WO2014061238A1 - 二次電池テスター - Google Patents

二次電池テスター Download PDF

Info

Publication number
WO2014061238A1
WO2014061238A1 PCT/JP2013/006051 JP2013006051W WO2014061238A1 WO 2014061238 A1 WO2014061238 A1 WO 2014061238A1 JP 2013006051 W JP2013006051 W JP 2013006051W WO 2014061238 A1 WO2014061238 A1 WO 2014061238A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
voltage
secondary battery
storage unit
stored
Prior art date
Application number
PCT/JP2013/006051
Other languages
English (en)
French (fr)
Inventor
双男 金子
貴浩 川上
一成 新保
暁 馬場
景三 加藤
重利 宮嵜
清水 浩一
佐藤 健一
治 花岡
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to US14/435,233 priority Critical patent/US9500715B2/en
Publication of WO2014061238A1 publication Critical patent/WO2014061238A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a tester for determining a deterioration state of a secondary battery.
  • Non-Patent Document 1 describes that deterioration can be determined by measuring internal resistance corresponding to deterioration of a lithium ion battery.
  • Patent Document 1 discloses that an AC voltage and / or an AC current having a specific frequency is applied to a lithium ion secondary battery to detect the state of the lithium ion secondary battery.
  • Patent Document 2 the AC impedance at a predetermined frequency in a non-aqueous electrolyte secondary battery is measured at a predetermined frequency, and the relational expression between the AC impedance and a reversible capacity that can be charged and discharged (battery capacity that can be charged and discharged) is used.
  • a method for estimating the reversible capacity of a battery is disclosed.
  • Patent Document 3 derives the voltage-current characteristics of a lithium ion battery, derives an open circuit voltage (OCV) of the lithium-ion battery based on the obtained voltage-current characteristics, and further integrates current, etc.
  • OCV open circuit voltage
  • the content of determining the charge deterioration (State Of Charge: SOC) of a lithium ion battery by the method of this, and judging precipitation deterioration by the change of OCV and SOC is disclosed.
  • Patent Document 4 discloses contents for determining a deterioration state based on information on a voltage change acquired in a diagnosis mode in which a lithium ion battery is continuously discharged and charged at a constant power value.
  • Patent Document 5 when charging a lithium ion battery by a constant current constant voltage method, the charging current when the nominal capacity of the battery is C 0 is set to C 0 / (20 hours) or less, and constant current charging is performed.
  • the deterioration determination method described in the cited document 6 is as follows.
  • a secondary battery such as a lithium ion battery, a nickel cadmium battery, or a nickel metal hydride battery
  • its type is detected, and constant current charging processing is started according to the battery voltage.
  • the control unit starts counting the constant current charging time, and has switched to constant voltage charging by the charge control method according to the battery type. Or, when - ⁇ V is detected, the time measurement ends. Based on the constant current charging time obtained by timing, the control unit determines the deterioration by comparing the charging capacity of the battery with the constant current charging time for the original battery.
  • the deterioration of the secondary battery is determined by applying alternating current to the secondary battery to be measured.
  • an alternating current power source and an impedance measuring machine are necessary, so that the device becomes large and inconvenient to handle.
  • a general user using a secondary battery performs deterioration determination, there is a problem that it is desired that the deterioration determination can be performed with a simple and small-sized and lightweight device.
  • the deterioration of the secondary battery is determined by using parameters such as internal resistance, voltage value, charge charge amount, and discharge charge amount alone or in combination.
  • the present inventors can make a good determination with a simple, small and light device. I came up with the idea.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a secondary battery tester that is simple, small and light.
  • the voltage measuring unit that measures the terminal voltage between the positive electrode and the negative electrode of the secondary battery without applying alternating current, and the positive electrode of the secondary battery without applying alternating current
  • determining means for determining deterioration of the measured secondary battery by comparing with a capacitance when a predetermined time has elapsed among changes in capacitance stored in the storage unit over time.
  • the capacitance deriving means is a value obtained by integrating the current value flowing at an arbitrary time interval ⁇ t or a value obtained by sampling the current value flowing at an arbitrary time interval ⁇ t once or a plurality of times at the time interval ⁇ t.
  • the value obtained by dividing the sum by the number of samplings and then multiplying by an arbitrary time interval ⁇ t is divided by the amount of change ⁇ v in the time interval ⁇ t of the voltage value measured by the voltage measurement unit, thereby obtaining the capacitance of the secondary battery. It is good also as deriving.
  • the amount of charge ⁇ Q flowing at an arbitrary time interval ⁇ t is the time integral ⁇ i (t) dt of the current amount i (t) at the time interval ⁇ t or the amount of current i ( A value obtained by dividing the sum of values obtained by sampling t) once or a plurality of times in the time interval ⁇ t by the number of samplings and then multiplying the time interval ⁇ t can be used.
  • a DC power supply for applying a DC current to the secondary battery to be determined is provided, and the electrostatic capacity deriving means is configured to supply a voltage during constant current charging by the DC power supply or during charging by changing a charging voltage.
  • the capacitance may be derived from the time change ⁇ v of the voltage value of the predetermined time ⁇ t measured by the measurement unit and the charge amount ⁇ Q of the predetermined time obtained from the current value measured by the current measurement unit.
  • the storage unit stores a plurality of types of voltage values and capacitances of normal secondary batteries in advance
  • the determination unit uses the voltage values measured by the voltage measurement unit and the capacitance derivation unit. A comparison may be made by selecting any one of a plurality of types of voltage values and capacitances stored in the storage unit based on the derived capacitance value.
  • the storage unit stores in advance the relationship between the terminal voltage and the capacitance between the positive electrode and the negative electrode in a normal state
  • the determination unit includes the voltage value measured by the voltage measurement unit and the Comparing the relationship between the capacitance derived by the capacitance deriving means and the relationship between the terminal voltage and the capacitance between the positive electrode and the negative electrode in the normal state stored in the storage unit. May be a feature.
  • the secondary battery to be measured may be a connection state in which a plurality of secondary batteries are connected in parallel, in series, or connected in parallel and connected in series.
  • a lithium ion battery will be described as an example of a secondary battery, but the secondary battery is not limited to a lithium ion battery.
  • FIG. 1 shows the connection configuration of the secondary battery tester of the present embodiment and the first embodiment of the secondary battery tester.
  • the secondary battery tester 30 of the present embodiment is shown in a range surrounded by a thick line in FIG. 1 and includes a voltage sensor 32, a current sensor 34, a storage unit 40, a capacitance deriving unit 36, and a deterioration determining unit 38. ing.
  • the secondary battery tester 30 measures the terminal voltage and current of the lithium ion battery 10 to be measured by the voltage sensor 32 and the current sensor 34, calculates the capacitance from these values, and is stored in the storage unit 40. Degradation can be determined based on the capacitance and terminal voltage that are present.
  • the secondary battery tester 30 includes two voltage terminals connected to the voltage sensor 32 and two current terminals connected to the current sensor 34, but one voltage terminal.
  • a single current terminal and a secondary battery tester having three terminals may be used.
  • the positive electrode and the negative electrode may or may not be designated.
  • the lithium ion battery 10 to be measured is connected to a load 20 or a charging device 22. Specifically, as shown in FIG. 1, the lithium ion battery 10 is connected to either the load 20 or the charging power source 22 by the changeover switch 24.
  • the secondary battery tester 30 of this embodiment is judged to be deteriorated from the terminal voltage and current of the lithium ion battery 10 regardless of whether it is switched to the charged state or the discharged state by the changeover switch 24.
  • the load 20 may be any type, may be a device that actually uses the lithium ion battery 10, or may be a dummy having an internal impedance similar to that of the device.
  • the determination of the deterioration of the lithium ion battery 10 is sufficient if the terminal voltage and current of the lithium ion battery 10 can be measured by the voltage sensor 32 and the current sensor 34, and the secondary battery tester regardless of the load form, charge state or discharge state. 30, the deterioration of the lithium ion battery 10 is determined.
  • a voltage sensor 32 for measuring a voltage between the positive electrode and the negative electrode of the lithium ion battery 10 to be measured (hereinafter sometimes simply referred to as a terminal voltage), and a current sensor 34 for measuring a current flowing through the lithium ion battery 10 And.
  • the voltage sensor 32 corresponds to the voltage measurement unit referred to in the claims
  • the current sensor 34 corresponds to the current measurement unit referred to in the claims.
  • the secondary battery tester 30 operates to measure the terminal voltage and current of the lithium ion battery, derive a capacitance based on the measured voltage, and compare with a known capacitance to determine the deterioration. Therefore, the secondary battery tester 30 includes a capacitance deriving unit 36 connected to the voltage sensor 32 and the current sensor 34, and a deterioration determining unit 38 that performs a deterioration determination based on the derived capacitance. ing. Furthermore, a storage unit 40 is provided for storing in advance a normal capacitance for comparison with the capacitance derived by the capacitance deriving means 36.
  • the capacitance deriving unit 36 and the deterioration determining unit 38 can be realized by a microprocessor and a memory in which a program for operating the microprocessor is stored. Moreover, the memory
  • storage part 40 is realizable with said memory.
  • the storage unit 40 has a non-degraded lithium ion battery (herein, the expression “not deteriorated” includes a battery in a state where the deterioration is small, but will be described as an expression that it has not deteriorated for convenience. ) And the time characteristics of the terminal voltage are stored.
  • the time characteristics of the terminal voltage of the lithium ion battery 10 are as follows: derivation of capacitance, determination of battery discharge state and charge state during capacitance measurement, determination of deterioration state combined with capacitance, and end of discharge. It is necessary for judging the end of charging. For example, in the graph shown in FIG.
  • the larger overall capacitance is the time-dependent change in the capacitance of a lithium ion battery that has not deteriorated.
  • FIG. 2 shows the change in electrostatic capacity over time from the start of discharge to 600 seconds.
  • Such a non-degraded lithium ion battery capacitance needs to be continuously measured for a predetermined time in advance and stored in the storage unit 40 as a change with time.
  • the capacitance varies depending on the type of lithium ion battery, when there are a plurality of types of lithium ion batteries to be determined by a predetermined user, the measurement is continuously performed for a predetermined time for each type and stored. It is necessary to memorize each as a time-dependent change in the unit 40.
  • FIG. 31 A second embodiment of the secondary battery tester is shown in FIG.
  • the secondary battery tester 31 of the present embodiment includes a simulated load 50 and a switch 55 inside, and the secondary battery tester 30 of the first embodiment. Is different.
  • the positive electrode or the negative electrode of the lithium ion battery 10 is connected to the voltage terminal of the secondary battery tester 31, respectively.
  • the voltage terminal connected to the positive electrode or the negative electrode of the lithium ion battery 10 is connected to the voltage sensor 32 in the secondary battery tester 31, respectively, and one of them is branched to be connected to one terminal of the current sensor 34, The other is branched so as to be connected to one end of the simulated load 50.
  • the other end of the simulated load 50 is connected to one end of the switch 55, and the other end of the switch 55 is connected to the other terminal of the current sensor 34.
  • the voltage sensor 32, the current sensor 34, the storage unit 40, the capacitance deriving unit 36, and the deterioration determining unit 38 in the secondary battery tester 31 may employ the same configuration as that of the first embodiment. good.
  • designated of a positive electrode and a negative electrode may be performed, and it is not necessary to carry out.
  • Capacitance derivation method 1 Several methods can be considered for the method of deriving the electrostatic capacity of the lithium ion battery in the electrostatic capacity deriving means 36. First, the first deriving method will be described below.
  • the current sensor 34 measures the current value i (t) with the time t as a variable, and this i (t) is input to the capacitance deriving means 36.
  • the voltage value v (t) measured by the voltage sensor 32 is also input to the capacitance deriving means 36.
  • Capacitance derivation method 2 A second method for deriving the capacitance of the lithium ion battery in the capacitance deriving means 36 will be described.
  • the current sensor 34 inputs a current value measured within a predetermined time interval ⁇ t to the capacitance deriving means 36.
  • the electrostatic capacity deriving means 36 derives an average value I of the applied current values.
  • the voltage value measured by the voltage sensor 32 is also input to the capacitance deriving means 36.
  • the capacitance deriving means 36 derives a voltage change ⁇ v during the same predetermined time interval ⁇ t as that of the charge amount ⁇ Q.
  • Capacitance derivation method 3 A third method for deriving the capacitance of the lithium ion battery in the capacitance deriving means 36 will be described.
  • the current sensor 34 inputs the measured current value to the capacitance deriving means 36 as needed.
  • the capacitance deriving means 36 is a value ⁇ i (t) dt obtained by time-integrating the current i (t) flowing at a certain time t at an arbitrary time interval ⁇ t from t to t + ⁇ t, that is, the amount of charge flowing within the time interval.
  • the change ⁇ Q of is derived.
  • the capacitance deriving means 36 derives the sum of values obtained by sampling the current i (t) flowing in an arbitrary time interval ⁇ t from t to t + ⁇ t once or a plurality of times within the time interval, and further, this sum Is divided by the number of times of sampling and multiplied by an arbitrary time interval ⁇ t, that is, the change ⁇ Q in the amount of charge is derived by sampling.
  • the voltage sensor 32 inputs the measured voltage value to the capacitance deriving unit 36 as needed.
  • Capacitance deriving means 36 obtains a value ⁇ i (t) dt obtained by time integration of current i (t) flowing within an arbitrary time interval ⁇ t, or a sum of current values sampled within the time interval ⁇ t as the number of sampling times.
  • a value obtained by dividing and multiplying by the arbitrary time interval ⁇ t is defined as a charge amount ⁇ Q
  • the capacitance C is derived by dividing ⁇ Q by the change amount ⁇ v of the voltage value at the arbitrary time interval ⁇ t.
  • Capacitance derivation method 4 A fourth method for deriving the capacitance of the lithium ion battery in the capacitance deriving means 36 will be described.
  • the capacitance can be derived even in a charged state in which the direction of the current flowing through the lithium ion battery 10 is opposite to the discharged state.
  • the changeover switch 24 is switched to the charging power source 22 side in the circuit of FIG. 1, the charging power source 22 is connected to the lithium ion battery 10 to be measured, and the lithium ion battery 10 is charged from the charging power source 22.
  • the capacitance is derived from the terminal voltage and current during charging.
  • the voltage sensor 32 measures a charging voltage value that changes during charging, and inputs the measured voltage value to the capacitance deriving means 36 as needed. Further, the current sensor 34 measures the charging current value during charging and inputs it to the capacitance deriving means 36. Since the current value should not change basically because of constant current charging, the input current value I does not change with time and is a substantially constant value.
  • the capacitance deriving means 36 is based on the amount of change ⁇ v of the input voltage value v (t) from the arbitrary time t to t + ⁇ t during the predetermined time ⁇ t, the input current value I, and the predetermined time ⁇ t.
  • the lithium ion battery 10 is charged with constant current, and the capacitance is derived from the time characteristics of the voltage and current at that time. However, the charging is performed while changing the value of the charging current instead of the constant current. You may do it.
  • the voltage sensor 32 measures a change value ⁇ v of the charging voltage that changes during charging between an arbitrary time t and t + ⁇ t, and the measured voltage value is electrostatically changed as needed.
  • the current sensor 34 measures the charging current value during charging and inputs the value to the capacitance deriving means 36.
  • the capacitance deriving means 36 calculates the amount of change ⁇ v in the predetermined time ⁇ t between the arbitrary time t and t + ⁇ t of the input voltage value v, and the average of the current value between the input arbitrary time t and t + ⁇ t. Based on the value I and the predetermined time ⁇ t, the amount of charge ⁇ Q flowing from an arbitrary time t to t + ⁇ t is obtained, and the capacitance C is derived. That is, as described in the capacitance deriving method 2, the charge amount ⁇ Q is derived from I ⁇ ⁇ t, and the capacitance C is derived from ⁇ Q / ⁇ v.
  • ⁇ Q / ⁇ v I ⁇ ⁇ t
  • the capacitance C is derived from / ⁇ v.
  • a current i (t) flowing within an arbitrary time interval ⁇ t from an arbitrary time t to t + ⁇ t is 1 within the time interval ⁇ t.
  • a sum of values sampled once or a plurality of times may be derived, and a current value obtained by dividing the sum by the number of samplings may be used as an average value of currents at the time interval ⁇ t.
  • the electrostatic capacity C of the lithium ion battery at an arbitrary time t derived by the electrostatic capacity deriving means 36 is a normal lithium ion battery that is not deteriorated and is stored in advance in the storage unit 40 by the deterioration determining means 38. It is compared with the time-dependent change of the electrostatic capacity, and deterioration is determined.
  • the deterioration determination method will be described based on the graph showing the time characteristics of the capacitance in FIG. In FIG. 2, the horizontal axis represents the elapsed time from the start of discharge (unit: sec), and the vertical axis represents the capacitance (unit: F).
  • a lithium ion battery that has not deteriorated shows an overall large capacitance. And it is a deteriorated lithium ion battery that shows a small capacitance as a whole.
  • the deterioration determining means 38 uses the electrostatic capacity C of the lithium ion battery derived from the electrostatic capacity deriving means 36 at the elapsed time from the start of discharge as the electrostatic capacity of the lithium ion battery that has not deteriorated at the same elapsed time. Compare For example, it is assumed that the electrostatic capacity at the time when 120 sec has elapsed from the measurement start time of the lithium ion battery subject to deterioration determination is derived as 16000F.
  • the undegraded capacitance stored in the storage unit 40 is 30000F when 120 seconds have elapsed.
  • the degradation determination means 38 compares the capacitances at the same elapsed time, so that the derived capacitance C is stored in the storage unit 40 and the electrostatic capacity of the non-degraded lithium ion battery. If it is the same value as the capacity, it is determined that it has not deteriorated, and if the derived electrostatic capacity C is smaller than the electrostatic capacity stored in the storage unit 40, it is determined that it has deteriorated. .
  • the rate of deterioration increases, the derived capacitance C becomes smaller than the capacitance of a lithium ion battery that has not deteriorated.
  • FIG. 4 shows the change with time of the electrostatic capacity when the elapsed time is longer than that in FIG.
  • the lithium ion battery that has not deteriorated is measured from the start of discharge to 16000 sec, and the change over time is stored in the storage unit 40.
  • the maximum capacitance of an undegraded lithium ion battery is about 300,000 F when the elapsed time is 4000 sec. This undegraded lithium ion battery has a reduced capacitance after 16000 sec from the start of discharge, and at the same time, the terminal voltage of the lithium ion battery has also decreased, and has stopped discharging.
  • a deteriorated lithium ion battery has a peak in capacitance from 1000 sec to 4000 sec from the start of discharge, the maximum value is small as 90000 F, and the capacitance decreases at 7000 sec from the start of discharge.
  • the terminal voltage of the ion battery is also reduced, and the discharge is stopped.
  • the capacitance of a lithium ion battery that has not deteriorated is larger and longer than that of FIG.
  • the electrostatic capacity of a deteriorated lithium ion battery is small and decays in a short time, and the time characteristics of the electrostatic capacity vary greatly depending on whether there is deterioration or not, the deterioration determination means 38 is better. Deterioration can be determined.
  • the storage unit 40 stores the time-dependent changes in capacitance of a plurality of types of lithium ion batteries that have not deteriorated. Further, the storage unit 40 stores the inter-terminal voltages between the positive and negative electrodes of a plurality of types of lithium ion batteries in association with the respective electrostatic capacities when not deteriorated. In FIG. 5, the time-dependent changes in the inter-terminal voltage and capacitance are stored for the two types of lithium ion batteries A and B, but the number of lithium ion batteries to be stored may be larger. Absent.
  • the voltage sensor 32 inputs the voltage value of the measured inter-terminal voltage to the electrostatic capacity deriving means 36, and simultaneously inputs the current value measured by the current sensor 34 to the electrostatic capacity deriving means 36.
  • the deterioration determining unit 38 corresponds to the voltage value and the capacitance stored in the storage unit 40. Select the lithium ion battery you want to use.
  • the deterioration determination unit 38 compares the change in the capacitance of the selected lithium ion battery with time and the capacitance C of the lithium ion battery derived by the capacitance deriving unit 36 to determine the deterioration. . Specifically, as in the case described above, the deterioration determination unit 38 compares the magnitudes of the capacitances during the same elapsed time, and the derived capacitance C is the static value selected from the storage unit 40. If it is the same value as the electric capacity, it is determined that it has not deteriorated, and if the derived electrostatic capacity C is smaller than the electrostatic capacity selected from the storage unit 40, it is determined that it has deteriorated. .
  • the deterioration determination means 38 does not determine deterioration based on the change in capacitance with time, but changes in the voltage between terminals and the change in capacitance between the positive electrode and the negative electrode of a lithium ion battery that has not deteriorated. It is also possible to determine the deterioration from the relationship.
  • the storage unit 40 has a relationship based on a change with time in the voltage between the positive electrode and the negative electrode of the lithium ion battery 10 that has not deteriorated, and a change with time in the voltage between the terminals of the capacitance that has not deteriorated.
  • the electrostatic capacity at the inter-terminal voltage is compared.
  • the deterioration determination unit 38 compares the capacitances at the same terminal voltage, and the derived capacitance C has the same value as the capacitance stored in the storage unit 40. If it is, it is determined that it has not deteriorated, and if the derived electrostatic capacity C is a value smaller than the electrostatic capacity stored in the storage unit 40, it is determined that it has deteriorated.
  • the lithium ion battery subject to deterioration determination may be a battery in which a plurality of lithium ion batteries are connected in parallel or in series. Further, a plurality of lithium ion batteries may be in a connected state in which parallel connection and series connection are combined. In this case, with respect to the change in capacitance with time stored in advance in the storage unit, a plurality of lithium ion batteries are connected in parallel or in series, and a plurality of lithium ion batteries are connected in parallel and in series. It is necessary to memorize what is in a connection state in which connections are combined.
  • the secondary battery to be determined by the tester is not limited to a lithium ion battery, and a nickel cadmium battery, a nickel hydride battery, or the like may be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 二次電池の劣化状態を、静電容量から判定する際に交流信号を印加することなく、二次電池に流れる電流と端子電圧の時間特性から二次電池の静電容量を求め、得られた静電容量から二次電池の劣化状態を判定する簡便な二次電池テスターを提供する。 二次電池10の端子電圧を測定する電圧センサー32と、電流を測定する電流センサー34とを備え、交流信号を印加することなく、測定した電圧と電流の時間特性の測定値から静電容量Cを求め、予め記憶されている比較対象となる静電容量と測定値から導出された静電容量とを比較することで劣化状態を評価できる。

Description

二次電池テスター 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2012-228844号(2012年10月16日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は二次電池の劣化状態を判定するテスターに関する。
 例えば、充電を繰り返すことによって使用される二次電池は、ハイブリッド車、電気自動車、携帯電話等の普及により現在の社会生活において必要不可欠なものとなってきている。
 現在の二次電池は、電池容量が大きく進化しているが、充放電を繰り返して使用していると、内部変化が徐々に大きくなり、充放電が十分にできなくなることで物によっては短寿命になってしまうものも存在する。
 したがって、特に車両用に二次電池を使用している場合には、劣化した二次電池のために突然車両が運転できなくなるなどの危険があり、劣化判定をしてから二次電池を使用したいという要望がある。
 そこで、二次電池の劣化を判定するための方法が従来より開発されてきている。
 例えば非特許文献1には、リチウムイオン電池の劣化に対応した内部抵抗を測定することで劣化判定を行えることが記載されている。
 また、特許文献1には、リチウムイオン二次電池に特定周波数の交流電圧及び/又は交流電流を印加して、リチウムイオン二次電池の状態を検出することが開示されている。また、特許文献2には、所定周波数で非水電解質二次電池における所定周波数での交流インピーダンスを測定し、この交流インピーダンスと充放電可能な可逆容量(充放電可能な電池容量)の関係式によって電池の可逆容量を推定する方法が開示されている。
 また、特許文献3には、リチウムイオン電池の電圧電流特性を導出し、その得られた電圧電流特性に基づいてリチウムイオン電池の開回路電圧(OpenCircuit Voltage:OCV)を導出し、さらに電流積算などの手法でリチウムイオン電池の充電容量(State Of Charge:SOC)を推定し、OCV及びSOCの変化によって析出劣化を判定する内容が開示されている。
 特許文献4には、リチウムイオン電池を一定の電力値で連続的に放電及び充電させる診断モードにおいて取得された電圧変化に関する情報に基づき、劣化状態を判定する内容が開示されている。
 さらに、特許文献5には、リチウムイオン電池を定電流定電圧方式によって充電する際に、電池の公称容量をCとしたときの充電電流をC/(20時間)以下とし、定電流充電中の充電電圧が予め設定された電圧Vsに達してから充電上限電圧Vcに達するまでの時間tを求め、リチウムイオン電池の推定比容量Ce/Cを関係式C=At+B(A,B=const)によってリチウムイオン電池の容量を推定し、また劣化を判定する内容が開示されている。
 引用文献6に記載された劣化判定方法は以下の通りである。充電装置にリチウムイオン電池、ニッケルカドミウム電池、ニッケル水素電池などの二次電池が接続されると、その種類を検出し、その電池電圧に応じて定電流充電処理を開始する。この充電処理中に電池電圧が電池の種類に応じた基準電圧値になると、制御部によって定電流充電時間の計時が開始され、電池の種類に応じた充電制御方式により、定電圧充電に切り替わったか又は-ΔVが検出されると計時が終了する。制御部は、計時によって得られた定電流充電時間に基づいて、電池の充電容量が新品当初の電池に対する定電流充電時間と比べることで劣化を判定している。
特開2009-244088号公報 特開2012-122817号公報 特開2010-66232号公報 特開2010-60408号公報 特開2001-332310号公報 特開平11-329512号公報
堀江秀明著 「リチウムイオン電池」 培風館 2010年8月
 上述した特許文献1、2の方法では、測定対象となる二次電池に交流を印加することにより、二次電池の劣化判定を行っていた。
 しかし、交流を印加して判定する判定装置を用いる場合には、交流電源及びインピーダンス測定機が必要であるため装置が大型化してしまい取り扱いが不便である。特に、二次電池を使用している一般ユーザが劣化判定を行う場合には、簡便で且つ小型軽量の装置によって劣化判定できることが望まれているという課題がある。
 また、特許文献3~6及び非特許文献1に記載された方法では、内部抵抗、電圧値、充電電荷量、放電電荷量などのパラメータを単独又は組み合わせて二次電池の劣化を判定している。
 一方で、本発明者等は二次電池の静電容量を検出することにより、二次電池の劣化判定を行うことを鋭意研究した結果、簡便で且つ小型軽量の装置によって良好な判定が可能なとなることに想到した。
 そこで、本発明は、上記課題を解決すべくなされ、その目的とするところは、簡便であって、小型且つ軽量化された二次電池テスターを提供することにある。
 本発明にかかる二次電池テスターによれば、交流を印加せずに二次電池の正極と負極との間の端子電圧を測定する電圧測定部と、交流を印加せずに二次電池の正極と負極との間に流れる電流を測定する電流測定部と、電圧測定部で測定した電圧値及び電流測定部で測定した電流値から、測定開始から所定時間経過時における二次電池の静電容量を導出する静電容量導出手段と、正常な二次電池における静電容量の経時変化を予め記憶している記憶部と、静電容量導出手段によって導出された所定時間経過時における静電容量と、記憶部に記憶されている静電容量の経時変化のうち所定時間経過時の静電容量とを比較して、測定された二次電池の劣化を判定する判定手段とを具備することを特徴としている。
 この構成によれば、静電容量に基づいて劣化判定をする場合において交流電源等の必要が無いので、装置全体を簡便に、小型、軽量化することができ、二次電池を使用している一般ユーザであっても手軽に劣化判定を行うことができる。
 また、前記静電容量導出手段は、前記電流測定部で測定した電流値を、前記電圧測定部で測定した電圧値の時間微分で除算することで、二次電池の静電容量を導出することを特徴としてもよい。
 この構成では、任意の時刻での電流値i(t)を電圧値v(t)の時間微分dv/dtで除算することで、その時刻での静電容量C=i(t)・dt/dvとして導出できる。
 また、前記静電容量導出手段は、前記電流測定部で測定した電流値から所定時間Δtで流れる電荷量を導出し、前記電圧測定部で測定した電圧値の所定時間Δtにおける変化量Δvを導出し、前記所定時間で流れる電荷量ΔQを電圧値の所定時間における変化量Δvで除算することで、二次電池の静電容量を導出することを特徴としてもよい。
 この構成では、所定の時間間隔Δt内で流れる電荷量ΔQを、電流値I(その時間間隔での平均電流値)・Δtによって導出し、静電容量Cは、C=ΔQ/Δvから導出できる。
 また、前記静電容量導出手段は、任意の時間間隔Δtで流れる電流値の時間積分した値、又は任意の時間間隔Δtで流れる電流値をその時間間隔Δtで一回若しくは複数回サンプリングした値の総和をサンプリング回数で除算した後に任意の時間間隔Δtを乗算した値を、前記電圧測定部で測定した電圧値のその時間間隔Δtにおける変化量Δvで除算することで、二次電池の静電容量を導出することを特徴としてもよい。
 この構成では、任意の時間間隔Δtで流れる電荷量ΔQとしては、その時間間隔Δtでの電流量i(t)の時間積分∫i(t)dt、又はその時間間隔Δtで流れる電流量i(t)をその時間間隔Δtの中で一回若しくは複数回サンプリングした値の総和をサンプリング回数で除算した後にその時間間隔Δtを乗算した値を用いることができる。そして静電容量Cは、C=ΔQ/Δvから導出できる。
 また、判定対象の二次電池に直流電流を印加する直流電源を具備し、前記静電容量導出手段は、該直流電源による定電流充電時、又は充電電圧を変化させての充電時において、電圧測定部で測定した所定時間Δtの電圧値の時間変化Δv及び電流測定部で測定した電流値より求めた所定時間の電荷量ΔQから、静電容量を導出することを特徴としてもよい。
 また、前記記憶部は、正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、前記判定手段は、前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴としてもよい。
 また、前記記憶部は、正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、前記判定手段は、前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴としてもよい。
 さらに、測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴としてもよい。
 本発明によれば、簡便であって、小型且つ軽量の二次電池テスターを構成することができる。
本発明に係る二次電池テスター及び二次電池テスターの第1の実施形態の接続構成を示す説明図である。 本発明により導出した静電容量の時間変化を示したグラフである。 本発明に係る二次電池テスター及び二次電池テスターの第2の実施形態の接続構成を示す説明図である。 図2のグラフよりも横軸の時間を長くした場合の静電容量の時間変化を示したグラフである。 複数種類のリチウムイオン電池の静電容量を記憶させている状態を示す説明図である。
 以下、本発明の二次電池テスターについて、図面に基づいて詳細に説明する。
 また、本実施形態としては、二次電池の例としてリチウムイオン電池を挙げて説明していくが、二次電池としてはリチウムイオン電池に限定するものではない。
(二次電池テスターの第1の実施形態)
 図1には、本実施形態の二次電池テスター及び二次電池テスターの第1の実施形態の接続構成について示す。
 本実施形態の二次電池テスター30は、図1の太線で囲まれた範囲で示され、電圧センサー32、電流センサー34、記憶部40、静電容量導出手段36、及び劣化判定手段38を備えている。
 二次電池テスター30は、電圧センサー32及び電流センサー34で測定対象となるリチウムイオン電池10の端子電圧と電流を測定し、これらの値から静電容量を算出し、記憶部40に記憶されている静電容量及び端子電圧をもとに劣化判定を行うことができる。
 なお、本第1の実施形態の二次電池テスター30では、電圧センサー32に接続される電圧端子を2個、電流センサー34に接続される電流端子を2個備えているが、電圧端子1個と電流端子1個を共通として、3端子を備えた二次電池テスターとしても良い。電圧端子については、正極と負極の指定を行っても良いし、行わなくても良い。
 測定対象となるリチウムイオン電池10は、負荷20又は充電装置22に接続されている。具体的には、図1に示すように、リチウムイオン電池10は、切替スイッチ24によって負荷20または充電電源22のどちらかに接続される。本実施形態の二次電池テスター30は、切替スイッチ24によって、充電状態又は放電状態に切り替えたどちらの場合であっても、リチウムイオン電池10の端子電圧と電流から劣化判定される。
 また、負荷20としてはどのようなものであってもよく、このリチウムイオン電池10を実際に使用する機器であってもよいし、この機器と同様の内部インピーダンスを有するダミーであってもよい。
 すなわち、リチウムイオン電池10の劣化判定は、リチウムイオン電池10の端子電圧と電流が電圧センサー32及び電流センサー34で測定できればよく、負荷の形態、充電状態又は放電状態にかかわらず、二次電池テスター30によってリチウムイオン電池10の劣化が判定される。
 本実施形態の二次電池テスター30について詳しく説明する。測定対象となるリチウムイオン電池10の正極と負極との間の電圧(以下、単に端子電圧と称する場合がある)を測定する電圧センサー32と、リチウムイオン電池10に流れる電流を測定する電流センサー34とを備えている。電圧センサー32が特許請求の範囲でいう電圧測定部に該当し、電流センサー34が特許請求の範囲でいう電流測定部に該当する。
 二次電池テスター30は、リチウムイオン電池の端子電圧と電流とを測定し、これに基づいて静電容量を導出し、既知の静電容量と比較することで劣化判定を行うように動作する。
 このため、二次電池テスター30には、電圧センサー32及び電流センサー34に接続された静電容量導出手段36と、導出された静電容量に基づいて劣化判定を行う劣化判定手段38とを備えている。さらに、静電容量導出手段36によって導出された静電容量と比較するための正常な静電容量を予め記憶しておくための記憶部40が設けられている。
 この静電容量導出手段36及び劣化判定手段38は、具体的にはマイクロプロセッサ及びマイクロプロセッサを動作させるプログラムが記憶されたメモリによって実現できる。また、記憶部40は、上記のメモリによって実現できる。
 なお、記憶部40には、劣化していないリチウムイオン電池(ここで、劣化していないと言う表現は、劣化が小さい状態のものを含むものであるが、便宜上劣化していないと言う表現で説明する)の静電容量の経時変化と端子電圧の時間特性が記憶されている。なお、リチウムイオン電池10の端子電圧の時間特性は、静電容量の導出、静電容量測定時の電池の放電状態と充電状態の判定、静電容量と合わせた劣化状態の判定、及び放電終了や充電終了の判定のために必要である。
 例えば、図2に示すグラフでは全体的に静電容量が大きい方が、劣化していないリチウムイオン電池の静電容量の経時変化である。図2では、放電開始時から600sec経過時までの静電容量の経時変化を示している。
 このような、劣化していないリチウムイオン電池の静電容量は予め所定時間継続して測定し、記憶部40に経時変化として記憶させておくことが必要である。また、リチウムイオン電池の種類ごとに静電容量は異なるため、所定のユーザにおいて判定対象となるリチウムイオン電池が複数種類存在する場合には、その種類ごとに予め所定時間継続して測定し、記憶部40にそれぞれ経時変化として記憶させておく必要がある。
(二次電池テスターの第2の実施形態)
 二次電池テスターの第2の実施形態を図3に示す。
 二次電池テスター31の第2の実施形態では、測定対象となるリチウムイオン電池10に負荷及び充電電源が接続されていない場合であっても、測定対象のリチウムイオン電池10の劣化判定が行える構成を採用している。
 具体的には、図3に示すように、本実施形態の二次電池テスター31は、内部に模擬負荷50と、スイッチ55とを備えている点で第1の実施形態の二次電池テスター30とは異なっている。
 また、二次電池テスター31の外部接続端子としては、電圧端子のみが設けられている。リチウムイオン電池10の正極又は負極は、それぞれ二次電池テスター31の電圧端子に接続される。
 リチウムイオン電池10の正極又は負極に接続された電圧端子は、二次電池テスター31内でそれぞれ電圧センサー32に接続されるとともに、一方は電流センサー34の一端子に接続されるように分岐し、他方は、模擬負荷50の一端に接続されるように分岐している。また、模擬負荷50の他端とスイッチ55の一端が接続され、スイッチ55の他端は、電流センサー34の他端子に接続されている。スイッチ55をオンにすることによって、模擬負荷55とリチウムイオン電池10が直列に接続されて模擬負荷55に電流が流れる。
 二次電池テスター31内の電圧センサー32、電流センサー34、記憶部40、静電容量導出手段36、及び劣化判定手段38は、上記の第1の実施形態の構成と同じ構成を採用しても良い。
 なお、二次電池テスターの端子については、正極と負極の指定を行っても良いし、行わなくても良い。
(静電容量の導出方法1)
 静電容量導出手段36におけるリチウムイオン電池の静電容量の導出方法についてはいくつかの方法が考えられるが、まず第1の導出方法について、以下に説明する。
 静電容量Cは、電圧vを印加した時の蓄えられる電荷量をQとすると、定常状態の基本的な式C=Q(電荷量)/v(電圧)から導出することができる。本実施形態では、この基本的な式C=Q/vに対応させて、測定した電流値と電圧値の時間特性から静電容量Cを導出する。
 電流センサー34は、時間tを変数とした電流値i(t)を測定し、静電容量導出手段36には、このi(t)が入力される。また、電圧センサー32が測定した電圧値v(t)も静電容量導出手段36に入力される。静電容量導出手段36は、電圧値v(t)を時間微分しdv/dtを得る。さらに、静電容量導出手段36は、電流値i(t)を電圧値の時間微分dv/dtで除算する。この除算した値は、i(t)/(dv/dt)=(i(t)・dt)/dvとなり、(i(t)・dt)はdt時間に流れた電流i(t)による電荷量変化dQを表すことから、C=Q/vに対応した微分によるある時間tにおける静電容量i(t)/(dv/dt)=(i(t)・dt)/dv=dQ/dv=Cが導出される。
(静電容量の導出方法2)
 静電容量導出手段36におけるリチウムイオン電池の静電容量の第2の導出方法について説明する。本導出方法では、静電容量の基本式C=Q/vに対応して、所定の時間間隔Δtでの電荷量の変化分ΔQと電圧の変化分Δvから静電容量C=ΔQ/Δvを導出するものである。
 電流センサー34は、所定の時間間隔Δt内で測定した電流値を静電容量導出手段36に入力する。静電容量導出手段36は、印加された電流値の平均値Iを導出する。静電容量導出手段36は、所定の時間間隔内で流れる電荷量をΔQとすると、ΔQ=I・ΔtよりΔQを導出する。
 また、電圧センサー32で測定された電圧値も静電容量導出手段36に入力される。静電容量導出手段36は、電荷量ΔQの導出と同じ所定の時間間隔Δtの間での電圧変化Δvを導出する。静電容量の基本式C=Q/vに対応して、所定の時間間隔Δtでの電荷量の変化分ΔQと電圧の変化分Δvより、静電容量Cは、C=ΔQ/Δvの式より導出できる。すなわち、静電容量導出手段36によって、電荷量変化ΔQ(すなわちI・Δt)を、電圧変化Δvで除算すること(ΔQ/Δv=I・Δt/Δv=C)によって静電容量Cを導出する。
(静電容量の導出方法3)
 静電容量導出手段36におけるリチウムイオン電池の静電容量の第3の導出方法について説明する。
 電流センサー34は、測定された電流値を随時静電容量導出手段36に入力する。静電容量導出手段36は、ある時間tでながれる電流i(t)をtからt+Δtの任意の時間間隔Δtで時間積分した値∫i(t)dt、すなわちその時間間隔内で流れた電荷量の変化分ΔQを導出する。または、静電容量導出手段36は、tからt+Δtの任意の時間間隔Δt内で流れる電流i(t)をその時間間隔内で一回若しくは複数回サンプリングした値の総和を導出し、さらにこの総和をサンプリング回数で除算した上で任意の時間間隔Δtを乗算した値、すなわちサンプリングによって電荷量の変化分ΔQを導出する。
 電圧センサー32は、測定された電圧値を随時静電容量導出手段36に入力する。
 静電容量導出手段36は、任意の時間間隔Δt内で流れる電流i(t)を時間積分した値∫i(t)dt、又はその時間間隔Δt内でサンプリングした電流値の総和をサンプリング回数で除算しその任意の時間間隔Δtを乗算した値を電荷量ΔQとし、このΔQを電圧値のその任意の時間間隔Δtにおける変化量Δvで除算することにより静電容量Cを導出する。
(静電容量の導出方法4)
 静電容量導出手段36におけるリチウムイオン電池の静電容量の第4の導出方法について説明する。
 この導出方法では、リチウムイオン電池10に流れる電流の向きが放電状態と反対である充電状態に対しても静電容量を導出できる。具体的には、図1の回路において切替スイッチ24を充電電源22側に切り替え、測定対象となるリチウムイオン電池10に充電電源22を接続し、充電電源22からリチウムイオン電池10が充電された場合の充電時における端子電圧及び電流から静電容量を導出している。
 ここで、充電電源22により、リチウムイオン電池10に対して定電流充電が行われる場合を説明する。
 電圧センサー32は、充電中に変化する充電電圧値を測定し、測定された電圧値を随時静電容量導出手段36に入力する。
 また、電流センサー34は、充電中の充電電流値を測定して静電容量導出手段36に入力する。なお、定電流充電であるから基本的には電流値の変化はないはずであるため、入力された電流値Iは時間変化がなく、略一定値である。
 静電容量導出手段36は、入力された電圧値v(t)の任意の時間tからt+Δtの所定時間Δtにおける変化量Δvと、入力された電流値Iと、所定時間Δtとに基づいて静電容量Cを導出する。すなわち、静電容量の導出方法2で説明したように、所定時間Δtの間にリチウムイオン電池10を流れた電荷量ΔQは、I・Δtによって導出され、また静電容量Cは、C=Q/Δvで導出されるので、ΔQ/Δv=I・Δt/Δvより静電容量Cが導出される。
 なお、リチウムイオン電池10の充電時においては定電流充電を行い、その時の電圧と電流の時間特性から静電容量を導出しているが、定電流ではなく充電電流の値を変化させながら充電させるようにしてもよい。
 このような充電方法を採用する場合には、電圧センサー32は、任意の時間tからt+Δtの間の充電中に変化する充電電圧の変化値Δvを測定し、測定された電圧値を随時静電容量導出手段36に入力し、電流センサー34は、充電中の充電電流値を測定して静電容量導出手段36に入力する。
 静電容量導出手段36は、入力された電圧値vの任意の時間tからt+Δtの間の所定時間Δtにおける変化量Δvと、入力された任意の時間tからt+Δtの間での電流値の平均値Iと、所定時間Δtとに基づいて、任意の時間tからt+Δtの間に流れた電荷量ΔQを求め、静電容量Cを導出する。すなわち、静電容量の導出方法2で説明したように、電荷量ΔQは、I・Δtによって導出され、また静電容量Cは、ΔQ/Δvで導出されるので、ΔQ/Δv=I・Δt/Δvより静電容量Cが導出される。
 なお、任意の時間tからt+Δtの間で入力された電流の平均値Iについては、任意の時間tからt+Δtの任意の時間間隔Δt内で流れる電流i(t)をその時間間隔Δt内で1回又は複数回サンプリングした値の総和を導出し、さらにこの総和をサンプリング回数で除算した電流値を、その時間間隔Δtでの電流の平均値として用いてもよい。
(劣化判定方法1)
 静電容量導出手段36によって導出された任意の時間tでのリチウムイオン電池の静電容量Cは、劣化判定手段38によって、記憶部40に予め記憶されている劣化していない正常なリチウムイオン電池の静電容量の経時変化と比較され、劣化判定される。
 以下、図2の静電容量の時間特性を示すグラフに基づいて、劣化判定方法について説明する。なおこの図2では、横軸に放電開始からの経過時間(単位:sec)、縦軸に静電容量(単位:F)をとっている。
 図2で全体的に大きい静電容量を示しているのが、劣化していないリチウムイオン電池である。そして、全体的に小さい静電容量を示しているのが、劣化したリチウムイオン電池である。
 劣化判定手段38は、静電容量導出手段36によって導出された、放電開始からの経過時間におけるリチウムイオン電池の静電容量Cを、同じ経過時間における劣化していないリチウムイオン電池の静電容量とを比較する。例えば、劣化判定対象のリチウムイオン電池の測定開始時刻から120sec経過時における静電容量が16000Fと導出されたとする。このとき、記憶部40に記憶されている劣化していない静電容量は、経過時120secのときは、30000Fである。
 劣化判定手段38は、同じ経過時間における静電容量の大きさどうしを比較することで、導出された静電容量Cが、記憶部40に記憶されている劣化していないリチウムイオン電池の静電容量と同じ値であれば、劣化していないと判定し、導出された静電容量Cが記憶部40に記憶されている静電容量よりも小さい値であれば、劣化していると判定する。ここで、劣化の割合が大きくなるにつれて導出された静電容量Cは、劣化していないリチウムイオン電池の静電容量よりも小さくなる。
 また、図4には、図2よりも経過時間が長時間の場合の静電容量の経時変化について示す。
 図4では、劣化していないリチウムイオン電池については、放電開始から16000secまで測定して、記憶部40にその経時変化を記憶している。劣化していないリチウムイオン電池の最大静電容量は、経過時間4000secの時に約300000Fである。この劣化していないリチウムイオン電池は、放電開始から16000secで静電容量は小さくなり、同時にリチウムイオン電池の端子電圧も小さくなり、放電を停止している。一方、劣化しているリチウムイオン電池については、放電開始から1000secから4000secで静電容量にピークを持ち、その最大値も90000Fと小さく、また放電開始から7000secで静電容量が小さくなり、同時にリチウムイオン電池の端子電圧も小さくなり、放電を停止している。
 図4に示すように、図2の場合よりも劣化判定の対象となるリチウムイオン電池の静電容量を長時間測定した場合であっても劣化していないリチウムイオン電池の静電容量が大きく長時間持続できるのに対して、劣化したリチウムイオン電池の静電容量は小さく短時間で減衰し、劣化の有無で静電容量の時間特性に大きな違いがあることから、劣化判定手段38により良好な劣化判定が行える。
(劣化判定方法2)
 次に、複数種類のリチウムイオン電池を判定する場合の実施形態について説明する。
 まず、図5に示すように、記憶部40には、複数種類のリチウムイオン電池について、劣化していない状態の静電容量の経時変化をそれぞれ記憶させておく。また、記憶部40には、複数種類のリチウムイオン電池の正極と負極との間の端子間電圧を、それぞれの劣化していないときの静電容量と関連づけして記憶させておく。図5では、2種類のリチウムイオン電池A,Bについて、それぞれの端子間電圧及び静電容量の経時変化が記憶されているが、記憶させておくリチウムイオン電池の数は、より多くてもかまわない。
 続いて、電圧センサー32は、測定した端子間電圧の電圧値を静電容量導出手段36に入力し、同時に電流センサー34で測定した電流値も静電容量導出手段36に入力する。劣化判定手段38は、静電容量導出手段36より入力された端子間電圧の電圧値及びその静電容量の大きさに基づいて、記憶部40に記憶されている電圧値及び静電容量から該当するリチウムイオン電池を選択する。
 そして、劣化判定手段38は、選択されたリチウムイオン電池の静電容量の経時変化と、静電容量導出手段36によって導出されたリチウムイオン電池の静電容量Cとを比較し、劣化判定を行う。具体的には、上述した場合と同様に、劣化判定手段38は、同じ経過時間における静電容量の大きさどうしを比較し、導出された静電容量Cが、記憶部40から選択された静電容量と同じ値であれば、劣化していないと判定し、導出された静電容量Cが記憶部40から選択された静電容量よりも小さい値であれば、劣化していると判定する。
(劣化判定方法3)
 なお、劣化判定手段38は、静電容量の経時変化に基づいて劣化判定するのではなく、劣化していないリチウムイオン電池の正極と負極との間の端子間電圧の変化と静電容量の変化との関係から劣化判定を行う事も可能である。
 記憶部40には、劣化していないリチウムイオン電池10の正極と負極との間の端子間電圧の経時変化と、劣化していない状態の静電容量の端子間電圧の経時変化に基づく関係とを記憶させておく。一般的に放電時間が長くなると端子間電圧も徐々に低下するものである。したがって、本実施形態では、測定された端子間電圧(経時的に値が低下する)に基づいて、その端子間電圧の時の静電容量を比較するものである。
 具体的には、劣化判定手段38は、同じ端子間電圧における静電容量の大きさどうしを比較し、導出された静電容量Cが、記憶部40に記憶されている静電容量と同じ値であれば、劣化していないと判定し、導出された静電容量Cが記憶部40に記憶されている静電容量よりも小さい値であれば、劣化していると判定する。
(他の実施形態)
 なお、上述してきた各実施形態では、単一のリチウムイオン電池の劣化判定について説明してきた。
 しかしながら、劣化判定対象のリチウムイオン電池は、複数個のリチウムイオン電池が並列接続又は直列接続されているものであってもよい。さらには、複数個のリチウムイオン電池が並列接続及び直列接続が組み合わされた接続状態となっているものであってもよい。この場合には、予め記憶部に記憶させておく静電容量の経時変化についても、複数個のリチウムイオン電池が並列接続又は直列接続されているもの、複数個のリチウムイオン電池が並列接続及び直列接続が組み合わされた接続状態となっているものについて記憶させておく必要がある。
 なお、本テスターの判定対象となる二次電池としては、リチウムイオン電池に限定するものではなく、ニッケルカドミウム電池やニッケル水素電池などを測定対象としてもよい。
10  リチウムイオン電池
20  負荷
22  充電電源
24  切替スイッチ
30、31  二次電池テスター
32  電圧センサー
34  電流センサー
36  静電容量導出手段
38  劣化判定手段
40  記憶部
50 模擬負荷
55  スイッチ
 
 

Claims (20)

  1.  交流を印加せずに二次電池の正極と負極との間の端子電圧を測定する電圧測定部と、
     交流を印加せずに二次電池の正極と負極との間に流れる電流を測定する電流測定部と、
     電圧測定部で測定した電圧値及び電流測定部で測定した電流値から、測定開始から所定時間経過時における二次電池の静電容量を導出する静電容量導出手段と、
     正常な二次電池における静電容量の経時変化を予め記憶している記憶部と、
     静電容量導出手段によって導出された所定時間経過時における静電容量と、記憶部に記憶されている静電容量の経時変化のうち所定時間経過時の静電容量とを比較して、測定された二次電池の劣化を判定する判定手段とを具備することを特徴とする二次電池テスター。
  2.  前記静電容量導出手段は、
     前記電流測定部で測定した電流値を、前記電圧測定部で測定した電圧値の時間微分で除算することで、二次電池の静電容量を導出することを特徴とする請求項1記載の二次電池テスター。
  3.  前記静電容量導出手段は、
     前記電流測定部で測定した電流値から所定時間で流れる電荷量を導出し、前記電圧測定部で測定した電圧値の所定時間における変化量を導出し、前記所定時間で流れる電荷量を電圧値の所定時間における変化量で除算することで、二次電池の静電容量を導出することを特徴とする請求項1記載の二次電池テスター。
  4.  前記静電容量導出手段は、
     任意の時間間隔で流れる電流値の時間積分した値、又は任意の時間間隔で流れる電流値をその時間間隔で一回若しくは複数回サンプリングした値の総和をサンプリング回数で除算した後に任意の時間間隔を乗算した値を、前記電圧測定部で測定した電圧値の任意の時間間隔における変化量で除算することで、二次電池の静電容量を導出することを特徴とする請求項1記載の二次電池テスター。
  5.  判定対象の二次電池に直流電流を印加する直流電源を具備し、
     前記静電容量導出手段は、
     該直流電源による定電流充電時、又は充電電圧を変化させての充電時において、電圧測定部で測定した電圧値の時間変化及び電流測定部で測定した電流値より求めた所定時間の電荷量から、静電容量を導出することを特徴とする請求項1記載の二次電池テスター。
  6.  前記記憶部は、
     正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴とする請求項1記載の二次電池テスター。
  7.  前記記憶部は、
     正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴とする請求項2記載の二次電池テスター。
  8.  前記記憶部は、
     正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴とする請求項3記載の二次電池テスター。
  9.  前記記憶部は、
     正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴とする請求項4記載の二次電池テスター。
  10.  前記記憶部は、
     正常な二次電池の電圧値及び静電容量を予め複数種類記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値及び前記静電容量導出手段によって導出された静電容量の大きさに基づいて、前記記憶部に記憶されている複数種類の電圧値及び静電容量のうちから何れか1つを選択して比較することを特徴とする請求項5記載の二次電池テスター。
  11.  前記記憶部は、
     正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴とする請求項1記載の二次電池テスター。
  12.  前記記憶部は、
     正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴とする請求項2記載の二次電池テスター。
  13.  前記記憶部は、
     正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴とする請求項3記載の二次電池テスター。
  14.  前記記憶部は、
     正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴とする請求項4記載の二次電池テスター。
  15.  前記記憶部は、
     正常時における、正極と負極との間の端子電圧と静電容量との関係を予め記憶しており、
     前記判定手段は、
     前記電圧測定部で測定した電圧値と前記静電容量導出手段によって導出された静電容量との関係と、前記記憶部に記憶されている正常時における、正極と負極との間の端子電圧と静電容量との関係とを比較することを特徴とする請求項5記載の二次電池テスター。
  16.  測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴とする請求項1記載の二次電池テスター。
  17.  測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴とする請求項2記載の二次電池テスター。
  18.  測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴とする請求項3記載の二次電池テスター。
  19.  測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴とする請求項4記載の二次電池テスター。
  20.  測定対象となる前記二次電池は、複数個の二次電池が並列接続、直列接続又は並列接続及び直列接続が組み合わされた接続状態であることを特徴とする請求項5記載の二次電池テスター。
     
PCT/JP2013/006051 2012-10-16 2013-10-10 二次電池テスター WO2014061238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/435,233 US9500715B2 (en) 2012-10-16 2013-10-10 Secondary battery tester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012228844A JP5505478B2 (ja) 2012-10-16 2012-10-16 二次電池テスター
JP2012-228844 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061238A1 true WO2014061238A1 (ja) 2014-04-24

Family

ID=50487818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006051 WO2014061238A1 (ja) 2012-10-16 2013-10-10 二次電池テスター

Country Status (3)

Country Link
US (1) US9500715B2 (ja)
JP (1) JP5505478B2 (ja)
WO (1) WO2014061238A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137358A (zh) * 2015-08-27 2015-12-09 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
WO2022265026A1 (ja) * 2021-06-14 2022-12-22 日置電機株式会社 短絡検出装置及び短絡検出方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295609B2 (en) * 2013-07-23 2019-05-21 Gs Yuasa International Ltd. Deterioration state detection apparatus and deterioration state detection method for energy storage device, and energy storage system
US20160003911A1 (en) * 2014-07-03 2016-01-07 Infineon Technologies Ag Battery cell characteristic identification
CN105574304A (zh) * 2014-10-07 2016-05-11 深圳市沃特玛电池有限公司 磷酸铁锂动力电池组soc的估算方法
CN106483463A (zh) * 2015-08-31 2017-03-08 上汽通用汽车有限公司 电池充电状态预估方法和装置
JP6573120B2 (ja) * 2016-01-26 2019-09-11 株式会社Gsユアサ 状態推定装置、蓄電素子モジュール、車両、及び状態推定方法
JP6655000B2 (ja) * 2016-12-20 2020-02-26 株式会社日立製作所 エレベーター装置及びエレベーター搭載蓄電素子劣化判定方法
US10809307B2 (en) 2017-09-26 2020-10-20 E-Xteq Europe Differential battery testers
KR102261481B1 (ko) 2017-10-30 2021-06-07 (주)엘지에너지솔루션 배터리 퇴화 진단 장치 및 방법
KR101930646B1 (ko) * 2017-11-22 2019-03-11 주식회사 포스코아이씨티 이차 미분 전압곡선을 이용한 배터리 용량 추정 장치 및 방법
DE102020202561A1 (de) * 2020-02-28 2021-09-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Alterungszustands mindestens eines elektrochemischen Energiespeichers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272365A (ja) * 2009-05-21 2010-12-02 Gs Yuasa Corp 二次電池の劣化診断方法、及び二次電池の劣化診断装置
JP2011109910A (ja) * 2008-11-20 2011-06-02 Sumitomo Heavy Ind Ltd 充放電制御装置
WO2011121692A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 二次電池の劣化診断方法、及び劣化診断装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329512A (ja) 1998-05-20 1999-11-30 Fuji Photo Film Co Ltd 二次電池の容量劣化判断方法およびその判断装置
JP3649652B2 (ja) 2000-05-22 2005-05-18 日本電信電話株式会社 リチウムイオン電池の容量推定方法および劣化判定装置ならびにリチウムイオン電池パック
JP5186690B2 (ja) * 2008-03-21 2013-04-17 株式会社小松製作所 ハイブリッド建設機械における蓄電装置の劣化状態判定方法および装置
JP5544687B2 (ja) 2008-03-31 2014-07-09 株式会社豊田中央研究所 リチウムイオン二次電池の状態検出方法及びリチウムイオン二次電池の状態検出装置
JP5044511B2 (ja) 2008-09-03 2012-10-10 トヨタ自動車株式会社 リチウムイオン電池の劣化判定方法、リチウムイオン電池の制御方法、リチウムイオン電池の劣化判定装置、リチウムイオン電池の制御装置及び車両
JP2010066232A (ja) 2008-09-12 2010-03-25 Toyota Motor Corp リチウムイオン電池の劣化判定装置、車両およびリチウムイオン電池の劣化判定方法
JP2012122817A (ja) 2010-12-07 2012-06-28 Gs Yuasa Corp 非水電解質二次電池の可逆容量推定方法、寿命予測方法、可逆容量推定装置、寿命予測装置及び蓄電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109910A (ja) * 2008-11-20 2011-06-02 Sumitomo Heavy Ind Ltd 充放電制御装置
JP2010272365A (ja) * 2009-05-21 2010-12-02 Gs Yuasa Corp 二次電池の劣化診断方法、及び二次電池の劣化診断装置
WO2011121692A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 二次電池の劣化診断方法、及び劣化診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137358A (zh) * 2015-08-27 2015-12-09 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
CN105137358B (zh) * 2015-08-27 2018-06-26 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
WO2022265026A1 (ja) * 2021-06-14 2022-12-22 日置電機株式会社 短絡検出装置及び短絡検出方法

Also Published As

Publication number Publication date
JP2014081258A (ja) 2014-05-08
JP5505478B2 (ja) 2014-05-28
US20150293181A1 (en) 2015-10-15
US9500715B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
JP5505478B2 (ja) 二次電池テスター
CN104698385B (zh) 电池状态计算装置和电池状态计算方法
JP6295858B2 (ja) バッテリ管理装置
JP5994521B2 (ja) 状態推定装置、開放電圧特性生成方法
TWI478418B (zh) 放電曲線的校正系統與電池的放電曲線的校正方法
CN108603918B (zh) 测试电池单体的性能的装置和方法
JP6626356B2 (ja) 二次電池劣化検出システム、二次電池劣化検出方法
JP6155830B2 (ja) 状態推定装置、状態推定方法
US20050154544A1 (en) System for calculating remaining capacity of energy storage device
JP6500789B2 (ja) 二次電池の制御システム
KR101500547B1 (ko) 배터리 셀의 충전량 밸런싱 장치 및 방법
CN106461733A (zh) 能够快速测量绝缘电阻的绝缘电阻测量设备和方法
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
JPWO2012081696A1 (ja) 電池制御装置および電池制御方法
JP6200359B2 (ja) 二次電池内部温度推定装置および二次電池内部温度推定方法
KR20130105123A (ko) 배터리 상태 추정 장치 및 방법
JP5738784B2 (ja) 蓄電システム
KR20040033278A (ko) 충전지의 내부를 검출하기 위한 검출방법 및 검출장치와,상기 검출장치를 가지는 충전지팩과, 상기 검출장치를가지는 장치와, 상기 검출방법이 통합된 프로그램 및 상기프로그램이 저장된 매체
KR20130129096A (ko) 개로 전압 추정 장치, 상태 추정 장치 및 개로 전압 추정 방법
WO2015178075A1 (ja) 電池制御装置
JP2017203659A (ja) 劣化判定装置、コンピュータプログラム及び劣化判定方法
JP6749080B2 (ja) 蓄電システム、二次電池の制御システム及び二次電池の制御方法
KR20160051007A (ko) 개방전압 추정 장치 및 방법
JP5131533B2 (ja) バッテリの充放電制御方法及び充放電制御装置
JP2015109237A (ja) 電池制御システム及び電池制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14435233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847500

Country of ref document: EP

Kind code of ref document: A1