WO2014056798A1 - Verfahren und vorrichtung zum betreiben einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum betreiben einer brennkraftmaschine Download PDF

Info

Publication number
WO2014056798A1
WO2014056798A1 PCT/EP2013/070704 EP2013070704W WO2014056798A1 WO 2014056798 A1 WO2014056798 A1 WO 2014056798A1 EP 2013070704 W EP2013070704 W EP 2013070704W WO 2014056798 A1 WO2014056798 A1 WO 2014056798A1
Authority
WO
WIPO (PCT)
Prior art keywords
camshaft
pressure
pump
pressure pump
actuator
Prior art date
Application number
PCT/EP2013/070704
Other languages
English (en)
French (fr)
Inventor
Michael Wirkowski
Christian MEY
Christoph Klesse
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201380053047.8A priority Critical patent/CN104704223B/zh
Priority to KR1020157010399A priority patent/KR102122622B1/ko
Priority to EP13785826.2A priority patent/EP2906803B1/de
Priority to US14/427,506 priority patent/US9518545B2/en
Priority to JP2015536072A priority patent/JP2015534625A/ja
Publication of WO2014056798A1 publication Critical patent/WO2014056798A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/12Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps having other positive-displacement pumping elements, e.g. rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • F02M39/02Arrangements of fuel-injection apparatus to facilitate the driving of pumps; Arrangements of fuel-injection pumps; Pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/38Pumps characterised by adaptations to special uses or conditions
    • F02M59/42Pumps characterised by adaptations to special uses or conditions for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0265Pumps feeding common rails

Definitions

  • the invention relates to a method and a device for operating an internal combustion engine.
  • Modern motor vehicles have direct fuel injection internal combustion engines in which the fuel is injected under high pressure directly into or into multi-cylinder internal combustion engines into the combustion chambers.
  • a fuel direct injection requires a fuel supply device, which provides pressurized fuel in any operating situation.
  • Elements of this fuel supply device are the high-pressure pump, which conveys the fuel to the required pressure level, and a pressure accumulator (rail), in which the fuel is stored under high pressure and from which the fuel injectors are supplied with fuel.
  • the fuel When starting the engine of an internal combustion engine with fuel ⁇ injection systems, the fuel must be under a sufficiently high pressure.
  • the sufficiently high pressure at engine start both after a longer and after a short shutdown phase, must first be generated by the high pressure pump mechanically coupled to the engine.
  • the engine of a motor vehicle is driven during a starting phase by a starter of the motor vehicle without combustion until reaching a target injection release pressure. It is to be expected that the setpoint injection release pressure will be further increased in the future due to stricter limit values with regard to a particle emission.
  • the object underlying the invention is to provide a method and a device for operating an internal combustion engine, which contributes to improving a starting capability of an engine of the internal combustion engine.
  • the object is solved by the features of the independent claims.
  • Advantageous developments of the invention are characterized in the subclaims.
  • the invention is characterized by a method and a corresponding device for operating an internal combustion engine.
  • the internal combustion engine has a Druckspei ⁇ cher, a high pressure pump, a controllable actuator and a rotatably mounted camshaft with a longitudinal axis.
  • the high-pressure pump comprises a cylinder chamber and a pump piston movably arranged in the cylinder chamber.
  • the pump piston is supported at least indirectly on the camshaft and thus influences a free volume of the cylinder chamber depending on a rotation of the camshaft.
  • the cylinder chamber of High-pressure pump is hydraulically coupled at least indirectly with the pressure accumulator for conveying the fluid into the pressure accumulator.
  • the actuator is configured and arranged to drive the camshaft such that the camshaft rotates in a predetermined angular range about its longitudinal axis in a first direction or in an opposite second direction.
  • the method comprises the following steps: During a predetermined period of time before an expected engine start, the high pressure pump is driven so that it has a self-priming operating state and the actuator is so ⁇ controls that the camshaft at least once in the first direction and at least once in the second direction rotates in the predetermined angular range about its longitudinal axis.
  • this makes it possible to rotate the camshaft and thus at least one drive cam of the camshaft already before the expected engine start by means of the actuator, so that the high-pressure pump is driven.
  • the at least one drive cam of the camshaft, on which the pump piston is at least indirectly supported is rotated back and forth.
  • the Pum ⁇ penkolben thereby results in the cylinder chamber suction and
  • the suction and Pumphubzien the pump piston allow fluid delivery of the high-pressure pump, in particular a fuel delivery, and thus a pressure build-up in the accumulator before the engine is started.
  • the high pressure pump is preferably designed such that it can have a self-priming operating state with a suitable control. This allows the
  • the high-pressure pump in very fast working and effective ⁇ settable. Furthermore, this allows full delivery of the high-pressure pump without synchronization of the cam and a crankshaft.
  • the high-pressure pump can be designed as a normally closed pump or as a normally open pump. In the event that the high-pressure pump is designed as a normally closed pump is formed, the high-pressure pump is operated without current. In the case that the high-pressure pump is designed as a normally open pump, the high-pressure pump is operated with a continuous current, analogous to a normal operation of the high-pressure pump in an active operating state of the engine.
  • the expected Mo ⁇ gate start can be detected depending on an opening of a driver door and / or a seat occupancy.
  • the expected engine start can be determined as a function of a medium short-time shut-off time.
  • camshaft rotation may begin to build up pressure in the accumulator.
  • the pressure in the pressure accumulator can thus already have a desired value at an actual engine start. This has the advantage, in particular in the case of a motor vehicle, that a period of time can be shortened by an engine start desired by a vehicle driver and / or vehicle-controlled engine start, in which an activation signal for the engine is generated, for example, up to an actual start of combustion in the combustion chamber.
  • a size of the pressure accumulator can be maintained by the build-up of pressure before the expected engine start, without the start ⁇ ability of the engine is delayed.
  • a reduction in the size of the pressure accumulator and the associated extended quality requirements for other components, for example pressure relief valves and injectors, may be dispensable.
  • the predetermined period of time is immediately before the expected engine start. This has the advantage that an already established pressure does not have to be kept for a longer time and / or a particle emission can be reduced and / or a possible leakage in the fuel system can be tolerated.
  • the actuator is controlled during the predetermined period of time such that the camshaft rotates several times each first in the first and then in the second direction in the predetermined angle kel Suite about its longitudinal axis until a predetermined injection release pressure prevails in the pressure accumulator.
  • the actuator can thus be used for the variable valve train and as a high-pressure pump drive. An operability of the variable valve train is maintained because the actuator is used only when the engine is started for the variable valve train.
  • the variable valve train comprises an electric variable valve train.
  • the variable valve train may include an electric actuator.
  • the high-pressure pump comprises a digitally switching high-pressure pump. Before ⁇ geous enough, this allows a rapid pressure build-up. It Both directions of movement can be used for the pressure build-up, since the pressure build-up is independent of a respective direction of rotation.
  • Figure 1 is an exemplary schematic representation of a
  • Figure 2 is a schematic partial view of a high-pressure pump in a longitudinal section
  • Figure 3 shows a time course of a rail pressure in one
  • the internal combustion engine 1 comprises at least one cylinder 2 and a piston 3 movable up and down in the cylinder 2.
  • the internal combustion engine 1 further comprises an intake tract 40, downstream of an intake opening 4 for drawing in fresh air, an air mass sensor 5, a throttle valve 6, a suction pipe 7 and a controllable intercooler 60 are arranged.
  • the charge air cooler 60 can have water cooling or air cooling.
  • the intake tract 40 opens into a combustion chamber 30 bounded by the cylinder 2 and the piston 3.
  • the fresh air required for combustion is introduced into the combustion chamber 30 via the intake tract 40, the fresh air supply being controlled by opening and closing a gas inlet valve 8.
  • the internal combustion engine 1 shown here is an internal combustion engine 1 with direct fuel injection, in which the fuel required for the combustion via an input injection valve 9 is injected directly into the combustion chamber 30.
  • a likewise protruding into the combustion chamber 30 ignition plug is used to trigger the combustion 10.
  • the combustion exhaust gases are discharged through a gas outlet 11 into an exhaust pipe 16 of the internal combustion engine 1 and purified by means of an in the Ab ⁇ gas line 16 catalyst 12th
  • the internal combustion engine 1 has a variable Ven ⁇ tiltrieb 50, by means of which the control times (opening and closing time) of the gas inlet valves 8 and the gas outlet valves 11 can be adjusted individually.
  • a No ⁇ ckenwelle 27 (not shown in Figure 1) is coupled to the gas outlet valve and the crankshaft 13 respectively with the gas inlet valve 8 and / or.
  • the internal combustion engine 1 may have ckenwelle game as an intake camshaft and / or a Auslassno- at ⁇ .
  • the variable valve train 50 is coupled to the camshaft 27 and the crankshaft 13 and allows at least one phase of the camshaft 27 to be adjusted to the crankshaft 13.
  • variable valve train 50 may be realized, for example, by a hydraulically adjustable camshaft (not shown in FIG. 1). in which the different timing of the valves 8, 11 result by switching between cam 28 with different survey curves.
  • an electric variable valve train is possible in which the valves 8, 11 are driven individually, electrically.
  • variable valve train 50 may include an actuator that is configured and arranged the camshaft 27 to drive.
  • the actuator is configured to drive the camshaft 27 such that the camshaft 27 rotates in a predetermined angular range about its longitudinal axis in a first direction or in an opposite second direction.
  • the actuator may be configured to drive the camshaft 27 depending on a predetermined electrical pulse.
  • the internal combustion engine 1 further has a fuel supply system which has a fuel tank 17 and a fuel pump 18 arranged therein.
  • the fuel is supplied by means of the fuel pump 18 via a supply ⁇ lines 19, 19 a pressure accumulator 20.
  • This is a common pressure accumulator, from which the injection valves 9 for several cylinders 2 with
  • a fuel filter 21 and a high-pressure pump 22 are further arranged.
  • the high-pressure pump 22 serves to supply the fuel delivered by the fuel pump 18 at relatively low pressure (approximately 3 bar) to the pressure accumulator 20 at high pressure (typically up to 150 bar).
  • the internal combustion engine 1 is a control device 23 assigns supplied ⁇ which tuatoren on signal and data lines with all AK and connected sensors of the internal combustion engine. 1
  • Figure 2 shows at least partially the high pressure pump 22 with a pump housing 25 and a pump unit 25.
  • the high pressure pump 22 includes, for example, a digital high pressure switching pump.
  • the pump unit 25 shown is preferably a plurality of pump units 25 of the high-pressure pump 22, which are operated by a ge ⁇ jointly used with the drive shaft. Is preferred the drive shaft, the cam shaft 27 which is coupled to the gas inlet ⁇ outlet valve 8 and / or the gas outlet valve. 11
  • the camshaft 27 is rotatably supported, for example, with a rotation axis D in the pump housing 25.
  • the camshaft 27 includes at least one cam 28, the cam 28 may be formed as multiple cams.
  • the camshaft 27 has two cams 28.
  • the number of conveying and compression strokes can be specified via the number of cams 28.
  • the number of conveying or compression strokes corresponds to the number of cams 28.
  • the pump unit 25 basically includes the cylinder housing 26, which is arranged in the cylinder housing 26 cylinder chamber 311, a pump plunger 31, a plunger 29 and a return spring 33.
  • the cylinder housing 26, the cylinder chamber 311, the Pum ⁇ penkolben 31, the plunger 29 and the Return spring 33 are preferably arranged coaxially with one another along a longitudinal axis L of the pump piston 31.
  • the pump piston 31 is axially movably mounted in the cylinder chamber 311 of the cylinder housing 26 in a cylindrical recess of a pump piston guide portion 32 of the cylinder housing 26 and is in operative connection with the camshaft 27.
  • the pump piston 31 is driven in particular by the cam 28 of the camshaft 27 in a lifting movement in at least approximately radial direction to the axis of rotation D of the camshaft 27.
  • the pump piston 31 is axially movably guided in the pump piston guide section 32 to deliver fuel from the supply line 19 via pump inlet valve 3112 into the cylinder chamber 311 with the pump discharge valve 3117 closed during a suction stroke, downwardly in FIG Pumphubs, in Figure 2 directed upward, in the To compress fuel located in the cylinder chamber 311 and possibly via the pump outlet valve 3117 under high pressure to the supply line 19 a to the accumulator 20 with closed pump inlet valve 3112.
  • FIG. 2 shows a possible embodiment of a pump inlet valve 3112 as a digitally switchable valve. It is a so-called. Normally open valve. Via a current coil 3114 of the valve, a valve plunger 3116 with a valve closing element against the force of a spring 3115 can be actively brought into a closed position of the valve 3112, in which no fuel can get from the supply line 19 into the cylinder chamber 311 of the pump 22 and not the other way around. If the coil 3114 is not energized, the valve 3112 is in its open position and the suction of fuel from the supply line 19 in a suction phase of the pump 22 is made possible. In a self-priming operation, the coil is not energized in this type of intake valve. Alternatively, another valve principle could be used, the
  • the pump outlet valve 3117 of the pump 22 is a check valve 3118, which, with a correspondingly high pressure in the cylinder chamber 311 of the pump, allows fluid to be conveyed into the supply line 19a towards the high-pressure accumulator 20.
  • FIG. 3 shows a time profile of a rail pressure P_rail in the pressure accumulator 20.
  • the high-pressure pump 22 is driven so even before an expected engine start during a predetermined period of time, that it a self-priming operating state and the actuator is controlled such that the camshaft 27 rotates at least once in the first direction and at least once in the second direction in the predetermined angular range about its longitudinal axis.
  • the actuator is controlled so during the predetermined period of time that the No ⁇ ckenwelle 27 several times in each case first angle range is rotating in the first and ⁇ closing in the second direction in the predetermined angular about its longitudinal axis. This can be done until a predetermined injection release pressure is reached in the pressure accumulator 20.
  • the camshaft 27 Before the engine, for example of the motor vehicle, is started, the camshaft 27 is moved back and forth, for example by means of the at least one actuator of the variable valve drive 50.
  • the rail pressure P_rail increases due to the reciprocating movements at least approximately stepped.
  • the time course of the rail pressure P_rail represents a test stand measurement.
  • the rail pressure P_rail for example, increases by about 7 to 10 bar at a camshaft rotation of 45 ° in total (22.5 ° in the first direction and 22.5 ° back in the second direction).
  • the camshaft 27 was rotated in the example shown at an angular velocity of 75 ° / s.
  • An injection release pressure of more than 60 bar can thus be achieved within a period of less than two seconds.
  • the duration is also dependent on an embodiment of the
  • FIG. 3 shows the time course of a Kurbelwel ⁇ lensignals CRK, which is detected for example by means of Kurbelwel ⁇ lensensors (respective maximum point 6 ° crankshaft 13, 3 ° camshaft 27).
  • the respective phases of the rotational movement in different directions are also to detect.
  • a respective first phase Phl the rotation is in the first Reichung and during a respective second phase Ph2 is performed, the rotation in the second, entge ⁇ genfede direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Eine Brennkraftmaschine (1) weist einen Druckspeicher (20), eine Hochdruckpumpe (22), einen steuerbaren Aktuator und eine drehbar gelagerte Nockenwelle (27) mit einer Längsachse auf. Die Hochdruckpumpe (22) umfasst eine Zylinderkammer und einen in der Zylinderkammer beweglich angeordneten Pumpenkolben (31). Der Pumpenkolben (31) stützt sich zumindest mittelbar auf der Nockenwelle (27) ab und beeinflusst so abhängig von einer Drehung der Nockenwelle (27) ein freies Volumen der Zylinderkammer. Die Zylinderkammer der Hochdruckpumpe (22) ist hydraulisch zumindest mittelbar gekoppelt mit dem Druckspeicher(20) zur Förderung des Fluids in den Druckspeicher (20). Der Aktuator ist ausgebildet und angeordnet, die Nockenwelle (27) derart anzutreiben, dass sich die Nockenwelle (27) in einem vorgegebenen Winkelbereich um ihre Längsachse rotiert in eine erste Richtung oder in eine entgegengesetzte zweite Richtung. Das Verfahren umfasst hierbei folgende Schritte: Während einer vorgegebenen Zeitdauer vor einem erwarteten Motorstart wird die Hochdruckpumpe (22) derart angesteuert, dass sie einen selbstansaugenden Betriebszustand aufweist und der Aktuator wird derart angesteuert, dass sich die Nockenwelle (27) zumindest einmal in die erste Richtung und zumindest einmal in die zweite Richtung in dem vorgegebenen Winkelbereich um ihre Längsachse dreht.

Description

Beschreibung
Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine.
Moderne Kraftfahrzeuge verfügen über Brennkraftmaschinen mit Kraftstoffdirekteinspritzung, bei denen der Kraftstoff unter hohem Druck direkt in den oder bei mehrzylindrigen Brennkraftmaschinen in die Brennräume eingespritzt wird. Eine solche Kraftstoffdirekteinspritzung erfordert eine Kraftstoff ersorgungseinrichtung, welche in jeder Betriebssituation druckbeaufschlagten Kraftstoff bereitstellt. Elemente dieser KraftstoffVersorgungseinrichtung sind die Hochdruckpumpe, welche den Kraftstoff auf das nötige Druckniveau befördert, und ein Druckspeicher (Rail) , in dem der Kraftstoff unter hohem Druck gespeichert wird und von welchem die Einspritzventile mit Kraftstoff versorgt werden.
Im Bestreben der Automobilhersteller, den Kraftstoffverbrauch und die Emissionen der Kraftfahrzeuge weiter zu verringern, wurden neue Fahrzeugfunktionen entwickelt, wie beispielsweise die Start-Stopp-Automatikfunktion, mittels derer die Brenn- kraftmaschine unabhängig von dem Eingriff eines Kraftfahrzeugführers automatisch abgeschaltet und, ohne den Zündschlüssel oder den Startknopf zu betätigen, auch wieder automatisch gestartet werden kann, beispielsweise durch Antippen des Gas¬ oder Kupplungspedals. Die Abschaltung der Brennkraftmaschine geschieht dabei insbesondere in längeren Leerlaufphasen, in denen die Antriebskraft der Brennkraftmaschine nicht benötigt wird. Auf diese Weise können, besonders im innerstädtischen Verkehr mit vielen Ampelstopps, beachtliche Kraftstoffver- brauchseinsparungen erzielt werden. ^
Bei einem Motorstart einer Brennkraftmaschine mit Kraft¬ stoffeinspritzsystemen muss der Kraftstoff unter einem ausreichend hohen Druck stehen. Im Allgemeinen muss der ausreichend hohe Druck beim Motorstart, sowohl nach einer längeren als auch nach einer kurzen Abschaltphase, zunächst von der mechanisch an den Motor gekoppelten Hochdruckpumpe erzeugt werden. Der Motor eines Kraftfahrzeugs wird während einer Startphase von einem Starter des Kraftfahrzeugs ohne Verbrennung angetrieben bis zur Erreichung eines Soll-Einspritzfreigabedrucks. Es ist zu er¬ warten, dass aufgrund strengerer Grenzwerte bezüglicher einer Partikelemission der Soll-Einspritzfreigabedruck in Zukunft weiter erhöht wird.
Die Aufgabe, die der Erfindung zu Grunde liegt, ist es, ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine zu schaffen, das beziehungsweise die einen Beitrag leistet, eine Startfähigkeit eines Motors der Brennkraftmaschine zu verbessern.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Die Erfindung zeichnet sich aus durch ein Verfahren und eine korrespondierende Vorrichtung zum Betreiben einer Brennkraftmaschine. Die Brennkraftmaschine weist einen Druckspei¬ cher, eine Hochdruckpumpe, einen steuerbaren Aktuator und eine drehbar gelagerte Nockenwelle mit einer Längsachse auf. Die Hochdruckpumpe umfasst eine Zylinderkammer und einen in der Zylinderkammer beweglich angeordneten Pumpenkolben. Der Pumpenkolben stützt sich zumindest mittelbar auf der Nockenwelle ab und beeinflusst so abhängig von einer Drehung der Nockenwelle ein freies Volumen der Zylinderkammer. Die Zylinderkammer der Hochdruckpumpe ist hydraulisch zumindest mittelbar gekoppelt mit dem Druckspeicher zur Förderung des Fluids in den Druckspeicher. Der Aktuator ist ausgebildet und angeordnet, die Nockenwelle derart anzutreiben, dass die Nockenwelle in einem vorgegebenen Winkelbereich um ihre Längsachse rotiert in eine erste Richtung oder in eine entgegengesetzte zweite Richtung. Das Verfahren umfasst hierbei folgende Schritte: Während einer vorgegebenen Zeitdauer vor einem erwarteten Motorstart wird die Hochdruckpumpe derart angesteuert, dass sie einen selbstansaugenden Betriebszustand aufweist und der Aktuator wird derart ange¬ steuert, dass sich die Nockenwelle zumindest einmal in die erste Richtung und zumindest einmal in die zweite Richtung in dem vorgegebenen Winkelbereich um ihre Längsachse dreht.
Vorteilhafterweise ermöglicht dies, die Nockenwelle und damit zumindest einen Antriebsnocken der Nockenwelle bereits vor dem erwarteten Motorstart mittels des Aktuators zu drehen, sodass die Hochdruckpumpe angetrieben wird. Hierbei wird der zumindest eine Antriebsnocken der Nockenwelle, auf der sich der Pumpenkolben zumindest mittelbar abstützt, hin und hergedreht. Der Pum¬ penkolben führt dadurch in der Zylinderkammer Saug- und
Pumphubbewegungen aus. Die Saug- und Pumphubbewegungen des Pumpenkolbens ermöglichen eine Fluidförderung der Hochdruckpumpe, insbesondere eine Kraftstoffförderung, und damit einen Druckaufbau in dem Druckspeicher bevor der Motor gestartet wird. Die Hochdruckpumpe ist vorzugsweise derart ausgebildet, dass sie bei einer geeigneten Ansteuerung einen selbstansaugenden Betriebszustand aufweisen kann. Dies ermöglicht, dass die
Hochdruckpumpe sehr schnell betriebsbereit und effektiv ein¬ setzbar ist. Ferner ermöglicht dies eine Vollförderung der Hochdruckpumpe ohne eine Synchronisation der Nocken- und einer Kurbelwelle. Die Hochdruckpumpe kann als stromlos geschlossene Pumpe oder als stromlos offene Pumpe ausgebildet sein. Im Falle, dass die Hochdruckpumpe als stromlos geschlossene Pumpe aus- gebildet ist, wird die Hochdruckpumpe unbestromt betrieben. Im Falle, dass die Hochdruckpumpe als stromlos offene Pumpe ausgebildet ist, wird die Hochdruckpumpe mit einem Dauerstrom betrieben, analog zu einem Normalbetrieb der Hochdruckpumpe bei einem aktiven Betriebszustand des Motors. Der erwartete Mo¬ torstart kann abhängig von einer Öffnung einer Fahrzeugführertüre und/oder einer Sitzbelegung detektiert werden. Bei einer Start-Stopp-Automatikfunktion kann der erwartete Motorstart abhängig von einer mittleren Kurzzeitabschaltdauer ermittelt werden. Abhängig von dem ermittelten erwarteten Motorstart kann mit der Nockenwellendrehung zum Aufbau des Drucks im Druckspeicher begonnen werden. Der Druck in dem Druckspeicher kann so bereits bei einem tatsächlichen Motorstart einen gewünschten Wert aufweisen. Dies hat insbesondere bei einem Kraftfahrzeug den Vorteil, dass eine Zeitspanne verkürzt werden kann von einem durch einen Fahrzeugführer gewünschten Motorstart und/oder fahrzeuggesteuerten Motorstart, bei dem jeweils beispielsweise ein Aktivierungssignal für den Motor erzeugt wird, bis zu einem tatsächlichen Beginn einer Verbrennung im Brennraum. Auch bei einer Erhöhung des Soll-Einspritzfreigabedrucks kann durch den Druckaufbau vor dem erwarteten Motorstart eine Größe des Druckspeichers beibehalten werden, ohne dass sich die Start¬ fähigkeit des Motors verzögert. Eine Größenverringerung des Druckspeichers und damit verbundene erweiterte Qualitätsan- forderungen an weitere Komponenten, zum Beispiel Überdruckventile und Injektoren, können entbehrlich sein.
In einer vorteilhaften Ausgestaltung liegt die vorgegebene Zeitdauer unmittelbar vor dem erwarteten Motorstart. Dies hat den Vorteil, dass ein bereits aufgebauter Druck nicht längere Zeit gehalten werden muss und/oder eine Partikelemission reduziert werden kann und/oder eine mögliche Leckage im KraftstoffSystem toleriert werden kann. n
5
In einer weiteren vorteilhaften Ausgestaltung wird während der vorgegebenen Zeitdauer der Aktuator derart angesteuert, dass sich die Nockenwelle mehrmals jeweils zunächst in die erste und anschließend in die zweite Richtung in dem vorgegebenen Win- kelbereich um ihre Längsachse dreht bis ein vorgegebener Einspritzfreigabedruck in dem Druckspeicher herrscht.
Dies ermöglicht, dass bei einem Motorstart der Einspritz¬ freigabedruck bereits vorliegt und bereits bei einem ersten oberen Totpunkt des Motors mit einer Einspritzung begonnen werden kann.
In einer weiteren vorteilhaften Ausgestaltung weist die
Brennkraftmaschine einen variablen Ventiltrieb auf und die Nockenwelle ist gekoppelt mit einem Gaseinlassventil und/oder einem Gasauslassventil eines Brennraums der Brennkraftmaschine und der Aktuator ist angeordnet und ausgebildet durch Antreiben und/oder Einstellen der Nockenwelle einen Öffnungs- und/oder Schließzeitpunkt des Gaseinlassventils beziehungsweise Gas¬ auslassventils zu steuern. Vorteilhafterweise kann so der Aktuator für den variablen Ventiltrieb und als Hochdruckpumpenantrieb genutzt werden. Eine Betriebsfähigkeit des variablen Ventiltriebs bleibt erhalten, da der Aktuator nur bei gestartetem Motor für den variablen Ventiltrieb genutzt wird. In einer weiteren vorteilhaften Ausgestaltung umfasst der variable Ventiltrieb einen elektrischen variablen Ventiltrieb. Der variable Ventiltrieb kann einen elektrischen Aktuator aufweisen. Vorteilhafterweise ermöglicht dies, die Nockenwelle bei einem Motorstillstand sehr einfach zu drehen und/oder anzutreiben.
In einer weiteren vorteilhaften Ausgestaltung umfasst die Hochdruckpumpe eine digital schaltende Hochdruckpumpe. Vor¬ teilhafterweise ermöglicht dies einen schnellen Druckaufbau. Es können beide Bewegungsrichtungen für den Druckaufbau genutzt werden, da der Druckaufbau unabhängig von einer jeweiligen Drehrichtung ist.
Vorteilhafte Ausgestaltungen der Erfindung sind nachfolgend anhand der schematischen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine beispielhafte schematische Darstellung einer
Brennkraftmaschine,
Figur 2 eine schematische Teilansicht einer Hochdruckpumpe in einem Längsschnitt und
Figur 3 einen zeitlichen Verlauf eines Raildrucks in einem
Druckspeicher und eines Kurbelwellensignals.
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Die Brennkraftmaschine 1 umfasst mindestens einen Zylinder 2 und einen in dem Zylinder 2 auf und ab bewegbaren Kolben 3. Die Brennkraftmaschine 1 umfasst ferner einen Ansaugtrakt 40, in dem stromabwärts einer Ansaugöffnung 4 zum Ansaugen von Frischluft ein Luftmassensensor 5, eine Drosselklappe 6, ein Saugrohr 7 und ein steuerbarer Ladeluftkühler 60 angeordnet sind. Der Lade- luftkühler 60 kann dabei eine Wasserkühlung oder eine Luftkühlung aufweisen. Der Ansaugtrakt 40 mündet in einem durch den Zylinder 2 und den Kolben 3 begrenzten Brennraum 30. Die zur Verbrennung nötige Frischluft wird über den Ansaugtrakt 40 in den Brennraum 30 eingeleitet, wobei die Frischluftzufuhr durch Öffnen und Schließen eines Gaseinlassventils 8 gesteuert wird. Bei der hier dargestellten Brennkraftmaschine 1 handelt es sich um eine Brennkraftmaschine 1 mit Kraftstoffdirekteinspritzung, bei der der für die Verbrennung nötige Kraftstoff über ein Ein- spritzventil 9 unmittelbar in den Brennraum 30 eingespritzt wird. Zur Auslösung der Verbrennung dient eine ebenfalls in dem Brennraum 30 ragende Zündkerze 10. Die Verbrennungsabgase werden über ein Gasauslassventil 11 in eine Abgasleitung 16 der Brennkraftmaschine 1 abgeführt und mittels eines in der Ab¬ gasleitung 16 angeordneten Katalysators 12 gereinigt.
Die Kraftübertragung an dem Antriebsstrang (nicht dargestellt) geschieht über eine mit dem Kolben 3 gekoppelte Kurbelwelle 13, deren Drehzahl ein Drehzahlsensor 15 erfasst.
Die Brennkraftmaschine 1 verfügt über einen variablen Ven¬ tiltrieb 50, mittels dem die Steuerzeiten (Öffnungs- und Schließzeitpunkt) der Gaseinlassventile 8 und der Gasaus- lassventile 11 individuell verstellt werden können. Eine No¬ ckenwelle 27 (in Figur 1 nicht dargestellt) ist jeweils mit dem Gaseinlassventil 8 und/oder dem Gasauslassventil und der Kurbelwelle 13 gekoppelt. Die Brennkraftmaschine 1 kann bei¬ spielsweise eine Einlassnockenwelle und/oder eine Auslassno- ckenwelle aufweisen. Der variable Ventiltrieb 50 ist mit der Nockenwelle 27 und der Kurbelwelle 13 gekoppelt und ermöglicht zumindest ein Verstellen einer Phase der Nockenwelle 27 zu der Kurbelwelle 13. Der variable Ventiltrieb 50 kann beispielsweise durch eine hydraulisch verstellbare Nockenwelle (nicht dargestellt in Figur 1) realisiert werden, bei der sich die unterschiedlichen Steuerzeiten der Ventile 8, 11 durch Umschalten zwischen Nocken 28 mit unterschiedlichen Erhebungskurven ergeben. Jedoch ist auch ein elektrischer variabler Ventiltrieb möglich, bei dem die Ventile 8, 11 individuell, elektrisch angetrieben werden.
Der variable Ventiltrieb 50 kann beispielsweise einen Aktuator aufweisen, der ausgebildet und angeordnet ist, die Nockenwelle 27 anzutreiben. Der Aktuator ist ausgebildet, die Nockenwelle 27 derart anzutreiben, dass sich die Nockenwelle 27 in einem vorgegebenen Winkelbereich um ihre Längsachse rotiert in eine erste Richtung oder in eine entgegengesetzte zweite Richtung. Beispielsweise kann der Aktuator ausgebildet sein, abhängig von einem vorgegebenen elektrischen Impuls die Nockenwelle 27 anzutreiben .
Die Brennkraftmaschine 1 verfügt ferner über ein Kraftstoff- Versorgungssystem, welches einen Kraftstofftank 17 sowie eine darin angeordnete Kraftstoffpumpe 18 aufweist. Der Kraftstoff wird mittels der Kraftstoffpumpe 18 über eine Versorgungs¬ leitungen 19, 19a einem Druckspeicher 20 zugeführt. Dabei handelt es sich um einen gemeinsamen Druckspeicher, von dem aus die Einspritzventile 9 für mehrere Zylinder 2 mit
druckbeaufschlagtem Kraftstoff versorgt werden. In der Versorgungsleitung 19 sind ferner ein Kraftstofffilter 21 und eine Hochdruckpumpe 22 angeordnet. Die Hochdruckpumpe 22 dient dazu, den durch die Kraftstoffpumpe 18 mit relativ niedrigem Druck (zirka 3 bar) geförderten Kraftstoff dem Druckspeicher 20 mit hohem Druck zuzuführen (typischerweise bis zu 150 bar) .
Der Brennkraftmaschine 1 ist eine Steuervorrichtung 23 zuge¬ ordnet, welche über Signal- und Datenleitungen mit allen Ak- tuatoren und Sensoren der Brennkraftmaschine 1 verbunden ist.
Figur 2 zeigt zumindest teilweise die Hochdruckpumpe 22 mit einem Pumpengehäuse 25 und einer Pumpeneinheit 25. Die Hochdruckpumpe 22 umfasst beispielsweise eine digital schaltende Hochdruck- pumpe.
Die dargestellte Pumpeneinheit 25 ist bevorzugt eine von mehreren Pumpeneinheiten 25 der Hochdruckpumpe 22, die durch eine ge¬ meinsam genutzte Antriebswelle betrieben werden. Bevorzugt ist die Antriebswelle die Nockenwelle 27, die mit dem Gasein¬ lassventil 8 und/oder dem Gasauslassventil 11 gekoppelt ist.
Die Nockenwelle 27 ist beispielsweise drehbar mit einer Drehachse D im Pumpengehäuse 25 gelagert. In dem gezeigten Ausfüh¬ rungsbeispiel umfasst die Nockenwelle 27 zumindest einen Nocken 28, wobei der Nocken 28 auch als Mehrfachnocken ausgebildet sein kann. In dem in Figur 2 gezeigten Ausführungsbeispiel weist die Nockenwelle 27 zwei Nocken 28 auf. Die Anzahl der Förder- und Kompressionshübe kann über die Anzahl der Nocken 28 vorgegeben werden. Die Anzahl der Förder- beziehungsweise Kompressionshübe entspricht dabei der Anzahl der Nocken 28.
Die Pumpeneinheit 25 umfasst im Wesentlichen das Zylindergehäuse 26, die in dem Zylindergehäuse 26 angeordnete Zylinderkammer 311, einen Pumpenkolben 31, einen Stößel 29 und eine Rückstellfeder 33. Das Zylindergehäuse 26, die Zylinderkammer 311, der Pum¬ penkolben 31, der Stößel 29 und die Rückstellfeder 33 sind bevorzugt entlang einer Längsachse L des Pumpenkolbens 31 zueinander koaxial angeordnet.
Der Pumpenkolben 31 ist axial bewegbar in der Zylinderkammer 311 des Zylindergehäuses 26 in einer zylindrischen Ausnehmung eines Pumpenkolbenführungsabschnitts 32 des Zylindergehäuses 26 gelagert und steht mit der Nockenwelle 27 in Wirkverbindung. Der Pumpenkolben 31 wird insbesondere durch den Nocken 28 der Nockenwelle 27 in einer Hubbewegung in zumindest annähernd radialer Richtung zur Drehachse D der Nockenwelle 27 angetrieben. Der Pumpenkolben 31 ist axial bewegbar in dem Pumpenkolben- führungsabschnitt 32 geführt, um während eines Saughubs, in Figur 2 abwärts gerichtet, Kraftstoff aus der Versorgungsleitung 19 über Pumpen-Einlassventil 3112 in die Zylinderkammer 311 bei geschlossenem Pumpen-Aauslassventil 3117 zu fördern und während eines Pumphubs, in Figur 2 aufwärts gerichtet, den in der Zylinderkammer 311 befindlichen Kraftstoff zu komprimieren und ggf. über das Pumpen-Auslassventil 3117 unter hohem Druck an die Versorgungsleitung 19a zum Druckspeicher 20 bei geschlossenem Pumpen-Einlassventil 3112 abzugeben.
In Figur 2 zeigt eine mögliche Ausführungsform eines Pumpen-Einlassventils 3112 als digital schaltbares Ventil. Es handelt sich um ein sog. stromlos offenes Ventil. Über eine Stromspule 3114 des Ventils kann ein Ventil-Stößel 3116 mit einem Ventilschließelement gegen die Kraft einer Feder 3115 aktiv in eine geschlossen-Position des Ventils 3112 gebracht werden, in der kein Kraftstoff aus der Versorgungsleitung 19 in den Zylinderraum 311 der Pumpe 22 gelangen kann und auch nicht umgekehrt. Wird die Spule 3114 nicht bestromt, so ist das Ventil 3112 in seiner offen-Stellung und das Einsaugen von Kraftstoff aus der Versorgungsleitung 19 in einer Saugphase der Pumpe 22 wird ermöglicht. In einem selbstsaugenden Betrieb wird bei diesem Einlassventil-Typ die Spule nicht bestromt. Alternativ könnte auch ein anderes Ventil-Prinzip verwendet werden, der
selbstsaugende Betrieb wäre entsprechend anders.
Bei dem Pumpen-Auslassventil 3117 der Pumpe 22 handelt es sich in der gezeigten Ausführungsform um ein Rückschlagventil 3118, dass bei einem entsprechend großen Druck in der Zylinderkammer 311 der Pumpe eine Fluidförderung in die Versorgungsleitung 19a hin zum Hochdruckspeicher 20 ermöglicht.
Figur 3 zeigt einen zeitlichen Verlauf eines Raildrucks P_rail in dem Druckspeicher 20.
Zum Aufbau eines gewünschten Raildrucks P_rail in dem Druck¬ speicher 20 wird bereits vor einem erwarteten Motorstart während einer vorgegebenen Zeitdauer die Hochdruckpumpe 22 derart angesteuert, dass sie einen selbstansaugenden Betriebszustand aufweist und der Aktuator wird derart angesteuert, dass sich die Nockenwelle 27 zumindest einmal in die erste Richtung und zumindest einmal in die zweite Richtung in dem vorgegebenen Winkelbereich um ihre Längsachse dreht.
In dem in Figur 3 gezeigten Beispiel wird während der vorgegebenen Zeitdauer der Aktuator derart angesteuert, dass sich die No¬ ckenwelle 27 mehrmals jeweils zunächst in die erste und an¬ schließend in die zweite Richtung in dem vorgegebenen Win- kelbereich um ihre Längsachse dreht. Dies kann solange erfolgen, bis ein vorgegebener Einspritzfreigabedruck in dem Druckspeicher 20 erreicht ist.
Bevor der Motor, beispielsweise des Kraftfahrzeugs, gestartet wird, wird die Nockenwelle 27, beispielsweise mittels des zumindest einen Aktuator des variablen Ventiltriebs 50, hin- und herbewegt. Der Raildruck P_rail steigt aufgrund der Hin- und Herbewegungen zumindest näherungsweise stufenförmig an. Der zeitliche Verlauf des Raildrucks P_rail repräsentiert eine PrüfStandsmessung . Der Raildruck P_rail steigt beispielsweise um zirka 7 bis 10 bar an bei einer Nockenwellendrehung von insgesamt 45° (22,5° in die erste Richtung und 22,5° zurück in die zweite Richtung) . Die Nockenwelle 27 wurde in dem gezeigten Beispiel mit einer Winkelgeschwindigkeit von 75°/s gedreht. Ein Ein- spritzfreigabedruck von größer 60 bar kann so innerhalb einer Zeitdauer von weniger als zwei Sekunden erreicht werden. Die Zeitdauer ist auch abhängig von einer Ausgestaltung der
Hochdruckpumpe 22. Ferner zeigt Figur 3 den zeitlichen Verlauf eines Kurbelwel¬ lensignals CRK, das beispielsweise mittels eines Kurbelwel¬ lensensors erfasst wird (jeweiliger Höchstpunkt 6° Kurbelwelle 13, 3° Nockenwelle 27) . In Figur 3 sind ferner die jeweiligen Phasen der Drehbewegung in unterschiedliche Richtungen zu erkennen. Während einer jeweiligen ersten Phase Phl erfolgt die Drehung in die erste Reichung und während einer jeweiligen zweiten Phase Ph2 erfolgt die Drehung in die zweite, entge¬ gengesetzte Richtung.

Claims

Patentansprüche
Verfahren zum Betreiben einer Brennkraftmaschine (1), die einen Druckspeicher (20), eine Hochdruckpumpe (22), einen steuerbaren Aktuator und eine drehbar gelagerte Nockenwelle (27) mit einer Längsachse umfasst, wobei
- die Hochdruckpumpe (22) eine Zylinderkammer (311) und einen in der Zylinderkammer (311) beweglich angeordneten Pumpenkolben (31) aufweist, der sich zumindest mittelbar auf der Nockenwelle (27) abstützt und so abhängig von einer Drehung der Nockenwelle (27) ein freies Volumen der Zylinderkammer (311) beeinflusst,
- die Zylinderkammer (311) der Hochdruckpumpe (22) hyd¬ raulisch zumindest mittelbar gekoppelt ist mit einem Druckspeicher (20) zur Förderung des Fluids in den
Druckspeicher (20),
- der Aktuator ausgebildet und angeordnet ist, die No¬ ckenwelle (27) derart anzutreiben, dass die Nockenwelle (27) in einem vorgegebenen Winkelbereich um ihre Längsachse rotiert in eine erste Richtung oder in eine entgegengesetzte zweite Richtung, und bei dem das Verfahren folgende Schritte umfasst :
- während einer vorgegebenen Zeitdauer vor einem erwarteten Motorstart wird die Hochdruckpumpe (22) derart angesteuert, dass sie einen selbstansaugenden Betriebszustand aufweist und der Aktuator wird derart angesteuert, dass sich die Nockenwelle (27) zumindest einmal in die erste Richtung und zumindest einmal in die zweite Richtung in dem vorgegebenen Winkelbereich um ihre Längsachse dreht.
2. Verfahren nach Anspruch 1,
bei dem die vorgegebene Zeitdauer unmittelbar vor dem erwarteten Motorstart liegt.
3. Verfahren nach Anspruch 1 oder 2,
bei dem während der vorgegebenen Zeitdauer der Aktuator derart angesteuert wird, dass sich die Nockenwelle (27) mehrmals jeweils zunächst in die erste und anschließend in die zweite Richtung in dem vorgegebenen Winkelbereich um ihre Längsachse dreht bis ein vorgegebener Einspritzfreigabedruck in dem Druckspeicher (20) herrscht.
4. Verfahren nach einem der vorstehenden Ansprüche,
bei dem die Brennkraftmaschine (1) einen variablen Ven¬ tiltrieb (50) aufweist und die Nockenwelle (27) gekoppelt ist mit einem Gaseinlassventil (8) und/oder einem Gas¬ auslassventil (11) eines Brennraums der Brennkraftmaschine (1) und der Aktuator angeordnet und ausgebildet ist durch Antreiben und/oder Einstellen der Nockenwelle (27) einen Öffnungs- und/oder Schließzeitpunkt des Gaseinlassventils (8) beziehungsweise Gasauslassventils zu steuern.
5. Verfahren nach einem Anspruch 4,
bei dem der variable Ventiltrieb (50) einen elektrischen variablen Ventiltrieb aufweist.
6. Verfahren nach einem der vorstehenden Ansprüche,
bei dem die Hochdruckpumpe (22) eine digital schaltende Hochdruckpumpe umfasst.
7. Vorrichtung zum Betreiben einer Brennkraftmaschine (1), die ausgebildet ist, das Verfahren nach einem der Ansprüche 1 bis 6 auszuführen.
PCT/EP2013/070704 2012-10-11 2013-10-04 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine WO2014056798A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380053047.8A CN104704223B (zh) 2012-10-11 2013-10-04 用于操作内燃发动机的方法和设备
KR1020157010399A KR102122622B1 (ko) 2012-10-11 2013-10-04 내연 기관을 작동시키기 위한 방법 및 장치
EP13785826.2A EP2906803B1 (de) 2012-10-11 2013-10-04 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
US14/427,506 US9518545B2 (en) 2012-10-11 2013-10-04 Method and device for operating an internal combustion engine
JP2015536072A JP2015534625A (ja) 2012-10-11 2013-10-04 内燃機関を運転する方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012218525.9A DE102012218525B4 (de) 2012-10-11 2012-10-11 Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012218525.9 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014056798A1 true WO2014056798A1 (de) 2014-04-17

Family

ID=49517480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/070704 WO2014056798A1 (de) 2012-10-11 2013-10-04 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Country Status (7)

Country Link
US (1) US9518545B2 (de)
EP (1) EP2906803B1 (de)
JP (1) JP2015534625A (de)
KR (1) KR102122622B1 (de)
CN (1) CN104704223B (de)
DE (1) DE102012218525B4 (de)
WO (1) WO2014056798A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191212A1 (de) * 2013-05-31 2014-12-04 Robert Bosch Gmbh Verfahren zum ansteuern einer nockenwelle
US9518545B2 (en) 2012-10-11 2016-12-13 Continental Automotive Gmbh Method and device for operating an internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220839B4 (de) * 2014-10-15 2016-07-21 Continental Automotive Gmbh Hochdruckpumpe für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102014220937B4 (de) 2014-10-15 2016-06-30 Continental Automotive Gmbh Antriebsvorrichtung zum Antreiben einer Kraftstoffhochdruckpumpe sowie Kraftstoffhochdruckpumpe
DE102015221913A1 (de) * 2015-11-09 2017-05-11 Robert Bosch Gmbh Verfahren zum Ermitteln eines Anbaulagewinkels einer Hochdruckpumpe
DE102016216978A1 (de) * 2016-09-07 2018-03-08 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor
JP7367548B2 (ja) * 2020-02-07 2023-10-24 株式会社デンソー 燃料供給ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127516A1 (de) * 2001-06-06 2002-12-12 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1422416A1 (de) * 2002-11-23 2004-05-26 Robert Bosch Gmbh Brennkraftmaschine, sowie Verfahren zum Betreiben einer Brennkraftmaschine
EP1457645A1 (de) * 2003-03-14 2004-09-15 Bayerische Motoren Werke Aktiengesellschaft Ventiltrieb für einen Verbrennungsmotor
DE102013211929A1 (de) * 2012-06-27 2014-01-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motorstartverfahren

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027041A1 (en) * 1993-05-06 1994-11-24 Cummins Engine Company, Inc. Compact high performance fuel system with accumulator
DE19731102C2 (de) * 1997-07-19 2003-02-06 Bosch Gmbh Robert System zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
US6035828A (en) * 1998-03-11 2000-03-14 Caterpillar Inc. Hydraulically-actuated system having a variable delivery fixed displacement pump
JP3562351B2 (ja) * 1998-11-24 2004-09-08 トヨタ自動車株式会社 内燃機関の燃料ポンプ制御装置
DE50101950D1 (de) * 2000-03-01 2004-05-19 Waertsilae Nsd Schweiz Ag Versorgungsvorrichtung für ein Common Rail System
DE10115262C2 (de) * 2001-03-28 2003-04-24 Bosch Gmbh Robert Verfahren zur Ermittlung der Drehlage der Nockenwelle einer Verbrennungskraftmaschine
AT6341U1 (de) * 2002-07-26 2003-08-25 Avl List Gmbh Verfahren zum betrieb einer mehrzylinder-brennkraftmaschine
JP4090382B2 (ja) 2003-04-21 2008-05-28 株式会社日立製作所 筒内噴射式内燃機関の燃料供給装置
JP4453442B2 (ja) 2004-05-26 2010-04-21 いすゞ自動車株式会社 エンジン制御装置
DE102004059330A1 (de) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
JP2007077904A (ja) * 2005-09-15 2007-03-29 Toyota Motor Corp 内燃機関の始動制御装置
US20080115770A1 (en) * 2006-11-16 2008-05-22 Merchant Jack A Pump with torque reversal avoidance feature and engine system using same
DE102008008117A1 (de) * 2008-02-08 2009-08-13 Schaeffler Kg Verfahren zur Verstellung einer Nockenwelle einer Brennkraftmaschine und Brennkraftmaschine mit einer verstellbaren Nockenwelle
JP4988681B2 (ja) * 2008-09-30 2012-08-01 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料ポンプ制御装置
US7832374B2 (en) * 2008-10-21 2010-11-16 Gm Global Technology Operations, Inc. Fuel pressure amplifier
DE102008054513A1 (de) * 2008-12-11 2010-06-17 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
DE102012218525B4 (de) 2012-10-11 2015-06-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127516A1 (de) * 2001-06-06 2002-12-12 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1422416A1 (de) * 2002-11-23 2004-05-26 Robert Bosch Gmbh Brennkraftmaschine, sowie Verfahren zum Betreiben einer Brennkraftmaschine
EP1457645A1 (de) * 2003-03-14 2004-09-15 Bayerische Motoren Werke Aktiengesellschaft Ventiltrieb für einen Verbrennungsmotor
DE102013211929A1 (de) * 2012-06-27 2014-01-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motorstartverfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518545B2 (en) 2012-10-11 2016-12-13 Continental Automotive Gmbh Method and device for operating an internal combustion engine
WO2014191212A1 (de) * 2013-05-31 2014-12-04 Robert Bosch Gmbh Verfahren zum ansteuern einer nockenwelle

Also Published As

Publication number Publication date
JP2015534625A (ja) 2015-12-03
DE102012218525A1 (de) 2014-04-17
EP2906803B1 (de) 2016-08-03
KR20150065747A (ko) 2015-06-15
KR102122622B1 (ko) 2020-06-15
CN104704223A (zh) 2015-06-10
US20150247480A1 (en) 2015-09-03
CN104704223B (zh) 2017-09-05
DE102012218525B4 (de) 2015-06-03
US9518545B2 (en) 2016-12-13
EP2906803A1 (de) 2015-08-19

Similar Documents

Publication Publication Date Title
EP2906803B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE10064055A1 (de) Steuervorrichtung für Hochdruck-Kraftstoffpumpe und für Motor mit Direkteinspritzung
DE102010021449B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
EP1590563B1 (de) Verfahren zur steuerung einer direkten einspritzung einer brennkraftmaschine
WO2008043637A1 (de) Verfahren zur durchführung eines hochdruckstarts einer brennkraftmaschine, steuervorrichtung und brennkraftmaschine
DE102007000311A1 (de) Sammlerkraftstoffeinspritzvorrichtung zum Mindern einer Überdruckbeaufschlagung eines Sammlers
EP2643582B1 (de) Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine
EP0953103B1 (de) Verfahren zum starten einer brennkraftmaschine
DE102013215909A1 (de) Verfahren zur Steuerung und Regelung einer mit einem Einlassventil mit elektromagnetischem Aktor versehenen Hochdruckkraftstoffpumpe einer Verbrennungskraftmaschine
DE10333480A1 (de) Verfahren zum Betrieb einer Mehrzylinder-Brennkraftmaschine
DE102007029808A1 (de) Verfahren zum Entlüften einer Kraftstoffeinspritzleitung eines direkteinspritzenden Verbrennungsmotors
WO2010118819A1 (de) Verfahren zum absenken des kraftstoffdrucks in einem rücklauffreien kraftstoffversorgungssystem
DE10342703B4 (de) Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine sowie Brennkraftmaschine
DE102013200421A1 (de) Brennkraftmaschine mit einem Kraftstoffversorgungssystem für den Stopp-and-Go-Betrieb und Verfahren zum erneuten Starten einer derartigen Brennkraftmaschine
DE10124738A1 (de) Verfahren und Anlage zum Anlassen einer nockenfreien Brennkraftmaschine
DE102013223626A1 (de) Verfahren zum Bestimmen eines aktuellen Zylindertakts eines Hubkolbenmotors
DE102013215857A1 (de) Verfahren zum Starten eines Verbrennungsmotors mit angeschlossenem Drucklufttank
DE10204129B4 (de) Verfahren und Vorrichtung zum Steuern einer Antriebseinheit mit einem Verbrennungsmotor
DE102008050696B4 (de) Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
DE102010032488A1 (de) Verfahren zum Betreiben einer Hubkolbenmaschine
DE102017210561B3 (de) Verfahren, Steuereinrichtung und System zum Start eines Verbrennungsmotors
WO2000011342A1 (de) Verfahren zum schnellen aufbau des kraftstoffdruckes in einem kraftstoffspeicher
EP2561203B1 (de) Verfahren zum betreiben einer kraftstofffördereinrichtung
DE10341279B4 (de) Verfahren zur Durchführung eines Hochdruckstarts
WO2018055019A1 (de) Verbrennungsmotor mit einer direktstartanordnung und verfahren zum starten eines solchen verbrennungsmotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785826

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013785826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013785826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14427506

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015536072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157010399

Country of ref document: KR

Kind code of ref document: A