WO2014054824A1 - 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체 - Google Patents

배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체 Download PDF

Info

Publication number
WO2014054824A1
WO2014054824A1 PCT/KR2012/008092 KR2012008092W WO2014054824A1 WO 2014054824 A1 WO2014054824 A1 WO 2014054824A1 KR 2012008092 W KR2012008092 W KR 2012008092W WO 2014054824 A1 WO2014054824 A1 WO 2014054824A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foam
metal
back pressure
reaction point
catalyst carrier
Prior art date
Application number
PCT/KR2012/008092
Other languages
English (en)
French (fr)
Inventor
박만호
류덕수
박미정
Original Assignee
주식회사 알란텀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알란텀 filed Critical 주식회사 알란텀
Publication of WO2014054824A1 publication Critical patent/WO2014054824A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2817Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates only with non-corrugated sheets, plates or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/12Metallic wire mesh fabric or knitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/22Metal foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Definitions

  • the present invention relates to a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure, and more particularly, volume and weight by allowing the reaction surface area per unit volume in which NH 3 and NO x can react as much as possible. It relates to a metal foam catalyst carrier having a reaction point of a three-dimensional structure without increasing the back pressure to minimize the.
  • SCR Selective catalytic reduction
  • the selective catalytic reduction method is to convert the gas to N 2 + H 2 O by the reaction of NH 3 and NO x - is the reaction surface area to the reaction NH 3 and NO x important parameters to the main reaction gas to the reaction. This is because when the reaction surface area per unit volume is increased, the total weight can be reduced along with the volume reduction of the catalyst carrier for reducing the catalyst coated with the catalyst for selective catalytic reduction.
  • the conventional selective catalyst reduction catalyst carrier is simply formed in a block shape, since the reaction surface area capable of reacting with NH 3 and NO x is reduced by that much, the volume and weight of the catalyst carrier are increased.
  • the volume and weight are important parts. It can be used for ship exhaust aftertreatment, which is the selection standard, and it can be used more efficiently. It also has the advantage of rapidly reducing NO x emissions at the cold start time due to the delay of temperature rise up to the catalyst reaction temperature when the engine is initially operated. Therefore, there is an urgent need to develop a catalyst carrier capable of maximally increasing the reaction surface area per unit volume in which NH 3 and NO x can react.
  • the present invention provides a metal foam catalyst carrier having a reaction point of a three-dimensional structure without increasing the back pressure to minimize the volume and weight by increasing the reaction surface area per unit volume that can be reacted with NH 3 and NO x I would like to.
  • the base member having a constant size and shape, and forms a base
  • First and second metal foams having a predetermined size and shape and arranged at regular intervals perpendicular to one surface of the base member;
  • the first metal foam is disposed perpendicularly to one surface of the base member and is arranged between the first metal foam and the second metal foam, and the first metal foam or the second metal foam is disposed from one end to the other end thereof.
  • a catalyst carrier for selective catalytic reduction comprising a third metal foam (planar) of the metal foam or planarly arranged with a variable distance from the second metal foam.
  • the third metal foam is disposed such that a distance from the first metal foam becomes wider from one end of the first metal foam to the other end thereof, or the second metal foam goes from one end of the second metal foam to the other end thereof. It may be arranged so that the interval with the narrower.
  • the distance between one end of the first metal foam and one end of the third metal foam may be formed differently from or different from the distance between the other end of the third metal foam and the other end of the second metal foam.
  • the first metal foam may be disposed in parallel with the other first metal foam, and the second metal foam may be disposed in parallel with the other second metal foam.
  • the third metal foam may be disposed in parallel with another third metal foam.
  • the first, second and third metal foams may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • the first, second, and third metal foams 110, 120, and 130 may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • the first, second and third metal foams may be coated with a predetermined amount of at least one powder of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder as a selective reduction catalyst powder.
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • It has a predetermined size and shape and is disposed between the first metal foam and the third metal foam, and comprises a planar first connecting metal foam for integrally connecting the first metal foam and the third metal foam. can do.
  • the first connecting metal foam may be disposed in parallel with the base member.
  • the first connection metal foam may have a square cross-sectional structure with the first metal foam and the third metal foam.
  • It has a predetermined size and shape and is disposed between the second metal foam and the third metal foam, and includes a planar second connecting metal foam for integrally connecting the second metal foam and the third metal foam. can do.
  • the second connection metal foam may be integrally connected with the first connection metal foam in a straight line.
  • the second connection metal foam may be disposed in parallel with the base member.
  • the second connection metal foam may have a square cross-sectional structure with the third metal foam and the second metal foam.
  • the first and second connection metal foams may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • the first and second connection metal foams may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • the first and second connection metal foams may be coated with a predetermined amount of at least one powder of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder as a selective reduction catalyst powder.
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • reaction surface area per unit volume in which NH 3 and NO x can react can be increased as much as possible, the volume and weight of the metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure can be minimized. have.
  • FIG. 1 is a schematic perspective view of a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the first embodiment of the present invention.
  • FIG 3 is a schematic perspective view of a metal foam catalyst carrier having a reaction point of a three-dimensional structure without increasing the back pressure according to the second embodiment of the present invention.
  • FIG. 4 is a schematic plan view of a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the second embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the first embodiment of the present invention
  • Figure 2 is a three without the increase in back pressure according to the first embodiment of the present invention
  • the metal foam catalyst carrier having a reaction point of a three-dimensional structure without increasing the back pressure according to an embodiment of the present invention
  • a base member 100 having a constant size and shape and forming a base
  • First and second metal foams 110 and 120 having a predetermined size and shape and arranged at regular intervals perpendicular to one surface of the base member 100;
  • a planar third metal foam 130 having a variable spacing from the first metal foam 110 or the second metal foam 120 toward one end of the foam 120 toward the other end thereof. It may include.
  • the first, second, and third metal foams 110, 120, and 130 are diameters of several tens of micrometers in a three-dimensional porous body made of organic and inorganic materials such as Ni, Fe, Cu, Ti, Al, and Al 2 O 3 .
  • the surface may be made convex by applying an organic / inorganic powder having and bonding them by a common bonding method such as high temperature sintering.
  • the method of manufacturing the first, second, and third metal foams 110, 120, and 130 is general, and a detailed description thereof will be omitted.
  • the convex geometry of the surfaces of the first, second, and third metal foams 110, 120, and 130 may not only serve to improve catalyst adhesion during catalyst coating, but also to enhance catalyst activity. have.
  • the first, second, and third metal foams 110, 120, and 130 may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • first, second, and third metal foams 110, 120, and 130 may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • the first, second and third metal foams (110, 120, 130) is a selective reduction catalyst powder of a predetermined amount of at least one or more powders of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder Can be coated.
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • the base member may be bonded to one side of the first and second metal foams by an adhesive or the like.
  • the base member may be bonded to one side of the third metal foam by an adhesive or the like.
  • the first, second, and third metal foams 110, 120, and 130 may be formed in a rectangular shape having a predetermined length, thickness, and width.
  • the third metal foam 130 is disposed such that an interval from the first metal foam 110 is wider from one end of the first metal foam 110 to the other end thereof, or the second metal foam 120 is disposed. As the distance from one end of the other end to the other metal foam 120 may be arranged to be narrower.
  • the third metal foam is disposed to be narrower from the other end of the first metal foam 110 to one end thereof, or to be narrower in distance from the first metal foam 110, or from the other end of the second metal foam 120.
  • One end portion may be disposed such that the interval with the second metal foam 120 is wider.
  • the distance between one end of the first metal foam 110 and one end of the third metal foam 130 is between the other end of the third metal foam 130 and the other end of the second metal foam 120. It may be formed differently from the interval of, it may be formed the same.
  • the first metal foam 110 is disposed in parallel with the other first metal foam 110
  • the second metal foam 120 is disposed in parallel with the other second metal foam 120
  • the third The metal foam 130 may be disposed in parallel with the other third metal foam 130.
  • first metal foam 110 may be disposed in parallel with the second metal foam 120.
  • the first and second ends of the base member 100 which are disposed perpendicularly to each other and are arranged to be narrower or wider from one end of the first metal foam 110 or the second metal foam 120 to the other end thereof.
  • First and second cover members 140 and 150 may be included.
  • the third metal foam 130 is the first metal foam 110 or the second.
  • the distance from the metal foam 120 is variable, that is, the third metal foam 130 is spaced apart from one end of the first metal foam 110 toward the other end with the first metal foam 110. Is disposed to be wider, the interval from the one end of the second metal foam 120 to the other end is arranged to be narrower with the second metal foam 120,
  • first metal foam 110 is disposed in parallel with the other first metal foam 110
  • second metal foam 120 is disposed in parallel with the other second metal foam 120
  • third metal foam 130 is disposed in parallel with the other third metal foam 130
  • first metal foam 110 is disposed in parallel with the second metal foam 120
  • Metal foam having a three-dimensional reaction point without increasing back pressure because the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of an internal combustion engine such as a marine engine or a thermal power plant engine can react can be increased.
  • the volume and weight of the catalyst carrier can be minimized.
  • FIG 3 is a schematic perspective view of a metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the second embodiment of the present invention
  • Figure 4 is a three without the increase in back pressure according to a second embodiment of the present invention
  • the metal foam catalyst carrier having the reaction point of the three-dimensional structure without increasing the back pressure is the same as that of the first embodiment except for the following description, the detailed description thereof will be omitted.
  • the metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure according to the second embodiment of the present invention has a constant size and shape, and has a structure of the first metal foam 110 and the third metal foam 130. It may be disposed between the first metal foam 110 and the third metal foam 130 may include a planar first connecting metal foam 210 to integrally connect.
  • the first connecting metal foam 210 and the other first connecting metal foam 210 are spaced apart from each other and disposed in parallel with the base member 100, that is, the first metal foam 110 and the third. It may be disposed perpendicular to the metal foam 130.
  • the first connection metal foam 210 and the other first connection metal foam 210 may be disposed in parallel to each other. Therefore, the first connection metal foam 210 may have a rectangular cross-sectional structure together with the first metal foam 110 and the third metal foam 130.
  • the second metal foam 120 has a predetermined size and shape and is disposed between the second metal foam 120 and the third metal foam 130, integral with the second metal foam 120 and the third metal foam 130. It may include a planar second connecting metal foam 220 for connecting to.
  • the second connection metal foam 220 may be integrally connected in a straight line with the first connection metal foam 210 so as to integrally connect the first, second and third metal foams 110, 120, and 130. Can be.
  • the second connecting metal foam 220 and the other second connecting metal foam 220 are disposed at a predetermined interval to be parallel to the base member 100, that is, the second metal foam 120 and the first material. 3 may be disposed perpendicular to the metal foam (130).
  • the second connection metal foam 220 and the other second connection metal foam 220 may be disposed in parallel to each other. Therefore, the second connection metal foam 220 may have a rectangular cross-sectional structure together with the third metal foam 130 and the second metal foam 120.
  • the first and second connection metal foams 210 and 220 have organic / inorganic materials such as Ni, Fe, Cu, Ti, Al, and Al 2 O 3 having a diameter of several tens of micrometers.
  • the surface can be made convex by applying an inorganic powder and bonding it by common bonding methods such as high temperature sintering.
  • the convex geometry of the surfaces of the first and second connection metal foams 210 and 220 may not only serve to improve the catalyst adhesion when the catalyst is coated, but also may improve the catalytic activity.
  • the first and second connection metal foams 210 and 220 may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • first and second connection metal foams 210 and 220 may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • At least one or more powders of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder may be coated on the first and second connection metal foams 210 and 220 as selective reduction catalyst powders. .
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • the first and second connection metal foams 210 and 220 may be formed in a rectangular shape having a predetermined length, thickness and width.
  • first connecting metal foam 210 and the first cover member 140 includes a third connecting metal foam 230 for integrally connecting in a straight line
  • the second connecting metal foam 220 and the second cover member 150 may include a fourth connecting metal foam 240 for integrally connecting in a straight line.
  • the third and fourth connection metal foams 240 are disposed in parallel with the base member 100, and the third and fourth connection metal foams 230 and 240 are formed with the first and second connection metal foams. It may be arranged in a straight line.
  • connection metal foam 230 may have a rectangular cross-sectional structure together with the first metal foam 110 and the first cover member 140.
  • the fourth connection metal foam 220 may have a rectangular cross-sectional structure together with the second metal foam 120 and the second cover member 150.
  • the first metal foam 210 is connected to the first metal foam 110 and the first agent.
  • Three metal foams 130 are integrally connected to each other, and the first connection metal foam 210 is disposed in parallel with the base member 100, and the first connection metal foam 210 is connected to the first metal foam ( 110 and the third metal foam 130 has a rectangular cross-sectional structure,
  • the second connection metal foam 220 is integrally connected to the third metal foam 130 and the second metal foam 120, the second connection metal foam 220 is the base member ( It is disposed in parallel with the 100, the second connection metal foam 220 has a rectangular cross-sectional structure with the third metal foam 130 and the second metal foam 120, for example, a marine engine, thermal power Since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of an internal combustion engine such as a power plant engine can react may increase, the volume of the metal foam catalyst carrier having a reaction point having a three-dimensional structure without increasing the back pressure And the weight can be minimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체를 제공한다. 본 발명에 따르면, 일정한 크기와 형상을 갖고, 기초를 형성하는 베이스 부재; 일정한 크기와 형상을 갖고, 상기 베이스 부재의 일면에 수직으로 일정한 간격으로 배열되는 평면형의 제1, 제2 금속폼(metal foam); 및 상기 베이스 부재의 일면에 수직으로 배치됨과 아울러 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배열되고, 상기 제1 금속폼 또는 상기 제2 금속폼의 일단부로부터 타단부로 갈수록 상기 제1 금속폼 또는 상기 제2 금속폼과의 간격이 가변되게 배치되는 평면형의 제3 금속폼(metal foam)을 포함한다.

Description

배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체
본 발명은 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체에 관한 것으로서, 보다 상세하게는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있도록 하여 부피와 무게를 최소화 할 수 있도록 한 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체에 관한 것이다.
예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NOx를 제거하는 기술로서 선택적 촉매 환원법(Selective catalytic reduction, SCR)이 알려져 있다.
이러한 선택적 촉매 환원법은 NH3와 NOx가 반응하여 N2+H2O로 전환하는 가스-가스 반응으로 주 반응을 위해서는 NH3와 NOx가 반응할 수 있는 반응 표면적이 중요한 변수이다. 이는 단위 부피 당 반응 표면적이 증가하게 될 경우, 선택적 촉매 환원용 촉매가 코팅되는 촉매 환원용 촉매 담체의 부피 감소와 더불어 총 무게 감소가 가능해지기 때문이다.
그런데 종래의 선택적 촉매 환원용 촉매 담체는 단순하게 블록형으로 형성되어 있으므로, NH3와 NOx가 반응할 수 있는 반응 표면적이 그만큼 작게 되므로, 촉매 담체의 부피 및 무게가 증가하게 된다.
그러므로, 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 증가시켜 기존의 선택적 촉매 환원용 촉매 담체 대비 부피와 무게를 줄일 경우, 부피와 무게가 중요한 부품 선정 기준이 되는 선박용 배기 후처리 장치 등으로 활용성이 높아질 수 있으며, 엔진 초기 구동 시 촉매 반응 온도까지 온도 상승 지연에 따른 콜드 스타트(Cold start) 시점의 NOx 배출량도 급감시킬 수 있는 장점이 있기 때문에, NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있는 촉매 담체의 개발이 절실히 요구되고 있다.
본 발명은 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있도록 하여 부피와 무게를 최소화 할 수 있도록 한 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체를 제공하고자 한다.
본 발명의 일 실시예에 따르면, 일정한 크기와 형상을 갖고, 기초를 형성하는 베이스 부재;
일정한 크기와 형상을 갖고, 상기 베이스 부재의 일면에 수직으로 일정한 간격으로 배열되는 평면형의 제1, 제2 금속폼(metal foam); 및
상기 베이스 부재의 일면에 수직으로 배치됨과 아울러 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배열되고, 상기 제1 금속폼 또는 상기 제2 금속폼의 일단부로부터 타단부로 갈수록 상기 제1 금속폼 또는 상기 제2 금속폼과의 간격이 가변되게 배치되는 평면형의 제3 금속폼(metal foam)을 포함하는 선택적 촉매 환원용 촉매 담체가 제공된다.
상기 제3 금속폼은 상기 제1 금속폼의 일단부로부터 타단부로 갈수록 상기 제1 금속폼과의 간격이 넓어지게 배치되거나, 상기 제2 금속폼의 일단부로부터 타단부로 갈수록 제2 금속폼과의 간격이 좁아지게 배치될 수 있다.
상기 제1 금속폼의 일단부와 상기 제3 금속폼의 일단부 사이의 간격은 제3 금속폼의 타단부와 상기 제2 금속폼의 타단부 사이의 간격과 다르게 형성되거나 동일하게 형성될 수 있다.
상기 제1 금속폼은 다른 제1 금속폼과 평행하게 배치되고, 상기 제2 금속폼은 다른 제2 금속폼과 평행하게 배치될 수 있다.
상기 제3 금속폼은 다른 제3 금속폼과 평행하게 배치될 수 있다.
상기 제1, 제2, 제3 금속폼은 50㎛~6000㎛ 크기의 셀(Cell)을 가질 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제1, 제2, 제3 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다.
상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
일정한 크기와 형상을 갖고 상기 제1 금속폼과 상기 제3 금속폼의 사이에 배치되고, 상기 제1 금속폼과 상기 제3 금속폼을 일체로 연결시켜 주기 위한 평면형의 제1 연결 금속폼을 포함할 수 있다.
상기 제1 연결 금속폼은 상기 베이스 부재와 평행하게 배치될 수 있다.
상기 제1 연결 금속폼은 상기 제1 금속폼 및 상기 제3 금속폼과 사각 단면 구조를 가질 수 있다.
일정한 크기와 형상을 갖고 상기 제2 금속폼과 상기 제3 금속폼의 사이에 배치되고, 상기 제2 금속폼과 상기 제3 금속폼을 일체로 연결시켜 주기 위한 평면형의 제2 연결 금속폼을 포함할 수 있다.
상기 제2 연결 금속폼은 상기 제1 연결 금속폼과 직선상으로 일체로 연결될 수 있다.
상기 제2 연결 금속폼은 상기 베이스 부재와 평행하게 배치될 수 있다.
상기 제2 연결 금속폼은 상기 제3 금속폼 및 상기 제2 금속폼과 사각 단면 구조를 가질 수 있다.
상기 제1, 제2 연결 금속폼은 50㎛~6000㎛ 크기의 셀(Cell)을 가질 수 있다.
상기 제1, 제2 연결 금속폼은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제1, 제2 연결 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다.
상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
본 실시예에 따르면, NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있으므로, 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 부피와 무게를 최소화 할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 평면도이다.
도 3은 본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 사시도이다.
도 4는 본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 평면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 평면도이다.
도 1 및 도 2를 참고하면, 본 발명의 일 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체는,
일정한 크기와 형상을 갖고, 기초를 형성하는 베이스 부재(100);
일정한 크기와 형상을 갖고, 상기 베이스 부재(100)의 일면에 수직으로 일정한 간격으로 배열되는 평면형의 제1, 제2 금속폼(metal foam)(110, 120); 및
상기 베이스 부재(100)의 일면에 수직으로 배치됨과 아울러 상기 제1 금속폼(110)과 상기 제2 금속폼(120)의 사이에 배열되고, 상기 제1 금속폼(110) 또는 상기 제2 금속폼(120)의 일단부로부터 타단부로 갈수록 상기 제1 금속폼(110) 또는 상기 제2 금속폼(120)과의 간격이 가변되게 배치되는 평면형의 제3 금속폼(metal foam)(130)을 포함할 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni, Fe, Cu, Ti, Al, Al2O3 등의 유기 및 무기 재질로 이루어진 3차원 기공체에 수십 ㎛의 직경을 가지는 유기/무기 분말을 도포하고 이를 고온 소결과 같은 일반적인 접합 방법으로 접합하여 표면을 올록볼록하게 제조할 수 있다. 이러한 제1, 제2, 제3 금속폼(110, 120, 130)의 제조 방법은 일반적인 것으로 그 상세한 설명은 생략하기로 한다.
이러한 상기 제1, 제2, 제3 금속폼(110, 120, 130)의 표면의 올록볼록한 기하학적 형상은 촉매 코팅시 촉매 접착력을 향상시키는 역할을 할 뿐만 아니라, 촉매 활성을 향상시키는 역할을 할 수 있다.
여기서, 상기 제1, 제2, 제3 금속폼(110, 120, 130)은 50㎛~6000㎛ 크기의 셀(Cell)을 가질 수 있다.
또한, 상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다. 상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 베이스 부재는 상기 제1, 제2 금속폼의 일측면과 접착제 등에 의하여 접합될 수 있다.
또한, 상기 베이스 부재는 상기 제3 금속폼의 일측면과 접착제 등에 의하여 접합될 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)은 일정한 길이, 두께와 폭을 갖는 직사각체 형상으로 형성될 수 있다.
상기 제3 금속폼(130)은 상기 제1 금속폼(110)의 일단부로부터 타단부로 갈수록 상기 제1 금속폼(110)과의 간격이 넓어지게 배치되거나, 상기 제2 금속폼(120)의 일단부로부터 타단부로 갈수록 제2 금속폼(120)과의 간격이 좁아지게 배치될 수 있다.
상기 제3 금속폼은 상기 제1 금속폼(110)의 타단부로부터 일단부로 갈수록 상기 제1 금속폼(110)과의 간격이 좁아지게 배치되거나, 상기 제2 금속폼(120)의 타단부로부터 일단부로 갈수록 제2 금속폼(120)과의 간격이 넓어지게 배치될 수 있다.
상기 제1 금속폼(110)의 일단부와 상기 제3 금속폼(130)의 일단부 사이의 간격은 제3 금속폼(130)의 타단부와 상기 제2 금속폼(120)의 타단부 사이의 간격과 다르게 형성될 수 있으며, 동일하게 형성될 수 있다.
상기 제1 금속폼(110)은 다른 제1 금속폼(110)과 평행하게 배치되고, 상기 제2 금속폼(120)은 다른 제2 금속폼(120)과 평행하게 배치되며, 또한 상기 제3 금속폼(130)은 다른 제3 금속폼(130)과 평행하게 배치될 수 있다.
또한, 상기 제1 금속폼(110)은 상기 제2 금속폼(120)과 평행하게 배치될 수 있다.
상기 베이스 부재(100)의 양단부에 수직으로 배치되고, 상기 제1 금속폼(110) 또는 상기 제2 금속폼(120)의 일단부로부터 타단부로 갈수록 간격이 좁아지게 배치되거나 넓어지게 배치되는 제1, 제2 커버부재(140, 150)를 포함할 수 있다.
이와 같이 구성되는 본 발명의 제1 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체에서 상기 제3 금속폼(130)은 상기 제1 금속폼(110) 또는 상기 제2 금속폼(120)과의 간격이 가변됨에 따라, 즉 상기 제3 금속폼(130)은 상기 제1 금속폼(110)의 일단부로부터 타단부로 갈수록 상기 제1 금속폼(110)과의 간격이 넓어지게 배치되고, 상기 제2 금속폼(120)의 일단부로부터 타단부로 갈수록 제2 금속폼(120)과의 간격이 좁아지게 배치되어 있으며,
또한, 상기 제1 금속폼(110)은 다른 제1 금속폼(110)과 평행하게 배치되고, 상기 제2 금속폼(120)은 다른 제2 금속폼(120)과 평행하게 배치되며, 또한 상기 제3 금속폼(130)은 다른 제3 금속폼(130)과 평행하게 배치되며, 또한, 상기 제1 금속폼(110)은 상기 제2 금속폼(120)과 평행하게 배치되어 있으므로, 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 부피와 무게를 최소화 할 수 있다.
도 3은 본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 사시도이고, 도 4는 본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 개략적인 평면도이다.
본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제1 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체는, 일정한 크기와 형상을 갖고 상기 제1 금속폼(110)과 상기 제3 금속폼(130)의 사이에 배치되고, 상기 제1 금속폼(110)과 상기 제3 금속폼(130)을 일체로 연결시켜 주기 위한 평면형의 제1 연결 금속폼(210)을 포함할 수 있다.
상기 제1 연결 금속폼(210)과 다른 제1 연결 금속폼(210)은 서로 일정한 간격을 갖고 상기 베이스 부재(100)와 평행하게 배치되며, 즉 상기 제1 금속폼(110) 및 상기 제3 금속폼(130)과 수직하게 배치될 수 있다.
상기 제1 연결 금속폼(210)과 다른 상기 제1 연결 금속폼(210)은 서로 평행하게 배치될 수 있다. 따라서, 상기 제1 연결 금속폼(210)은 상기 제1 금속폼(110) 및 상기 제3 금속폼(130)과 함께 사각 단면 구조를 가질 수 있다.
또한, 일정한 크기와 형상을 갖고 상기 제2 금속폼(120)과 상기 제3 금속폼(130)의 사이에 배치되고, 상기 제2 금속폼(120)과 상기 제3 금속폼(130)을 일체로 연결시켜 주기 위한 평면형의 제2 연결 금속폼(220)을 포함할 수 있다.
상기 제2 연결 금속폼(220)은 상기 제1, 제2, 제3 금속폼(110, 120, 130)을 일체로 연결할 수 있도록 상기 제1 연결 금속폼(210)과 직선상으로 일체로 연결될 수 있다.
상기 제2 연결 금속폼(220)과 다른 제2 연결 금속폼(220)은 서로 일정한 간격을 갖고 상기 베이스 부재(100)와 평행하게 배치되며, 즉, 상기 제2 금속폼(120) 및 상기 제3 금속폼(130)과 수직하게 배치될 수 있다.
상기 제2 연결 금속폼(220)과 다른 상기 제2 연결 금속폼(220)은 서로 평행하게 배치될 수 있다. 따라서, 상기 제2 연결 금속폼(220)은 상기 제3 금속폼(130) 및 상기 제2 금속폼(120)과 함께 사각 단면 구조를 가질 수 있다.
상기 제1, 제2 연결 금속폼(210, 220)은 Ni, Fe, Cu, Ti, Al, Al2O3 등의 유기 및 무기 재질로 이루어진 3차원 기공체에 수십 ㎛의 직경을 가지는 유기/무기 분말을 도포하고 이를 고온 소결과 같은 일반적인 접합 방법으로 접합하여 표면을 올록볼록하게 제조할 수 있다.
이러한 상기 제1, 제2 연결 금속폼(210, 220)의 표면의 올록볼록한 기하학적 형상은 촉매 코팅시 촉매 접착력을 향상시키는 역할을 할 뿐만 아니라, 촉매 활성을 향상시키는 역할을 할 수 있다.
여기서, 상기 제1, 제2 연결 금속폼(210, 220)은 50㎛~6000㎛ 크기의 셀(Cell)을 가질 수 있다.
또한, 상기 제1, 제2 연결 금속폼(210, 220)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제1, 제2 연결 금속폼(210, 220)에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다. 상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 제1, 제2 연결 금속폼(210, 220)은 일정한 길이, 두께와 폭을 갖는 직사각체 형상으로 형성될 수 있다.
또한, 상기 제1 연결 금속폼(210)과 상기 제1 커버부재(140)를 직선상으로 일체로 연결하기 위한 제3 연결 금속폼(230)을 포함하고,
상기 제2 연결 금속폼(220)과 상기 제2 커버부재(150)를 직선상으로 일체로 연결하기 위한 제4 연결 금속폼(240)을 포함할 수 있다.
상기 제3, 제4 연결 금속폼(240)은 상기 베이스 부재(100)와 평행하게 배치되며, 상기 제3, 제4 연결 금속폼(230, 240)은 상기 제1, 제2 연결 금속폼과 직선상으로 배치될 수 있다.
또한, 상기 제3 연결 금속폼(230)은 상기 제1 금속폼(110) 및 상기 제1 커버부재(140)와 함께 사각 단면 구조를 가질 수 있다.
상기 제4 연결 금속폼(220)은 상기 제2 금속폼(120) 및 상기 제2 커버부재(150)과 함께 사각 단면 구조를 가질 수 있다.
이와 같이 구성되는 본 발명의 제2 실시예에 따른 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체에서 상기 제1 연결 금속폼(210)이 상기 제1 금속폼(110)과 상기 제3 금속폼(130)을 일체로 연결하고, 상기 제1 연결 금속폼(210)이 상기 베이스 부재(100)와 평행하게 배치되며, 상기 제1 연결 금속폼(210)은 상기 제1 금속폼(110) 및 상기 제3 금속폼(130)과 함께 사각 단면 구조를 가지며,
또한, 상기 제2 연결 금속폼(220)이 상기 제3 금속폼(130)과 상기 제2 금속폼(120)을 일체로 연결하고 있으며, 상기 제2 연결 금속폼(220)이 상기 베이스 부재(100)와 평행하게 배치되며, 상기 제2 연결 금속폼(220)은 상기 제3 금속폼(130) 및 상기 제2 금속폼(120)과 함께 사각 단면 구조를 가지게 되므로, 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체의 부피와 무게를 최소화 할 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (20)

  1. 일정한 크기와 형상을 갖고, 기초를 형성하는 베이스 부재;
    일정한 크기와 형상을 갖고, 상기 베이스 부재의 일면에 수직으로 일정한 간격으로 배열되는 평면형의 제1, 제2 금속폼(metal foam); 및
    상기 베이스 부재의 일면에 수직으로 배치됨과 아울러 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배열되고, 상기 제1 금속폼 또는 상기 제2 금속폼의 일단부로부터 타단부로 갈수록 상기 제1 금속폼 또는 상기 제2 금속폼과의 간격이 가변되게 배치되는 평면형의 제3 금속폼(metal foam)
    을 포함하는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  2. 제1항에 있어서,
    상기 제3 금속폼은 상기 제1 금속폼의 일단부로부터 타단부로 갈수록 상기 제1 금속폼과의 간격이 넓어지게 배치되거나, 상기 제2 금속폼의 일단부로부터 타단부로 갈수록 제2 금속폼과의 간격이 좁아지게 배치되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  3. 제2항에 있어서,
    상기 제1 금속폼의 일단부와 상기 제3 금속폼의 일단부 사이의 간격은 제3 금속폼의 타단부와 상기 제2 금속폼의 타단부 사이의 간격과 다르게 형성되거나 동일하게 형성되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  4. 제3항에 있어서,
    상기 제1 금속폼은 다른 제1 금속폼과 평행하게 배치되고, 상기 제2 금속폼은 다른 제2 금속폼과 평행하게 배치되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  5. 제4항에 있어서,
    상기 제3 금속폼은 다른 제3 금속폼과 평행하게 배치되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  6. 제5항에 있어서,
    상기 제1, 제2, 제3 금속폼은 50㎛~6000㎛ 크기의 셀(Cell)을 가지는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  7. 제6항에 있어서,
    상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어지는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  8. 제7항에 있어서,
    상기 제1, 제2, 제3 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  9. 제8항에 있어서,
    상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    일정한 크기와 형상을 갖고 상기 제1 금속폼과 상기 제3 금속폼의 사이에 배치되고, 상기 제1 금속폼과 상기 제3 금속폼을 일체로 연결시켜 주기 위한 평면형의 제1 연결 금속폼을 포함하는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  11. 제10항에 있어서,
    상기 제1 연결 금속폼은 상기 베이스 부재와 평행하게 배치되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  12. 제11항에 있어서,
    상기 제1 연결 금속폼은 상기 제1 금속폼 및 상기 제3 금속폼과 사각 단면 구조를 이루는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  13. 제10항에 있어서,
    일정한 크기와 형상을 갖고 상기 제2 금속폼과 상기 제3 금속폼의 사이에 배치되고, 상기 제2 금속폼과 상기 제3 금속폼을 일체로 연결시켜 주기 위한 평면형의 제2 연결 금속폼을 포함하는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  14. 제13항에 있어서,
    상기 제2 연결 금속폼은 상기 제1 연결 금속폼과 직선상으로 일체로 연결되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  15. 제14항에 있어서,
    상기 제2 연결 금속폼은 상기 베이스 부재와 평행하게 배치되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  16. 제15항에 있어서,
    상기 제2 연결 금속폼은 상기 제3 금속폼 및 상기 제2 금속폼과 사각 단면 구조를 이루는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  17. 제13항에 있어서,
    상기 제1, 제2 연결 금속폼은 50㎛~6000㎛ 크기의 셀(Cell)을 가지는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  18. 제17항에 있어서,
    상기 제1, 제2 연결 금속폼은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어지는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  19. 제18항에 있어서,
    상기 제1, 제2 연결 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
  20. 제19항에 있어서,
    상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절되는 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체.
PCT/KR2012/008092 2012-10-05 2012-10-05 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체 WO2014054824A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120110814A KR101418502B1 (ko) 2012-10-05 2012-10-05 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체
KR10-2012-0110814 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054824A1 true WO2014054824A1 (ko) 2014-04-10

Family

ID=50435141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008092 WO2014054824A1 (ko) 2012-10-05 2012-10-05 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체

Country Status (2)

Country Link
KR (1) KR101418502B1 (ko)
WO (1) WO2014054824A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121383A (zh) * 2016-12-27 2019-08-13 株式会社电装 多孔质蜂窝过滤器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762573B1 (ko) * 2016-05-16 2017-07-28 한서대학교 산학협력단 배연탈질용 메탈폼 scr 촉매모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337374A (ja) * 1992-06-03 1993-12-21 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び同処理用ハニカムセラミックスフイルタ
JP2002317618A (ja) * 2001-04-24 2002-10-31 Denso Corp 排気浄化装置及びその製造方法
US20070107392A1 (en) * 2005-11-14 2007-05-17 John Muter Diesel exhaust filtering apparatus
KR100804142B1 (ko) * 2006-12-18 2008-02-19 코리아 니켈 주식회사 자동차용 금속 폼 필터의 성능 향상을 위한 유속을배분하는 필터구조
JP2008221059A (ja) * 2007-03-09 2008-09-25 Nitta Ind Corp エアフィルタ
JP2010131589A (ja) * 2008-10-31 2010-06-17 Ngk Insulators Ltd ハニカム構造体及びハニカム構造体を用いたリアクタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174113B1 (ko) * 2010-05-20 2012-08-14 주식회사 알란텀 매연 저감 장치용 메탈 폼 필터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337374A (ja) * 1992-06-03 1993-12-21 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び同処理用ハニカムセラミックスフイルタ
JP2002317618A (ja) * 2001-04-24 2002-10-31 Denso Corp 排気浄化装置及びその製造方法
US20070107392A1 (en) * 2005-11-14 2007-05-17 John Muter Diesel exhaust filtering apparatus
KR100804142B1 (ko) * 2006-12-18 2008-02-19 코리아 니켈 주식회사 자동차용 금속 폼 필터의 성능 향상을 위한 유속을배분하는 필터구조
JP2008221059A (ja) * 2007-03-09 2008-09-25 Nitta Ind Corp エアフィルタ
JP2010131589A (ja) * 2008-10-31 2010-06-17 Ngk Insulators Ltd ハニカム構造体及びハニカム構造体を用いたリアクタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121383A (zh) * 2016-12-27 2019-08-13 株式会社电装 多孔质蜂窝过滤器

Also Published As

Publication number Publication date
KR20140044620A (ko) 2014-04-15
KR101418502B1 (ko) 2014-07-14

Similar Documents

Publication Publication Date Title
US11840950B2 (en) Vehicle exhaust gas purification device, corresponding production method, exhaust line and vehicle
CN105339074B (zh) 三元催化转化器
EP0186801A3 (en) Support matrix, in particular for a catalytic exhaust converter
CN107780998B (zh) 一种通用化集成式doc-dpf-scr后处理装置
EP3078410B1 (en) Method for producing an electrically heated catalyst device
EP1840346B1 (en) Sheet member and exhaust gas processing device and manufacturing method of the same
WO2014054824A1 (ko) 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체
US9630173B2 (en) Catalytic converter substrate
WO2011126256A2 (ko) 대용량 금속 촉매 담체 및 이를 이용한 촉매 컨버터
WO2015070413A1 (zh) 陶瓷热屏蔽片及耐热结构
EP3567230B1 (en) An element frame for holding monoliths
CA2387561A1 (en) Conversion of nitrogen oxides in the presence of a catalyst supported of a mesh-like structure
WO2015130058A1 (ko) 기공이 형성된 염공부재를 구비한 버너
EP2109907B1 (en) Electrode assembly for a solid oxide fuel cell and method for making the same
RU155443U1 (ru) Выхлопная система (варианты)
WO2013141433A1 (ko) 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체
WO2012015139A1 (ko) 플레이트형 열교환기 제조방법
JP5242178B2 (ja) スペーサー付ハニカムセグメント、及びハニカム構造体
KR20140114353A (ko) 완전히 절연된 배기 처리 장치
JPS6438145A (en) Production of catalyst for purifying exhaust gas
WO2020256448A1 (ko) 폭발을 방지하기 위한 촉매형 수소 제거장치
WO2018016897A1 (ko) Scr 믹서 및 이를 포함하는 scr 장치
WO2018164418A1 (ko) 배기가스를 이용하는 수소 개질기
WO2013191318A1 (ko) 촉매 변환기용 금속폼 발열체 및 그 제조 방법
CN116031567A (zh) 一种线束隔离板、电池模组、排气系统及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886157

Country of ref document: EP

Kind code of ref document: A1