WO2014060475A1 - Kondensator - Google Patents

Kondensator Download PDF

Info

Publication number
WO2014060475A1
WO2014060475A1 PCT/EP2013/071625 EP2013071625W WO2014060475A1 WO 2014060475 A1 WO2014060475 A1 WO 2014060475A1 EP 2013071625 W EP2013071625 W EP 2013071625W WO 2014060475 A1 WO2014060475 A1 WO 2014060475A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
tubes
tube
header
fluid
Prior art date
Application number
PCT/EP2013/071625
Other languages
English (en)
French (fr)
Inventor
Uwe FÖRSTER
Patrick Jung
Patrick Paquet
Original Assignee
Behr Gmbh & Co. Kg
Behr France Hambach S.A.R.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg, Behr France Hambach S.A.R.L filed Critical Behr Gmbh & Co. Kg
Priority to EP13779557.1A priority Critical patent/EP2912393B1/de
Publication of WO2014060475A1 publication Critical patent/WO2014060475A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter

Definitions

  • the invention relates to a condenser having a tube-fin block with tubes and ribs arranged between the tubes, wherein the tubes are received with their opposite ends in each case in openings of collecting tubes arranged on both sides of the tube-rib block, in particular according to the preamble of claim 1.
  • Capacitors are known in the art for refrigerant circuits for air conditioning systems of motor vehicles.
  • the capacitors usually have a tube-fin block with tubes and arranged between the tubes ribs.
  • the tubes serve as the first fluid channels of the flow through a refrigerant, wherein the ribs form the second fluid channels for the air flowing through as a cooling fluid.
  • the tubes are received with their opposite ends in each case in openings arranged on both sides of the tube-rib block manifolds.
  • the manifolds are used to collect refrigerant from a flood with pipes and the forwarding of the refrigerant in another flood with other pipes.
  • Such capacitors have become known, for example, from EP 0 359 358 A1.
  • the refrigerant flows through the condenser between the headers in rows of pipes in different flows.
  • the number of tubes is reduced from tide to tide, because the refrigerant is deintercalated along its flow path through the floods, condensed and supercooled.
  • the vapor phase thereby reduces its volume to completely liquefied state.
  • condensers with integrated accumulator volume have been developed in which a collector volume is provided parallel to a manifold, wherein the overflow from the tube-fin block of the condenser to the collector and back to the tube-fin block between the condensation zone and the sub-cooling zone is arranged so that when the collector is filled, the subcooling zone is always filled with liquid refrigerant.
  • This causes in the temperature vs. Filling quantity diagram is a plateau in the supercooling temperature. This results in stable operation of the refrigerant circuit because the subcooling temperature is stable over wide operating ranges of the condenser.
  • Such a capacitor with collector has become known from DE 42 38 853 C2.
  • the object of the present invention is achieved by a capacitor having the features according to claim 1.
  • An embodiment of the invention relates to a condenser with a tube-fin block with tubes and arranged between the tubes ribs, wherein the tubes are accommodated with their opposite tube ends respectively in openings arranged on both sides of the tube-fin block manifolds, wherein adjacent to a first manifold a a first header is disposed in fluid communication with the first header tube by means of at least one flow connection, wherein a second header is disposed in fluid communication with the first header or with one of the header tubes.
  • a first and a second collector By arranging a first and a second collector, the required collector volume can be achieved and yet a small overall depth can be maintained. It is expedient if the second collector is arranged adjacent to the second manifold and is in fluid communication with the second manifold. Thereby, the first collector and the second collector are arranged adjacent to opposite headers. As a result, not only is a small overall depth achieved, but also a good weight distribution results with regard to the vibrations or accelerations occurring in the vehicle.
  • the second collector is arranged adjacent to the first collector and is in fluid communication with the first collector. This ensures that the volume increases for storage.
  • the first collector can only be flowed through by the second collector in an interconnection.
  • the first collector for example, be flowed through alone, the direct flow of the refrigerant flows past the second collector in the subcooling of the tube-fin block
  • the second collector can in arrangement of a dryer and / or filter of the storage of the refrigerant and possibly the drying or filtering the refrigerant serve. If a filter and / or dryer is arranged in the first collector, this first collector may serve to store the refrigerant and, if necessary, to dry or filter the refrigerant.
  • the first header is in fluid communication via a first overflow opening and with a second overflow opening with the first header. It is advantageous if a partition wall between a Kondensier Scheme and a subcooling is arranged in the manifold between the two overflow. It is also advantageous if at least one filter is provided in the first collector between the overflow openings, so that the refrigerant flowing into the collector after being filtered can again flow out of the collector. Alternatively, a partition may be provided which may prevent the immediate overflow from the first to the second overflow. For example, the refrigerant can flow via further overflow openings into the second collector.
  • the second collector prefferably be in fluid communication with the second collecting pipe via a third overflow opening and with a fourth overflow opening. It is also advantageous if a partition wall between a first subcooling region and a second subcooling region is arranged in the collecting pipe between the two overflow openings. It is also advantageous if at least one filter is provided in the second collector between the overflow openings, so that the refrigerant flowing into the collector can flow filtered out of the collector after being deflected.
  • first header is in fluid communication with the second header via a third overflow opening and with a fourth overflow opening stands.
  • the two collectors can be arranged parallel and / or serially and / or can be flowed on,
  • the tube-fin block prefferably be subdivided into flows parallel to the flow-through tubes.
  • the flows can be flowed through in succession in the fluid flow direction, wherein a flow of parallel-flowed tubes is arranged between the first header and the second header is arranged between the outflow-side overflow opening of the first collector and the inflow-side overflow opening of the second accumulator.
  • This flood is preferably a flood of the subcooler, which is provided for the subcooling of the refrigerant.
  • At least one tide of parallel flowed through tubes is arranged between the first collector and a Ausströman- conclusion to the outflow of the fluid from the tube-fin block.
  • This at least one flood is preferably used for the subcooling of the refrigerant.
  • At least one tide of parallel-flowed tubes is arranged between the second collector and an outflow connection to the outflow of the fluid from the tube / fin block.
  • This at least one flood is preferably used for the subcooling of the refrigerant.
  • a filter and / or dryer which is arranged in the first and / or in the second collector. So in the first collector in each case a filter and / or dryer be arranged and also in the second collector a filter and / or a dryer. It is advantageous if the dryer is arranged in the second collector and this collector is not arranged in the direct flow.
  • FIG. 1 shows a schematic view of a capacitor
  • FIG. 2 shows a schematic view of a capacitor
  • Fig. 1 shows a condenser 1 with a tube-fin block 2 with tubes 3 and between the tubes 3 arranged ribs 4.
  • the tubes 3 have pipe ends 5, 6, which are opposite.
  • the tubes 3 are received and sealed with their tube ends 5, 6 in openings 7 of collecting tubes 8, 9, so that the tubes 3 are in fluid communication with the collecting tubes 8, 9.
  • the manifolds 8, 9 are arranged on both sides of the tube-fin block 2 and serve to distribute the fluid to a plurality of tubes 3 or a collection of fluid from a plurality of tubes 3.
  • the tube-rib block 2 is preferably in one Traversed by a plurality of floods in succession, wherein in each case a number of tubes 3 are combined into a trough by these tubes are flowed through in parallel by fluid.
  • 9 partition walls are suitably arranged in the headers 8, 9 to allow a division of the fluid to a predetermined number of tubes 3 a flood.
  • the fluid flows in five floods 10, 11, 12, 13, 14 through the tube-fin block 2.
  • the fluid flows through the inlet port 15 into the manifold 8, where it due to a partition wall 16 on the first flood 10 is split.
  • the fluid flows through the tubes 3 of the flood 10 in parallel and it is in turn collected in the manifold 9, from where it is divided into the flood 1 1 and the relevant pipes, so that this flood is passed through to the next manifold.
  • a further partition 17 is provided in the manifold 9.
  • the fluid flows through the tubes 3 of the flood 1 1 and enters the manifold 8, where it is in turn deflected to the flood 12, because a further partition 18 is provided in the manifold.
  • the fluid flows through the flood 12 and the relevant tubes 3 and in turn passes into the collecting pipe 9, from where it flows into an accumulator 20 through an overflow opening 21 due to the arrangement of the dividing wall 19.
  • the fluid is collected in the collector 20 and flows through a further overflow opening 22 back into the collecting pipe 9 between the partition wall 19 and the partition wall 23 and then flows through the flood 13 and the related pipes to the manifold 8 in a portion between the partition wall 18 and the partition wall 24. From there, the fluid flows through an overflow opening 25 into the collector 28 and is collected there and flows through the overflow 27 again into the manifold 8 a.
  • the collector 20 is thus disposed adjacent to the manifold 9 and the collector 26 is disposed adjacent to the manifold 8.
  • the two collectors 20, 26 are thus arranged parallel to one another and to adjacent collecting pipes 8, 9 ", with one collector 20 " 26 each being arranged adjacent to the respective opposite collecting pipes 8, 9.
  • Fig. 1 is closed. recognize that the axial length of the collector is shorter than the adjacent manifold, since above the collector 26 and below the collector 20 each have a ⁇ uslass- or inlet port 15, 28 is provided to admit the fluid, in particular refrigerant into the condenser or omit from the condenser.
  • the collecting tube and the adjacent collector may also be the same length or longer formed on one or both sides, if the inlet or outlet port are arranged rotated to one side, that they do not collide with a collector.
  • fastening elements 31 are provided on both sides of the collector, which are designed as a mounting flange and by means of which the capacitor 1, for example, in the vehicle can be fastened.
  • the fastening elements 31 are advantageously formed in one piece with the respective headers 20, 26, wherein it may be advantageous "if the collectors are formed for example as extrudates ied components, the fastening elements with the collector volume can be extruded.
  • the fasteners may also be connected to the respective collector 20, 26, such as by soldering.
  • FIG. 2 shows a further embodiment of a capacitor 50 according to the invention, in which the tube-rib block 51 is formed substantially equal to the tube-rib block 2 of FIG.
  • the flow through the tube-fin block 51 takes place in five floods 52 to 56, wherein between the third flood 54 and the fourth flood 55 no collector is arranged parallel to the manifold 57, but between the third flood 54 and the fourth flood 55, only a deflection present in the collection tube 57.
  • a first collector 59 is arranged, to which a second collector 60 is arranged in parallel.
  • the second collector 60 is thus arranged parallel to the first collector 59 and parallel to the manifold 58, wherein the collector 59 is disposed between the manifold 58 and the collector 60.
  • the flow through the first collector 59 takes place according to the illustrated arrow, starting from the manifold 58 and the overflow 61 from the manifold 58 into the first collector 59 and via a further overflow 62 into the second collector 60.
  • the fluid passes through the overflow 63 back into the first collector 59 and from there through the overflow 64 into the manifold 58 back. From there, the fluid flows again through the flood 56 of the tubes of the tube-fin block to the manifold 57, from where it exits from the condenser 50.
  • fasteners 65 are provided, wherein the fasteners are disposed adjacent the manifold 57 and connected to the manifold 57, wherein the fasteners 65 are adjacent to the collector 60 connected to the collector 60. It is advantageous if the fastening elements 65 are arranged next to the collecting tube 57 and are soldered to the collecting tube 57. In the fasteners 65 adjacent to the collector 60, it may be advantageous if the fasteners 65 are integrally formed with the collector 60, such as extruded. Also, fasteners 65 may be soldered to the collector 60. In the embodiment of Fig. 2, it may also be advantageous if the two collectors 59, 60 integrally formed with each other, for example by extrusion, Fig.
  • FIG. 3 shows the capacitor 50 of FIG. 2 again in detail, wherein is shown in that an insert 66 is provided in the collector 60, which can be inserted through an opening 67 in the bottom area of the collector 60, the floor being closable by means of a cover, for example.
  • the insert 66 is advantageously a dryer optionally with a filter and / or a sealing lip, so that see between the overflow 62 and 63, a sealing lip 68 may be provided so that the filter of the dryer insert 66 is forcibly flowed through. Alternatively, only one dryer insert may be provided, which is designed without forced flow of a filter.
  • Fig. 4 shows the arrangement of the two collectors 59, 60 again in detail.
  • the overflow opening 61 and the overflow opening 64 serve for the inflow or outflow of the fluid into the first collector 59 or out of the first collector 59.
  • a disc 69 is provided, which directly flows from the overflow opening 61 to the overflow opening 64 prevented.
  • the fluid flows, after flowing through the overflow opening 61, through the overflow opening 62 to the collector 60.
  • the collector 60 is provided with the insert 66, which has the sealing lip 68, so that the fluid flows from the overflow opening 62 through the insert 66 to the overflow opening 63 and from there the collector 60 into the collector 59 and from there through the overflow opening 64 from the collector 59.
  • the opening 67 is closed by the closure 70 in FIG.
  • FIG. 5 shows another embodiment of the invention in which the condenser 80 is formed with the tube-fin block 81.
  • the two collection tubes 82, 83 essentially correspond to the collecting tubes 57 and 58 of FIG. 2.
  • the two collectors 84, 85 are not adjacent the upstream manifold 58 shown in FIG. 2, but adjacent to the outflow-side manifold 83 of FIG. 5 is arranged.
  • the flow through the tube-fin block 81 takes place to the collector in three floods 86, 87, 88.
  • the fluid then flows through the collector 84 and into the collector 85 and from there via the collector 84 in the flood 89. It then flows through the flood 90 to the outlet 91 of the capacitor 80th
  • the arrangement of the two collectors 84, 85 may be formed according to FIG. 4, so that a disc for separating the overflow openings is provided in the collector 84.
  • a filter and / or dryer is provided, which can be filled by an insertion, which can be closed by means of a closure.
  • 6 to 8 show schematic arrangements of capacitors with a plurality of floods and on both sides of the tube-fin block arranged collecting tubes, wherein furthermore two collectors are provided.
  • FIG. 6 shows a condenser 100 with the collecting tubes 101 and 102 and the collectors 03 and 104. Between the two collecting tubes 101 and 102, the tube-rib block 105 is arranged.
  • the fluid such as refrigerant flows according to arrow 106 in the manifold 101 and flows through a first flow 107 to the manifold 102. There, the fluid is deflected and flows through the flood 108 to the manifold 101, where it is deflected again to flow in the flood 109th to flow to the manifold 102, from where it passes through an overflow opening 1 10 in the collector 103.
  • a disc 1 1 1 is further provided so that the fluid passes through the overflow opening 1 12 in the collector 104, where the filter-dryer insert 1 13 is provided. Subsequently, the fluid flows through the overflow opening 1 14 to the collector 103 and the overflow 1 1 5 to the manifold 103, so that the fluid flows through the flood 1 16 to the manifold 101 and from there through according to the arrow 1 17 leaves the condenser.
  • the floods 107, 108 and 109 lie in the flow direction in front of the two collectors 103, 104 and are as 5 desaturation and Kondensierzonen provided, the flood 1 18 after the two collectors 103, 04 is arranged and is a subcooling path for the fluid.
  • FIG. 7 shows a further schematic illustration of a condenser 1 30, which has two header pipes 131 and 132 and two collectors 133, 134.
  • the tube fin block 135 is divided into six floods 136 to 141. In this case, three de-icing and condensing zones are formed as floods 136 to 138. From there, the fluid flows through the manifold 132 into the collector 133 and through the flood 139 as the first subcooling to the manifold 133 and into the collector 134th
  • a flood 139 is provided as subcooling.
  • two floods 140, 141 are provided as undercooling.
  • the collector 133 serves for the collection and storage of the fluid, wherein in the collector 134 and the filter-dryer insert 142 is arranged, so that the collector 134 of the storage and also the filtering and / or drying the fluid is used,
  • FIG. 8 shows a further alternative exemplary embodiment of a condenser 150 with the collecting tubes 151 and 152 on both sides of the tube-rib block 1 53.
  • the two collectors 154 and 155 are arranged similar to the arrangement of FIG. 6 next to the collector pipe 152.
  • the tube-fin block is characterized by two floods 156, 157.
  • the flood 156 is the inlet-side tide, from the inlet 158 to the inlet into the collector 154 by means of the overflow opening 159
  • the trough 157 is the tide which is arranged as a subcooling path between the overflow opening 160 and the outlet 161 of the condenser.
  • the volume of the collector is about 280 ml at a diameter of about 36 mm, the volume of the dryer being taken into account as a reducing volume with respect to the fluid receiving space. With a diameter of 45 mm, a volume of approx. 530 ml would result.
  • the volume of the collector according to FIG. 2 corresponds approximately to the proposals for the volume according to FIG. 1.
  • FIG. 5 corresponds in its fluidity to the embodiment of FIG. 2, wherein only the collector is arranged on the other opposite collecting tube.
  • the dryer or the filter-dryer cartridge or the associated use as a filter and / or dryer is arranged in the collector which is the most distant from the collector pipe.
  • an outlet or inlet flange or nozzle is provided, which is then arranged below the collector or above the collector, which is closest to the manifold. This causes a better interchangeability of the insert or the cartridge.
  • the arrangement of two individual collectors means that, compared to a single intended collector, the diameters of the two collectors are significantly smaller. can be compared to a single collector of the same volume. This reduces the installation space in the direction of travel, since the two collectors do not have to have such large diameters.
  • the collectors are advantageously arranged such that their Mittlachs lie on a plane, said plane is advantageously a plane which passes through the tube-fin block of the capacitor.
  • FIG. 1 in which two collectors are arranged on a respective collecting pipe and adjacent thereto, has the advantage that there are few interfaces between the collectors and the collecting pipes, so that reduced leaks can be expected in this respect.
  • filling tolerances can also have less influence, since usual filling tolerances of ⁇ 15 g are small in comparison to a volume of about 500 g amount of filling for the two collectors. This results in a constant performance as a function of the filling quantity and the plateau length in the temperature-filling-quantity diagram already described above increases significantly, which serves for a more stable air-conditioning, since the supercooling over wide filling and thus operating ranges is stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Die Erfindung betrifft einen Kondensator mit einem Rohr-Rippenblock mit Rohren und zwischen den Rohren angeordneten Rippen, wobei die Rohre mit ihren sich gegenüberliegenden Rohrenden jeweils in Öffnungen von beidseitig des Rohr- Rippenblocks angeordneten Sammelrohren aufgenommen sind, wobei benachbart zu einem ersten Sammelrohr ein erster Sammler angeordnet ist, der mittels zumindest einer Strömungsverbindung mit dem ersten Sammelrohr in Fluidverbindung steht, wobei ein zweiter Sammler angeordnet ist, der in Fluidverbindung mit dem ersten Sammler oder mit einem der Sammelrohre steht.

Description

Kondensator
Beschreibung
Technisches Gebiet
Die Erfindung betrifft einen Kondensator mit einem Rohr-Rippenblock mit Rohren und zwischen den Rohren angeordneten Rippen, wobei die Rohre mit ihren gegen- überliegenden Enden jeweils in Öffnungen von beidseitig des Rohr-Rippenblocks angeordneten Sammelrohren aufgenommen sind, insbesondere gemäß dem Oberbegriff von Anspruch 1 .
Stand der Technik
Kondensatoren sind im Stand der Technik für Kältemittelkreisläufe für Klimaanlagen von Kraftfahrzeugen bekannt. Dabei weisen die Kondensatoren üblicher Weise einen Rohr-Rippenblock mit Rohren und zwischen den Rohren angeordneten Rippen auf. Die Rohre dienen als erste Fluidkanäle der Durchströmung eines Kältemittels, wobei die Rippen die zweiten Fluidkanäle für die durchströmende Luft als kühlendes Fluid bilden. Dabei sind die Rohre mit ihren gegenüberliegenden Enden jeweils in Öffnungen von beidseitig des Rohr-Rippenblocks angeordneten Sammelrohren aufgenommen. Die Sammelrohre dienen dem Sammeln von Kältemittel aus einer Flut mit Roh- ren und dem Weiterleiten des Kältemittels in eine weitere Flut mit weiteren Rohren. Solche Kondensatoren sind beispielswiese durch die EP 0 359 358 A1 bekannt geworden. Dabei strömt das Kältemittel zwischen den Sammelrohren in Reihen von Rohren in verschiedenen Fluten durch den Kondensator. Die Anzahl der Rohre reduziert sich dabei von Flut zu Flut, weil das Kältemittel entlang seines Strömungsweges durch die Fluten enthitzt, kondensiert und unterkühlt wird. Die dampfförmige Phase reduziert dabei sein Volumen bis zum vollständig verflüssigten Zustand.
Diese Kondensatoren zeigen die Eigenschaft, dass die Unterkühltemperatur von der Kältemittelmenge im Kreislauf abhängt, weil dadurch mit der K ltemittel menge die Länge der Fluidsäule des Kältemittels entlang der Fluten variiert,
Daher sind Kondensatoren mit integriertem Sammlervolumen entwickelt worden, bei welchen parallel zu einem Sammelrohr ein Sammlervolumen vorgesehen ist, wobei die Überströmung vom Rohr-Rippenblock des Kondensators zum Sammler und zurück wieder zum Rohr-Rippenblock zwischen der Kondensationszone und der Unter- kühlzone angeordnet ist, so dass bei gefülltem Sammler die Unterkühlzone immer definiert mit flüssigem Kältemittel gefüllt ist. Dies bewirkt, dass im Temperatur vs. Füllmenge-Diagramm ein Plateau in der Unterkühltemperatur vorliegt. Dies führt zu einem stabilen Betrieb des Kältemittelkreislaufs, weil die Unterkühltemperatur über weite Betriebsbereiche des Kondensators stabil ist. Ein solcher Kondensator mit Sammler ist durch die DE 42 38 853 C2 bekannt geworden.
Soll der Bauraum für den Sammler vergrößert werden, um das Füllvolumen zu erhöhen, so dass sich die Plateaulänge des oben genannten Diagramms verbreitert, so ist dieses vom verfügbaren Bauraum in der Fahrzeugfront abhängig, die grundsätz- lieh beschränkt ist. Das verfügbare Sammlervolumen kann nicht durch beliebige Durchmesservergrößerung des Sammlers erhöht werden. Auch kann die Länge des Sammlers in der Längsrichtung des Sammlers nicht beliebig erhöht werden, da der Sammler ansonsten an die Motorabdeckhaube anstoßen würde. Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung einen Kondensator zu schaffen, der ein erhöhtes Sammlervolumen aufweist, um die Plateaulänge im Temperatur vs. Füllmenge-Diagramm für eine verbesserte Unterkühlung zu verlängern,
Die Aufgabe der vorliegenden Erfindung wird durch einen Kondensator mit den Merkmalen gemäß Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft einen Kondensator mit einem Rohr- Rippenblock mit Rohren und zwischen den Rohren angeordneten Rippen, wobei die Rohre mit ihren sich gegenüberliegenden Rohrenden jeweils in Öffnungen von beidseitig des Rohr-Rippenblocks angeordneten Sammelrohren aufgenommen sind, wobei benachbart zu einem ersten Sammelrohr ein erster Sammler angeordnet ist, der mittels zumindest einer Strömungsverbindung mit dem ersten Sammelrohr in Fluid- Verbindung steht, wobei ein zweiter Sammler angeordnet ist, der in Fluidverbindung mit dem ersten Sammler oder mit einem der Sammelrohre steht. Durch die Anordnung eines ersten und eines zweiten Sammlers kann das geforderte Sammlervolumen erreicht werden und dennoch eine geringe Bautiefe beibehalten werden. Dabei ist es zweckmäßig, wenn der zweite Sammler benachbart zu dem zweiten Sammelrohr angeordnet ist und in Fluidverbindung zu dem zweiten Sammelrohr ist. Dadurch wird der erste Sammler und der zweite Sammler an gegenüberliegenden Sammelrohren benachbart angeordnet sind. Dadurch wird nicht nur eine geringe Bautiefe erreicht, sondern es ergibt sich auch eine gute Gewichtsverteilung hinsicht- lieh der im Fahrzeug auftretenden Schwingungen bzw. Beschleunigungen.
Auch ist es zweckmäßig, wenn der zweite Sammler benachbart zum ersten Sammler angeordnet ist und mit dem ersten Sammler in Fluidverbindung steht. Dadurch wird erreicht, dass das Volumen zur Speicherung sich vergrößert. Ja nach Gestaltung der Durchströmung des ersten Sammlers kann in einer Verschaltung beispielsweise der erste Sammler nur durch den zweiten Sammler durchströmbar sein. In einer anderen Verschattung kann der erste Sammler beispielsweise alleine durchströmbar sein, wobei die direkte Strömung des Kältemittels an dem zweiten Sammler vorbei in den Unterkühlbereich des Rohr-Rippenblocks strömt Der zweite Sammler kann bei Anordnung eines Trockners und/oder Filters der Bevorratung des Kältemittels und ggf. der Trocknung bzw. Filterung des Kältemittels dienen. Wird im ersten Sammler ein Filter und/oder Trockner angeordnet, so dient dieser erste Sammler ggf. der Bevorratung des Kältemittels und ggf, der Trocknung bzw. Filterung des Kältemittels.
Vorteilhaft ist es, wenn der erste Sammler über eine erste Überström Öffnung und mit einer zweiten Überströmöffnung mit dem ersten Sammelrohr in Fluidverbindung steht. Dabei ist es vorteilhaft, wenn im Sammelrohr zwischen den beiden Überströmöffnungen eine Trennwand zwischen einem Kondensierbereich und einem Unterkühlbereich angeordnet ist. Dabei ist es auch vorteilhaft, wenn in dem ersten Sammler zwischen den Überströmöffnungen zumindest ein Filter vorgesehen ist, damit das in den Sammler einströmende Kältemittel nach Umlenkung gefiltert wieder aus dem Sammler ausströmen kann. Alternativ kann auch eine Trennwand vorgesehen sein, welche das unmittelbare Überströmen von der ersten zur zweiten Überströmöffnung verhindern mag. So kann beispielsweise das Kältemittel über weitere Überströmöffnungen in den zweiten Sammler strömen. Auch ist es zweckmäßig, wenn der zweite Sammler über eine dritte Überströmöffnung und mit einer vierten Überströmöffnung mit dem zweiten Sammelrohr in Fluidverbindung steht. Dabei ist es auch vorteilhaft, wenn im Sammelrohr zwischen den beiden Überströmöffnungen eine Trennwand zwischen einem ersten Unterkühlbereich und einem zweiten Unterkühlbereich angeordnet ist. Dabei ist es auch vorteil- haft, wenn in dem zweiten Sammler zwischen den Überströmöffnungen zumindest ein Filter vorgesehen ist, damit das in den Sammler einströmende Kältemittel nach Umlenkung gefiltert wieder aus dem Sammler ausströmen kann.
Vorteilhaft ist auch, wenn der erste Sammler über eine dritte Überströmöffnung und mit einer vierten Überströmöffnung mit dem zweiten Sammler in Fluidverbindung steht. Die beiden Sammler können dabei parallel oder seriell angeordnet und/oder anströmbar sein,
Auch ist es zweckmäßig, wenn der Rohr-Rippenblock in Fluten parallel mit dem Kältemittel durchströmter Rohre unterteilt ist, dabei sind die Fluten in Fluidströmungs- richtung nacheinander durchströmbar, wobei zwischen dem ersten Sammler und dem zweiten Sammler eine Flut parallel durchströmter Rohre angeordnet ist, die zwischen der ausströmseitigen Überströmöffnung des ersten Sammler und der ein- strömseitigen Überströmöffnung des zweiten Sammers angeordnet ist. Diese Flut ist dabei vorzugsweise eine Flut der Unterkühlsirecke, die zur Unterkühlung des Käl- temittels vorgesehen ist.
Dabei ist es zweckmäßig, wenn zwischen einem Einströmanschluss zur Einströmung des Fluids in den Rohr-Rippenblock und dem ersten Sammler zumindest eine Flut parallel durchströmter Rohre angeordnet ist. Vorteilhaft sind mehrere Fluten zwi- sehen den Einströmanschluss und dem ersten Sammler angeordnet. Dies bewirkt vorteilhaft, dass das Kältemittel ausreichend enthitzt und kondensiert werden kann, bevor es in den ersten Sammler eintritt.
Auch ist es vorteilhaft, wenn zwischen dem ersten Sammler und einem Ausströman- schluss zur Ausströmung des Fluids aus dem Rohr-Rippenblock zumindest eine Flut parallel durchströmter Rohre angeordnet ist. Diese zumindest eine Flut dient bevorzugt der Unterkühlung des Kältemittels.
Auch ist es zweckmäßig, wenn zwischen dem zweiten Sammler und einem Aus- strömanschluss zur Ausströmung des Fluids aus dem Rohr-Rippenblock zumindest eine Flut parallel durchströmter Rohre angeordnet ist. Diese zumindest eine Flut dient bevorzugt der Unterkühlung des Kältemittels.
Vorteilhaft ist es. wenn ein Filter und/oder Trockner vorgesehen ist, der oder die im ersten und/oder im zweiten Sammler angeordnet ist. So kann im ersten Sammler jeweils ein Filter und/oder Trockner angeordnet sein und ebenso im zweiten Sammler ein Filter und/oder ein Trockner. Vorteilhaft ist es, wenn im zweiten Sammler der Trockner angeordnet ist und dieser Sammler nicht in der direkten Durchströmung angeordnet ist. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und der nachfolgenden Figurenbeschreibung beschrieben.
Kurze Beschreibung der Zeichnungen Im Folgenden wird die Erfindung anhand von einem Ausführungsbeispiel unter Bezugnahme auf eine Zeichnung detailliert erläutert. In der Zeichnung zeigt:
Fig.1 eine schematische Ansicht eines Kondensators, Fig.2 eine schematische Ansicht eines Kondensators,
Fig.3 eine schematische Ansicht eines Kondensators,
Fig.4 eine schematische Ansicht eines ersten und eines zweiten Sammlers im Schnitt,
Fig.5 eine schematische Ansicht eines Kondensators,
Fig.6 eine schematische Ansicht eines Kondensators,
Fig.7 eine schematische Ansicht eines Kondensators, und
Fig.8 eine schematische Ansicht eines Kondensators. Bevorzugte Ausführung der Erfindung
Die Fig. 1 zeigt einen Kondensator 1 mit einem Rohr-Rippenblock 2 mit Rohren 3 und zwischen den Rohren 3 angeordneten Rippen 4. Die Rohre 3 weisen Rohrenden 5, 6 auf, die sich gegenüberliegen. Die Rohre 3 sind mit ihren Rohrenden 5, 6 in Öff- nungen 7 von Sammelrohren 8, 9 aufgenommen und abgedichtet, so dass die Rohre 3 mit den Sammelrohren 8, 9 in Fluidverbindung stehen.
Die Sammelrohre 8, 9 sind beiderseits des Rohr-Rippenblocks 2 angeordnet und dienen der Verteilung des Fluids auf eine Mehrzahl von Rohren 3 bzw. einer Samm- lung eines Fluids aus einer Mehrzahl von Rohren 3, Der Rohr-Rippen block 2 wird bevorzugt in einer Mehrzahl von Fluten nacheinander durchströmt, wobei jeweils eine Anzahl von Rohren 3 zu einer Flut zusammengefasst sind, indem diese Rohre parallel von Fluid durchströmt werden. Dazu sind in den Sammelrohren 8, 9 Trennwände geeignet angeordnet, um eine Aufteilung des Fluids auf eine vorgegebene Anzahl von Rohren 3 einer Flut zu ermöglichen.
In Fig. 1 strömt das Fluid in fünf Fluten 10, 11 , 12, 13, 14 durch den Rohr- Rippenblock 2. Dabei strömt das Fluid durch den Einlassanschluss 15 in das Sammelrohr 8 ein, wo es aufgrund einer Trennwand 16 auf die erste Flut 10 aufgeteilt wird. Das Fluid durchströmt die Rohre 3 der Flut 10 parallel und es wird in dem Sammelrohr 9 wiederum gesammelt, von wo es auf die Flut 1 1 und die diesbezüglichen Rohre aufgeteilt wird, so dass diese Flut zum nächsten Sammelrohr durchströmt wird. Dabei ist eine weitere Trennwand 17 im Sammelrohr 9 vorgesehen. Im Anschluss daran durchströmt das Fluid die Rohre 3 der Flut 1 1 und gelangt in das Sammelrohr 8, wo es wiederum auf die Flut 12 umgelenkt wird, weil eine weitere Trennwand 18 im Sammelrohr vorgesehen ist. Das Fluid strömt durch die Flut 12 und die diesbezüglichen Rohre 3 und gelangt wiederum in das Sammelrohr 9, von wo es aufgrund der Anordnung der Trennwand 19 in einen Sammler 20 durch eine Überströmöffnung 21 einströmt. Das Fluid wird in dem Sammler 20 gesammelt und strömt durch eine weitere Über- strömöffnung 22 wieder in das Sammelrohr 9 zwischen die Trennwand 19 und die Trennwand 23 und strömt anschließend durch die Flut 13 und die diesbezüglichen Rohre zum Sammelrohr 8 in einen Abschnitt zwischen der Trennwand 18 und der Trennwand 24. Von dort strömt das Fluid durch eine Überströmöffnung 25 in den Sammler 28 und wird dort gesammelt und strömt durch die Überströmöffnung 27 wieder in das Sammelrohr 8 ein. Es wird dort auf die Flut 14 verteilt und durchströmt den Rohr-Rippenblock 2 und die Rohre 3 der Flut 14 zum Sammelrohr 9, wo es durch einen Auslassanschluss 28 aus dem Kondensator 1 ausgeleitet wird, wobei es durch ein weiteres Rohr 29 zu einem Flansch 30 geführt wird.
Der Sammler 20 ist somit benachbart zu dem Sammelrohr 9 angeordnet und der Sammler 26 ist benachbart zu dem Sammelrohr 8 angeordnet. Die beiden Sammler 20, 26 sind somit parallel zueinander und zu benachbarten Sammelrohren 8, 9 angeordnet» wobei je ein Sammler 20» 26 jeweils benachbart zu den jeweils gegenüber- liegenden Sammelrohren 8, 9 angeordnet ist.
In Fig. 1 ist zu. erkennen, dass die axiale Länge der Sammler kürzer ist als das benachbarte Sammelrohr, da oberhalb des Sammlers 26 bzw. unterhalb des Sammlers 20 jeweils ein Äuslass- bzw. Einlassanschluss 15, 28 vorgesehen ist, um das Fluid, insbesondere Kältemittel, in den Kondensator einzulassen bzw. aus dem Kondensator auszulassen. In einer alternativen Ausgestaltung kann das Sammelrohr und der benachbarte Sammler auch gleich lang oder einseitig- oder beidseitig länger ausgebildet sein, wenn der Einlass- bzw. Auslassanschluss zu einer Seite hin gedreht angeordnet sind, dass sie nicht mit einem Sammler kollidieren.
Im Ausführungsbeispiel der Fig. 1 sind beiderseits des Sammlers Befestigungselemente 31 vorgesehen, die als Befestigungsflansch ausgebildet sind und mittels welchen der Kondensator 1 beispielsweise im Fahrzeug befestigbar ist. Die Befestigungselemente 31 sind vorteilhaft einteilig mit dem jeweiligen Sammler 20, 26 aus- gebildet, wobei es vorteilhaft sein kann» wenn die Sammler beispielsweise als extru- dierte Bauteile ausgebildet sind, wobei die Befestigungselemente mit dem Sammler- volumen extrudiert werden können. In einem alternativen Ausführungsbeispiel können die Befestigungselemente auch mit dem jeweiligen Sammler 20, 26 verbunden werden, wie beispielsweise durch Löten.
Die Fig. 2 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Konden- sators 50, bei welchem der Rohr-Rippenblock 51 im Wesentlichen gleich dem Rohr- Rippenblock 2 der Fig. 1 ausgebildet ist. Die Durchströmung des Rohr-Rippenblocks 51 erfolgt in fünf Fluten 52 bis 56, wobei zwischen der dritten Flut 54 und der vierten Flut 55 kein Sammler parallel zu dem Sammelrohr 57 angeordnet ist, sondern zwischen der dritten Flut 54 und der vierten Flut 55 lediglich eine Umlenkung im Sam- melrohr 57 vorliegt. Parallel zu dem Sammelrohr 58 hingegen ist ein erster Sammler 59 angeordnet, zu welchem parallel ein zweiter Sammler 60 angeordnet ist. Der zweite Sammler 60 ist somit parallel zu dem ersten Sammler 59 und parallel zum Sammelrohr 58 angeordnet, wobei der Sammler 59 zwischen dem Sammelrohr 58 und dem Sammler 60 angeordnet ist. Die Durchströmung des ersten Sammlers 59 erfolgt gemäß dem dargestellten Pfeil ausgehend vom Sammelrohr 58 und der Überströmöffnung 61 vom Sammelrohr 58 in den ersten Sammler 59 und über eine weitere Überströmöffnung 62 in den zweiten Sammler 60. Von dem zweiten Sammlervolumen 60 tritt das Fluid durch die Überströmöffnung 63 wieder in den ersten Sammler 59 ein und von dort durch die Überströmöffnung 64 in das Sammelrohr 58 zurück. Von dort strömt das Fluid wieder durch die Flut 56 der Rohre des Rohr-Rippenblocks zum Sammelrohr 57, von wo es aus dem Kondensator 50 austritt. im Ausführungsbeispiel der Fig. 2 sind Befestigungselemente 65 vorgesehen, wobei die Befestigungselemente benachbart dem Sammelrohr 57 angeordnet sind und mit dem Sammelrohr 57 verbunden sind , wobei die Befestigungselemente 65 benachbart dem Sammler 60 mit dem Sammler 60 verbunden sind. Vorteilhaft ist es, wenn die Befestigungselemente 65 neben dem Sammelrohr 57 angeordnet und mit dem Sammelrohr 57 verlötet sind. Bei den Befestigungselementen 65 benachbart zum Sammler 60 kann es vorteilhaft sein, wenn die Befestigungselemente 65 mit dem Sammler 60 einteilig ausgebildet sind, wie beispielsweise extrudiert. Auch können Befestigungselemente 65 mit dem Sammler 60 verlötet sein. Bei dem Ausführungsbeispiel der Fig. 2 kann es auch vorteilhaft sein, wenn die beiden Sammler 59, 60 einteilig miteinander, beispielsweise durch Extrudieren, ausgebildet sind, Die Fig. 3 zeigt den Kondensator 50 der Fig. 2 noch einmal im Detail, wobei dargestellt ist, dass im Sammler 60 ein Einsatz 66 vorgesehen ist, welcher durch eine Öffnung 67 im Bodenbereich des Sammlers 60 einführbar ist, wobei der Boden beispielsweise mittels eines Deckels verschließbar ist. Der Einsatz 66 ist vorteilhaft ein Trockner gegebenenfalls mit einem Filter und/oder einer Dichtlippe, so dass zwi- sehen den Überströmöffnungen 62 und 63 eine Dichtlippe 68 vorgesehen sein kann, so dass der Filter des Trocknereinsatzes 66 zwangsweise durchströmbar ist. Alternativ kann auch lediglich ein Trocknereinsatz vorgesehen sein, der ohne Zwangsdurchströmung eines Filters ausgebildet ist. Die Fig. 4 zeigt die Anordnung der beiden Sammler 59, 60 noch einmal im Detail. Die Überströmöffnung 61 und die Überströmöffnung 64 dienen dem Zufluss bzw. dem Abfluss des Fluids in den ersten Sammler 59 bzw. aus dem ersten Sammler 59. Zwischen den beiden Überströmöffnungen 61 , 64 ist eine Scheibe 69 vorgesehen, die eine unmittelbare Durchströmung von der Überströmöffnung 61 zur Überströmöff- nung 64 verhindert. Das Fluid strömt nach Einströmung durch die Überströmöffnung 61 durch die Überström Öffnung 62 zum Sammler 60. Der Sammler 60 ist mit dem Einsatz 66 versehen, welcher die Dichtlippe 68 aufweist, so dass das Fluid von der Überströmöffnung 62 durch den Einsatz 66 zur Überströmöffnung 63 strömt und von dort aus dem Sammler 60 in den Sammler 59 und von dort durch die Überströmöff- nung 64 aus dem Sammler 59. Die Öffnung 67 ist in der Fig. 4 durch den Verschluss 70 verschlossen.
Die Fig. 5 zeigt ein weiteres Ausführungsbeispiel der Erfindung, bei welchem der Kondensator 80 mit dem Rohr-Rippenblock 81 ausgebildet ist. Die beiden Sammel- röhre 82, 83 entsprechen im Wesentlichen den Sammelrohren 57 und 58 der Fig. 2. Im Ausführungsbeispiel der Fig. 5 sind die beiden Sammler 84, 85 jedoch nicht be- nachbart dem einströmseitigen Sammelrohr 58 gemäß Fig. 2, sondern benachbart dem ausströmseitigen Sammelrohr 83 der Fig. 5 angeordnet. Die Durchströmung des Rohr-Rippenblocks 81 erfolgt bis zum Sammler in drei Fluten 86, 87, 88. Das Fluid strömt dann durch den Sammler 84 und in den Sammler 85 und von dort zurück über den Sammler 84 in die Flut 89. Es strömt anschließend durch die Flut 90 zum Auslass 91 des Kondensators 80.
Die Anordnung der beiden Sammler 84, 85 kann entsprechend der Fig. 4 ausgebildet sein, so dass im Sammler 84 eine Scheibe zur Trennung der Überströmöffnungen vorgesehen ist. wobei im Sammler 85 vorteilhaft ein Filter und/oder Trockner vorge- sehen ist, der durch eine Einführöffnung, welche mittels eines Verschlusses verschließbar ist, befüllt werden kann.
Die Fig. 6 bis 8 zeigen schematische Anordnungen von Kondensatoren mit einer Mehrzahl von Fluten und beiderseits des Rohr-Rippenblocks angeordneten Sammel- röhren, wobei weiterhin jeweils zwei Sammler vorgesehen sind.
Die Fig. 6 zeigt einen Kondensator 100 mit den Sammelrohren 101 und 102 und den Sammlern 03 und 104. Zwischen den beiden Sammelrohren 101 und 102 ist der Rohr-Rippenblock 105 angeordnet. Das Fluid, wie beispielsweise Kältemittel, strömt gemäß Pfeil 106 in das Sammelrohr 101 und durchströmt eine erste Flut 107 zum Sammelrohr 102. Dort wird das Fluid umgelenkt und durchströmt die Flut 108 zum Sammelrohr 101 , wo es erneut umgelenkt wird , um in der Flut 109 zum Sammelrohr 102 zu strömen, von wo es durch eine Überströmöffnung 1 10 in den Sammler 103 tritt. Im Sammler 103 ist weiterhin eine Scheibe 1 1 1 vorgesehen, so dass das Fluid durch die Überströmöffnung 1 12 in den Sammler 104 tritt, wo auch der Filter- Trockner-Einsatz 1 13 vorgesehen ist. Anschließend durchströmt das Fluid die Überströmöffnung 1 14 zum Sammler 103 und die Überströmöffnung 1 1 5 zum Sammelrohr 103, so dass das Fluid durch die Flut 1 16 zum Sammelrohr 101 strömt und von dort durch gemäß dem Pfeil 1 17 den Kondensator verlässt. Die Fluten 107, 108 und 109 liegen in Strömungsrichtung vor den beiden Sammlern 103, 104 und sind als 5 Enthitzungs- und Kondensierzonen vorgesehen, wobei die Flut 1 18 nach den beiden Sammlern 103, 04 angeordnet ist und eine Unterkühlstrecke für das Fluid darstellt.
Die Fig. 7 stellt eine weitere schematische Darstellung eines Kondensators 1 30 dar, welcher zwei Sammelrohre 131 und 132 sowie zwei Sammler 133, 134 aufweist.
I {) Zwischen den beiden Sammelrohren 131 und 132 ist der Rohr-Rippenblock 1 35 vorgesehen. Der Rohr-Rippenblock 135 ist in sechs Fluten 136 bis 141 aufgeteilt. Dabei sind drei Enthitzungs- und Kondensierzonen als Fluten 136 bis 138 ausgebildet. Von dort strömt das Fluid durch das Sammelrohr 132 in den Sammler 133 und durch die Flut 139 als erste Unterkühlstrecke zum Sammelrohr 133 und in den Sammler 134
15 und von dort zurück zum Sammelrohr 131 durch die Flut 140 zum Sammelrohr 32 und von dort durch die Flut 141 zum Sammelrohr 131 zurück, von wo das Fluid aus dem Kondensator austritt. Zwischen den beiden Sammlern 133. 134 ist eine Flut 139 als Unterkühlstrecke vorgesehen. Nach dem Sammler 134 sind zwei Fluten 140, 141 als Unterkühlstrecke vorgesehen.
0
In Fig. 7 ist zu erkennen, dass der Sammler 133 zur Sammlung und Speicherung des Fluids dient, wobei im Sammler 134 auch der Filter-Trockner-Einsatz 142 angeordnet ist, so dass der Sammler 134 der Speicherung und auch der Filterung und/oder Trocknung des Fluids dient,
5
Die Fig. 8 zeigt ein weiteres alternatives Ausführungsbeispiel eines Kondensators 150 mit den Sammelrohren 151 und 152 beiderseits des Rohr-Rippenblocks 1 53.
Die beiden Sammler 154 und 155 sind ähnlich der Anordnung der Fig. 6 neben dem 0 Sammelrohr 152 angeordnet. Im Ausführungsbeispiel der Fig. 8 ist der Rohr- Rippenblock durch zwei Fluten 156, 157 gekennzeichnet. Dabei ist die Flut 156 die einlassseitige Flut, vom Einiass 158 bis zum Einiass in den Sammler 154 mittels der Überströmöffnung 159 und die Flut 157 ist die Flut, welche als Unterkühlstrecke zwischen der Überströmöffnung 160 und dem Auslass 161 des Kondensators angeord- 5 net ist. Die Flutigkeit des ersten Ausführungsbeispiels gemäß Fig. 1 ist dabei vorteilhaft 18 - 7 - 4 = 3 - 3, dies bedeutet, dass in der ersten Flut siebzehn Rohre parallel geschaltet sind, in der zweiten Flut sieben Rohre parallel geschaltet sind und in der dritten Flut vier Rohre parallel geschaltet sind, wobei nach dem ersten Sammler die Flut drei Rohre parallel geschaltet aufweist und nach dem zweiten Sammler die Flut ebenso drei Rohre parallel geschaltet aufweist.
Das Volumen des Sammlers beträgt etwa 280 ml beim Durchmesser von ca. 36 mm, wobei das Trocknervolumen als reduzierendes Volumen bezüglich des Fluidaufnah- meraums berücksichtigt wurde. Bei einem Durchmesser von 45 mm würde ein Volu- men von ca. 530 ml resultieren. Das Ausführungsbeispiel der Fig. 2 weist eine Flutigkeit auf, die 1 7 - 6 - 4 - 4 = 4 beträgt, das bedeutet, dass vor der Einströmung in den Sammler vier Fluten mit einmal siebzehn parallelen Rohren, einmal sechs parallelen Rohren und zweimal vier parallelen Rohren vorgesehen sind, wobei als Unterkühlstrecke nach dem Sammler eine Flut mit vier parallelen Rohren angeordnet ist. Das Volumen des Sammlers gemäß Fig. 2 entspricht etwa den Vorschlägen für das Volumen gemäß Fig. 1 .
Das Ausführungsbeispiel gemäß Fig. 5 entspricht in seiner Flutigkeit dem Ausführungsbeispiel der Fig. 2, wobei lediglich der Sammler an dem anderen gegenüberlie- genden Sammelrohr angeordnet ist.
In den Ausführungsbeispielen mit zwei nebeneinander angeordneten Sammlern ist der Trockner oder die Filter-Trockner-Kartusche oder der diesbezügliche Einsatz als Filter und/oder Trockner in dem Sammler angeordnet, der dem Sammelrohr am ent- ferntesten ist. Dies ist auch vorteilhaft, wenn ein Austritts- oder Eintrittsflansch oder Stutzen vorgesehen ist, welcher dann unterhalb des Sammlers oder oberhalb des Sammlers angeordnet ist, der dem Sammelrohr am nächsten liegt. Dadurch wird eine bessere Austauschbarkeit des Einsatzes bzw. der Kartusche bewirkt.
Die Anordnung zweier einzelner Sammler bewirkt, dass gegenüber einem einzigen vorgesehenen Sammler die Durchmesser der beiden Sammler deutlich geringer ge- halten werden können, als im Vergleich zu einem einzelnen Sammler mit gleichem Volumen. Dies reduziert den Bauraum in Fahrtrichtung, da die beiden Sammler nicht so große Durchmesser aufweisen müssen. Dabei sind die Sammler vorteilhaft derart angeordnet, dass ihre Mittlachsen auf einer Ebene liegen, wobei diese Ebene vorteilhaft eine Ebene ist, die durch den Rohr-Rippenblock des Kondensators verläuft.
Das Ausführungsbeispiel der Fig. 1 , bei welchem zwei Sammler an jeweils einem Sammelrohr und benachbart zu diesem angeordnet sind, weist den Vorteil auf, dass wenige Schnittstellen zwischen den Sammlern und den Sammelrohren vorliegen, so dass diesbezüglich mit reduzierten Leckagen gerechnet werden kann. Durch die Er- höhung des Füllvolumens können auch Befülltoleranzen weniger starken Einfluss nehmen, da übliche Befülltoleranzen von ± 15 g gering sind im Vergleich zu einem Volumen von ca. 500 g Fülimenge für die beiden Sammler. Dadurch ergibt sich eine gleichbleibende Leistung als Funktion der Füllmenge und die Plateaulänge in dem bereits oben ausgeführten Temperatur-Füllmengen-Diagramm nimmt deutlich zu, was einer stabileren Klimatisierung dient, da die Unterkühlung über weite Befüll- und somit Betriebsbereiche stabil ist.
Auch ist es vorteilhaft, das Volumen der Sammler zu vergrößern, so dass mehr Kältemittel bevorratbar ist, so dass auch unter Volllast mehr Kältemittel im Kondensator zur Verfügung steht.
Die Anordnung der beiden Sammler auf gegenüberliegenden Seiten des Rohr- Rippenblocks, siehe Figuren 1 und 7, bewirkt auch eine bessere Massenverteilung im Hinblick auf Vibrationen im Fahrzeug, da die Massen gleichmäßiger verteilt sind. Auch hinsichtlich des Lötprozesses in der Fertigung ist die bessere Verteilung der Massen des Kondensators vorteilhaft, da dadurch eine schneilere und gleichmäßigere Aufheizung im Lötprozess erziel bar ist.

Claims

Patentansprüche
1 . Kondensator mit einem Rohr-Rippenblock mit Rohren und zwischen den Rohren angeordneten Rippen, wobei die Rohre mit ihren sich gegenüberliegenden Rohrenden jeweils in Öffnungen von beidseitig des Rohr- Rippenblocks angeordneten Sammelrohren aufgenommen sind, wobei benachbart zu einem ersten Sammelrohr ein erster Sammler angeordnet ist, der mittels zumindest einer Strömungsverbindung mit dem ersten Sammelrohr in Fluidverbindung steht, dadurch gekennzeichnet, dass ein zweiter Sammler angeordnet ist, der in Fluidverbindung mit dem ersten Sammler oder mit einem der Sammelrohre steht.
2. Kondensator nach Anspruch 1 , dadurch gekennzeichnet, dass der zweite Sammler benachbart zu dem zweiten Sammelrohr angeordnet ist und in Fluidverbindung zu dem zweiten Sammelrohr ist.
3. Kondensator nach Anspruch 1 , dadurch gekennzeichnet, dass der zweite Sammler benachbart zum ersten Sammler angeordnet ist und mit dem ersten Sammler in Fluidverbindung steht.
4. Kondensator nach Anspruch 1 , 2 oder 3» dadurch gekennzeichnet, dass der erste Sammler über eine erste Überströmöffnung und mit einer zweiten Überströmöffnung mit dem ersten Sammelrohr in Fluidverbindung steht.
5. Kondensator nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der zweite Sammler über eine dritte Überströmöffnung und mit einer vierten Überströmöffnung mit dem zweiten Sammelrohr in Fluidverbindung steht.
6. Kondensator nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der erste Sammler über eine dritte Überströmöffnung und mit einer vierten Überströmöffnung mit dem zweiten Sammler in Fluidverbindung steht.
7. Kondensator nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rohr-Rippenblock in Fluten parallel durchströmter Rohre unterteilt ist, die in Fluidströmungsrichtung nacheinander durchströmbar sind, wobei zwischen dem ersten Sammler und dem zweiten Sammler eine Flut parallel durchströmter Rohre angeordnet ist, die zwischen der ausströmseitigen Überströmöffnung des ersten Sammler und der einströmseitigen Überströmöffnung des zweiten Sammers angeordnet ist.
8. Kondensator nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen einem Einströmanschluss zur Einströmung des Fluids in den Rohr-Rippenblock und dem ersten Sammler zumindest eine Flut parallel durchströmter Rohre angeordnet ist.
9. Kondensator nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem ersten Sammler und einem Ausströmanschluss zur Ausströmung des Fluids aus dem Rohr-Rippenblock zumindest eine Flut parallel durchströmter Rohre angeordnet ist.
10. Kondensator nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem zweiten Sammler und einem Ausströmanschluss zur Ausströmung des Fluids aus dem Rohr- Rippenblock zumindest eine Flut parallel durchströmter Rohre angeordnet ist. Kondensator nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Filter und/oder Trockner vorgesehen ist, der im ersten und/oder im zweiten Sammler angeordnet ist.
PCT/EP2013/071625 2012-10-16 2013-10-16 Kondensator WO2014060475A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13779557.1A EP2912393B1 (de) 2012-10-16 2013-10-16 Kondensator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12290351.1 2012-10-16
EP12290351.1A EP2722629A1 (de) 2012-10-16 2012-10-16 Kondensator

Publications (1)

Publication Number Publication Date
WO2014060475A1 true WO2014060475A1 (de) 2014-04-24

Family

ID=47325995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/071625 WO2014060475A1 (de) 2012-10-16 2013-10-16 Kondensator

Country Status (2)

Country Link
EP (2) EP2722629A1 (de)
WO (1) WO2014060475A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582027A (en) * 1994-03-29 1996-12-10 Nippondenso Co., Ltd. Modulator integrated type refrigerant condenser
JP2001108331A (ja) * 1999-10-07 2001-04-20 Denso Corp 受液器一体型凝縮器
JP2007010298A (ja) * 2005-07-04 2007-01-18 Nikkei Nekko Kk レシーバタンク付き熱交換器
JP2008267753A (ja) * 2007-04-24 2008-11-06 Showa Denko Kk 熱交換器
EP2498028A2 (de) * 2011-03-09 2012-09-12 Delphi Technologies, Inc. Kondensator mit einer Kühlmittelbehälteranordnung mit einem Trocknungsmittelbeutel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE136639T1 (de) 1988-09-14 1996-04-15 Showa Aluminium Co Ltd Kondensator
DE4245046C8 (de) 1992-11-18 2008-08-21 Behr Gmbh & Co. Kg Kondensator für eine Klimaanlage eines Fahrzeuges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582027A (en) * 1994-03-29 1996-12-10 Nippondenso Co., Ltd. Modulator integrated type refrigerant condenser
JP2001108331A (ja) * 1999-10-07 2001-04-20 Denso Corp 受液器一体型凝縮器
JP2007010298A (ja) * 2005-07-04 2007-01-18 Nikkei Nekko Kk レシーバタンク付き熱交換器
JP2008267753A (ja) * 2007-04-24 2008-11-06 Showa Denko Kk 熱交換器
EP2498028A2 (de) * 2011-03-09 2012-09-12 Delphi Technologies, Inc. Kondensator mit einer Kühlmittelbehälteranordnung mit einem Trocknungsmittelbeutel

Also Published As

Publication number Publication date
EP2722629A1 (de) 2014-04-23
EP2912393A1 (de) 2015-09-02
EP2912393B1 (de) 2016-12-14

Similar Documents

Publication Publication Date Title
EP2378225B1 (de) Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
EP0668986B1 (de) Kondensator für eine klimaanlage eines fahrzeuges
EP2129978B1 (de) Kondensator für eine klimaanlage, insbesondere eines kraftfahrzeuges
AT411979B (de) Kondensator für eine klimaanlage, insbesondere für eine klimaanlage eines kraftfahrzeuges
EP2909563B1 (de) Kondensator
EP0917638A1 (de) Verteil-/sammel-kasten eines mindestens zweiflutigen verdampfers einer kraftfahrzeugklimaanlage
DE102013202624A1 (de) Wärmetauscher
DE102011011357A1 (de) Kondensator
DE102017211736A1 (de) Kondensator
DE102007013125A1 (de) Wärmeübertrager
WO2005108896A1 (de) Kondensator für eine klimaanlage, insbesondere für ein kraftfahrzeug
DE10065205A1 (de) Kältemittel-Kondensator
EP1684032B1 (de) Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
EP1623167A1 (de) Vorrichtung zum kondensieren eines kältemittels
EP2912393B1 (de) Kondensator
EP2818817B1 (de) Kondensatorbaugruppe
WO2012098264A2 (de) Kältemittelkondensatorbaugruppe
DE10339072A1 (de) Wärmetauscher mit integriertem Zu- und Ablauf
WO2012098261A2 (de) Kältemittelkondensatorbaugruppe
DE102021213378A1 (de) Kondensator
EP1475584A1 (de) Kältemittelkondensator, insbesondere für Kraftfahrzeuge
DE102019210366A1 (de) Wärmeübertrager
DE102021213376A1 (de) Wärmeübertrager und Kältemittelkreislauf mit einem Wärmeübertrager
EP3039356A1 (de) Vorrichtung mit granulatbefüllung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013779557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013779557

Country of ref document: EP