gが切り換わり、ブームシリンダ10及びアームシリンダ11に圧油が供給され、ブームシリンダ10及びアームシリンダ11が駆動される。
 ブームシリンダ10及びアームシリンダ11の負荷圧のうち高い方の圧力がシャトル弁22a~22gによって最高負荷圧PLmaxとして検出され、差圧減圧弁24及びアンロード弁25に伝えられる。
 アンロード弁25にシャトル弁22a~22gによって検出された最高負荷圧PLmaxが導かれたときの動作は、ブームシリンダ10を単独で駆動した場合と同じであり、最高負荷圧PLmaxの上昇に応じてアンロード弁25のクラッキング圧力は上昇し、供給油路2a,4aの圧力が最高負荷圧PLmaxよりもバネ25aの設定圧以上に上昇することが制限される。
 また、メインポンプ2のLS制御部35BのLS制御弁35bには、エンジン回転数検出弁30の出力圧と差圧減圧弁24の出力圧とが導かれており、ブームシリンダ10を単独で駆動した場合と同様に、メインポンプ2の吐出圧(供給油路2a,4aの圧力)が最高負荷圧PLmaxよりもエンジン回転数検出弁30の出力圧(目標差圧)だけ高くなるよう制御され、流量制御弁26f,26gが要求する流量をブームシリンダ10及びアームシリンダ11に供給する、いわゆるロードセンシング制御が行われる。
 差圧減圧弁24の出力圧は圧力補償弁27a~27hに目標補償差圧として導かれており、圧力補償弁27f,27gは、流量制御弁26f,26gの前後差圧を、メインポンプ2の吐出圧と最高負荷圧PLmaxとの差圧に等しくなるように制御する。これによりブームシリンダ10とアームシリンダ11の負荷圧の大小に係わらず、流量制御弁26f,26gのメータイン絞り部の開口面積に応じた比率でブームシリンダ10とアームシリンダ11に圧油を供給することができる。
 このとき、メインポンプ2の吐出流量が流量制御弁26f,26gが要求する流量に満たないサチュレーション状態になった場合は、サチュレーションの程度に応じて差圧減圧弁24の出力圧(メインポンプ2の吐出圧と最高負荷圧PLmaxとの差圧)が低下し、これに伴って圧力補償弁27a~27hの目標補償差圧も小さくなるので、メインポンプ2の吐出流量を流量制御弁26f,26gが要求する流量の比に再分配できる。
 また、圧力補償弁27a~27hは、開口面積減少方向(図示左方向)のストロークエンドにおいて全閉しないように構成されているため、ブームシリンダ10とアームシリンダ11の一方の操作中に他方を操作する複合操作でサチュレーションが生じて、低負荷側の圧力補償弁が開口面積減少方向に大きく動作しても、低負荷圧側の圧力補償弁の閉じ切りが防止され、完全に圧油が遮断されることがないため、低負荷圧側のアクチュエータの減速、停止を防止することができる。
 <エンジン回転数を下げた場合>
 以上の動作はエンジン1が最高定格回転数にあるときのものである。エンジン1の回転数を低速に下げた場合は、エンジン回転数検出弁30の出力圧がそれに応じて低下するため、LS制御部35BのLS制御弁35bの目標差圧も同様に低下する。また、ロードセンシング制御の結果、圧力補償弁27a~27hの目標補償差圧も同様に低下する。これによりエンジン回転数の低下に合わせてメインポンプ2の吐出流量と流量制御弁26a~26hの要求流量が減少し、アクチュエータ5~12の駆動速度が速くなりすぎることがなく、エンジン回転数を下げた場合の微操作性を向上することができる。
~特徴的構成の動作~
 次に、本実施の形態の油圧駆動装置の特徴的構成の動作を説明する。
 走行用の操作装置34a,34bの操作レバー34a-1,34b-1を操作したときは、上述した複合操作の場合と同様、流量制御弁26a,26bが切り換わって走行モータ5,6に圧油が供給されるとともに、ロードセンシング制御によりメインポンプ2の吐出流量が制御されて、流量制御弁26a,26bが要求する流量が走行モータ5,6に供給され、油圧ショベルは走行を行う。
 走行中にフロント作業機の姿勢を変えるためブーム、アーム、バケットのいずれか、例えばアーム用の操作装置34gの操作レバー34g-1を操作した場合は、流量制御弁26gが切り換わってアームシリンダ11にも圧油が供給され、アームシリンダ11が駆動される。
 ところで、圧力補償弁が開口面積減少方向のストロークエンドにおいて全閉しないタイプの圧力補償弁である従来の構成では、走行中に他の被駆動部材(例えばブーム、アーム、バケット)を操作したときに、特に上り坂など走行負荷圧が大きくなる条件下では、走行モータよりも負荷圧の低いブームシリンダ、アームシリンダ、バケットシリンダなどの低負荷のアクチュエータの圧力補償弁はストロークエンドに達しても開いているため、低負荷のアクチュエータに油圧ポンプの吐出流量が全て流れてしまい、走行が減速、停止してしまうことがある。
 これに対し本実施の形態では、走行用の操作装置34a,34bの操作レバー34a-1,34b-1がフル操作されて走行の操作パイロット圧が発生している場合は、切換弁100f,100g,100hが図示右側の絞り位置に切り換わり、圧力補償弁27f,27g,27hの上流側の油路部分である並列油路41f,41g,41hの通路面積を減少させる。その結果、上り坂の走行など走行負荷圧が大きくなる条件下でブーム、アーム、バケットのいずれか、例えばアーム用の操作装置34gの操作レバー34g-1を操作したときは、流量制御弁26gの通過流量は制限され、アームシリンダ11に供給される圧油の流量は抑制される。これにより走行モータ5,6への必要な量の圧油が確保され、走行が減速、停止することが防止され、良好な複合操作性を得ることができる。
 一方、平地での走行複合操作は低速で行われることも多く、走行モータ5,6の負荷圧もそれほど高くない場合が多い。このような低速での走行複合操作においても、走行用の操作装置34a,34bの操作レバー34a-1,34b-1を操作したときに切換弁100f,100g,100hが絞り位置に切り換わると、低負荷圧側のアクチュエータにメインポンプ2の吐出油の大部分が奪われる可能性が小さいにも係わらず、ブームシリンダ10、アームシリンダ11、バケットシリンダ12に供給される圧油流量が抑制され、フロント作業機302の動きが遅くなり、作業性が低下することが懸念される。
 本実施の形態では、上述したように、切換弁100f,100g,100hの切り換えレバー操作量Xaを最大操作量Full近くの値として設定したため、平地での低速での走行複合操作では、レバー操作量はXaより少なく、走行用の操作装置34a,34bの操作レバー34a-1,34b-1を操作したときに切換弁100f,100g,100hは絞り位置に切り換わらず、ブームシリンダ10、アームシリンダ11、バケットシリンダ12に供給される圧油流量は抑制されない。その結果、フロント作業機302の動きが遅くなり、作業性が低下することが防止される。
 ~効果~
 以上のように本実施の形態によれば、2つのアクチュエータの負荷圧の差が大きい複合操作でサチュレーションが生じた場合に、低負荷圧側の圧力補償弁の閉じ切りを防止して低負荷圧側のアクチュエータの減速、停止を防止するとともに、特定のアクチュエータである走行モータ5,6の駆動を含む走行複合操作において、他のアクチュエータであるブームシリンダ10、アームシリンダ11、バケットシリンダ12への圧油の流入を抑制し、走行モータ5,6に必要量の圧油を確保して走行の減速、停止を防止し、走行複合操作性を向上することができる。
 また、切換弁100f,100g,100hの切り換えレバー操作量Xaを最大操作量Full近くの値として設定したため、平地での低速走行複合操作では、フロント作業機302の動きは遅くならず、作業性の低下を防止することができる。
 また、切換弁100f,100g,100hを並列油路41f,41g,41hに配置したため、走行用の操作装置34a,34bの操作レバー34a-1,34b-1を操作したとき、並列油路41f,41g,41hに対応するアクチュエータ(ブームシリンダ10、アームシリンダ11、バケットシリンダ12)のみに供給される圧油の流量が抑制され、それ以外のアクチュエータに供給される圧油の流量は抑制されないため、走行モータ5,6とそれ以外のアクチュエータを駆動する複合操作でそれ以外のアクチュエータの速度低下による操作性の低下を防止することができる。
 <第2の実施の形態>
 図4に本発明の第2の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。図中,図1に示した部材と同等のものには同じ符号を付し、説明を省略する。本実施の形態は、ブーム用、アーム用、バケット用の圧力補償弁27f,27g,27hの上流側の油路部分に配置した切換弁の構成が第1の実施の形態と異なっている。
 すなわち、図1に示す第1の実施の形態では、ブーム用の圧力補償弁27f、アーム用の圧力補償弁27g、バケット用の圧力補償弁27hが配置される並列油路41f,41g,41hに切換弁100f,100g,100hをそれぞれ配置したが、本実施の形態における油圧駆動装置では、メインポンプ2の供給油路2aに接続された供給油路4aの油路部分であって、ブーム用の圧力補償弁27f、アーム用の圧力補償弁27g、バケット用の圧力補償弁27hが配置された並列油路41f,41g,41hの最上流の分岐位置より上流側の油路部分42に1つの切換弁100を配置している。
 切換弁100は、切換弁100f,100g,100hと同様、全開の連通位置と開口面積を減少させた絞り位置の2位置を有し、走行用の操作装置34a,34bが操作されていないときは図示左側の全開の連通位置にあり、走行用の操作装置34a,34bが操作されるときは、油圧信号(走行用の操作パイロット圧)が受圧部101に導かれて図示右側の絞り位置に切り換わる。切換弁100が絞り位置に切換えられると油路部分42の通路面積が減少し、流量制御弁26f,26g,26hの通過流量は制限される。
 このように構成した本実施の形態においても、走行用の操作装置34a,34bがフル操作されたときは、走行の操作パイロット圧が発生することで切換弁100が図示下側の絞り位置に切り換わり、流量制御弁26f,26g,26hの通過流量は制限されるため、ブームシリンダ10、アームシリンダ11、バケットシリンダ12に供給される圧油は抑制される。そのため、走行モータ5,6への必要な量の圧油が確保され、走行が停止することを防ぎ、良好な複合操作性を得ることができる。
 このように本実施の形態においても、第1の実施の形態と同様な効果を得ることができる。
 また、本実施の形態においては、1つの切換弁100で複数のアクチュエータに供給される圧油の流量が抑制され、上述した効果が得られるため、構成部品数を抑え、より安価に効果を得ることができる。
 <第3の実施の形態>
 図5に本発明の第3の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。図中、図1に示した部材と同等のものには同じ符号を付し、説明を省略する。本実施の形態は、圧力補償弁の上流側の油路部分に設けた切換弁の切り換え方式が第1の実施の形態と異なっている。
 すなわち、本実施の形態における油圧駆動装置は、第1の実施の形態における油圧式の切換弁100f,100g,100hに代えて電磁切換弁46f、46g,46hとコントローラ71を備え、かつ操作検出装置43Aとして、シャトル弁48a~48c(図1B参照)に加え、複数の操作装置のうち走行用の操作装置の34a,34bのリモコン弁が生成する操作パイロット圧を検出して電気信号を出力する圧力センサ72を有している。圧力センサ72の電気信号はコントローラ71に入力され、コントローラ71はその電気信号から操作パイロット圧を計算し、この操作パイロット圧がPpa(図3A参照)を超えると駆動信号を電磁切換弁46f,46g,46hのソレノイドに出力する。
 電磁切換弁46f,46g,46hは、走行用の操作装置(特定の操作装置)34a,34bが操作されず、コントローラ71から駆動信号が出力されないときは、図示左側の連通位置にあり、走行用の操作装置34a,34bが操作され、コントローラ71から駆動信号が出力されるときは、図示右側の絞り位置に切り換わる。電磁切換弁46f,46g,46hは、それぞれ、絞り位置に切換えられることで並列油路41f,41g,41hの通路面積を減少させ、流量制御弁26f,g,hの通過流量は制限される。
 したがって、本実施の形態においても第1の実施の形態と同様な効果を得ることができる。
 なお、本実施の形態は、図1の切換弁100f,100g,100hを電磁切換弁に置き換えたものであるが、図4の切換弁100を電磁切換弁にし、本実施の形態と同様の圧力センサとコントローラを設け、コントローラからの電気信号で電磁切換弁を切り換えるようにすることも可能である。
 <第4の実施の形態>
 図6に本発明の第4の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。図中、図1に示した部材と同等のものには同じ符号を付し、説明を省略する。本実施の形態は、走行パイロット圧を切換弁100f,100g,100hに導く構成を第1の実施の形態と異ならせたものである。
 すなわち、本実施の形態における油圧駆動装置は、第1位置と第2位置とに切り換え可能な手動選択装置81を更に備えている。手動選択装置81は例えば切り換え位置に応じた電気信号を出力するスイッチである。また、本実施の形態は、操作検出装置43で検出した油圧信号を切換弁100f,100g,100hの受圧部101f,101g,101hに導く油路48に配置され、手動選択装置(手動スイッチ)81からの電気信号に基づいて動作する電磁切換弁83を更に備えている。
 電磁切換弁83は、手動選択装置81が第1位置にあって電気信号が出力されないときは、図示下側の第1位置にあり、この第1位置では、操作検出装置43で検出した油圧信号が切換弁100f,100g,100hの受圧部101f,101g,101hに導かれることを可能とし、手動選択装置81が第2位置に切り換えられて電気信号が電磁切換弁83のソレノイド83aに出力されると、図示上側の第2位置に切り換わり、操作検出装置43で検出した油圧信号が切換弁100f,100g,100hの受圧部101f,101g,101hに導かれないようにする。
 これにより手動選択装置81が第1位置にあるときは、走行用の操作装置(特定の操作装置)34a,34bが操作されたときの切換弁100f,100g,100hの機能(並列油路41f,41g,41hの通路面積を減少させる機能)が有効となり、上述した実施の形態と同様、走行複合操作時にブームシリンダ10、アームシリンダ11、バケットシリンダ12に対して切換弁100f,100g,100hにより圧油の供給を抑制することができる。一方、手動選択装置81が第2位置に切り換わると、走行用の操作装置(特定の操作装置)34a,34bが操作されたときの切換弁100f,100g,100hによる圧油の供給を抑制する機能が無効となり、走行複合操作時であっても、ブームシリンダ10、アームシリンダ11、バケットシリンダ12に対する圧油の抑制はなくなり、従来の動作が可能となる。
 このように構成した本実施の形態では、オペレータの好みや作業の種類に応じて本発明の機能を利用するかどうかを自由に選択することができる。
 <第5の実施の形態>
 図7に本発明の第5の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。図中、図1に示した部材と同等のものには同じ符号を付し、説明を省略する。本実施の形態は、圧力補償弁の上流側の油路部分に配置される切換弁により、ブームシリンダ10、アームシリンダ11、バケットシリンダ12だけでなくブレードシリンダ8に対しても走行複合操作で供給される流量を抑制できるようにしたものである。
 すなわち、図1に示す第1の実施の形態では、ブーム用の圧力補償弁27g、バケット用の圧力補償弁27hが配置される並列油路41f,41g,41hに切換弁100f,100g,100hをそれぞれ配置したが、本実施の形態における油圧駆動装置では、ブレード用の圧力補償弁27dが配置される並列油路41dにも切換弁100dを配置している。
 切換弁100dは、切換弁100f,100g,100hと同様、全開の連通位置と開口面積を減少させた絞り位置の2位置を有し、走行用の操作装置34a,34bが操作されていないときは図示左側の全開の連通位置にあり、走行用の操作装置34a,34bがフル操作されるときは、油圧信号(走行用の操作パイロット圧)が受圧部101dに導かれて図示右側の絞り位置に切り換わる。切換弁100dが絞り位置に切換えられると並列油路41dの通路面積が減少し、流量制御弁26dの通過流量は制限される。
 走行中にブレード用の操作装置34dを急操作した場合も、圧力補償弁が開口面積減少方向のストロークエンドにおいて全閉しないタイプの圧力補償弁である従来の構成では、瞬間的にブレードシリンダ8に圧油が流れるため、走行が減速して体感的にショックを生み出し、操作フィーリングを損ねてしまう。
 これに対し本実施の形態では、走行中のフロント動作のためブーム、アーム、バケットのいずれかの操作装置の操作レバーを操作した場合と同様に、ブレードシリンダ8に供給される圧油の流量は切換弁100dにより抑制されるため、走行モータ5,6への必要な量の圧油が確保され、走行の減速が防止され、操作フィーリングを向上することができる。
 <第6の実施の形態>
 図8に本発明の第5の実施の形態に係わる油圧ショベルの油圧駆動装置を示す。図中、図1に示した部材と同等のものには同じ符号を付し、説明を省略する。本実施の形態は、図4に示した第2の実施の形態における切換弁の配置位置を変えることで、ブームシリンダ10、アームシリンダ11、バケットシリンダ12だけでなく、走行以外の全てのアクチュエータ7~12に対して走行複合操作で供給される流量を抑制できるようにしたものである。
 すなわち、図4に示す第2の実施の形態では、メインポンプ2の供給油路2aに接続された供給油路4aの油路部分であって、ブーム用の圧力補償弁27f、アーム用の圧力補償弁27g、バケット用の圧力補償弁27hが配置された並列油路41f,41g,41hの分岐位置より上流側の油路部分42に1つの切換弁100を配置したが、本実施の形態における油圧駆動装置では、走行以外の圧力補償弁27c~27hが配置された並列油路41c~41hの最上流の分岐位置より上流側の油路部分42Aに,受圧部101Aを備えた1つの切換弁100Aを配置している。
 このように構成した本実施の形態においては、走行用の操作装置34a,34bがフル操作されたときは、走行の操作パイロット圧が発生することで切換弁100Aが図示下側の絞り位置に切り換わり、流量制御弁26d~26hの通過流量は制限されるため、走行以外のアクチュエータの全てのアクチュエータ7~12に供給される圧油は抑制される。そのため、走行以外の全てのアクチュエータ7~12に対し、走行複合操作での走行モータ5,6への必要な量の圧油が確保され、走行が停止することを防ぎ、良好な複合操作性を得ることができる。
 <その他>
 以上の実施の形態は本発明の精神の範囲内で種々の変更が可能である。
 例えば、上記実施の形態では、特定の操作装置が操作されたときに前記油路部分の通路面積を減少させる切換弁として、全開の連通位置と開口面積を減少させた絞り位置の2位置を有し、走行用の操作装置34a,34bが操作されていないときは全開の連通位置にあり、走行用の操作装置34a,34bが操作されるときは絞り位置に切換えられることで前記油路部分の通路面積を減少させる切換弁(切換弁100f,100g,100h等)を用いたが、切換弁は必ずしもこのような構成に限られない。図9A及び図9Bは特定の操作装置が操作されたときに前記油路部分の通路面積を減少させる切換弁の他の例を示す図である。図9Aは並列油路41f等に配置される切換弁の他の例であり、図9Bはメインポンプ2の供給油路2aに接続された供給油路4aの油路部分42に配置される切換弁の他の例である。これらの図に示すように、並列油路41f或いは供給油路4aの油路部分42にバイパス油路48又は49を設け、バイパス油路48又は49の通路面積を並列油路41f或いは供給油路4aの油路部分42の通路面積より小さくし、バイパス油路48又は49に切換弁100fが絞り位置にあるときと同等の絞り効果を持たせる。一方、切換弁101fB又は100Bは、全開の連通位置と全閉の閉位置の2位置を有し、走行用の操作装置34a,34bが操作されていないときは全開の連通位置にあり、走行用の操作装置34a,34bが操作されるときは閉位置に切換えられるように構成する。切換弁101fB又は100Bが閉位置に切り換えられるとき、並列油路41f或いは油路部分42の切換弁101fB又は100Bの上下流部分は絞り効果のあるバイパス油路48又は49のみで連通する。これによっても、切換弁101fB又は100Bは、特定の操作装置が操作されたときに並列油路41f或いは供給油路4aの油路部分42の通路面積を減少させることができ、切換弁100f等或いは切換弁100等を用いた場合と同様の効果を得ることができる。
 また、上記の実施の形態では、特定のアクチュエータが走行モータである場合について説明したが、走行モータ以外でも、開口面積減少方向のストロークエンドで全閉しない圧力補償弁を備えた油圧駆動装置で、負荷圧の差が特に大きくなる複合操作を行ってサチュレーションが生じた場合に、低負荷圧側のアクチュエータにメインポンプの吐出流量の大部分を奪われて停止してしまう可能性のあるアクチュエータであれば、本発明を適用して同様の効果が得られる。例えば破砕機等のアタッチメントに備えられる予備のアクチュエータは負荷圧が高くなることが多く、予備のアクチュエータを特定のアクチュエータとして本発明を適用することで、他のアクチュエータ(例えば、ブーム、アーム、バケット等)との複合操作時に他のアクチュエータへの要求流量を制限し、予備のアクチュエータに優先的に圧油を供給することが可能である。
 また、以上の実施の形態では、建設機械が油圧ショベルである場合について説明したが、油圧ショベル以外建設機械(例えば油圧クレーン、ホイール式ショベル等)に本発明を適用し、同様の効果を得ることができる。
1 エンジン
2 油圧ポンプ(メインポンプ)
2a 供給油路
3 パイロットポンプ
3a 供給油路
4 コントロールバルブ
4a バルブ内供給油路
5~12 アクチュエータ
5,6 走行モータ(特定のアクチュエータ)
7 旋回モータ
8 ブレードシリンダ
9 スイングシリンダ
10 ブームシリンダ
11 アームシリンダ
12 バケットシリンダ
13~20 バルブセクション
21 信号油路
22a~22g シャトル弁
23 メインリリーフ弁
24 差圧減圧弁
25 アンロード弁
25a バネ
26a~26h 流量制御弁
27a~27h 圧力補償弁
29 バルブ内タンク油路
30 エンジン回転数検出弁装置
30a 流量検出弁
30b 差圧減圧弁
30c 可変絞り部
30f 固定絞り部
31 パイロット油路
32 パイロットリリーフ弁
33 パイロット油圧源
34a~34h 操作装置
34a-1~34h-1 操作レバー
34a-2~34h-2 リモコン弁
35 ポンプ制御装置
35A ポンプトルク制御部
35B LS制御部
35a トルク制御傾転アクチュエータ
35b LS制御弁
35c LS制御傾転アクチュエータ
35d,35e 受圧部
41a~41h 並列油路
42,42A 油路部分
43,43A 操作検出装置
46f,46g,46h 電磁切換弁
48 バイパス油路
49 バイパス油路
71 コントローラ
72 圧力センサ
81 手動選択装置
83 電磁切換弁
100f,100g,100h 切換弁
101f,101g,101h 受圧部
100 切換弁
101 受圧部
100d 切換弁
101d 受圧部
100A 切換弁
101A 受圧部
100fB 切換弁
101fB 受圧部
100B 切換弁
101B 受圧部
300 上部旋回体
301 下部走行体
302 フロント作業機
303 スイングポスト
304 中央フレーム
305 ブレード
306 ブーム
307 アーム
308 バケット
310,311 履帯

Claims (7)

  1.  可変容量型の油圧ポンプと、
     この油圧ポンプから吐出された圧油により駆動される複数のアクチュエータと、
     前記油圧ポンプから前記複数のアクチュエータに供給される圧油の流量を制御する複数の流量制御弁と、
     前記複数のアクチュエータに対応して設けられ、前記複数の流量制御弁を駆動するための操作パイロット圧を生成するリモコン弁を備えた複数の操作装置と、
     前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、
     前記油圧ポンプの吐出圧が前記複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記油圧ポンプの容量をロードセンシング制御するポンプ制御装置とを備え、
     前記複数の圧力補償弁は、開口面積減少方向のストロークエンドにおいて全閉しないタイプの圧力補償弁である建設機械の油圧駆動装置において、
     前記複数のアクチュエータは、他のアクチュエータと同時に駆動される複合操作において高負荷圧側となる特定のアクチュエータを含み、
     前記他のアクチュエータの圧力補償弁の上流側及び下流側のいずれかの油路部分に、前記複数の操作装置のうち前記特定のアクチュエータに対応する特定の操作装置が操作されたときに前記油路部分の通路面積を減少させる切換弁を配置したことを特徴とする建設機械の油圧駆動装置。
  2.  請求項1記載の建設機械の油圧駆動装置において、
     前記複数の圧力補償弁は、前記油圧ポンプに接続された供給油路から分岐する複数の並列油路にそれぞれ配置されており、
     前記油路部分は、前記複数の並列油路のうち前記他のアクチュエータの圧力補償弁が配置される並列油路であることを特徴とする建設機械の油圧駆動装置。
  3.  請求項1記載の建設機械の油圧駆動装置において、
     前記複数の圧力補償弁は、前記油圧ポンプに接続された供給油路から分岐する複数の並列油路にそれぞれ配置されており、
     前記油路部分は、前記供給油路の一部分であって、前記他のアクチュエータの圧力補償弁が配置される並列油路の分岐位置より上流側の油路部分であることを特徴とする建設機械の油圧駆動装置。
  4.  請求項1記載の建設機械の油圧駆動装置において、
     前記特定の操作装置のリモコン弁が生成する操作パイロット圧を検出して油圧信号として出力するシャトル弁を更に備え、
     前記切換弁は前記油圧信号により切り換えられる油圧切換弁であることを特徴とする建設機械の油圧駆動装置。
  5.  請求項1記載の建設機械の油圧駆動装置において、
     前記特定の操作装置のリモコン弁が生成する操作パイロット圧を検出して電気信号を出力する圧力センサを更に備え、
     前記切換弁は前記電気信号に基づいて動作する電磁切換弁であることを特徴とする建設機械の油圧駆動装置。
  6.  請求項1記載の建設機械の油圧駆動装置において、
     第1位置と第2位置とに切り換え可能な手動選択装置と、
     前記手動選択装置が前記第1位置にあるときは、前記特定の操作装置が操作されたときの前記切換弁の前記油路部分の通路面積を減少させる機能を有効とし、前記手動選択装置が前記第2位置に切り換えられると、前記特定の操作装置が操作されたときの前記切換弁の前記油路部分の通路面積を減少させる機能を無効とする制御装置とを更に備えることを特徴とする建設機械の油圧駆動装置。
  7.  請求項1記載の建設機械の油圧駆動装置において、
     前記特定のアクチュエータは、建設機械の走行体を駆動する走行モータであり、
     前記他のアクチュエータは、建設機械のフロント作業機を動かす複数の油圧シリンダのいずれかか、ブレードを動かすブレードシリンダであることを特徴とする建設機械の油圧駆動装置。
PCT/JP2013/077364 2012-10-17 2013-10-08 建設機械の油圧駆動装置 WO2014061507A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/423,868 US9828746B2 (en) 2012-10-17 2013-10-08 Hydraulic driving system for construction machine
JP2014542065A JP5984164B2 (ja) 2012-10-17 2013-10-08 建設機械の油圧駆動装置
KR1020157005180A KR101719676B1 (ko) 2012-10-17 2013-10-08 건설 기계의 유압 구동 장치
EP13847113.1A EP2910797B1 (en) 2012-10-17 2013-10-08 Hydraulic drive device for construction machinery
CN201380044896.7A CN104603468B (zh) 2012-10-17 2013-10-08 工程机械的液压驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-230071 2012-10-17
JP2012230071 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061507A1 true WO2014061507A1 (ja) 2014-04-24

Family

ID=50488076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077364 WO2014061507A1 (ja) 2012-10-17 2013-10-08 建設機械の油圧駆動装置

Country Status (6)

Country Link
US (1) US9828746B2 (ja)
EP (1) EP2910797B1 (ja)
JP (1) JP5984164B2 (ja)
KR (1) KR101719676B1 (ja)
CN (1) CN104603468B (ja)
WO (1) WO2014061507A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198868A1 (ja) * 2014-06-23 2015-12-30 日立建機株式会社 建設機械の油圧駆動装置
JP2018054010A (ja) * 2016-09-28 2018-04-05 株式会社日立建機ティエラ 建設機械の油圧駆動装置
JP2021156355A (ja) * 2020-03-26 2021-10-07 株式会社日立建機ティエラ 建設機械の油圧駆動装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878811B2 (ja) * 2012-04-10 2016-03-08 日立建機株式会社 建設機械の油圧駆動装置
FR3007154B1 (fr) * 2013-06-12 2015-06-05 Montabert Roger Procede de commande de l’energie d’impact d’un piston de frappe d’un appareil a percussions
DE102015216737A1 (de) * 2015-09-02 2017-03-02 Robert Bosch Gmbh Hydraulische Steuervorrichtung für zwei Pumpen und mehrere Aktuatoren
SE542526C2 (en) 2015-10-19 2020-06-02 Husqvarna Ab Energy buffer arrangement and method for remote controlled demolition robot
SE539241C2 (en) * 2015-10-19 2017-05-23 Husqvarna Ab Adaptive control of hydraulic tool on remote demolition robot
SE542525C2 (en) 2015-10-19 2020-06-02 Husqvarna Ab Automatic tuning of valve for remote controlled demolition robot
JP6656913B2 (ja) * 2015-12-24 2020-03-04 株式会社クボタ 作業機の油圧システム
CN105545831B (zh) * 2016-03-19 2017-05-31 青岛大学 一种装袋机双扒土机构节能联动控制系统
JP6831648B2 (ja) * 2016-06-20 2021-02-17 川崎重工業株式会社 液圧駆動システム
CN108506259B (zh) * 2018-04-09 2022-02-11 徐州燕大传动与控制技术有限公司 一种阀后补偿的进出口独立控制的负荷传感式多路阀
CN111364550A (zh) * 2020-04-13 2020-07-03 三一重机有限公司 分体式液压多路换向阀系统和挖掘机
CN114483677B (zh) * 2021-12-27 2024-01-23 湖南中联重科应急装备有限公司 伸缩马达液压系统和云梯消防车
CN116447191B (zh) * 2023-04-10 2024-01-16 重庆大学 一种双执行器阀口独立控制系统主动阻尼补偿抑振方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646501A (en) * 1987-06-30 1989-01-11 Hitachi Construction Machinery Control apparatus for load sensing hydraulic drive circuit
JPH0419406A (ja) * 1990-04-05 1992-01-23 Toshiba Mach Co Ltd 油圧作業回路
JPH0762694A (ja) * 1993-08-30 1995-03-07 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH0776861A (ja) 1993-09-06 1995-03-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2005226678A (ja) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2007024103A (ja) 2005-07-13 2007-02-01 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2010101095A (ja) * 2008-10-24 2010-05-06 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN171213B (ja) * 1988-01-27 1992-08-15 Hitachi Construction Machinery
JPH04136507A (ja) * 1990-09-28 1992-05-11 Komatsu Ltd 油圧回路
CN1155866A (zh) * 1994-06-21 1997-07-30 株式会社小松制作所 液压驱动型移动装置的移动控制回路
US6318079B1 (en) * 2000-08-08 2001-11-20 Husco International, Inc. Hydraulic control valve system with pressure compensated flow control
JP3816893B2 (ja) * 2003-04-17 2006-08-30 日立建機株式会社 油圧駆動装置
JP2009167618A (ja) * 2008-01-11 2009-07-30 Caterpillar Japan Ltd 油圧ショベルの油圧回路
JP2011196439A (ja) * 2010-03-18 2011-10-06 Yanmar Co Ltd 旋回作業車の油圧回路
JP5383591B2 (ja) * 2010-05-24 2014-01-08 日立建機株式会社 建設機械の油圧駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646501A (en) * 1987-06-30 1989-01-11 Hitachi Construction Machinery Control apparatus for load sensing hydraulic drive circuit
JPH0419406A (ja) * 1990-04-05 1992-01-23 Toshiba Mach Co Ltd 油圧作業回路
JPH0762694A (ja) * 1993-08-30 1995-03-07 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH0776861A (ja) 1993-09-06 1995-03-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2005226678A (ja) * 2004-02-10 2005-08-25 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2007024103A (ja) 2005-07-13 2007-02-01 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2010101095A (ja) * 2008-10-24 2010-05-06 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198868A1 (ja) * 2014-06-23 2015-12-30 日立建機株式会社 建設機械の油圧駆動装置
JP2016008625A (ja) * 2014-06-23 2016-01-18 日立建機株式会社 建設機械の油圧駆動装置
CN106133333A (zh) * 2014-06-23 2016-11-16 株式会社日立建机Tierra 工程机械的液压驱动装置
EP3159550A4 (en) * 2014-06-23 2018-02-28 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive device of construction machine
CN106133333B (zh) * 2014-06-23 2018-03-27 株式会社日立建机Tierra 工程机械的液压驱动装置
KR101876895B1 (ko) * 2014-06-23 2018-07-10 가부시키가이샤 히다치 겡키 티에라 건설 기계의 유압 구동 장치
US10100495B2 (en) 2014-06-23 2018-10-16 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic driving system for construction machine
JP2018054010A (ja) * 2016-09-28 2018-04-05 株式会社日立建機ティエラ 建設機械の油圧駆動装置
JP2021156355A (ja) * 2020-03-26 2021-10-07 株式会社日立建機ティエラ 建設機械の油圧駆動装置
JP7319942B2 (ja) 2020-03-26 2023-08-02 株式会社日立建機ティエラ 建設機械の油圧駆動装置

Also Published As

Publication number Publication date
EP2910797A1 (en) 2015-08-26
US20150240455A1 (en) 2015-08-27
JPWO2014061507A1 (ja) 2016-09-05
KR20150038476A (ko) 2015-04-08
EP2910797A4 (en) 2016-05-25
CN104603468B (zh) 2017-07-11
CN104603468A (zh) 2015-05-06
KR101719676B1 (ko) 2017-03-24
JP5984164B2 (ja) 2016-09-06
US9828746B2 (en) 2017-11-28
EP2910797B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP5984164B2 (ja) 建設機械の油圧駆動装置
JP5878811B2 (ja) 建設機械の油圧駆動装置
JP5687150B2 (ja) 建設機械
EP1760326B1 (en) Hydraulic controller for working machine
JP5383591B2 (ja) 建設機械の油圧駆動装置
JP5886976B2 (ja) 作業機械
KR20120123069A (ko) 유압 시스템의 펌프 제어 장치
WO2019220872A1 (ja) 作業機械の油圧駆動装置
JP2014029180A (ja) 作業機械の油圧制御装置
US20140283915A1 (en) Hydraulic Control System Having Relief Flow Capture
JP2012162917A (ja) 油圧ショベルの油圧回路
JP2012112466A (ja) 建設機械の油圧システム
JP6615137B2 (ja) 建設機械の油圧駆動装置
JP6591370B2 (ja) 建設機械の油圧制御装置
JP2009179983A (ja) 作業機械の油圧制御回路
JP7207060B2 (ja) 作業機械の油圧駆動装置
JP2015143533A (ja) 作業機の制御システム
JP2009256904A (ja) 作業機械の油圧制御回路
JP6564753B2 (ja) 建設機械の油圧駆動装置
JP5602034B2 (ja) ホイール式走行作業車の走行駆動回路装置
JP2010065733A (ja) 作業機械の油圧制御回路
JP7268435B2 (ja) 作業機械の油圧駆動装置
JP2012007656A (ja) 作業機械の旋回用油圧制御装置
JP2010077750A (ja) 作業機械の油圧制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542065

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423868

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157005180

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013847113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE