WO2014054083A1 - 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法 - Google Patents

半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2014054083A1
WO2014054083A1 PCT/JP2012/006437 JP2012006437W WO2014054083A1 WO 2014054083 A1 WO2014054083 A1 WO 2014054083A1 JP 2012006437 W JP2012006437 W JP 2012006437W WO 2014054083 A1 WO2014054083 A1 WO 2014054083A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor device
light emitting
receiving element
emitting element
Prior art date
Application number
PCT/JP2012/006437
Other languages
English (en)
French (fr)
Inventor
勝久 長谷川
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/006437 priority Critical patent/WO2014054083A1/ja
Publication of WO2014054083A1 publication Critical patent/WO2014054083A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate

Definitions

  • the present invention relates to a semiconductor device in which a light emitting element and a light receiving element are mounted on a common substrate, a proximity sensor provided with the semiconductor device, and a method for manufacturing the semiconductor device.
  • Patent Document 1 an optical device in which a light shielding member is disposed between a light emitting element and a light receiving element is known (see Patent Document 1).
  • This opto-device seals a substrate, a light emitting element and a light receiving element mounted on the substrate, a light emitting element and a light receiving element with a translucent resin, and a light transmitting element and a light receiving element facing the light emitting element.
  • a mold part including a receiving lens; a groove formed between the transmitting lens and the receiving lens in the mold part; and a light shielding member that is provided in the groove and shields light from the light receiving element. .
  • Light emitted from the light emitting element and traveling through the mold portion toward the light receiving element is shielded by a light shielding member provided in the groove. Accordingly, it is possible to prevent the light from flowing from the light emitting element to the light receiving element in the mold part without newly requiring a mold die or the like.
  • the present invention relates to a semiconductor device capable of effectively preventing light from sneaking from a light emitting element to a light receiving element while maintaining the freedom of arrangement of the light shielding wall and the ease of manufacture, and a proximity sensor including the semiconductor device.
  • An object is to provide a method for manufacturing a semiconductor device.
  • the semiconductor device of the present invention is a semiconductor device in which a light emitting element and a light receiving element are mounted on a common package substrate, and potting with a highly viscous resin is applied to the package substrate between the light emitting element and the light receiving element.
  • the light-shielding wall portion is formed and has a height exceeding the light-emitting element.
  • the light emitted from the light emitting element toward the light receiving element is reflected or absorbed by the light shielding wall formed between the light emitting element and the light receiving element, and does not reach the light receiving element as noise light.
  • the light shielding wall can be easily and freely formed by potting with a highly viscous resin, that is, a coating technique of a highly viscous fluid. Therefore, it is possible to effectively prevent the light (noise light) from wrapping around from the light emitting element to the light receiving element while maintaining the freedom of arrangement of the light shielding wall and the ease of manufacturing.
  • the light shielding wall has a height exceeding not only the light emitting element but also the light receiving element.
  • the “package substrate” is a concept including a lead frame.
  • the light shielding wall is disposed so as to surround at least one of the light emitting element and the light receiving element.
  • the emitted light of the light emitting element is appropriately reflected on the inner surface of the light shielding wall and radiated from the opening side. For this reason, the radiated light from a light emitting element has directivity, and does not reach a light receiving element as noise light.
  • the emitted light from the light emitting element toward the light receiving element is shielded by the light shielding wall and does not reach the light receiving element as noise light. Therefore, it is possible to effectively prevent light (noise light) from sneaking from the light emitting element to the light receiving element.
  • the light shielding wall portion covers the four peripheral portions of the light receiving element and the bonding wire connected to the light receiving element.
  • the light shielding wall portion can also serve as a sealing resin for sealing the light receiving element, and the molding or potting by the sealing resin can be omitted separately.
  • the light shielding wall portion has a light emitting side wall portion disposed so as to surround at least the light emitting element, and a reflection film is formed on the inner wall surface of the light emitting side wall portion.
  • the radiated light from the light emitting element can be efficiently reflected by the reflection film on the light shielding wall and radiated from the opening side. Therefore, it is possible to prevent light (noise light) from flowing from the light emitting element to the light receiving element, and to improve the extraction efficiency of the emitted light.
  • the light shielding wall portion has a light emitting side wall portion disposed so as to surround at least the light emitting element, and a light absorption film is formed on the inner wall surface of the light emitting side wall portion.
  • the light emitted from the light emitting element to the light shielding wall can be absorbed by the light absorption film, and only the light traveling forward can be emitted from the opening side. Therefore, it is possible to effectively prevent the light (noise light) from entering the light receiving element to the light receiving element.
  • the light shielding wall is disposed in an “S” shape so as to surround the light emitting element and the light receiving element.
  • the light shielding wall portion can be potted (coated) on the package substrate by so-called “one-stroke writing”.
  • one-stroke writing an overlapping part does not arise in a light shielding wall part, but it can prevent that an unevenness
  • resin sealing by potting even if there is a light shielding wall, the resin can be easily sealed without causing any trouble in the flow of the resin, and the film thickness of the sealing resin Can be made constant.
  • the light emitting element and the light receiving element are preferably sealed with a sealing resin, and the light shielding wall portion is preferably formed to be equal to or higher than the sealing resin.
  • the light that is reflected from the surface of the sealing resin (interface with the air) by the light shielding wall portion and that is directed to the light receiving element can also be shielded.
  • the wraparound of the light (noise light) from the light emitting element to the light receiving element can be prevented as much as possible.
  • the proximity sensor of the present invention includes the semiconductor device described above, and is characterized by sensing the relative approach of an object through a translucent panel body.
  • radiated light having directivity from the light emitting element is incident on the panel body at a deep incident angle. For this reason, reflection from the panel body is suppressed, and accordingly, noise light incident on the light receiving element based on this reflection can be reduced. Therefore, erroneous detection and the like can be prevented.
  • the panel body is mounted on the mobile terminal and the panel body is a touch panel of the mobile terminal.
  • the semiconductor device manufacturing method of the present invention is a semiconductor device manufacturing method described above, in which a light emitting element and a light receiving element are chip-mounted on a package substrate on which a wiring pattern is formed, and after the mounting process, light emission is performed.
  • Light bonding is performed after the bonding process for wire-bonding the element and the light-receiving element by wire bonding, the light-shielding wall part forming process for forming the light-shielding wall part by potting on the package substrate after the bonding process, and the light-shielding wall part forming process.
  • a potting step of potting the element and the light receiving element with a sealing resin is a semiconductor device manufacturing method described above, in which a light emitting element and a light receiving element are chip-mounted on a package substrate on which a wiring pattern is formed, and after the mounting process, light emission is performed.
  • Light bonding is performed after the bonding process for wire-bonding the element and the light-receiving element by wire bonding,
  • a light shielding wall forming step is added to the previous manufacturing process.
  • the light shielding wall can be easily formed by potting with a dispenser nozzle using a light-shielding highly viscous resin. Therefore, it is possible to effectively prevent the light from flowing from the light emitting element to the light receiving element while maintaining the freedom of arrangement of the light shielding wall and the ease of manufacturing.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment.
  • 1 is a plan view of a semiconductor device according to a first embodiment. It is sectional drawing of the semiconductor device which concerns on 2nd Embodiment. It is a top view of the semiconductor device concerning a 2nd embodiment. It is sectional drawing of the semiconductor device which concerns on 3rd Embodiment. It is a top view of the semiconductor device concerning a 3rd embodiment. It is sectional drawing of the semiconductor device which concerns on 4th Embodiment. It is a top view of the semiconductor device concerning a 4th embodiment. It is explanatory drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment.
  • This semiconductor device includes a light emitting element and a light receiving element, and is used as a proximity sensor.
  • this proximity sensor is mounted on a portable terminal (smart phone) and detects whether or not the user is talking. For this reason, in order to reliably receive the weak reflected light reflected from the human body, the light is prevented from wrapping around from the light emitting element to the light receiving element as much as possible.
  • FIG. 1 is a cross-sectional view when the semiconductor device according to the embodiment is mounted on a smartphone as a proximity sensor.
  • the smartphone 1 is provided with a touch panel 2 over the entire front surface thereof, and a receiver 4 is disposed inside the touch panel 2 so as to be mounted on a circuit board 3.
  • a proximity sensor 5 is disposed adjacent to the receiver 4 so as to be mounted on the circuit board 3.
  • the proximity sensor 5 of the embodiment is disposed in the gap between the touch panel 2 and the circuit board 3 and emits infrared rays (in the embodiment, near infrared rays) that serve as detection light via the touch panel 2.
  • infrared rays in the embodiment, near infrared rays
  • the infrared rays radiated from the proximity sensor 5 are reflected by the portion of the ear E, and a part of the infrared rays is reflected on the proximity sensor 5.
  • incident light infrared rays
  • incident light is photoelectrically converted and amplified, and output to a determination circuit (not shown) on the circuit board 3.
  • the amount of received light (current value) is compared with a threshold, and when the threshold is exceeded, the human body (ear E) is detected, that is, the call state is detected. Then, when a call state is detected, mode switching that disables the operation of the touch panel 2 is performed.
  • the proximity sensor 5 detects an extremely close target (ear E or the like), the light emission amount is suppressed to reduce power consumption, and the light reception amount is extremely small compared to the light emission amount. Must be detected reliably. Therefore, in the semiconductor device 10 of the present embodiment constituting the proximity sensor 5, noise light is reduced as much as possible in order to improve the S / N ratio.
  • FIG. 2 is a cross-sectional view of the semiconductor device 10A according to the first embodiment
  • FIG. 3 is a plan view thereof.
  • the semiconductor device 10A includes a package substrate 11 composed of a substrate frame and a lead frame (a substrate frame in the embodiment), a light emitting element 12 having a chip configuration mounted on the package substrate 11, and a light receiving element.
  • An element 13 and a translucent sealing resin 14 that seals the light emitting element 12 and the light receiving element 13 are provided.
  • a light shielding wall 15 is provided to shield the emitted light of the light emitting element 12 from reaching the light receiving element 13.
  • the package substrate 11 (substrate frame) is made of a glass epoxy or organic material substrate, and on both the front and back surfaces, a light emitting side wiring pattern 21 (electrodes and the like) on which the light emitting element 12 is mounted and conducted, and a light receiving element Light receiving side wiring patterns 22 (electrodes and the like) on which 13 is mounted and conducted are formed. That is, the light emitting element 12 is mounted on the die pad 21 a of the light emitting side wiring pattern 21, and the light receiving element 13 is mounted on the die pad 22 a of the light receiving side wiring pattern 22.
  • the light emitting element 12 is composed of a light emitting diode chip that emits infrared rays (near infrared rays) from the light emitting surfaces at both ends.
  • the electrode pad 12a of the light emitting element 12 and the land 21b of the light emitting side wiring pattern 21 are connected by a bonding wire 24 (gold wire, copper wire, copper wire covered with palladium, aluminum wire, etc.).
  • the light emitting element 12 may have an upper surface as a light emitting surface.
  • the light receiving element 13 is composed of a photodiode chip mounted on the package substrate 11 with the upper surface serving as a light receiving surface.
  • the electrode pad 13a of the light receiving element 13 and the land 22b of the light receiving side wiring pattern 22 are connected by a bonding wire 26 (gold wire, copper wire, copper wire covered with palladium, aluminum wire, etc.). Note that a phototransistor may be used instead of the photodiode.
  • the light shielding wall 15 is made of a highly viscous resin that shields infrared rays and is applied onto the package substrate 11 by potting.
  • a thixotropic index of about 0.7 to 1.4 is preferably used.
  • the light shielding wall 15 is applied on the package substrate 11 so as to be higher than the light emitting element 12 and the light receiving element 13 while maintaining a semi-elliptical cross-sectional shape.
  • the light shielding wall 15 shields radiated light from the light emitting element 12 toward the light receiving element 13, and is provided between the light emitting element 12 and the light receiving element 13, and the light emitting element 12 and the light receiving element. 13 are provided so as to surround each. That is, the light shielding wall 15 includes a partition wall portion 31 disposed between the light emitting element 12 and the light receiving element 13, a light emitting side wall portion 32 provided so as to surround the light emitting element 12 including the partition wall portion 31, and the partition wall portion. And a light receiving side wall 33 provided so as to surround the light receiving element 13.
  • the light shielding wall 15 is applied in a substantially “S” shape in plan view, and the partition wall 31, the light emitting side wall 32, and the light receiving side wall 33 are integrally formed.
  • the application application of the light shielding wall 15
  • the application is performed using a dispenser, the application is performed in the “S” shape in the manner of “one-stroke writing”, so that the coating start portion and the coating are applied.
  • the joint with the end of wearing is prevented from occurring. Accordingly, there is no unevenness at the top of the light shielding wall 15, and there is no problem that a part of the light shielding wall 15 interferes with the touch panel 2.
  • the light shielding wall portion 15 does not become an obstacle to the flow of the resin, the resin sealing can be easily performed, and the film thickness of the sealing resin 14 is constant. Can be.
  • the light emitting side wall portion 32 surrounding the light emitting element 12 and the light receiving side wall portion 33 surrounding the light receiving element 13 may be formed separately.
  • the partition wall 31 has a double wall configuration.
  • the light receiving side wall 33 is coated so as to cover the four peripheral edges (outside the light receiving surface) of the light receiving element 13 and the bonding wire 26 of the light receiving element 13.
  • the light emitting side wall portion 32 is coated so as to be close to the light emitting element 12 and cover the bonding wire 24 of the light emitting element 12 as long as radiation is not inhibited.
  • the light shielding element 15, the bonding wire 24, the light receiving element 13 and the bonding wire 26 can be firmly held on the package substrate 11 by the light shielding wall 15, and therefore the sealing resin 14 is omitted. be able to. That is, the light shielding wall 15 can also serve as the sealing resin 14.
  • the light shielding wall portion 15 of the first embodiment is applied so as to cover the dicing line L.
  • the portion of the light shielding wall 15 that covers the dicing line L is coated on the dicing line L so as to also serve as a part of the light shielding wall 15 in the adjacent semiconductor device 10A. Therefore, the light shielding wall 15 of this portion has a cross-sectional shape obtained by further dividing the semi-elliptical shape into two.
  • a reflective film is formed on the inner wall surface of the light emitting side wall portion 32.
  • a light absorption film may be formed on the inner wall surface of the light emitting side wall portion 32. If it does in this way, only the light which goes ahead among the radiated light from the light emitting element 12 can be radiated
  • the sealing resin 14 is made of an epoxy resin or silicon resin that is transparent to infrared rays, and covers the light emitting element 12, the light receiving element 13, and the bonding wires 24 and 26. (Sealing).
  • the sealing resin 14 is potted so as to be equal to or slightly lower than the height of the light shielding wall 15. That is, the light shielding wall 15 is formed to be equal to or higher than the sealing resin 14 (in the embodiment, the top of the light shielding wall 15 slightly protrudes from the sealing resin 14).
  • the sealing resin 14 the light which goes to the light receiving element 13 from the light emitting element 12 is completely light-shielded.
  • the sealing resin 14 is formed by potting using a low-viscosity resin (details will be described later). That is, the sealing resin 14 is formed by thermosetting the liquid sealing resin 14 that is poured so as to cover the light emitting element 12 and the light receiving element 13.
  • the light emitted from the light emitting element 12 toward the light receiving element 13 can be shielded by the partition wall 31 disposed between the light emitting element 12 and the light receiving element 13. Therefore, it is possible to surely prevent the light (noise light) from entering from the light emitting element 12 to the light receiving element 13.
  • the light emission side wall portion 32 including the partition wall portion 31 not only reliably shields light but also can efficiently extract the emitted light (detection light) from the light emitting element 12 forward.
  • the light receiving side wall portion 33 including the partition wall portion 31 not only reliably shields light but also allows the reflected light from the object to be efficiently incident on the light receiving element 13.
  • the potting resin constituting the light shielding wall 15 is not restricted by the coating position unless it covers the light emitting surface of the light emitting element 12 and the light receiving surface of the light receiving element 13. Thereby, the freedom degree of arrangement
  • positioning of the light-shielding wall part 15 can be made high, and the enlargement of 10 A of semiconductor devices can be suppressed.
  • the light shielding wall portion 15 is composed of only the light receiving side wall portion 33.
  • the light shielding wall portion 15 includes the light receiving side wall portion 33 that includes the partition wall portion 31 and surrounds the light receiving element 13.
  • the light receiving side wall 33 is applied in a substantially “C” shape in plan view so that a seam between the application start portion and the application end portion does not occur. Yes. Further, as shown in the modification of FIG. 5B, the light receiving side wall 33 may be formed in a rectangular shape.
  • the light receiving side wall portion 33 including the partition wall portion 31 shields the radiated light directed to the light receiving element 13 out of the radiated light of the light emitting element 12, and within the sealing resin 14 It is not received by the light receiving element 13 as noise light. Further, the miniaturization of the semiconductor device 10B can be maintained.
  • the light shielding wall portion 15 is composed of only the light emitting side wall portion 32. That is, the light shielding wall portion 15 includes the light emitting side wall portion 32 that includes the partition wall portion 31 and surrounds the light emitting element 12.
  • the light emitting side wall portion 32 is applied in a substantially “C” shape in plan view, so that a joint between the application start portion and the application end portion does not occur. ing. Moreover, as shown in the modification of FIG.7 (b), you may form the light emission side wall part 32 in a rectangular shape.
  • the light emitted from the light emitting element 12 toward the light receiving element 13 is shielded by the light emitting side wall part 32 including the partition wall part 31. It is not received by the light receiving element 13 as noise light. Further, the miniaturization of the semiconductor device 10B can be maintained.
  • the light shielding wall portion 15 is composed of only the partition wall portion 31. That is, the light shielding wall portion 15 is constituted by a linear partition wall portion 31 applied to the package substrate 11 between the light emitting element 12 and the light receiving element 13. In this case, as shown in FIG. 9, the partition wall 31 extends linearly between the light emitting element 12 and the light receiving element 13 so as to cross the package substrate 11.
  • the partition wall 31 blocks the light emitted from the light emitting element 12 toward the light receiving element 13, and the light receiving element as noise light in the sealing resin 14. 13 does not receive light. Further, the miniaturization of the semiconductor device 10B can be maintained.
  • the manufacturing method of the semiconductor device 10 (10A) of the embodiment will be described by taking the first embodiment as an example.
  • the light emitting element 12 and the light receiving element 13 are mounted on the package substrate 11 on which the wiring patterns 21 and 22 are formed by a chip mounting process (FIG. 5A).
  • a wire bonding process for bonding the light receiving element 13 to the light receiving element 13 (FIG. 2B) and a light shielding wall forming process for forming the light shielding wall 15 by potting on the package substrate 11 after the bonding process (the same figure).
  • C) and a potting step (FIG. 4D) for potting the light emitting element 12 and the light receiving element 13 with the sealing resin 14 after the light shielding wall portion forming step.
  • this manufacturing method is a so-called wafer level package in the resin sealing, it further includes a dicing step (FIG. 5E) for dividing the wafer into individual semiconductor devices 10 after the potting step. Yes.
  • a known die bonding apparatus is used to chip-mount the light emitting element 12 and the light receiving element 13 via an adhesive such as silver paste.
  • the bonding process of FIG. 10B the light emitting element 12 and the light receiving element 13 are wire-bonded using a known bonding apparatus, for example, by a ball bonding method.
  • a light-shielding high-viscosity resin is potted in an “S” shape so as to surround the light emitting element 12 and the light receiving element 13 using a dispenser. Form.
  • the light shielding wall 15 is potted, it is cured by oven heating or the like.
  • the sealing resin 14 is potted over the entire upper surface of the package substrate 11 using a dispenser, and then the potted sealing resin 14 is cured by oven heating or the like.
  • a known dicer is used to divide a wafer in which the semiconductor devices 10A are formed in a matrix shape into a matrix by a dicing blade, and individual semiconductor devices 10A are cut out.
  • the semiconductor device 10 (10A) of the embodiment can be easily manufactured only by adding the light shielding wall forming step to the known manufacturing method. Moreover, it is not necessary to enlarge the semiconductor device 10 when providing the light shielding wall 15. Therefore, the semiconductor device 10 (10A) according to the embodiment having good detection sensitivity can be easily manufactured.
  • the semiconductor device of the present invention can be applied as an optical device to applications other than the proximity sensor of a smartphone (mobile terminal).
  • it is useful as an optical device provided over a translucent panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 遮光壁部の配置の自由度と製造の容易さとを維持しつつ、発光素子から受光素子への光の回り込みを有効に防止することができる半導体デバイス等を提供する。 発光素子12と受光素子13とを共通のパッケージ基板11上に実装して成る半導体デバイス10であって、発光素子12と受光素子13との間に、パッケージ基板11への高粘性樹脂によるポッティングにより形成され、発光素子12および受光素子13を越える高さの遮光壁部15を備えたものである。

Description

半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法
 本発明は、発光素子および受光素子を共通の基板部に実装して成る半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法に関するものである。
 従来、この種の半導体デバイスとして、発光素子と受光素子との間に遮光部材を配置したオプトデバイスが知られている(特許文献1参照)。
 このオプトデバイスは、基板と、基板上に搭載した発光素子および受光素子と、発光素子および受光素子を透光性樹脂で封止すると共に、発光素子に対峙する発信用レンズおよび受光素子に対峙する受信用レンズを含むモールド部と、モールド部における発信用レンズと受信用レンズとの間に形成された溝と、溝に設けられ、受光素子からの光を遮光する遮光部材と、を備えている。
 発光素子から放射されてモールド部内を受光素子に向かって進む光は、溝に設けられた遮光部材により遮光される。これにより、新たにモールド金型等を必要とすることなく、モールド部内における発光素子から受光素子への光の回り込みを防止することができる。
特開2009-10157号公報
 このような従来のオプトデバイス(半導体デバイス)では、遮光部材を設けるために、モールド部に溝を形成する工程と、この溝に遮光部材を充填、或いは嵌合接着する工程と、が必要となり、製造工程における工数が増加する問題があった。また、溝を形成する関係から、基板上における遮光部材の配置が制約を受ける問題があった。
 本発明は、遮光壁部の配置の自由度と製造の容易さとを維持しつつ、発光素子から受光素子への光の回り込みを有効に防止することができる半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法を提供することを課題としている。
 本発明の半導体デバイスは、発光素子と受光素子とを共通のパッケージ基板上に実装して成る半導体デバイスであって、発光素子と受光素子との間に、パッケージ基板への高粘性樹脂によるポッティングにより形成され、発光素子を越える高さの遮光壁部を備えていることを特徴とする。
 この構成によれば、発光素子と受光素子との間に形成した遮光壁部により、発光素子から受光素子に向う放射光は反射或いは吸収され、ノイズ光として受光素子に達することがない。また、遮光壁部は、高粘性樹脂によるポッティング、すなわち高粘性流体の塗布技術により、簡単にかつ自由度をもって形成することができる。したがって、遮光壁部の配置の自由度と製造の容易さとを維持しつつ、発光素子から受光素子への光(ノイズ光)の回り込みを有効に防止することができる。この場合、遮光壁部は、発光素子のみならず、受光素子をも越える高さを有することが好ましい。なお、「パッケージ基板」は、リードフレームを含む概念である。
 この場合、遮光壁部は、発光素子および受光素子の少なくとも一方を囲むように配設されていることが好ましい。
 この構成によれば、例えば発光素子が遮光壁部に覆われた構成では、発光素子の放射光は、遮光壁部の内面で適宜反射しその開口部側から放射される。このため、発光素子からの放射光は、指向性を持つことになり、ノイズ光として受光素子に達することがない。一方、受光素子が遮光壁部に覆われた構成では、受光素子に向かう発光素子からの放射光は、遮光壁部により遮光され、ノイズ光として受光素子に達することがない。したがって、発光素子から受光素子への光(ノイズ光)の回り込みを、有効に防止することができる。
 この場合、遮光壁部は、受光素子の四周縁部および受光素子に接続されるボンディングワイヤーを覆っていることが好ましい。
 この構成によれば、受光素子の受光面を露出させた状態で、受光素子の四周縁部および受光素子に接続されるボンディングワイヤーを覆う(部分的に封止)ことができる。これにより、遮光壁部に受光素子を封止する封止樹脂を兼ねさせることができ、別途、封止樹脂のよるモールド或いはポッティングを省略することができる。
 また、遮光壁部は、少なくとも発光素子を囲むように配設した発光側壁部を有し、発光側壁部の内壁面には、反射膜が形成されていることが好ましい。
 この構成によれば、発光素子からの放射光を、遮光壁部の反射膜で効率良く反射しその開口部側から放射させることができる。したがつて、発光素子から受光素子への光(ノイズ光)の回り込みを防止することができると共に、放射光の取出し効率を向上させることができる。
 同様に、遮光壁部は、少なくとも発光素子を囲むように配設した発光側壁部を有し、発光側壁部の内壁面には、光吸収膜が形成されていることが好ましい。
 この構成によれば、発光素子から遮光壁部に放射される光を、その光吸収膜で吸収し、前方に向かう光のみをその開口部側から放射させることができる。したがつて、発光素子から受光素子への光(ノイズ光)の回り込みを有効に防止することができる。
 さらに、遮光壁部は、発光素子および受光素子を囲むように「S」字状に配設されていることが好ましい。
 この構成によれば、パッケージ基板に対し、いわゆる「一筆書き」で遮光壁部をポッティング(塗着)することができる。これにより、遮光壁部に重なり部分が生ずることがなく、遮光壁部の頂部に凹凸が生じるのを防止することができる。また、ポッティングにより樹脂封止を行う場合には、遮光壁部があっても、樹脂の流れ込みに支障を生ずることがなく、樹脂封止を容易に行うことができると共に、封止樹脂の膜厚を一定にすることができる。
 一方、発光素子および受光素子は、封止樹脂により封止され、遮光壁部は、封止樹脂と同等或いは高く形成されていることが好ましい。
 この構成によれば、遮光壁部により、封止樹脂の表面(空気との界面)から反射して、受光素子に向う光も遮光することができる。これにより、発光素子から受光素子への光(ノイズ光)の回り込みを、極力防止することができる。
 本発明の近接センサーは、上記した半導体デバイスを備え、透光性のパネル体を介して、対象物の相対的な接近をセンシングすることを特徴とする。
 この構成によれば、発光素子からの指向性を持った放射光は、パネル体に対し深い入射角で入射する。このため、パネル体からの反射が抑制され、その分、この反射に基いて受光素子に入射するノイズ光を少なくすることができる。したがって、誤検出等を防止することができる。
 この場合、携帯端末に搭載され、パネル体が、携帯端末のタッチパネルであることが好ましい。
 この構成によれば、発光素子から受光素子への光(ノイズ光)の回り込みを防止できるため、人体を対象物とするセンシングを良好に行うことができる。
 本発明の半導体デバイスの製造方法は、上記した半導体デバイスの製造方法であって、配線パターンを形成したパッケージ基板に、発光素子および受光素子をチップ・マウントするマウント工程と、マウント工程の後、発光素子をワイヤーボンディングすると共に、受光素子をワイヤーボンディングするボンディング工程と、ボンディング工程の後、パッケージ基板へのポッティングにより遮光壁部を形成する遮光壁部形成工程と、遮光壁部形成工程の後、発光素子および受光素子を、封止樹脂によりポッティングするポッティング工程と、を備えたことを特徴とする。
 この構成によれば、従前の製造工程に遮光壁部形成工程が追加された構成となる。遮光壁部形成工程においては、遮光性の高粘性樹脂を用い、ディスペンサノズルによるポッティングにより、遮光壁部を簡単に形成することができる。したがって、遮光壁部の配置の自由度と製造の容易さとを維持しつつ、発光素子から受光素子への光の回り込みを有効に防止することができる。
実施形態に係る半導体デバイスを、近接センサーとして携帯端末に搭載した状態の断面図である。 第1実施形態に係る半導体デバイスの断面図である。 第1実施形態に係る半導体デバイスの平面図である。 第2実施形態に係る半導体デバイスの断面図である。 第2実施形態に係る半導体デバイスの平面図である。 第3実施形態に係る半導体デバイスの断面図である。 第3実施形態に係る半導体デバイスの平面図である。 第4実施形態に係る半導体デバイスの断面図である。 第4実施形態に係る半導体デバイスの平面図である。 実施形態に係る半導体デバイスの製造方法を示す説明図である。
 以下、添付の図面を参照して、本発明の一実施形態に係る半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法について説明する。この半導体デバイスは、発光素子と受光素子とを備えており、近接センサーとして用いられる。例えば、この近接センサーは、携帯端末(スマートフォン)に搭載され、使用者が通話中であるか否かを検出する。このため、人体から反射した微弱な反射光を確実に受光すべく、発光素子から受光素子への光の回り込みを極力防止する構成になっている。
 図1は、実施形態に係る半導体デバイスを、近接センサーとしてスマートフォンに搭載した場合の断面図である。同図に示すように、スマートフォン1には、その前面全域にタッチパネル2が設けられており、タッチパネル2の内側には、回路基板3に実装するようにして、レシーバー4が配設されている。また、レシーバー4に隣接して、回路基板3に実装するようにして、近接センサー5が配設されている。
 すなわち、実施形態の近接センサー5は、タッチパネル2と回路基板3との間隙に配設され、タッチパネル2を介して検出光となる赤外線(実施形態のものは、近赤外線)を放射する。スマートフォン1の使用者が、通話状態に移行すべく、耳Eをレシーバー4に近づけると、近接センサー5から放射された赤外線が、耳Eの部分等で反射しその一部が、近接センサー5に入射する。近接センサー5では、入射した光(赤外線)を光―電変換し増幅して、回路基板3の判定回路(図示省略)に出力する。判定回路では、受光量(電流値)が閾値と比較され、閾値を越えることで人体(耳E)を検出、すなわち通話状態を検出する。そして、通話状態を検出したら、タッチパネル2の操作を無効とするモード切替えを実施する。
 このように、実施形態の近接センサー5は、極めて近い対象物(耳E等)を検出するものであり、消費電力を抑えるべく発光量が抑えられ、且つ発光量に比して極めて少ない受光量を確実に検出する必要がある。そこで、近接センサー5を構成する本実施形態の半導体デバイス10では、S/N比を向上させるべく、ノイズ光を極力少なくなるようにしている。
 図2は、第1実施形態に係る半導体デバイス10Aの断面図であり、図3は、その平面図である。両図に示すように、この半導体デバイス10Aは、基板フレームやリードフレーム(実施形態のものは、基板フレーム)から成るパッケージ基板11と、パッケージ基板11上に実装したチップ構成の発光素子12および受光素子13と、発光素子12および受光素子13を封止する透光性の封止樹脂14と、を備えている。また、パッケージ基板11上には、発光素子12の放射光が受光素子13に達しないように遮光する遮光壁部15が設けられている。
 パッケージ基板11(基板フレーム)は、ガラスエポキシや有機材料の基板で構成されており、表裏両面には、発光素子12がマウントされ且つ導通される発光側配線パターン21(電極等)、および受光素子13がマウントされ且つ導通される受光側配線パターン22(電極等)が、それぞれ形成されている。すなわち、発光素子12は、発光側配線パターン21のダイパッド21aの部分にマウントされ、受光素子13は、受光側配線パターン22のダイパッド22aの部分にマウントされている。
 発光素子12は、両小口端の発光面から赤外線(近赤外線)を放射する発光ダイオードのチップで構成されている。そして、発光素子12の電極パッド12aと、発光側配線パターン21のランド21bとは、ボンディングワイヤー24(金線、銅線、パラジューム被覆した銅線、アルミニウム線等)で接続されている。なお、発光素子12は、上面を発光面とするものであってもよい。
 受光素子13は、上面を受光面としてパッケージ基板11にマウントされたフォトダイオードのチップで構成されている。そして、受光素子13の電極パッド13aと、受光側配線パターン22のランド22bとは、ボンディングワイヤー26(金線、銅線、パラジューム被覆した銅線、アルミニウム線等)で接続されている。なお、フォトダイオードに代えて、フォトトランジスタを用いてもよい。
 遮光壁部15は、赤外線を遮光する高粘性の樹脂で構成され、ポッティングにより、パッケージ基板11上に塗着されている。高粘性樹脂としての遮光壁部15は、チクソ性の指標で0.7~1.4程度のものを用いることが好ましい。これにより、遮光壁部15は、半楕円形の断面形状を維持した状態で、発光素子12や受光素子13より高くなるように、パッケージ基板11上に塗着されている。
 上述のように、遮光壁部15は、発光素子12から受光素子13に向かう放射光を遮光するものであり、発光素子12と受光素子13との間に設けられると共に、発光素子12および受光素子13をそれぞれ囲むように設けられている。すなわち、遮光壁部15は、発光素子12と受光素子13との間に配設した隔壁部31と、隔壁部31を含んで発光素子12を囲むように設けた発光側壁部32と、隔壁部31を含んで受光素子13を囲むように設けた受光側壁部33と、で構成されている。
 図3(a)に示すように、遮光壁部15は、平面視略「S」字状に塗着され、隔壁部31、発光側壁部32および受光側壁部33が一体に形成されている。詳細は後述するが、遮光壁部15の塗着(塗布)は、ディスペンサを用いて行うため、「S」字状に「一筆書き」の要領で塗着することで、塗着開始部と塗着終了部との継ぎ目を生じないようにしている。これにより、遮光壁部15の頂部に凹凸が生ずることがなく、遮光壁部15の一部が、タッチパネル2に干渉する等の不具合が生ずることがない。また、後述する封止樹脂14のポッティング工程において、遮光壁部15が樹脂の流れ込みの障害となることがなく、樹脂封止を容易に行うことができると共に、封止樹脂14の膜厚を一定にすることができる。
 もっとも、図3(b)の変形例に示すように、発光素子12を囲む発光側壁部32と、受光素子13を囲む受光側壁部33と、を別々に形成してもよい。この場合には、隔壁部31が二重壁の構成となる。
 また、図3(c)の変形例では、受光側壁部33が、受光素子13の四周縁部(受光面の外側)および受光素子13のボンディングワイヤー26を覆うように、塗着されている。同様に、発光側壁部32が、放射を阻害しない限りにおいて、発光素子12に近接し且つ発光素子12のボンディングワイヤー24を覆うように、塗着されている。この場合には、遮光壁部15により、発光素子12、そのボンディングワイヤー24、受光素子13およびそのボンディングワイヤー26を、パッケージ基板11に強固に保持することができるため、封止樹脂14を省略することができる。すなわち、遮光壁部15に封止樹脂14を兼ねさせることができる。
 一方、第1実施形態の遮光壁部15では、その一部がダイシングラインLにかかるように塗着されている。遮光壁部15のダイシングラインLにかかる部分は、隣接する半導体デバイス10Aにおける遮光壁部15の一部を兼ねさせるべく、ダイシングラインL上に塗着されている。したがって、この部分の遮光壁部15は、半楕円形を更に2分割した断面形状となる。
 また、特に図示しないが、発光側壁部32の内壁面に、反射膜を形成することが好ましい。このようにすれば、発光素子12からの放射光が、反射膜で効率良く反射して放射されるため、放射光の取出し効率を向上させることができる。
 また逆に、発光側壁部32の内壁面に、光吸収膜を形成するようにしてもよい。このようにすれば、光吸収膜により、発光素子12からの放射光のうち、前方に向かう光のみをその開口部側から放射させることができる。したがつて、発光素子から受光素子への光(ノイズ光)の回り込みを有効に防止することができる。
 図2に示すように、封止樹脂14は、赤外線に対し透明なエポキシ系樹脂やシリコン系樹脂等で構成されており、発光素子12、受光素子13および各ボンディングワイヤー24,26を覆っている(封止)。また、封止樹脂14は、遮光壁部15の高さと同等或いは僅かに低くなるようにポッティングされている。すなわち、遮光壁部15は、封止樹脂14と同等或いは高く形成されている(実施形態のものは、遮光壁部15の頂部が、封止樹脂14から僅かに突出している)。これにより、封止樹脂14内において、発光素子12から受光素子13に向かう光は、完全に遮光される。なお、言うまでもないが、封止樹脂14は、低粘性の樹脂を用いたポッティングにより形成されている(詳細は、後述する)。すなわち、封止樹脂14は、発光素子12や受光素子13を覆うように流し込んだ液体の封止樹脂14を、熱硬化させて形成されている。
 このような第1実施形態の半導体デバイス10Aでは、発光素子12と受光素子13との間に配設した隔壁部31により、発光素子12から受光素子13に向う放射光を遮光することができる。したがって、発光素子12から受光素子13への光(ノイズ光)の回り込みを確実に防止することができる。また、隔壁部31を含む発光側壁部32により、確実な遮光が行われるだけでなく、発光素子12からの放射光(検出光)を前方に効率良く取り出すことができる。さらに、隔壁部31を含む受光側壁部33により、確実な遮光が行われるだけでなく、対象物からの反射光を受光素子13に効率良く入射させることができる。
 一方、遮光壁部15を構成するポッティング樹脂は、発光素子12の発光面や受光素子13の受光面を覆うものでない限り、塗着位置に規制を受けることがない。これにより、遮光壁部15の配置の自由度を高くすることができ、半導体デバイス10Aの大型化を抑制することができる。
 次に、図4および図5を参照して、第2実施形態に係る半導体デバイス10Bにつき、主に第1実施形態と異なる部分について説明する。同図に示すように、この半導体デバイス10Bでは、遮光壁部15が、受光側壁部33のみで構成されている。すなわち、遮光壁部15は、隔壁部31を含んで受光素子13を囲む受光側壁部33により構成されている。
 この場合、図5(a)に示すように、受光側壁部33は、平面視略「C」字状に塗着され、塗着開始部と塗着終了部との継ぎ目を生じないようにしている。
 また、図5(b)の変形例に示すように、受光側壁部33を、矩形形状に形成してもよい。
 このような第2実施形態の半導体デバイス10Bでは、隔壁部31を含む受光側壁部33により、発光素子12の放射光のうちの受光素子13に向かう放射光が遮光され、封止樹脂14内においてノイズ光として受光素子13に受光されることがない。また、半導体デバイス10Bの小型化を維持することができる。
 次に、図6および図7を参照して、第3実施形態に係る半導体デバイス10Cにつき、主に第1実施形態と異なる部分について説明する。同図に示すように、この半導体デバイス10Cでは、第2実施形態とは逆に、遮光壁部15が、発光側壁部32のみで構成されている。すなわち、遮光壁部15は、隔壁部31を含んで発光素子12を囲む発光側壁部32により構成されている。
 この場合も、図7(a)に示すように、発光側壁部32は、平面視略「C」字状に塗着され、塗着開始部と塗着終了部との継ぎ目を生じないようにしている。
 また、図7(b)の変形例に示すように、発光側壁部32を、矩形形状に形成してもよい。
 このような第3実施形態の半導体デバイス10Cでは、隔壁部31を含む発光側壁部32により、発光素子12の放射光のうちの受光素子13に向かう放射光が遮光され、封止樹脂14内においてノイズ光として受光素子13に受光されることがない。また、半導体デバイス10Bの小型化を維持することができる。
 次に、図8および図9を参照して、第4実施形態に係る半導体デバイス10Dにつき、主に第1実施形態と異なる部分について説明する。同図に示すように、この半導体デバイス10Dでは、遮光壁部15が、隔壁部31のみで構成されている。すなわち、遮光壁部15は、で発光素子12と受光素子13との間において、パッケージ基板11に塗着した直線状の隔壁部31で構成されている。この場合、図9に示すように、隔壁部31は、発光素子12と受光素子13との間において、パッケージ基板11を横断するように直線状に延在している。
 このような第4実施形態の半導体デバイス10Dにおいても、隔壁部31により、発光素子12の放射光のうちの受光素子13に向かう放射光が遮光され、封止樹脂14内においてノイズ光として受光素子13に受光されることがない。また、半導体デバイス10Bの小型化を維持することができる。
 次に、図10を参照して、実施形態の半導体デバイス10(10A)の製造方法について、第1実施形態ものを例に説明する。
 この製造方法は、両配線パターン21,22の形成したパッケージ基板11に発光素子12および受光素子13をチップ・マウントするマウント工程(同図(a))と、マウント工程の後、発光素子12をワイヤーボンディングすると共に、受光素子13をワイヤーボンディングするボンディング工程(同図(b))と、ボンディング工程の後、パッケージ基板11へのポッティングにより遮光壁部15を形成する遮光壁部形成工程(同図(c))と、遮光壁部形成工程の後、発光素子12および受光素子13を、封止樹脂14によりポッティングするポッティング工程(同図(d))と、を備えている。
 また、この製造方法は、その樹脂封止において、いわゆるウェーハレベルパッケージとしているため、ポッティング工程の後、ウェーハを個々の半導体デバイス10に分断するダイシング工程(同図(e))を、更に備えている。
 図10(a)のマウント工程では、既知のダイボンディング装置を用い、発光素子12および受光素子13を銀ペースト等の接着剤を介してチップ・マウントする。
 図10(b)のボンディング工程では、既知のボンディング装置を用い、例えばボールボンディング方式で、発光素子12および受光素子13をワイヤーボンディングする。
 図10(c)の遮光壁部形成工程では、ディスペンサを用い、発光素子12および受光素子13を囲むように、「S」字状に遮光性の高粘性樹脂をポッティングして、遮光壁部15を形成する。そして、遮光壁部15をポッティングしたら、オーブン加熱等によりこれを硬化させる。
 図10(d)のポッティング工程では、ディスペンサを用い、パッケージ基板11の上面全域に封止樹脂14のポッティングを行い、その後、ポッティングした封止樹脂14を、オーブン加熱等により硬化させる。
 図10(e)のダイシング工程では、既知のダイサを用い、半導体デバイス10Aをマトリクス状に作り込んだウェーハを、ダイシングブレードで縦横に分断し、個々の半導体デバイス10Aを切り出す。
 このように、実施形態の半導体デバイス10(10A)の製造方法では、既知の製造方法に遮光壁部形成工程を付加しただけで、半導体デバイス10(10A)を簡単に製造することができる。しかも、遮光壁部15を設けるにあたり、半導体デバイス10を大きくする必要がない。したがって、検出感度の良好な実施形態の半導体デバイス10(10A)を、簡単に製造することができる。
 なお、本発明の半導体デバイスは、光デバイスとして、スマートフォン(携帯端末)の近接センサー以外の用途にも適用可能である。特に、透光性のパネル越しに設ける光デバイスとして有用である。
 1 スマートフォン、2 タッチパネル、5 近接センサー、10,10A,10B,10C 半導体デバイス、11 パッケージ基板、12 発光素子、13 受光素子、14 封止樹脂、15 遮光壁部、21 発光側配線パターン、22 受光側配線パターン、24 ボンディングワイヤー、26 ボンディングワイヤー、31 隔壁部、32 発光側壁部、33 受光側壁部

Claims (10)

  1.  発光素子と受光素子とを共通のパッケージ基板上に実装して成る半導体デバイスであって、
     前記発光素子と前記受光素子との間に、前記パッケージ基板への高粘性樹脂によるポッティングにより形成され、前記発光素子を越える高さの遮光壁部を備えていることを特徴とする半導体デバイス。
  2.  前記遮光壁部は、前記発光素子および前記受光素子の少なくとも一方を囲むように配設されていることを特徴とする請求項1に記載の半導体デバイス。
  3.  前記遮光壁部は、前記受光素子の四周縁部および前記受光素子に接続されるボンディングワイヤーを覆っていることを特徴とする請求項2に記載の半導体デバイス。
  4.  前記遮光壁部は、少なくとも前記発光素子を囲むように配設した発光側壁部を有し、
     前記発光側壁部の内壁面には、反射膜が形成されていることを特徴とする請求項2に記載の半導体デバイス。
  5.  前記遮光壁部は、少なくとも前記発光素子を囲むように配設した発光側壁部を有し、
     前記発光側壁部の内壁面には、光吸収膜が形成されていることを特徴とする請求項2に記載の半導体デバイス。
  6.  前記遮光壁部は、前記発光素子および前記受光素子を囲むように「S」字状に配設されていることを特徴とする請求項2に記載の半導体デバイス。
  7.  前記発光素子および前記受光素子は、封止樹脂により封止され、
     前記遮光壁部は、前記封止樹脂と同等或いは高く形成されていることを特徴とする請求項1に記載の半導体デバイス。
  8.  請求項1に記載の半導体デバイスを備え、
     透光性のパネル体を介して、対象物の相対的な接近をセンシングすることを特徴とする近接センサー。
  9.  携帯端末に搭載され、
     前記パネル体が、前記携帯端末のタッチパネルであることを特徴とする請求項6に記載の近接センサー。
  10.  請求項7に記載の半導体デバイスの製造方法であって、
     配線パターンを形成した前記パッケージ基板に、前記発光素子および前記受光素子をチップ・マウントするマウント工程と、
     前記マウント工程の後、前記発光素子をワイヤーボンディングすると共に、前記受光素子をワイヤーボンディングするボンディング工程と、
     前記ボンディング工程の後、前記パッケージ基板へのポッティングにより前記遮光壁部を形成する遮光壁部形成工程と、
     前記遮光壁部形成工程の後、前記発光素子および前記受光素子を、封止樹脂によりポッティングするポッティング工程と、を備えたことを特徴とする半導体デバイスの製造方法。
PCT/JP2012/006437 2012-10-05 2012-10-05 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法 WO2014054083A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006437 WO2014054083A1 (ja) 2012-10-05 2012-10-05 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006437 WO2014054083A1 (ja) 2012-10-05 2012-10-05 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2014054083A1 true WO2014054083A1 (ja) 2014-04-10

Family

ID=50434445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006437 WO2014054083A1 (ja) 2012-10-05 2012-10-05 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2014054083A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100448A (ja) * 2014-11-20 2016-05-30 新日本無線株式会社 フォトリフレクタ及びその製造方法
JPWO2017098584A1 (ja) * 2015-12-08 2018-09-27 新日本無線株式会社 フォトリフレクタ
CN110475507A (zh) * 2017-03-31 2019-11-19 株式会社村田制作所 生物体传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156325A (ja) * 1999-11-29 2001-06-08 Citizen Electronics Co Ltd フォトリフレクター
WO2008117800A1 (ja) * 2007-03-26 2008-10-02 Rintaro Nishina 反射型光センサ
JP2010032254A (ja) * 2008-07-25 2010-02-12 Sharp Corp 光半導体装置およびモバイル機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156325A (ja) * 1999-11-29 2001-06-08 Citizen Electronics Co Ltd フォトリフレクター
WO2008117800A1 (ja) * 2007-03-26 2008-10-02 Rintaro Nishina 反射型光センサ
JP2010032254A (ja) * 2008-07-25 2010-02-12 Sharp Corp 光半導体装置およびモバイル機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100448A (ja) * 2014-11-20 2016-05-30 新日本無線株式会社 フォトリフレクタ及びその製造方法
JPWO2017098584A1 (ja) * 2015-12-08 2018-09-27 新日本無線株式会社 フォトリフレクタ
CN110475507A (zh) * 2017-03-31 2019-11-19 株式会社村田制作所 生物体传感器

Similar Documents

Publication Publication Date Title
US10340397B2 (en) Optical sensor device
US9372264B1 (en) Proximity sensor device
JP5069996B2 (ja) フォトリフレクタの製造方法
US10903387B2 (en) Optical sensing assembly and method for manufacturing the same, and optical sensing system
US9279726B2 (en) Optical device with reduced crosstalk
TWI521671B (zh) The package structure of the optical module
US20150115138A1 (en) Sensing Device With A Shield
TW201505132A (zh) 光學模組的封裝結構
TW201505134A (zh) 光學模組的封裝結構
WO2014054083A1 (ja) 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法
JP2013235887A (ja) 光源一体型光センサの製造方法
KR20120087368A (ko) 근접센서의 제조방법
KR20120087779A (ko) 근접센서의 제조방법
JP2017098571A (ja) 光源一体型光センサ
KR101592417B1 (ko) 근접 센서 및 그 제조 방법
WO2014054082A1 (ja) 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法
WO2014054084A1 (ja) 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法
JP2014154629A (ja) 半導体デバイスの製造方法および半導体デバイス
JP5938479B2 (ja) 半導体デバイス、これを備えた近接センサーおよび半導体デバイスの製造方法
JP6886307B2 (ja) 光センサ装置
CN219959006U (zh) 光学感测装置
CN112054064A (zh) 芯片级封装结构、光电装置及芯片级封装方法
JP2015162627A (ja) 光センサ
WO2022255942A1 (en) Semiconductor sensor device and method for manufacturing a semiconductor sensor device
JP2014216404A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP