WO2013141433A1 - 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체 - Google Patents

3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체 Download PDF

Info

Publication number
WO2013141433A1
WO2013141433A1 PCT/KR2012/002493 KR2012002493W WO2013141433A1 WO 2013141433 A1 WO2013141433 A1 WO 2013141433A1 KR 2012002493 W KR2012002493 W KR 2012002493W WO 2013141433 A1 WO2013141433 A1 WO 2013141433A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst carrier
catalytic reduction
selective catalytic
reaction structure
unit
Prior art date
Application number
PCT/KR2012/002493
Other languages
English (en)
French (fr)
Inventor
박만호
배정석
장명준
이정민
진영민
최성환
박해경
오권오
Original Assignee
주식회사 알란텀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알란텀 filed Critical 주식회사 알란텀
Publication of WO2013141433A1 publication Critical patent/WO2013141433A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure, and more particularly, to minimize the volume and weight by allowing the reaction surface area per unit volume in which NH 3 and NO x can react as much as possible.
  • the present invention relates to a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure.
  • SCR Selective catalytic reduction
  • the selective catalytic reduction method is to convert the gas to N 2 + H 2 O by the reaction of NH 3 and NO x - is the reaction surface area to the reaction NH 3 and NO x important parameters to the main reaction gas to the reaction. This is because when the reaction surface area per unit volume is increased, the total weight can be reduced along with the volume reduction of the catalyst carrier for reducing the catalyst coated with the catalyst for selective catalytic reduction.
  • the conventional selective catalyst reduction catalyst carrier is simply formed in a block shape, since the reaction surface area capable of reacting with NH 3 and NO x is reduced by that much, the volume and weight of the catalyst carrier are increased.
  • the volume and weight are important parts. It can be used for ship exhaust aftertreatment, which is the selection standard, and it can be used more efficiently. It also has the advantage of rapidly reducing NO x emissions at the cold start time due to the delay of temperature rise up to the catalyst reaction temperature when the engine is initially operated. Therefore, there is an urgent need to develop a catalyst carrier for selective catalytic reduction capable of maximally increasing the reaction surface area per unit volume in which NH 3 and NO x can react.
  • the present invention is to provide a catalyst carrier for the selective catalytic reduction having a three-dimensional reaction structure to minimize the volume and weight by increasing the reaction surface area per unit volume that NH 3 and NO x can react as possible.
  • a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure coated with a catalyst for selective catalytic reduction, having a predetermined size and shape, and planar first and second arranged at regular intervals Metal foam; And a first unit catalyst carrier part comprising a non-planar third metal foam disposed between the first metal foam and the second metal foam.
  • the first, second and third metal foams may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • the first, second and third metal foams may be coated with a predetermined amount of at least one powder of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder as a selective reduction catalyst powder.
  • V 2 O 5 and WO 3 can be adjusted to 1wt% ⁇ 20wt%.
  • the third metal foam may have a wave shape or a serpentine shape.
  • the third metal foam may include a peak portion that forms the highest point, a valley portion that forms the lowest point and is located opposite to the peak portion, and a connection portion that inclines the peak portion and the valley portion at an angle. .
  • It may include a first unit stack in which at least two first unit catalyst carrier units are stacked.
  • It may include a first stack assembly in which at least two first unit stacks are bonded.
  • Bonding between the first unit stack may be made by coating a slurry on one surface to be bonded.
  • the slurry may include a liquid, a powder and a binder.
  • a first blocking member for blocking between one end of the second unit stack and one end of the third unit stack adjacent to the second unit stack;
  • It may include a second blocking member for blocking between the other end of the third unit stack and the other end of the second unit stack adjacent to the third unit stack.
  • the first blocking member is joined by one end of the second unit stack and the third unit stack and an adhesive
  • the second blocking member may be joined by an adhesive to the other end of the third unit stack and the second unit stack.
  • the reaction area is increased to reduce the volume of the catalyst.
  • a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure is coated with a catalyst for selective catalytic reduction
  • Planar first and second metal foams having a predetermined size and shape and disposed at regular intervals; And a second unit catalyst carrier having a predetermined size and shape and comprising at least one planar fourth metal foam disposed between the first metal foam and the second metal foam.
  • a catalyst carrier for catalytic reduction may be provided.
  • the first, second, and fourth metal foams may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • the first, second, and fourth metal foams may be coated with a predetermined amount of at least one powder of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder as a selective reduction catalyst powder.
  • V 2 O 5 and WO 3 can be adjusted to 1wt% ⁇ 20wt%.
  • It may include a second stack assembly in which at least two fourth unit stacks are bonded.
  • Bonding between the fourth unit stack may be made by coating a slurry on one surface to be bonded.
  • the slurry may include a liquid, a powder and a binder.
  • a third blocking member for blocking between one end of the fifth unit stack and one end of the sixth unit stack adjacent to the fifth unit stack;
  • a fourth blocking member for blocking between the other end of the sixth unit stack and the other end of the fifth unit stack adjacent to the sixth unit stack.
  • the third blocking member is joined by one end of the fifth unit stack and the sixth unit stack and an adhesive
  • the fourth blocking member may be bonded to the other end of the sixth unit stack and the fifth unit stack by an adhesive.
  • the reaction area is increased to reduce the volume of the catalyst.
  • the reaction surface area per unit volume in which NH 3 and NO x can react can be increased as much as possible, the volume and weight of the catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure can be minimized.
  • FIG. 1 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a second embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a third embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a sixth embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a first embodiment of the present invention.
  • the catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure has a planar first and second metal foams having a predetermined size and shape and disposed at regular intervals ( metal foams 110 and 120; And a first unit catalyst carrier part 100 including a non-planar third metal foam 130 disposed between the first metal foam 110 and the second metal foam 120. .
  • the first, second, and third metal foams 110, 120, and 130 are diameters of several tens of micrometers in a three-dimensional porous body made of organic and inorganic materials such as Ni, Fe, Cu, Ti, Al, and Al 2 O 3 .
  • the surface may be made convex by applying an organic / inorganic powder having and bonding them by a common bonding method such as high temperature sintering.
  • the method of manufacturing the first, second, and third metal foams 110, 120, and 130 is general, and a detailed description thereof will be omitted.
  • the convex geometry of the surface of the first, second, and third metal foams may serve to improve catalyst adhesion as well as to improve catalyst activity during catalyst coating.
  • the first, second, and third metal foams 110, 120, and 130 may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • first, second, and third metal foams 110, 120, and 130 may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • the first, second and third metal foams (110, 120, 130) is a selective reduction catalyst powder of a predetermined amount of at least one or more powders of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder Can be coated.
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • the first and second metal foams 110 and 120 may be formed in a planar shape having a predetermined length, thickness and width.
  • the third metal foam 130 may be formed in a curved shape having a predetermined length, thickness and width.
  • the third metal foam 130 may have a wave shape or a wavy shape so as to secure a chute space between the first metal foam 110 and the second metal foam 120. serpentine).
  • the third metal foam 130 has a peak portion 131 forming the highest point, a valley portion 133 forming the lowest point and positioned opposite to the peak portion, and the peak portion and the valley portion are inclined at a predetermined angle. It may include a connecting portion 135 for connecting.
  • the peak portion 131 may be in contact with the first metal foam 110 or the second metal foam 120, and the valley portion 133 may be the second metal foam 120 or the first metal. It may be in contact with the foam 110.
  • the catalyst carrier for selective chuckman reduction according to the first embodiment of the present invention configured as described above has convex geometric shapes of the first and second metal foams 110 and 120 and the third metal foam 130, and the The bent shape of the peak portion 131, the valley portion 133, and the connecting portion 135 of the third metal foam 130 includes, for example, NH 3 contained in exhaust gas of an internal combustion engine such as a marine engine or a thermal power plant engine. Since the reaction surface area per unit volume in which and NO x may react may be increased, the volume and weight of the catalyst carrier for selective chemoman reduction may be minimized.
  • FIG. 2 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a second embodiment of the present invention.
  • the catalyst carrier for selective catalytic reduction having the three-dimensional reaction structure according to the second embodiment of the present invention is the same as the first embodiment except the matters specifically described below, the detailed description thereof will be omitted.
  • a first unit stack in which at least two or more of the first unit catalyst carrier parts 100 according to the first embodiment are stacked And may include 210.
  • the catalyst carrier for selective catalytic reduction having the three-dimensional reaction structure according to the second embodiment may include a first stack assembly 200 in which at least two first unit stacks 210 are bonded.
  • Bonding between the first unit stacks 210 of the first stack assembly 200 may be achieved by coating a slurry on one surface of the first stack assembly 200.
  • the slurry may include a liquid, a powder and a binder.
  • the powder may include 3 wt% to 80 wt% of nickel (Ni), chromium (Cr), aluminum (Al), and iron (Fe) as alloy powders.
  • the powder and the binder may be mixed by a mixer. At this time, a liquid such as water may be used for easy mixing of the powder and the binder.
  • Powder contained in the slurry may be used to ensure good sintering contact between the first unit stack 210 and the first unit stack 210.
  • the slurry allows bonding of the first unit stack 210 and the first unit stack 210 while removing the liquid and the binder component during sintering.
  • the catalyst carrier for selective chuckman reduction according to the second embodiment of the present invention configured as described above is, for example, a marine engine, thermal power by the first stack assembly 200 in which at least two first unit stacks 210 are bonded. Since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of an internal combustion engine such as a power plant engine can react can be increased, the volume and weight of the catalyst carrier for selective chyman reduction can be minimized.
  • exhaust gas of an internal combustion engine such as a marine engine, a thermal power plant engine, and the like may be discharged from one side direction of the first stack assembly 200 to the other side, and may be disposed up and down in the first stack assembly 200. It may be discharged, it may be discharged in the front, rear direction of the first stack assembly 200.
  • FIG. 3 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a third embodiment of the present invention.
  • the catalyst carrier for the selective catalytic reduction having the three-dimensional reaction structure according to the third embodiment of the present invention is the same as the second embodiment except the matters specifically described below, the detailed description thereof will be omitted.
  • the first unit catalyst support part 100 is laminated at least two or more, and the second, Third unit stacks 300 and 310;
  • a first blocking member 320 for blocking between one end of the second unit stack 300 and one end of the third unit stack 310 adjacent to the second unit stack;
  • It may include a second blocking member 330 for blocking between the other end of the third unit stack 310 and the other end of the second unit stack 300 adjacent to the third unit stack 310. .
  • the first blocking member 320 and the second blocking member 330 may zigzag between the end surfaces of the second unit stack 300 and the third unit stack 310 in a zigzag manner. One end and the other end of the stack 300 and the third unit stack 310 may be alternately disposed.
  • first blocking member 320 and the second blocking member 330 may be formed of a plate so as to effectively block an end surface of the second unit stack 300 and the third unit stack 310. Can be.
  • the first blocking member 320 may be bonded to one end of the second unit stack 300 and the third unit stack 310 by an adhesive or the like.
  • the second blocking member 330 may be bonded to the other end of the third unit stack 310 and the second unit stack 300 by an adhesive or the like.
  • the catalyst carrier for selective chuckman reduction according to the third exemplary embodiment of the present invention configured as described above may include, for example, internal combustion of a marine engine, a thermal power plant engine, and the like by the second unit stack 300 and the third unit stack 310. Since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of the engine can react can be increased, the volume and weight of the catalyst carrier for selective chyman reduction can be minimized.
  • the exhaust gas of an internal combustion engine such as a marine engine or a thermal power plant engine
  • the exhaust gas is blocked in the first and second blocks.
  • the second unit stack 300 and the third unit are dispersed by the members 320 and 330 toward the second unit stack 300 and the third unit stack 310 as shown by arrows in FIG. 3. Since passing through the stack 310, since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of the internal combustion engine can react, the NO x may be reduced as much as possible.
  • FIG. 4 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a fourth embodiment of the present invention.
  • the catalyst carrier for the selective catalytic reduction having the three-dimensional reaction structure according to the fourth embodiment of the present invention is the same as the first embodiment except the matters specifically described below, the detailed description thereof will be omitted.
  • a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure includes: planar first and second metal foams 110 and 120 having a predetermined size and shape and disposed at regular intervals; And
  • a second unit catalyst carrier having a predetermined size and shape and including at least one planar fourth metal foam 410, 420 disposed between the first metal foam 110 and the second metal foam 120. It may include a portion 400.
  • two fourth metal foams 410 and 420 are disposed between the first metal foam 110 and the second metal foam 120, but the present invention is not limited thereto. You can place more than that.
  • the fourth metal foams 410 and 420 apply an organic / inorganic powder having a diameter of several tens of micrometers to a three-dimensional porous body made of organic and inorganic materials such as Ni, Fe, Cu, Ti, Al, and Al 2 O 3 .
  • the surface may be convexly manufactured by joining by a common bonding method such as high temperature sintering.
  • the manufacturing method of the fourth metal foams 410 and 420 is general and a detailed description thereof will be omitted.
  • the convex geometry of the surface of the fourth metal foams 410 and 420 may not only serve to improve the catalyst adhesion when the catalyst is coated, but also may improve the catalytic activity.
  • the fourth metal foams 410 and 420 may have a cell having a size of 50 ⁇ m to 6000 ⁇ m.
  • the fourth metal foams 410 and 420 may be formed of at least one selected from Ni-based metal foams, Fe-based metal foams, FeNiCrAl-based metal foams, and metal meshes.
  • the fourth metal foams 410 and 420 may be coated with a predetermined amount of at least one powder of V 2 O 5 , WO 3 , SbO 3 , MoO 3 , TiO 2 powder as a selective reduction catalyst powder.
  • the content of V 2 O 5 and WO 3 in the coating material may be adjusted to 1wt% ⁇ 20wt%.
  • the fourth metal foams 410 and 340 may be formed in a planar shape having a predetermined length, thickness and width.
  • the catalyst carrier for selective chuckman reduction according to the fourth embodiment of the present invention configured as described above has a convex geometric shape of the first and second metal foams 110 and 120 and the fourth metal foams 410 and 420.
  • the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of an internal combustion engine, such as a marine engine or a thermal power plant engine may be increased, thereby increasing the volume and weight of the catalyst carrier for selective catalytic reduction. Can be minimized.
  • exhaust gas of an internal combustion engine such as a marine engine, a thermal power plant engine, and the like may be discharged from one side of the second unit catalyst carrier 400 to the other, and may be disposed on the second unit catalyst carrier 400. It may be discharged in the downward direction, it may also be discharged in the front, rear direction of the second unit catalyst carrier 400.
  • FIG. 5 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a fifth embodiment of the present invention.
  • the catalyst carrier for the selective catalytic reduction having the three-dimensional reaction structure according to the fifth embodiment of the present invention is the same as the fourth embodiment except the matters specifically described below, the detailed description thereof will be omitted.
  • a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure may include a fourth unit stack 510 in which at least two second unit catalyst carrier units 400 are stacked. Can be.
  • the catalyst carrier for selective catalytic reduction having the three-dimensional reaction structure according to the fifth embodiment may include a second stack assembly 500 in which at least two fourth unit stacks 510 are bonded.
  • Bonding between the fourth unit stacks 510 of the second stack assembly 500 may be achieved by coating a slurry on one surface of the second stack assembly 500.
  • the slurry may include a liquid, a powder and a binder.
  • the powder may include 3 wt% to 80 wt% of nickel (Ni), chromium (Cr), aluminum (Al), and iron (Fe) as alloy powders.
  • the powder and the binder may be mixed by a mixer. At this time, a liquid such as water may be used for easy mixing of the powder and the binder.
  • Powder contained in the slurry may be used to ensure good sintering contact between the fourth unit stack 510 and the fourth unit stack 510.
  • the slurry allows the fourth unit stack 510 and the fourth unit stack 510 to be bonded while the liquid and the binder component are removed during sintering.
  • the selective catalyst for reducing the catalyst man according to the fifth embodiment of the present invention configured as described above is, for example, a marine engine, thermal power by the second stack assembly 500 bonded at least two or more of the fourth unit stack 510 Since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of an internal combustion engine such as a power plant engine can react can be increased, the volume and weight of the catalyst carrier for selective chyman reduction can be minimized.
  • FIG. 6 is a schematic perspective view of a catalyst carrier for selective catalytic reduction having a three-dimensional reaction structure according to a sixth embodiment of the present invention.
  • the catalyst carrier for the selective catalytic reduction having the three-dimensional reaction structure according to the sixth embodiment of the present invention is the same as the fifth embodiment except the matters specifically described below, the detailed description thereof will be omitted.
  • the second unit catalyst support unit 400 is stacked at least two or more, and the fifth, Sixth unit stacks 600 and 610;
  • a third blocking member 620 for blocking between one end of the fifth unit stack 600 and one end of the sixth unit stack 610 adjacent to the fifth unit stack 600;
  • a fourth blocking member 630 for blocking between the other end of the sixth unit stack 610 and the other end of the fifth unit stack 600 adjacent to the sixth unit stack 610.
  • the third blocking member 620 and the fourth blocking member 630 may be configured to zigzag between the end surfaces of the fifth unit stack 600 and the sixth unit stack 610. One end and the other end of the stack 600 and the sixth unit stack 610 may be alternately disposed.
  • the third blocking member 620 and the fourth blocking member 630 may be formed of a plate to effectively block the end surfaces of the fifth unit stack 600 and the sixth unit stack 610. Can be.
  • the third blocking member 620 may be bonded to one end of the fifth unit stack 600 and the sixth unit stack 610 by an adhesive or the like.
  • the fourth blocking member 630 may be bonded to the other end of the sixth unit stack 610 and the fifth unit stack 600 by an adhesive or the like.
  • the catalyst carrier for selective chuckman reduction according to the sixth embodiment of the present invention configured as described above may include, for example, internal combustion of a marine engine, a thermal power plant engine, etc. by the fifth unit stack 600 and the sixth unit stack 610. Since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of the engine can react can be increased, the volume and weight of the catalyst carrier for selective chyman reduction can be minimized.
  • the exhaust gas of an internal combustion engine such as a marine engine or a thermal power plant engine is discharged between the fifth unit stack 600 and the sixth unit stack 610
  • the exhaust gas is blocked by the third and fourth blocks.
  • the fifth unit stack 600 and the sixth unit are dispersed by the members 620 and 630 toward the fifth unit stack 600 and the sixth unit stack 610 as shown by arrows in FIG. 6. Since it passes through the stack 610, since the reaction surface area per unit volume in which NH 3 and NO x contained in the exhaust gas of the internal combustion engine can react, the NO x may be reduced as much as possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체를 제공한다. 본 발명에 따르면, 일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼(metal foam); 및 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배치되는 비평면형의 제3 금속폼을 포함하는 제1 단위 촉매 담체부를 포함한다.

Description

3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체
본 발명은 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체에 관한 것으로서, 보다 상세하게는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있도록 하여 부피와 무게를 최소화 할 수 있도록 한 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체에 관한 것이다.
예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NOx를 제거하는 기술로서 선택적 촉매 환원법(Selective catalytic reduction, SCR)이 알려져 있다.
이러한 선택적 촉매 환원법은 NH3와 NOx가 반응하여 N2+H2O로 전환하는 가스-가스 반응으로 주 반응을 위해서는 NH3와 NOx가 반응할 수 있는 반응 표면적이 중요한 변수이다. 이는 단위 부피 당 반응 표면적이 증가하게 될 경우, 선택적 촉매 환원용 촉매가 코팅되는 촉매 환원용 촉매 담체의 부피 감소와 더불어 총 무게 감소가 가능해지기 때문이다.
그런데 종래의 선택적 촉매 환원용 촉매 담체는 단순하게 블록형으로 형성되어 있으므로, NH3와 NOx가 반응할 수 있는 반응 표면적이 그만큼 작게 되므로, 촉매 담체의 부피 및 무게가 증가하게 된다.
그러므로, 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 증가시켜 기존의 선택적 촉매 환원용 촉매 담체 대비 부피와 무게를 줄일 경우, 부피와 무게가 중요한 부품 선정 기준이 되는 선박용 배기 후처리 장치 등으로 활용성이 높아질 수 있으며, 엔진 초기 구동 시 촉매 반응 온도까지 온도 상승 지연에 따른 콜드 스타트(Cold start) 시점의 NOx 배출량도 급감시킬 수 있는 장점이 있기 때문에, NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있는 선택적 촉매 환원용 촉매 담체의 개발이 절실히 요구되고 있다.
본 발명은 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있도록 하여 부피와 무게를 최소화 할 수 있도록 한 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체를 제공하고자 한다.
본 발명의 일 실시예에 따르면, 선택적 촉매 환원용 촉매가 코팅되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체로서, 일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼(metal foam); 및 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배치되는 비평면형의 제3 금속폼을 포함하는 제1 단위 촉매 담체부를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체가 제공될 수 있다.
상기 제1, 제2, 제3 금속폼은 50㎛ 내지 6000㎛ 크기의 셀(Cell)을 가질 수 있다.
상기 제1, 제2, 제3 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다.
상기 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 제3 금속폼의 형상은 파(wave) 형상 또는 구불구불한(serpentine) 형상으로 형성될 수 있다.
상기 제3 금속폼은 그 최고점을 형성하는 피크부와, 그 최하점을 형성하고 상기 피크부의 반대쪽에 위치하는 밸리부와, 상기 피크부와 상기 밸리부를 일정한 각도로 경사지게 연결하는 연결부를 포함할 수 있다.
상기 제1 단위 촉매 담체부를 적어도 2개 이상 적층한 제1 단위 스택을 포함할 수 있다.
상기 제1 단위 스택을 적어도 2개 이상 접합한 제1 스택 어셈블리를 포함할 수 있다.
상기 제1 단위 스택간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어질 수 있다.
상기 슬러리는 액체, 파우더와 바인더(binder)를 포함할 수 있다.
상기 제1 단위 촉매 담체부를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제2, 제3 단위 스택;
상기 제2 단위 스택의 일단부와 상기 제2 단위 스택과 인접한 상기 제3 단위 스택의 일단부 사이를 막아주기 위한 제1 차단부재; 및
상기 제3 단위 스택의 타단부와 상기 제3 단위 스택과 인접한 상기 제2 단위 스택의 타단부 사이를 막아주기 위한 제2 차단부재를 포함할 수 있다.
상기 제1 차단부재는 상기 제2 단위 스택과 상기 제3 단위 스택의 일단부와 접착제에 의하여 접합되고,
상기 제2 차단부재는 상기 제3 단위 스택과 상기 제2 단위 스택의 타단부와 접착제에 의하여 접합될 수 있다.
상기 제1, 제2, 제3 금속폼은 3차원 반응 구조를 가짐으로써 반응 면적이 증대되어 촉매의 부피를 줄일 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 선택적 촉매 환원용 촉매가 코팅되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체로서,
일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼; 및 일정한 크기와 형상을 갖고, 상기 제1 금속폼과 상기 제2 금속폼 사이에 배치되는 적어도 하나 이상의 평면형의 제4 금속폼을 포함하는 제2 단위 촉매 담체부를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체가 제공될 수 있다.
상기 제1, 제2, 제4 금속폼은 50㎛ 내지 6000㎛ 크기의 셀을 가질 수 있다.
상기 제1, 제2, 제4 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다.
상기 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 제2 단위 촉매 담체부를 적어도 2개 이상 적층한 제4 단위 스택을 포함할 수 있다.
상기 제4 단위 스택을 적어도 2개 이상 접합한 제2 스택 어셈블리를 포함할 수 있다.
상기 제4 단위 스택간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어질 수 있다.
상기 슬러리는 액체, 파우더와 바인더(binder)를 포함할 수 있다.
상기 제2 단위 촉매 담체부를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제5, 제6 단위 스택;
상기 제5 단위 스택의 일단부와 상기 제5 단위 스택과 인접한 상기 제6 단위 스택의 일단부 사이를 막아주기 위한 제3 차단부재; 및
상기 제6 단위 스택의 타단부와 상기 제6 단위 스택과 인접한 상기 제5 단위 스택의 타단부 사이를 막아주기 위한 제4 차단부재를 포함할 수 있다.
상기 제3 차단부재는 상기 제5 단위 스택과 상기 제6 단위 스택의 일단부와 접착제에 의하여 접합되고,
상기 제4 차단부재는 상기 제6 단위 스택과 상기 제5 단위 스택의 타단부와 접착제에 의하여 접합될 수 있다.
상기 제1, 제2, 제4 금속폼은 3차원 반응 구조를 가짐으로써 반응 면적이 증대되어 촉매의 부피를 줄일 수 있다.
본 실시예에 따르면, NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적을 최대한 증가시킬 수 있으므로, 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 2는 본 발명의 제2 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 3은 본 발명의 제3 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 4는 본 발명의 제4 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 5는 본 발명의 제5 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 6은 본 발명의 제6 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
도 1을 참고하면, 본 발명의 일 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼(metal foam)(110, 120); 및 상기 제1 금속폼(110)과 상기 제2 금속폼(120)의 사이에 배치되는 비평면형의 제3 금속폼(130)을 포함하는 제1 단위 촉매 담체부(100)를 포함할 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni, Fe, Cu, Ti, Al, Al2O3 등의 유기 및 무기 재질로 이루어진 3차원 기공체에 수십 ㎛의 직경을 가지는 유기/무기 분말을 도포하고 이를 고온 소결과 같은 일반적인 접합 방법으로 접합하여 표면을 올록볼록하게 제조할 수 있다. 이러한 제1, 제2, 제3 금속폼(110, 120, 130)의 제조 방법은 일반적인 것으로 그 상세한 설명은 생략하기로 한다.
이러한 상기 제1, 제2, 제3 금속폼의 표면의 올록볼록한 기하학적 형상은 촉매 코팅시 촉매 접착력을 향상시키는 역할을 할 뿐만 아니라, 촉매 활성을 향상시키는 역할을 할 수 있다.
여기서, 상기 제1, 제2, 제3 금속폼(110, 120, 130)은 50㎛~6000㎛ 크기의 셀(Cell)을 가질 수 있다.
또한, 상기 제1, 제2, 제3 금속폼(110, 120, 130)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제1, 제2, 제3 금속폼(110, 120, 130)에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다. 상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 제1, 제2 금속폼(110, 120)은 일정한 길이, 두께와 폭을 갖는 평면형으로 형성될 수 있다.
또한, 상기 제3 금속폼(130)은 일정한 길이, 두께와 폭을 갖는 굴곡형으로 형성될 수 있다.
상기 제3 금속폼(130)의 형상은 상기 제1 금속폼(110)과 상기 제2 금속폼(120) 사이에 슈트(soot) 공간을 확보할 수 있도록 파(wave) 형상 또는 구불구불한(serpentine) 형상으로 형성될 수 있다.
상기 제3 금속폼(130)은 그 최고점을 형성하는 피크부(131)와, 최하점을 형성하고 상기 피크부의 반대쪽에 위치하는 밸리부(133)와, 상기 피크부와 상기 밸리부를 일정한 각도로 경사지게 연결하는 연결부(135)를 포함할 수 있다.
상기 피크부(131)는 상기 제1 금속폼(110) 또는 상기 제2 금속폼(120)과 접촉될 수 있고, 상기 밸리부(133)는 상기 제2 금속폼(120) 또는 상기 제1 금속폼(110)과 접촉될 수 있다.
이와 같이 구성되는 본 발명의 제1 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제1, 제2 금속폼(110, 120)과 상기 제3 금속폼(130)의 올록볼록한 기하학적 형상, 및 상기 제3 금속폼(130)의 피크부(131), 밸리부(133) 및 연결부(135)의 굴곡 형상에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
도 2는 본 발명의 제2 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
본 발명의 제2 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제1 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제2 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 제1 실시예에 따른 상기 제1 단위 촉매 담체부(100)를 적어도 2개 이상 적층한 제1 단위 스택(210)을 포함할 수 있다.
또한, 제2 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 상기 제1 단위 스택(210)을 적어도 2개 이상 접합한 제1 스택 어셈블리(200)를 포함할 수 있다.
상기 제1 스택 어셈블리(200)의 상기 제1 단위 스택(210)간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어질 수 있다.
상기 슬러리는 액체, 파우더와 바인더(binder)를 포함할 수 있다. 상기 파우더는 합금 분말로서 니켈(Ni), 크롬(Cr), 알루미늄(Al), 철(Fe)을 3wt%~80wt% 포함할 수 있다.
상기 파우더와 바인더는 믹서에 의하여 혼합될 수 있으며, 이 때, 파우더와 바인더의 용이한 혼합을 위하여 물 등과 같은 액체를 이용할 수 있다.
상기 슬러리에 포함된 파우더는 상기 제1 단위 스택(210)과 상기 제1 단위 스택(210) 사이의 양호한 소결 접촉을 보장하기 위하여 사용될 수 있다.
상기 슬러리는 소결시 액체와 바인더 성분이 제거되면서 상기 제1 단위 스택(210)과 상기 제1 단위 스택(210)을 접합할 수 있게 한다.
이와 같이 구성되는 본 발명의 제2 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제1 단위 스택(210)을 적어도 2개 이상 접합한 제1 스택 어셈블리(200)에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
또한, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스는 상기 제1 스택 어셈블리(200)의 일측방향에서 타측방향으로 배출될 수 있으며, 상기 제1 스택 어셈블리(200)의 상, 하 방향으로 배출될 수 있으며, 상기 제1 스택 어셈블리(200)의 전, 후 방향으로도 배출될 수 있다.
또한, 도 3은 본 발명의 제3 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
본 발명의 제3 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제2 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제3 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 상기 제1 단위 촉매 담체부(100)를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제2, 제3 단위 스택(300, 310);
상기 제2 단위 스택(300)의 일단부와 상기 제2 단위 스택과 인접한 상기 제3 단위 스택(310)의 일단부 사이를 막아주기 위한 제1 차단부재(320); 및
상기 제3 단위 스택(310)의 타단부와 상기 제3 단위 스택(310)과 인접한 상기 제2 단위 스택(300)의 타단부 사이를 막아주기 위한 제2 차단부재(330)를 포함할 수 있다.
상기 제1 차단부재(320)와 상기 제2 차단부재(330)는 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)의 단부면 사이를 지그재그로 막아줄 수 있도록 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)의 일단부와 타단부에 엇갈리게 배치될 수 있다.
또한, 상기 제1 차단부재(320)와 상기 제2 차단부재(330)는 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)의 단부면 사이를 효과적으로 막아줄 수 있도록 플레이트로 이루어질 수 있다.
상기 제1 차단부재(320)는 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)의 일단부와 접착제 등에 의하여 접합될 수 있다.
또한, 상기 제2 차단부재(330)는 상기 제3 단위 스택(310)과 상기 제2 단위 스택(300)의 타단부와 접착제 등에 의하여 접합될 수 있다.
이와 같이 구성되는 본 발명의 제3 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
또한, 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스가 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310) 사이로 배출되면, 상기 배기가스는 상기 제1, 제2 차단부재(320, 330)에 의하여 도 3에 화살표로 도시된 바와 같이 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)쪽으로 분산되면서 상기 제2 단위 스택(300)과 상기 제3 단위 스택(310)을 통과하게 되므로, 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가되므로, NOx를 최대한 감소시킬 수 있다.
또한, 도 4는 본 발명의 제4 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
본 발명의 제4 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제1 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제4 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼(110, 120); 및
일정한 크기와 형상을 갖고, 상기 제1 금속폼(110)과 상기 제2 금속폼(120) 사이에 배치되는 적어도 하나 이상의 평면형의 제4 금속폼(410, 420)을 포함하는 제2 단위 촉매 담체부(400)를 포함할 수 있다.
여기서, 상기 제4 금속폼(410, 420)은 상기 제1 금속폼(110)과 상기 제2 금속폼(120)의 사이에 2개를 배치하고 있지만, 이에 한정되는 것은 아니고 한 개 또는 2개 이상 배치할 수 있다.
상기 제4 금속폼(410, 420)은 Ni, Fe, Cu, Ti, Al, Al2O3 등의 유기 및 무기 재질로 이루어진 3차원 기공체에 수십 ㎛의 직경을 가지는 유기/무기 분말을 도포하고 이를 고온 소결과 같은 일반적인 접합 방법으로 접합하여 표면을 올록볼록하게 제조할 수 있다. 이러한 제4 금속폼(410, 420)의 제조 방법은 일반적인 것으로 그 상세한 설명은 생략하기로 한다.
이러한 상기 제4 금속폼(410, 420)의 표면의 올록볼록한 기하학적 형상은 촉매 코팅시 촉매 접착력을 향상시키는 역할을 할 뿐만 아니라, 촉매 활성을 향상시키는 역할을 할 수 있다.
여기서, 상기 제4 금속폼(410, 420)은 50㎛~6000㎛ 크기의 을 가질 수 있다.
또한, 상기 제4 금속폼(410, 420)은 Ni계 금속폼, Fe계 금속폼, FeNiCrAl계 금속폼 및 금속 메쉬(metal mesh) 중 선택된 적어도 하나로 이루어질 수 있다.
상기 제4 금속폼(410, 420)에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 하나 이상의 분말이 코팅될 수 있다.
상기 코팅 물질 중 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절될 수 있다.
상기 제4 금속폼(410, 340)은 일정한 길이, 두께와 폭을 갖는 평면형으로 형성될 수 있다.
이와 같이 구성되는 본 발명의 제4 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제1, 제2 금속폼(110, 120)과 상기 제4 금속폼(410, 420)의 올록볼록한 기하학적 형상에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
또한, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스는 제2 단위 촉매 담체부(400)의 일측방향에서 타측방향으로 배출될 수 있으며, 상기 제2 단위 촉매 담체부(400)의 상, 하 방향으로 배출될 수 있으며, 상기 제2 단위 촉매 담체부(400)의 전, 후 방향으로도 배출될 수 있다.
도 5는 본 발명의 제5 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
본 발명의 제5 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제4 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제5 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 상기 제2 단위 촉매 담체부(400)를 적어도 2개 이상 적층한 제4 단위 스택(510)을 포함할 수 있다.
또한, 제5 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 상기 제4 단위 스택(510)을 적어도 2개 이상 접합한 제2 스택 어셈블리(500)를 포함할 수 있다.
상기 제2 스택 어셈블리(500)의 상기 제4 단위 스택(510)간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어질 수 있다.
상기 슬러리는 액체, 파우더와 바인더(binder)를 포함할 수 있다. 상기 파우더는 합금 분말로서 니켈(Ni), 크롬(Cr), 알루미늄(Al), 철(Fe)을 3wt%~80wt% 포함할 수 있다.
상기 파우더와 바인더는 믹서에 의하여 혼합될 수 있으며, 이 때, 파우더와 바인더의 용이한 혼합을 위하여 물 등과 같은 액체를 이용할 수 있다.
상기 슬러리에 포함된 파우더는 상기 제4 단위 스택(510)과 상기 제4 단위 스택(510) 사이의 양호한 소결 접촉을 보장하기 위하여 사용될 수 있다.
상기 슬러리는 소결시 액체와 바인더 성분이 제거되면서 상기 제4 단위 스택(510)과 상기 제4 단위 스택(510)을 접합할 수 있게 한다.
이와 같이 구성되는 본 발명의 제5 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제4 단위 스택(510)을 적어도 2개 이상 접합한 제2 스택 어셈블리(500)에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
또한, 도 6은 본 발명의 제6 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체의 개략적인 사시도이다.
본 발명의 제6 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는 하기에서 특히 설명하는 사항 이외에는 상기 제5 실시예와 동일하므로, 그 상세한 설명은 생략하기로 한다.
본 발명의 제6 실시예에 따른 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체는, 상기 제2 단위 촉매 담체부(400)를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제5, 제6 단위 스택(600, 610);
상기 제5 단위 스택(600)의 일단부와 상기 제5 단위 스택(600)과 인접한 상기 제6 단위 스택(610)의 일단부 사이를 막아주기 위한 제3 차단부재(620); 및
상기 제6 단위 스택(610)의 타단부와 상기 제6 단위 스택(610)과 인접한 상기 제5 단위 스택(600)의 타단부 사이를 막아주기 위한 제4 차단부재(630)를 포함할 수 있다.
상기 제3 차단부재(620)와 상기 제4 차단부재(630)는 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)의 단부면 사이를 지그재그로 막아줄 수 있도록 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)의 일단부와 타단부에 엇갈리게 배치될 수 있다.
또한, 상기 제3 차단부재(620)와 상기 제4 차단부재(630)는 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)의 단부면 사이를 효과적으로 막아줄 수 있도록 플레이트로 이루어질 수 있다.
상기 제3 차단부재(620)는 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)의 일단부와 접착제 등에 의하여 접합될 수 있다.
또한, 상기 제4 차단부재(630)는 상기 제6 단위 스택(610)과 상기 제5 단위 스택(600)의 타단부와 접착제 등에 의하여 접합될 수 있다.
이와 같이 구성되는 본 발명의 제6 실시예에 따른 선택적 촉맨 환원용 촉매 담체는 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)에 의하여 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가될 수 있으므로, 선택적 촉맨 환원용 촉매 담체의 부피와 무게를 최소화 할 수 있다.
또한, 예컨대, 선박용 엔진, 화력 발전소 엔진 등의 내연기관의 배기가스가 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610) 사이로 배출되면, 상기 배기가스는 상기 제3, 제4 차단부재(620, 630)에 의하여 도 6에 화살표로 도시된 바와 같이 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)쪽으로 분산되면서 상기 제5 단위 스택(600)과 상기 제6 단위 스택(610)을 통과하게 되므로, 내연기관의 배기가스에 포함되어 있는 NH3와 NOx가 반응할 수 있는 단위 부피당 반응 표면적이 증가되므로, NOx를 최대한 감소시킬 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (24)

  1. 선택적 촉매 환원용 촉매가 코팅되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체로서,
    일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼(metal foam); 및 상기 제1 금속폼과 상기 제2 금속폼의 사이에 배치되는 비평면형의 제3 금속폼을 포함하는 제1 단위 촉매 담체부를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  2. 제1항에 있어서,
    상기 제1, 제2, 제3 금속폼은 50㎛ 내지 6000㎛ 크기의 셀(Cell)을 가지는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  3. 제2항에 있어서,
    상기 제1, 제2, 제3 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 어느 하나 이상의 분말이 코팅되는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  4. 제3항에 있어서,
    상기 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절되는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  5. 제3항에 있어서,
    상기 제3 금속폼의 형상은 파(wave) 형상 또는 구불구불한(serpentine) 형상으로 형성되는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  6. 제5항에 있어서,
    상기 제3 금속폼은 그 최고점을 형성하는 피크부와, 그 최하점을 형성하고 상기 피크부의 반대쪽에 위치하는 밸리부와, 상기 피크부와 상기 밸리부를 일정한 각도로 경사지게 연결하는 연결부를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 제1 단위 촉매 담체부를 적어도 2개 이상 적층한 제1 단위 스택을 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  8. 제7항에 있어서,
    상기 제1 단위 스택을 적어도 2개 이상 접합한 제1 스택 어셈블리를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  9. 제8항에 있어서,
    상기 제1 단위 스택간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어지는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  10. 제9항에 있어서,
    상기 슬러리는 액체, 파우더와 바인더(binder)를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  11. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 제1 단위 촉매 담체부를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제2, 제3 단위 스택;
    상기 제2 단위 스택의 일단부와 상기 제2 단위 스택과 인접한 상기 제3 단위 스택의 일단부 사이를 막아주기 위한 제1 차단부재; 및
    상기 제3 단위 스택의 타단부와 상기 제3 단위 스택과 인접한 상기 제2 단위 스택의 타단부 사이를 막아주기 위한 제2 차단부재
    를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  12. 제11항에 있어서,
    상기 제1 차단부재는 상기 제2 단위 스택과 상기 제3 단위 스택의 일단부와 접착제에 의하여 접합되고,
    상기 제2 차단부재는 상기 제3 단위 스택과 상기 제2 단위 스택의 타단부와 접착제에 의하여 접합되는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  13. 제3항에 있어서,
    상기 제1, 제2, 제3 금속폼은 3차원 반응 구조를 가짐으로써 반응 면적이 증대되어 촉매의 부피를 줄일 수 있는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  14. 선택적 촉매 환원용 촉매가 코팅되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체로서,
    일정한 크기와 형상을 갖고, 일정한 간격으로 배치되는 평면형의 제1, 제2 금속폼; 및 일정한 크기와 형상을 갖고, 상기 제1 금속폼과 상기 제2 금속폼 사이에 배치되는 적어도 하나 이상의 평면형의 제4 금속폼을 포함하는 제2 단위 촉매 담체부
    를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  15. 제14항에 있어서,
    상기 제1, 제2, 제4 금속폼은 50㎛ 내지 6000㎛ 크기의 셀을 가지는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  16. 제15항에 있어서,
    상기 제1, 제2, 제4 금속폼에는 선택적 환원 촉매 분말로서 일정한 양의 V2O5, WO3, SbO3, MoO3, TiO2 분말 중 적어도 어느 하나 이상의 분말이 코팅되는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  17. 제16항에 있어서,
    상기 V2O5 와 WO3의 함량은 1wt%~20wt%까지 조절되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  18. 제14항 내지 제17항 중 어느 한 항에 있어서,
    상기 제2 단위 촉매 담체부를 적어도 2개 이상 적층한 제4 단위 스택을 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  19. 제18항에 있어서,
    상기 제4 단위 스택을 적어도 2개 이상 접합한 제2 스택 어셈블리를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  20. 제19항에 있어서,
    상기 제4 단위 스택간의 접합은 그 접합하는 일면에 슬러리를 코팅하여 이루어지는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  21. 제20항에 있어서,
    상기 슬러리는 액체, 파우더와 바인더(binder)를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  22. 제14항 내지 제17항 중 어느 한 항에 있어서,
    상기 제2 단위 촉매 담체부를 적어도 2개 이상 적층하고, 일정한 간격을 두고 배치되는 제5, 제6 단위 스택;
    상기 제5 단위 스택의 일단부와 상기 제5 단위 스택과 인접한 상기 제6 단위 스택의 일단부 사이를 막아주기 위한 제3 차단부재; 및
    상기 제6 단위 스택의 타단부와 상기 제6 단위 스택과 인접한 상기 제5 단위 스택의 타단부 사이를 막아주기 위한 제4 차단부재
    를 포함하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  23. 제22항에 있어서,
    상기 제3 차단부재는 상기 제5 단위 스택과 상기 제6 단위 스택의 일단부와 접착제에 의하여 접합되고,
    상기 제4 차단부재는 상기 제6 단위 스택과 상기 제5 단위 스택의 타단부와 접착제에 의하여 접합되는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
  24. 제16항에 있어서,
    상기 제1, 제2, 제4 금속폼은 3차원 반응 구조를 가짐으로써 반응 면적이 증대되어 촉매의 부피를 줄일 수 있는 것을 특징으로 하는 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체.
PCT/KR2012/002493 2012-03-22 2012-04-03 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체 WO2013141433A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0029190 2012-03-22
KR1020120029190A KR101353447B1 (ko) 2012-03-22 2012-03-22 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체

Publications (1)

Publication Number Publication Date
WO2013141433A1 true WO2013141433A1 (ko) 2013-09-26

Family

ID=49222868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002493 WO2013141433A1 (ko) 2012-03-22 2012-04-03 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체

Country Status (2)

Country Link
KR (1) KR101353447B1 (ko)
WO (1) WO2013141433A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614139B1 (ko) * 2014-08-07 2016-04-20 주식회사 알란텀 금속폼 스택 및 이의 제조방법
JP7035780B2 (ja) * 2018-05-08 2022-03-15 トヨタ自動車株式会社 触媒構造体
KR102498427B1 (ko) * 2021-02-01 2023-02-13 주식회사 비에이치피 메탈폼을 이용한 반도체 제조공정의 유해가스 제거용 촉매 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617289A (en) * 1984-08-08 1986-10-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying diesel engine exhaust gases
US20070041881A1 (en) * 2005-08-05 2007-02-22 Voss Kenneth E Diesel exhaust article and catalyst compositions therefor
KR20080048958A (ko) * 2006-11-29 2008-06-03 아이씨티 코., 엘티디. 산화촉매 및 그것을 이용한 배기가스 정화 시스템
US20110236279A1 (en) * 1999-08-17 2011-09-29 Battelle Memorial Institute Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610720B2 (ja) * 1997-03-03 2005-01-19 日産自動車株式会社 メタル触媒担体の構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617289A (en) * 1984-08-08 1986-10-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying diesel engine exhaust gases
US20110236279A1 (en) * 1999-08-17 2011-09-29 Battelle Memorial Institute Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions
US20070041881A1 (en) * 2005-08-05 2007-02-22 Voss Kenneth E Diesel exhaust article and catalyst compositions therefor
KR20080048958A (ko) * 2006-11-29 2008-06-03 아이씨티 코., 엘티디. 산화촉매 및 그것을 이용한 배기가스 정화 시스템

Also Published As

Publication number Publication date
KR101353447B1 (ko) 2014-01-21
KR20130107433A (ko) 2013-10-02

Similar Documents

Publication Publication Date Title
US11840950B2 (en) Vehicle exhaust gas purification device, corresponding production method, exhaust line and vehicle
WO2013141433A1 (ko) 3차원 반응 구조를 갖는 선택적 촉매 환원용 촉매 담체
EP1524031B1 (en) Catalytic converter with honeycomb structure
US20020068025A1 (en) Catalytic converter
EP1638687A1 (en) Mounting mat for mounting monolith in a pollution control device
EP0687806B1 (en) A metal carrier for a catalytic converter
EP3078410B1 (en) Method for producing an electrically heated catalyst device
JP4166832B2 (ja) 特に排気ガス触媒用の断熱体付きハニカム体
EP1247556A1 (en) Triangular cell honeycomb structure
US8668876B2 (en) Configuration having two interconnected exhaust gas treatment devices
US20110033343A1 (en) Variable basis weight mounting mat or pre-form and exhaust gas treatment device
WO2011068376A2 (ko) 배기가스 여과 장치
WO2013147465A1 (ko) 선박 배가스 정화용 금속필터와 그 제조방법
US8574335B2 (en) Holding sealing material, exhaust gas purifying apparatus, and method of manufacturing exhaust gas purifying apparatus
JP5242178B2 (ja) スペーサー付ハニカムセグメント、及びハニカム構造体
CN101981289B (zh) 蜂窝体和用于制造钎焊蜂窝体的方法
US7713492B2 (en) Apparatus having a fiber mat for mounting a honeycomb body in an exhaust pipe for treating exhaust gases from a mobile internal combustion engine and vehicle having the apparatus
US20040191132A1 (en) End cone assembly, exhaust emission control device and method of making thereof
EP2479399B1 (en) Method of manufacturing exhaust gas purifying apparatus and exhaust gas purifying apparatus
WO2014054824A1 (ko) 배압 증가가 없는 3차원 구조의 반응점을 가지는 금속폼 촉매 담체
KR101435570B1 (ko) 금속 폼 히터를 이용한 배기가스 여과 장치
JPH1193649A (ja) ヒータユニット
WO2017135714A1 (ko) 대용량 촉매 반응기용 촉매 담체 모듈
WO2013191318A1 (ko) 촉매 변환기용 금속폼 발열체 및 그 제조 방법
KR19980016362A (ko) 자동차의 배기가스정화용촉매

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871849

Country of ref document: EP

Kind code of ref document: A1