WO2014050946A1 - Inspection chip - Google Patents

Inspection chip Download PDF

Info

Publication number
WO2014050946A1
WO2014050946A1 PCT/JP2013/076014 JP2013076014W WO2014050946A1 WO 2014050946 A1 WO2014050946 A1 WO 2014050946A1 JP 2013076014 W JP2013076014 W JP 2013076014W WO 2014050946 A1 WO2014050946 A1 WO 2014050946A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
unit
holding
measurement
sample
Prior art date
Application number
PCT/JP2013/076014
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 大鹿
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2014050946A1 publication Critical patent/WO2014050946A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces

Definitions

  • the present invention relates to an inspection chip for performing a chemical, medical, or biological inspection of an inspection object.
  • an inspection chip for inspecting a biological substance or a chemical substance is known.
  • the microchip disclosed in Patent Document 1 is an inspection chip having a plurality of sections corresponding to each item in order to perform inspection and analysis of a plurality of items.
  • the sample introduced from the sample introduction port is distributed to each section.
  • the distributed specimen is quantified by the specimen weighing section of each section.
  • the sample quantified by each sample measurement unit is introduced into the detection unit of each section.
  • the quantified liquid mixture of the sample and the reagent is used for optical measurement of each item.
  • an optical measurement method for example, a rate method based on a change over time in the transmittance of a mixed solution of a specimen and a reagent is known.
  • An object of the present invention is to provide an inspection chip capable of accurately measuring a plurality of mixed solutions using a single light source.
  • a liquid specimen and a reagent are injected, and a centrifugal force is applied by being rotated about a predetermined first axis, and the second axis is different from the first axis.
  • a test chip in which the direction of the centrifugal force is changed by being rotated and includes a plurality of measurement units each including a space in which the injected specimen and the reagent can move, and the plurality of measurement units.
  • the sample and the reagent are mixed, and a mixing unit that is a part capable of generating a mixed solution of the sample and the reagent, and the sample injected into the measurement unit are guided toward the mixing unit.
  • a specimen guide part that is a part to be stored, a reagent guide part that is a part to which the reagent injected into the measurement unit is guided toward the mixing part, and the liquid mixture generated in the mixing part can be stored. And at least one of the specimen guide part and the reagent guide part can hold the specimen or the reagent to be guided. It comprises at least one holding part which is a part, and the quantity of the holding parts differs for each of the plurality of measurement units.
  • the test chip includes a plurality of measurement units each including a space in which the injected specimen and reagent can move.
  • the injected sample is guided toward the mixing unit in the sample guide unit, and the injected reagent is guided toward the mixing unit in the reagent guide unit.
  • a mixed liquid of the guided specimen and reagent is generated in the mixing unit.
  • the generated mixed liquid is stored and measured in the storage unit.
  • At least one of the sample guide unit and the reagent guide unit holds the sample or reagent to be guided by at least one holding unit.
  • a measurement unit with a large number of holding units has a later timing of generating a mixed liquid in the mixing unit than a measurement unit with few holding units. That is, the timing at which the liquid mixture is generated is different among the plurality of measurement units. Measurement results can be obtained before the reaction of each liquid mixture is completed by measuring the liquid mixture sequentially generated in a plurality of measurement units using one light source immediately after each liquid mixture is generated. . Therefore, a plurality of mixed liquids can be accurately measured using one light source.
  • the holding unit may be provided side by side in the same direction with respect to the inspection chip in each of the plurality of measurement units.
  • the holding units are arranged in the same direction in each measurement unit. Therefore, by applying an external force in the same direction to the test chip, the specimen or reagent can be moved simultaneously in the holding unit of each measurement unit.
  • the measurement unit includes one injection unit that is a portion into which the sample or the reagent is injected into the plurality of measurement units, and the injection unit includes the holding unit with the smallest quantity in the test chip. It may be provided upstream of the unit in the direction in which the specimen or the reagent is guided. In this case, a vacant space in the test chip tends to occur on the upstream side in the direction in which the specimen or reagent is guided with respect to the measurement unit having the smallest number of holding units. By providing a common injection part in this empty space, it is possible to reduce the size of the inspection chip.
  • One of the holding units may be a quantification unit that is a part capable of quantifying the specimen or the reagent injected into the measurement unit. In this case, an appropriate amount of specimen or reagent can be supplied to the mixing unit.
  • At least two of the measurement units include a common surplus part that can store the sample or the reagent exceeding the predetermined amount that has flowed out from each of the quantification units, and includes the holding unit with the smallest quantity in the test chip. Further, it may be provided downstream of the measurement unit in the direction in which the sample or the reagent is guided. In this case, an empty space in the test chip is likely to occur on the downstream side in the direction in which the sample or reagent is guided with respect to the measurement unit having the smallest number of holding units. By providing a common surplus portion in this empty space, it is possible to reduce the size of the inspection chip.
  • the quantification unit may be the holding unit provided on the most upstream side in the direction in which the specimen or the reagent is guided among the plurality of holding units. Good. In this case, since the sample or reagent can be quantified at the same timing in all measurement units, the examination time can be shortened.
  • the quantification unit may be the holding unit provided on the most downstream side in the direction in which the sample or the reagent is guided among the plurality of holding units. Good. In this case, since the sample or reagent can be quantified immediately before the mixed solution is generated, loss of the sample or reagent used for generating the mixed solution can be reduced.
  • FIG. 2 is a rear view of the inspection apparatus 1.
  • FIG. 4 is another rear view of the inspection apparatus 1.
  • FIG. It is a top view of the inspection apparatus 1 shown in FIG. 2 is a perspective view of an inspection chip 2.
  • inspection chip 2 before a centrifugation process. 2 is an enlarged front view of a first measurement unit 100.
  • FIG. 4 is an enlarged front view of a second measurement unit 200.
  • FIG. FIG. 6 is an enlarged front view of a third measurement unit 300. It is a front view of the test
  • FIG. 10 is a front view of the inspection chip 2 revolved at a rotation angle of 90 degrees after FIG. 9.
  • FIG. 15 is a front view of the inspection chip 2 optically measured at a rotation angle of ⁇ 45 degrees after FIG. 14. It is a front view of the test
  • the inspection system 3 of the present embodiment includes an inspection chip 2 that can store a specimen and a reagent that are liquids, and an inspection apparatus 1 that performs an inspection using the inspection chip 2.
  • the inspection apparatus 1 can apply a centrifugal force to the inspection chip 2 by rotation about a vertical axis separated from the inspection chip 2.
  • the inspection apparatus 1 can switch the centrifugal direction that is the direction of the centrifugal force applied to the inspection chip 2 by rotating the inspection chip 2 about the horizontal axis.
  • FIGS. 1 and 2 show the upper housing 30 by phantom lines
  • FIG. 3 shows a state where the top plate of the upper housing 30 is removed.
  • the inspection apparatus 1 includes an upper housing 30, a lower housing 31, a turntable 33, an angle changing mechanism 34, and a control device 90.
  • the turntable 33 is a disk-shaped rotating body provided on the upper surface side of the lower housing 31.
  • the inspection chip 2 is held above the turntable 33.
  • the angle changing mechanism 34 is a drive mechanism provided on the turntable 33. This drive mechanism rotates the inspection chip 2 around the horizontal axis.
  • the upper housing 30 is fixed to the upper side of the lower housing 31, and the measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside.
  • the control device 90 is a controller that controls various processes of the inspection device 1.
  • the lower housing 31 has a box-like frame structure in which frame members are combined.
  • An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 31.
  • a turntable 33 is rotatably provided above the upper plate 32.
  • a drive mechanism for rotating the turntable 33 around the vertical axis is provided in the lower housing 31 as follows.
  • a spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 31.
  • a shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed.
  • a vertical main shaft 57 extending upward from the inside of the lower housing 31 is provided at the center of the lower housing 31.
  • the main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 31.
  • the upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
  • the main shaft 57 is rotatably held by a support member 53 provided immediately below the upper plate 32.
  • a pulley 38 is fixed to the main shaft 57 below the support member 53.
  • a belt 39 is stretched over the pulleys 37 and 38.
  • a guide rail 56 extending in the vertical direction inside the lower housing 31 is provided on the right side in the lower housing 31.
  • the T-shaped plate 48 is movable in the vertical direction in the lower housing 31 along the guide rail 56.
  • a groove 80 that is long in the left-right direction is formed on the front side of the T-shaped plate 48, that is, on the back side in FIG. 1 and FIG.
  • the above-described main shaft 57 is a hollow cylindrical body.
  • the inner shaft 40 is a shaft that can move in the vertical direction inside the main shaft 57.
  • An upper end portion of the inner shaft 40 passes through the main shaft 57 and is connected to a rack gear 43 described later.
  • a bearing 41 is provided at the left end of the T-shaped plate 48. Inside the bearing 41, the lower end portion of the inner shaft 40 is rotatably held.
  • a stepping motor 51 for moving the T-shaped plate 48 up and down is fixed in front of the T-shaped plate 48.
  • the shaft 58 of the stepping motor 51 protrudes rearward, that is, toward the front side of the page in FIGS.
  • a disc-shaped cam plate 59 is fixed to the tip of the shaft 58.
  • a cylindrical projection 70 is provided on the rear surface of the cam plate 59. The tip of the protrusion 70 is inserted into the groove 80 described above. The protrusion 70 can slide in the groove 80.
  • the stepping motor 51 rotates the shaft 58, the projection 70 moves up and down in conjunction with the rotation of the cam plate 59.
  • the T-shaped plate 48 moves up and down along the guide rail 56 in conjunction with the protrusion 70 inserted in the groove 80.
  • the angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33.
  • a rack gear 43 fixed to the inner shaft 40 is provided between the pair of L-shaped plates 60.
  • the rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.
  • a horizontal support shaft 46 having a gear 45 is rotatably supported at the distal end side in the extending direction of each L-shaped plate 60.
  • the support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45.
  • a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis is interposed.
  • the pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 rotates about the support shaft 46.
  • the inspection chip 2 rotates around the main shaft 57, which is a vertical axis, and centrifugal force is applied to the inspection chip 2.
  • the rotation around the vertical axis of the inspection chip 2 is called revolution.
  • the inspection chip 2 rotates around the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively. .
  • the rotation around the horizontal axis of the inspection chip 2 is called rotation.
  • a state in which the vertical direction of the inspection chip 2 coincides with the vertical direction of the inspection device 1 is referred to as a steady state of the inspection chip 2.
  • the rotation angle of the inspection chip 2 is 0 degree.
  • inspection chip 2 will be in the state which rotated 90 degree
  • the inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front with respect to the steady state illustrated in FIG. That is, the rotation angle of the inspection chip 2 is 90 degrees. That is, the inspection apparatus 1 of the present embodiment can change the rotation angle of the inspection chip 2 in the range of ⁇ 90 degrees to 90 degrees.
  • the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.
  • the measurement unit 7 provided in the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71.
  • the light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2.
  • the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light.
  • the measurement light connecting the light source 71 and the optical sensor 72 intersects the front and rear surfaces of the inspection chip 2 substantially perpendicularly.
  • Inspection chip 2 The structure of the test chip 2 according to this embodiment will be described with reference to FIGS.
  • the upper, lower, lower left, upper right, lower right, and upper left in FIG. 4 are the upper, lower, front, rear, right, and left sides of the test chip 2, respectively.
  • 5 to 8 show front views of the inspection chip 2 with the sheet 29 removed. The same applies to FIGS. 9 to 16 described later.
  • the inspection chip 2 has a square shape when viewed from the front as an example, and mainly includes a transparent synthetic resin plate material 20 having a predetermined thickness.
  • the front surface of the plate member 20 is sealed with a sheet 29 made of a transparent synthetic resin thin plate.
  • a liquid flow path 25 is formed in which the liquid sealed in the inspection chip 2 can move.
  • the liquid flow path 25 is a recess formed on the front side of the plate member 20 with a predetermined depth, and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate member 20. That is, the sheet 29 seals the flow path forming surface of the plate material 20.
  • the liquid flow path 25 shown in FIG. 4 includes three first to third measurement units 100, 200, and 300 each including a space in which the injected specimen and reagent can move.
  • the first measurement unit 100 the specimen 11A, the reagent 11B, and the reagent 11C are moved, and an inspection using these mixed solutions is performed.
  • the second measurement unit 200 the specimen 13A, the reagent 13B, and the reagent 13C are moved, and an inspection using these mixed solutions is performed.
  • the third measurement unit 300 the specimen 15A, the reagent 15B, and the reagent 15C are moved, and an inspection using these mixed solutions is performed.
  • the first to third measurement units 100, 200, 300 are arranged in the left-right direction on the front surface of the plate member 20, and extend in the up-down direction.
  • the first measurement unit 100 is closest to the left side portion 23 that is the left wall surface of the test chip 2.
  • the third measurement unit 300 is closest to the right side portion 22 which is the right wall surface of the inspection chip 2.
  • the second measurement unit 200 is located between the first measurement unit 100 and the third measurement unit 300.
  • the upper wall surface of the inspection chip 2 is the upper side portion 21.
  • the lower wall surface of the inspection chip 2 is a lower side portion 24.
  • the first measurement unit 100 includes a sample guide unit 110, a reagent guide unit 130, a reagent guide unit 150, a mixing unit 170, and a storage unit 175.
  • the sample guide unit 110 is provided in the upper part of the first measurement unit 100.
  • the reagent guides 130 and 150 are provided below the sample guide 110, and are arranged side by side on the left and right sides, respectively.
  • the mixing unit 170 is provided below the reagent guide unit 150.
  • the reservoir 175 is provided at the lower left end of the mixing unit 170.
  • the specimen guide section 110 is a part where the injected specimen 11A is guided toward the mixing section 170.
  • the reagent guide part 130 is a part where the injected reagent 11B is guided toward the mixing part 170.
  • the reagent guide part 150 is a part where the injected reagent 11C is guided toward the mixing part 170.
  • the mixing unit 170 is a part where the guided specimen 11A, the reagent 11B, and the reagent 11C are mixed to generate a mixed liquid 11D shown in FIG.
  • the storage unit 175 is a part that can store the generated mixed liquid 11D and that measures the stored mixed liquid 11D.
  • the sample guide unit 110 includes a sample injection unit 111, a holding unit 114, and a sample surplus unit 116.
  • the specimen injection part 111 is a part into which the specimen 11A is injected and stored, and is a recess that opens upward.
  • the upper right part of the specimen injection part 111 is connected to the specimen supply path 112 extending downward.
  • the lower end portion of the sample supply path 112 is connected to a sample supply section 113 having a narrow flow path.
  • a holding unit 114 is provided below the sample supply unit 113.
  • the holding part 114 is a part that can hold the specimen 11A guided by the specimen guiding part 110, and is a concave part that opens upward.
  • the holding unit 114 functions as a quantification unit that is a part capable of quantifying the specimen 11A.
  • the holding unit 114 functions as a quantification unit that is a part capable of quantifying the specimen 11A.
  • the branch path 115 extends leftward and the branch path 117 extends rightward.
  • the branch path 115 extends to the specimen surplus part 116 provided below the holding part 114. That is, the branch path 115 is bent when viewed from the front so that the flow path formation direction changes.
  • the specimen surplus part 116 is a part in which the specimen 11A overflowing from the holding part 114 is accommodated, and is a concave part extending rightward from the lower end part of the branch path 115.
  • the branch path 117 extends downward to the upper right end of the mixing unit 170 through the right side of the reagent guide unit 150. That is, in the branch path 117, the flow path formation direction is changed for the same reason as the branch path 115.
  • the reagent guide unit 130 includes a reagent injection unit 131, a single holding unit 134, and a reagent surplus unit 136.
  • the reagent injection part 131 is a part into which the reagent 11B is injected and stored, and is a recess that opens upward.
  • the upper right part of the reagent injection part 131 is connected to a reagent supply path 132 extending downward.
  • the lower end of the reagent supply path 132 is connected to a reagent supply part 133 having a narrow channel.
  • a holding unit 134 is provided below the reagent supply unit 133.
  • the holding part 134 is a part that can hold the reagent 11 ⁇ / b> B guided by the reagent guiding part 130, and is a concave part that opens upward.
  • the holding unit 134 functions as a quantification unit that is a part capable of quantifying the reagent 11B.
  • the branch path 135 extends to the left and the branch path 137 extends to the right from the part where the reagent supply unit 133 and the holding unit 134 communicate with each other.
  • the branch path 135 extends to the reagent surplus part 136 provided below the holding part 134.
  • the flow path formation direction of the branch path 135 changes for the same reason as the branch path 115.
  • the reagent surplus part 136 is a part in which the reagent 11B overflowing from the holding part 134 is accommodated, and is a concave part extending rightward from the lower end part of the branch path 135.
  • the branch path 137 extends downward to the upper left end of the mixing unit 170 through the right side of the holding unit 134. That is, the flow path formation direction of the branch path 137 changes for the same reason as the branch path 115.
  • the reagent guide unit 150 includes a reagent injection unit 151, a reagent supply channel 152, a reagent supply unit 153, one holding unit 154, a branch channel 155, a reagent surplus unit 156, and a branch channel 157.
  • the branch path 157 is connected to the central upper end of the mixing unit 170. Therefore, of the reagent 11C injected into the reagent injection unit 151, the excess reagent 11C overflowed at the time of quantification in the holding unit 154 is accommodated in the reagent excess unit 156 via the branch path 155.
  • the reagent 11 ⁇ / b> C quantified in the holding unit 154 moves to the mixing unit 170 via the branch path 157.
  • the second measurement unit 200 includes a sample guide unit 210, a reagent guide unit 230, a reagent guide unit 250, a mixing unit 270, and a storage unit 275.
  • the sample guide unit 210 is provided in the upper part of the second measurement unit 200.
  • the reagent guides 230 and 250 are provided on the lower right side of the sample guide 210 and are arranged side by side on the left side and the right side, respectively.
  • the mixing unit 270 is provided below the reagent guide unit 230 and the reagent guide unit 250.
  • the storage unit 275 is provided at the central lower end of the mixing unit 270.
  • the specimen guide unit 210 is a part where the injected specimen 13A is guided toward the mixing unit 270.
  • the reagent guide unit 230 is a part where the injected reagent 13B is guided toward the mixing unit 270.
  • the reagent guiding part 250 is a part where the injected reagent 13C is guided toward the mixing part 270.
  • the mixing unit 270 is a part where the guided specimen 13A, reagent 13B, and reagent 13C are mixed to generate a mixed liquid 13D shown in FIG.
  • the storage part 275 is a part where the generated mixed liquid 13D can be stored and the stored mixed liquid 13D is measured.
  • the sample guide unit 210 includes a sample injection unit 211, a sample supply path 212, a sample supply unit 213, a holding unit 214, a branch path 215, a sample surplus section 216, and a branch path 217.
  • the branch path 217 extends downward to the upper right end of the mixing unit 270 through the right side of the reagent guide unit 250. That is, the flow path formation direction of the branch path 217 changes for the same reason as the branch path 115. Therefore, of the sample 13A injected into the sample injection unit 211, the sample 13A quantified in the holding unit 214 moves to the mixing unit 270 via the branch path 217.
  • the surplus sample 13A overflowing at the time of determination in the holding unit 214 is accommodated in the sample surplus unit 216 via the branch path 215.
  • the reagent guide unit 230 includes a reagent injection unit 231, a reagent supply channel 232, a reagent supply unit 233, one holding unit 234, a branch channel 235, a reagent surplus unit 236, and a branch.
  • a path 237 is provided.
  • the holding unit 234 functions as a quantification unit for the reagent 13B, similarly to the holding unit 134 shown in FIG.
  • the reagent guide unit 230 includes a holding unit 238.
  • the holding part 238 is a part that can hold the quantified reagent 13B, and is a concave part that opens upward. That is, the reagent guide unit 230 includes two holding units 234 and 238 as parts that can hold the guided reagent 13B.
  • the holding part 238 is provided below the holding part 234. That is, the two holding units 234 and 238 are both provided downward with respect to the reagent supply unit 233.
  • the branch path 237 extends to the upper left end of the holding part 238 through the right side of the holding part 234. That is, in the branch path 237, the flow path forming direction is changed for the same reason as the branch path 115.
  • the upper right end portion of the holding portion 238 is connected to a guide path 239 extending downward.
  • the guide path 239 extends to the lower side of the holding unit 238 through the right side of the holding unit 238 and is connected to the upper left end of the mixing unit 270. That is, in the guide path 239, the flow path formation direction is changed for the same reason as the branch path 115.
  • the excess reagent 13 ⁇ / b> B overflowing at the time of determination in the holding unit 238 is accommodated in the reagent excess unit 236 via the branch path 235.
  • the reagent 13 ⁇ / b> B quantified in the holding unit 234 moves to the holding unit 238 via the branch path 237.
  • the reagent 13B moves from the holding unit 238 to the mixing unit 270 via the guide path 239.
  • the reagent guide unit 250 includes a reagent injection unit 251, a reagent supply channel 252, a reagent supply unit 253, two holding units 254 and 258, a branch channel 255, a reagent surplus unit 256, a branch channel 257, And a guide path 259.
  • the guide path 259 is connected to the central upper end of the mixing unit 270. Therefore, of the reagent 13 ⁇ / b> C injected into the reagent injection unit 251, the excess reagent 13 ⁇ / b> C overflowing at the time of determination in the holding unit 254 is accommodated in the reagent excess unit 256 via the branch path 255.
  • the reagent 13 ⁇ / b> C quantified in the holding unit 254 moves to the holding unit 258 via the branch path 257. Furthermore, the reagent 13 ⁇ / b> C moves from the holding unit 258 to the mixing unit 270 via the guide path 259.
  • the third measurement unit 300 includes a sample guide unit 310, a reagent guide unit 330, a reagent guide unit 350, a mixing unit 370, and a storage unit 375.
  • the sample guide 310 is provided in the upper part of the third measurement unit 300.
  • the reagent guides 330 and 350 are provided on the lower right side of the sample guide 310 and are arranged side by side on the left side and the right side, respectively.
  • the mixing unit 370 is provided below the reagent guide units 330 and 350.
  • the reservoir 375 is provided at the lower right end of the mixing unit 370.
  • the specimen guide unit 310 is a part where the injected specimen 15A is guided toward the mixing unit 370.
  • the reagent guide part 330 is a part where the injected reagent 15B is guided toward the mixing part 370.
  • the reagent guide part 350 is a part where the injected reagent 15C is guided toward the mixing part 370.
  • the mixing unit 370 is a part where the guided specimen 15A, reagent 15B, and reagent 15C are mixed to generate a mixed liquid 15D shown in FIG.
  • the storage unit 375 is a part capable of storing the generated mixed liquid 15D and measuring the stored mixed liquid 15D.
  • the sample guide unit 310 includes a sample injection unit 311, a sample supply channel 312, a sample supply unit 313, a holding unit 314, a branch channel 315, a sample surplus unit 316, and a branch channel 317.
  • the branch path 317 extends downward to the upper right end of the mixing unit 370 through the right side of the reagent guide unit 350. That is, the flow path formation direction of the branch path 317 changes for the same reason as the branch path 115. Therefore, of the sample 15A injected into the sample injection unit 311, the sample 15A quantified in the holding unit 314 moves to the mixing unit 370 via the branch path 317. The surplus sample 15A overflowed at the time of determination in the holding unit 314 is accommodated in the sample surplus unit 316 via the branch path 315.
  • the reagent guide unit 330 includes a reagent injection unit 331, a reagent supply channel 332, a reagent supply unit 333, two holding units 334 and 338, a branch channel 335, a reagent surplus unit 336, A branch path 337 and a guide path 339 are provided.
  • the holding unit 334 functions as a quantification unit for the reagent 15B, similarly to the holding unit 134 shown in FIG.
  • the reagent guide unit 330 includes a holding unit 340.
  • the holding part 340 is a part that can hold the quantified reagent 15B, and is a concave part that opens upward. That is, the reagent guide unit 330 includes three holding units 334, 338, and 340 as portions that can hold the guided reagent 15B.
  • the holding unit 340 is provided below the holding unit 338. That is, the three holding units 334, 338, and 340 are all provided downward with respect to the reagent supply unit 333.
  • the guide path 339 extends through the right side of the holding part 338 to the upper left end of the holding part 340. That is, in the guide path 339, the flow path forming direction is changed for the same reason as the branch path 115.
  • the upper right end portion of the holding portion 340 is connected to a guide path 341 that extends downward.
  • the guide path 341 passes through the right side of the holding unit 340 and extends below the holding unit 340, and is connected to the upper left end of the mixing unit 370. That is, in the guide path 341, the flow path formation direction changes for the same reason as the branch path 115.
  • the excess reagent 15 ⁇ / b> B overflowing at the time of determination in the holding unit 338 is accommodated in the reagent excess unit 336 via the branch path 335.
  • the reagent 15 ⁇ / b> B quantified in the holding unit 334 moves to the holding unit 338 via the branch path 337.
  • the reagent 15B moves from the holding unit 338 to the holding unit 340 via the guide path 339.
  • the reagent 15 ⁇ / b> B moves from the holding unit 340 to the mixing unit 370 through the guide path 341.
  • the reagent guide unit 350 includes a reagent injection unit 351, a reagent supply channel 352, a reagent supply unit 353, three holding units 354, 358, and 360, a branch channel 355, a reagent surplus unit 356, and a branch channel. 357, and guide paths 359 and 361.
  • the guide path 361 is connected to the central upper end of the mixing unit 370. Therefore, of the reagent 15C injected into the reagent injection unit 351, the excess reagent 15C overflowed at the time of determination in the holding unit 354 is accommodated in the reagent excess unit 356 via the branch path 355.
  • the reagent 15 ⁇ / b> C quantified in the holding unit 354 moves to the holding unit 358 via the branch path 357.
  • the reagent 15 ⁇ / b> C moves from the holding unit 358 to the holding unit 360 via the guide path 359.
  • the reagent 15 ⁇ / b> C moves from the holding unit 360 to the mixing unit 370 through the guide path 361.
  • a portion of the sheet 29 shown in FIG. 4 that seals the first measurement unit 100 is formed with an injection hole (not shown) for injecting the sample 11A shown in FIG.
  • the specimen 11A housed in a tool not shown may be injected from the injection hole by the user's operation. That is, the sample 11A may be injected into the sample injection unit 111 through the injection hole using a known method.
  • an injection hole (not shown) for injecting the reagent 11B into the reagent injection part 131 and an injection hole (not shown) for injecting the reagent 11C into the reagent injection part 151 are formed in the sheet 29.
  • These injection holes may have a shape in which, for example, the upper side portion 21 is open.
  • the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 20 via a mounting holder (not shown).
  • a center Ct shown in FIG. 5 is a connection position of the support shaft 46 in the inspection chip 2 and a rotation center of the inspection chip 2.
  • the distance L1 from the center Ct to the storage unit 175, the distance L2 from the center Ct to the storage unit 275, and the distance L3 from the center Ct to the storage unit 375 are equal.
  • the inspection chip 2 rotates counterclockwise around the center Ct as viewed from the front.
  • the inspection chip 2 is in the steady state shown in FIG. 5
  • the upper side 21 and the lower side 24 are orthogonal to the direction of the gravity Z
  • the right side 22 and the left side 23 are parallel to the direction of the gravity Z
  • the left side 23 Is disposed closer to the main shaft 57 than the right side portion 22.
  • the inspection chip 2 in the steady state is arranged at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 passes vertically through the storage unit 275.
  • Example of inspection method> An inspection method using the inspection device 1 and the inspection chip 2 will be described with reference to FIGS.
  • the inspection apparatus 1 can inspect two inspection chips 2 at the same time, but the procedure for inspecting one inspection chip 2 will be described below for convenience of explanation.
  • the stationary inspection chip 2 shown in FIG. 5 is revolved by driving control of the spindle motor 35.
  • a centrifugal force X acts on the inspection chip 2 toward the downstream side in the centrifugal direction.
  • the inspection chip 2 is set in the inspection apparatus 1 so that the right direction shown in FIG. Therefore, when the inspection chip 2 in the steady state is revolved, the centrifugal force X acts from the left side portion 23 toward the right side portion 22. Due to the action of the centrifugal force X, in the first measurement unit 100 shown in FIG. 6, the specimen 11A stored in the specimen injection part 111 moves to the specimen supply path 112.
  • the reagent 11 ⁇ / b> B stored in the reagent injection part 131 moves to the reagent supply path 132.
  • the reagent 11C stored in the reagent injection part 151 moves to the reagent supply path 152.
  • the sample 13A stored in the sample injection unit 211 moves to the sample supply path 212.
  • the reagent 13B stored in the reagent injection unit 231 moves to the reagent supply path 232.
  • the reagent 13C stored in the reagent injection part 251 moves to the reagent supply path 252.
  • the sample 15 ⁇ / b> A stored in the sample injection unit 311 moves to the sample supply path 312.
  • the reagent 15B stored in the reagent injection part 331 moves to the reagent supply path 332.
  • the reagent 15C stored in the reagent injection part 351 moves to the reagent supply path 352.
  • the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front.
  • the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts from the upper side portion 21 toward the lower side portion 24.
  • the sample 11A flows into the holding unit 114 via the sample supply unit 113 in the first measurement unit 100 shown in FIG.
  • the sample 11 A exceeding a predetermined amount overflows the branch path 115 and is stored in the sample surplus unit 116.
  • the specimen 11A is quantified.
  • the reagent 11B flows into the holding unit 134 via the reagent supply unit 133.
  • the reagent 11 ⁇ / b> B exceeding a predetermined amount overflows into the branch path 135.
  • the overflowing reagent 11B is stored in the reagent surplus part 136.
  • the reagent 11B is quantified.
  • the reagent 11 ⁇ / b> C flows into the holding unit 154 through the reagent supply unit 153.
  • the reagent 11C exceeding a predetermined amount overflows into the branch path 155.
  • the overflowing reagent 11C is stored in the reagent surplus portion 156. As a result, the reagent 11C is quantified.
  • the sample 13A flows into the holding unit 214 via the sample supply unit 213 and is quantified, and the excess sample 13A overflowed at the time of quantification in the holding unit 214 is branched. It is accommodated in the specimen surplus part 216 via 215.
  • the reagent 13B flows into the holding unit 234 through the reagent supply unit 233 and is quantified, and the excess reagent 13B overflowing at the time of quantification in the holding unit 234 is stored in the reagent surplus unit 236 through the branch path 235.
  • the reagent 13 ⁇ / b> C flows into the holding unit 254 via the reagent supply unit 253 and is quantified, and excess reagent 13 ⁇ / b> C overflowing at the time of quantification in the holding unit 254 is accommodated in the reagent surplus unit 256 via the branch path 255.
  • the sample 15A flows into the holding unit 314 via the sample supply unit 313 and is quantified, and the surplus sample 15A overflowed at the time of quantification in the holding unit 314 passes through the branch path 315. And stored in the specimen surplus part 316.
  • the reagent 15B flows into the holding unit 334 via the reagent supply unit 333 and is quantified, and the excess reagent 15B overflowing at the time of quantification in the holding unit 334 is stored in the reagent surplus unit 336 via the branch path 335.
  • the reagent 15 ⁇ / b> C flows into the holding unit 354 through the reagent supply unit 353 and is quantified, and excess reagent 15 ⁇ / b> C overflowing at the time of quantification in the holding unit 354 is stored in the reagent surplus unit 356 through the branch path 355.
  • the revolution inspection chip 2 shown in FIG. 9 is rotated 90 degrees in the clockwise direction when viewed from the front.
  • the rotation angle of the inspection chip 2 returns to 0 degrees, and the centrifugal force X acts on the inspection chip 2 from the left side portion 23 toward the right side portion 22.
  • the specimen 11A quantified in the holding unit 114 moves to the branch path 117. Since the specimen surplus part 116 is closed in the right direction, the surplus specimen 11A remains in the specimen surplus part 116.
  • the reagent 11B quantified in the holding unit 134 moves to the branch path 137.
  • the surplus reagent 11B remains in the reagent surplus portion 136.
  • the reagent 11 ⁇ / b> C quantified in the holding unit 154 moves to the branch path 157. Since the reagent surplus portion 156 is a recess that closes in the right direction, the surplus reagent 11C remains in the reagent surplus portion 156.
  • the sample 13A quantified in the holding unit 214 moves to the branch path 217, and the surplus sample 13A remains in the sample surplus unit 216.
  • the reagent 13B quantified in the holding unit 234 moves to the branch path 237, and the excess reagent 13B remains in the reagent excess unit 236.
  • the reagent 13C quantified in the holding unit 254 moves to the branch path 257, and the surplus reagent 13C remains in the reagent surplus portion 256.
  • the sample 15A quantified in the holding unit 314 moves to the branch path 317, and the surplus sample 15A remains in the sample surplus unit 316.
  • the reagent 15B quantified in the holding unit 334 moves to the branch path 337, and the excess reagent 15B remains in the reagent excess unit 336.
  • the reagent 15C quantified in the holding unit 354 moves to the branch path 357, and the surplus reagent 15C remains in the reagent surplus portion 356.
  • the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front.
  • the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24.
  • the specimen 11A moved to the branch path 117 flows into the mixing unit 170.
  • the reagent 11 ⁇ / b> B that has moved to the branch path 137 flows into the mixing unit 170.
  • the reagent 11 ⁇ / b> C that has moved to the branch path 157 flows into the mixing unit 170.
  • the specimen 11A, the reagent 11B, and the reagent 11C that have flowed into the mixing unit 170 are mixed by the action of the centrifugal force X to generate a mixed solution 11D.
  • the specimen 13A moved to the branch path 217 flows into the mixing unit 270.
  • the reagent 13 ⁇ / b> B that has moved to the branch path 237 flows into the holding unit 238.
  • the reagent 13 ⁇ / b> C that has moved to the branch path 257 flows into the holding unit 258.
  • the sample 15 ⁇ / b> A that has moved to the branch path 317 flows into the mixing unit 370.
  • the reagent 15 ⁇ / b> B that has moved to the branch path 337 flows into the holding unit 338.
  • the reagent 15 ⁇ / b> C that has moved to the branch path 357 flows into the holding unit 358.
  • the inspection chip 2 is moved to the measurement position by driving control of the spindle motor 35.
  • the inspection chip 2 shown in FIG. 10 is rotated 45 degrees clockwise as viewed from the front.
  • inspection chip 2 changes to 45 degree
  • the direction in which the gravity Z acts is from the upper right side to the lower left side of the inspection chip 2.
  • the liquid mixture 11 ⁇ / b> D generated in the mixing unit 170 is stored in the storage unit 175 provided at the lower left end of the mixing unit 170.
  • the measurement unit 7 is driven, and the measurement light passes through the storage unit 175.
  • optical measurement of the liquid mixture 11 ⁇ / b> D based on a temporal change such as a rate method is performed based on the amount of change in the measurement light received by the optical sensor 72.
  • the quantified reagent 13B remains in the holding unit 238. Since the holding unit 258 is closed in the lower left direction, the quantified reagent 13C remains in the holding unit 258. Therefore, the reagents 13B and 13C are not mixed with the sample 13A stored in the mixing unit 270.
  • the quantified reagent 15B stays in the holding unit 338, and the quantified reagent 15C stays in the holding unit 358. Therefore, the reagents 15B and 15C are not mixed with the sample 15A stored in the mixing unit 370.
  • the inspection chip 2 shown in FIG. 11 is rotated 45 degrees clockwise as viewed from the front.
  • the inspection chip 2 whose rotation angle has changed to 0 degrees is revolved by driving control of the spindle motor 35.
  • the centrifugal force X acts on the test chip 2 from the left side 23 toward the right side 22.
  • the reagent 13 ⁇ / b> B held by the holding unit 238 moves to the guide path 239 in the second measurement unit 200 shown in FIG. 7.
  • the reagent 13 ⁇ / b> C held by the holding unit 258 moves to the guide path 259.
  • the reagent 15 ⁇ / b> B held by the holding unit 338 moves to the guide path 339.
  • the reagent 15C held by the holding unit 358 moves to the guide path 359.
  • the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front.
  • the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24.
  • the reagent 13B moved to the guide path 239 flows into the mixing unit 270.
  • the reagent 13 ⁇ / b> C that has moved to the guide path 259 flows into the mixing unit 270.
  • the reagents 13B and 13C that have flowed into the mixing unit 270 are mixed with the specimen 13A by the action of the centrifugal force X, and a mixed liquid 13D is generated.
  • the reagent 15 ⁇ / b> B that has moved to the guide path 339 flows into the holding unit 340.
  • the reagent 15C moved to the guide path 359 flows into the holding unit 360.
  • the inspection chip 2 is moved to the measurement position by drive control of the spindle motor 35.
  • the inspection chip 2 shown in FIG. 12 is rotated 90 degrees in the clockwise direction when viewed from the front. Thereby, the rotation angle of the test
  • the direction in which the gravity Z acts is from the upper side 21 to the lower side 24 of the inspection chip 2.
  • the liquid mixture 13 ⁇ / b> D generated in the mixing unit 270 is stored in a storage unit 275 provided at the central lower end of the mixing unit 270.
  • the measurement unit 7 is driven, and the measurement light passes through the storage unit 275.
  • the optical measurement of the mixed liquid 13 ⁇ / b> D based on the temporal change such as the rate method is performed.
  • the quantified reagent 15B remains in the holding unit 340. Since the holding unit 360 is closed downward, the quantified reagent 15C remains in the holding unit 360. Therefore, the reagents 15B and 15C are not mixed with the sample 15A stored in the mixing unit 370.
  • the inspection chip 2 shown in FIG. 13 is revolved by driving control of the spindle motor 35.
  • the centrifugal force X acts on the test chip 2 from the left side 23 toward the right side 22.
  • the reagent 15 ⁇ / b> B held by the holding unit 340 moves to the guide path 341.
  • the reagent 15C held by the holding unit 360 moves to the guide path 361.
  • the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front.
  • the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24.
  • the reagent 15 ⁇ / b> B that has moved to the guide path 341 flows into the mixing unit 370 due to the action of the centrifugal force X.
  • the reagent 15C moved to the guide path 361 flows into the mixing unit 370.
  • the reagents 15B and 15C that have flowed into the mixing unit 370 are mixed with the specimen 15A by the action of the centrifugal force X to generate a mixed solution 15D.
  • the inspection chip 2 is moved to the measurement position by driving control of the spindle motor 35.
  • the inspection chip 2 shown in FIG. 14 is rotated 135 degrees in the clockwise direction when viewed from the front.
  • the rotation angle of the inspection chip 2 changes to ⁇ 45 degrees.
  • the direction in which the gravity Z acts is directed from the upper left side to the lower right side of the inspection chip 2.
  • the liquid mixture 15 ⁇ / b> D generated in the mixing unit 370 is stored in a storage unit 375 provided at the lower right end of the mixing unit 370.
  • the measurement unit 7 is driven, and the measurement light passes through the storage unit 375.
  • optical measurement of the mixed liquid 15 ⁇ / b> D based on a temporal change such as a rate method is performed based on the change amount of the measurement light received by the optical sensor 72.
  • the two holding units 234 and 238 can hold the reagent 13B flowing through the second measurement unit 200 at different timings.
  • the holding unit 234 can hold the reagent 13B before the holding unit 238 in order to quantify the injected reagent 13B.
  • the holding unit 238 can hold the quantified reagent 13 ⁇ / b> B moving toward the mixing unit 270 immediately before the mixing unit 270.
  • the two holding units 254 and 258 can hold the reagent 13C flowing through the second measurement unit 200 at different timings.
  • the three holding units 334, 338, and 340 can hold the reagent 15B flowing through the third measurement unit 300 at different timings.
  • the holding unit 334 can hold the reagent 15B before the holding units 338 and 340 in order to quantify the injected reagent 15B.
  • the holding unit 338 can hold the quantified reagent 15 ⁇ / b> B moving toward the mixing unit 370 before the holding unit 340.
  • the holding unit 340 can hold the quantified reagent 15 ⁇ / b> B moving toward the mixing unit 370 immediately before the mixing unit 370.
  • the three holding units 354, 358, 360 can hold the reagent 15C flowing through the third measurement unit 300 at different timings.
  • the three mixed solutions 11D, 13D, and 15D are generated and optically measured at different timings.
  • the measurement results of the mixed liquids 11D, 13D, and 15D are displayed on a display (not shown), for example.
  • the distances L1, L2, and L3 are equal as shown in FIG. Therefore, the three storage parts 175, 275, and 375 can be measured by the same light source 71 by rotating the inspection chip 2.
  • the first to third measurement units 100, 200, and 300 each including a space in which the injected specimen and reagent can move are provided.
  • the injected sample 11A is guided toward the mixing unit 170 in the sample guide unit 110.
  • the injected reagent 11B is guided toward the mixing unit 270 in the reagent guide unit 130.
  • the injected reagent 11 ⁇ / b> C is guided toward the mixing unit 370 in the reagent guide unit 150.
  • a mixed solution 11D of the guided specimen 11A and reagents 11B and 11C is generated in the mixing unit 170.
  • the generated mixed liquid 11D is stored and measured in the storage unit 175.
  • the second measurement unit 200 and the third measurement unit 300 generate, store, and measure the injected sample and the mixed solution of the sample.
  • the first to third measurement units 100, 200, 300 are provided with a different number of holding units for each reagent.
  • the first measurement unit 100 includes one holding unit 134 for the reagent 11B.
  • the second measurement unit 200 includes two holders 234 and 238 for the reagent 13B.
  • the third measurement unit 300 includes three holders 334, 338, and 340 for the reagent 15B. That is, the number of holding units differs for each of the first to third measurement units 100, 200, and 300.
  • the second measurement unit 200 having a larger number of holding units than the first measurement unit 100 is later in timing for generating the mixed liquid than the first measurement unit 100.
  • the third measurement unit 300 having a larger number of holding units than the second measurement unit 200 has a later timing for generating the mixed liquid than the second measurement unit 200. That is, the first to third measurement units 100, 200, and 300 have different timings at which the mixed liquid is generated. Before the reaction of each liquid mixture is completed by measuring the liquid mixture sequentially generated in the first to third measurement units 100, 200, and 300 using one light source immediately after each liquid mixture is generated. Measurement results can be obtained. Therefore, a plurality of mixed liquids can be accurately measured using one light source.
  • the holding unit 134 is provided downward with respect to the reagent supply unit 133.
  • the holding units 234 and 238 are both provided downward with respect to the reagent supply unit 233.
  • the holding units 334, 338, and 340 are all provided downward with respect to the reagent supply unit 333. That is, in each of the first to third measurement units 100, 200, 300, the direction in which the holding portions are arranged is the same.
  • the reagent can be moved simultaneously in the holding portions of the first to third measurement units 100, 200, 300.
  • the reagent can be caused to flow into the holding portions of the first to third measurement units 100, 200, 300.
  • the reagent can flow out from the holders of the first to third measurement units 100, 200, 300.
  • the holding unit 134 is a quantitative unit.
  • the holding unit 234 is a quantitative unit.
  • the holding unit 334 is a quantitative unit. Therefore, in each of the first to third measurement units 100, 200, and 300, an appropriate amount of reagent can be supplied to the mixing unit.
  • the holding unit 234 provided on the most upstream side in the direction in which the reagent 13B is guided is a quantitative unit.
  • the holding unit 334 provided on the most upstream side in the direction in which the reagent 15B is guided is a quantitative unit. Accordingly, since the reagent can be quantified at the same timing in all the first to third measurement units 100, 200, 300, the examination time can be shortened.
  • the present disclosure is not limited to the above-described embodiment, and various modifications can be made.
  • the inspection chip 2 of the above embodiment is merely an example, and the structure, shape, processing, and the like of each can be changed.
  • the test chip 2 of the modified example shown in FIG. 16 is different from the test chip 2 of the above embodiment in that one common injection unit 401 is provided above the sample guide units 110, 130, and 150.
  • the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the shape, size, and position of the sample guide units 110, 130, and 150 of this modification are adjusted in order to arrange the common injection unit 400, the basic configuration is the same as that of the above embodiment. It is.
  • the sample 17 is supplied from the common injection unit 400 to the sample injection units 111, 131, and 151 instead of being injected from an injection hole (not shown).
  • the common injection part 401 is a part where the specimen 17 is injected and stored, and is a concave part opened upward.
  • the sample 17 is a sample commonly used in the first to third measurement units 100, 200, and 300.
  • the common injection unit 401 is provided above the first measurement unit 100 having the smallest number of holding units among the first to third measurement units 100, 200, and 300.
  • the sheet 29 shown in FIG. 4 is provided with an injection hole (not shown) for injecting the specimen 17 into the common injection unit 401. Further, a shape in which an injection hole (not shown) is not provided in the sheet 29 and the upper side portion 21 above the common injection portion 401 is open may be employed. The specimen 17 is injected from this opening.
  • the lower end of the common injection part 401 is connected to a common supply part 402 having a narrow channel width in the front-rear direction.
  • Gravity Z acts downward on the specimen 17 injected and stored in the common injection unit 401 as shown in FIG. However, since the capillary holding force is generated in the common supply unit 402, the specimen 17 is prevented from moving downward by the gravity Z through the common supply unit 402.
  • the downstream side of the common supply unit 402 is branched into three distribution paths 403, 404, and 405.
  • the distribution path 403 extends from the downstream end of the common supply unit 402 to the lower left and is connected to the upper left end of the sample injection unit 111.
  • the distribution path 404 extends substantially downward from the downstream end of the common supply unit 402 and is connected to the upper left end of the sample injection unit 211.
  • the distribution path 405 extends from the downstream end of the common supply unit 402 to the lower right and is connected to the upper left end of the sample injection unit 311.
  • the inspection apparatus 1 can perform inspection using the inspection chip 2 by performing the above-described measurement operation.
  • the aspect in which the specimen 17 is supplied to the first to third measurement units 100, 200, and 300 is different from the above embodiment. That is, at the start of the measurement operation, the test chip 2 shown in FIG. 16 is rotated 90 degrees counterclockwise as viewed from the front by drive control of the stepping motor 51. Further, the inspection chip 2 is revolved by driving control of the spindle motor 35. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and a centrifugal force X greater than the gravity Z acts from the upper side 21 toward the lower side 24.
  • the specimen 17 moves downward via the common supply unit 402 in the test chip 2 and is further distributed to the three distribution paths 403, 404, and 405.
  • the sample 17 distributed to the distribution paths 403, 404, and 405 flows into the sample injection units 111, 211, and 311, respectively.
  • the subsequent processing is the same as in the above embodiment.
  • a mixed solution of the sample 17 and the reagents 11B and 11C is generated and measured.
  • a mixed liquid of the sample 17 and the reagents 13B and 13C is generated and measured.
  • a mixed liquid of the sample 17 and the reagents 15B and 15C is generated and measured. Therefore, similarly to the above embodiment, a plurality of mixed liquids can be accurately measured using one light source.
  • the specimen injection unit 401 has the reagents 11B, 11C compared to the first measurement unit 100 having the smallest number of holding units among the first to third measurement units 100, 200, 300. Is provided on the upstream side in the guided direction. An empty space in the test chip 2 tends to occur on the upstream side in the direction in which the reagents 11B and 11C are guided with respect to the first measurement unit 100 having the smallest number of holding units. By providing the common sample injection part 401 in this empty space, the test chip 2 can be reduced in size.
  • the reagent guide part of each measurement unit is provided with the holding part from which quantity differs, respectively. It is not limited to this example, The sample guide part of each measurement unit may be provided with the holding part from which quantity differs, respectively.
  • the sample and the reagent may be exchanged in the embodiment and the modification. Also in this case, the same effects as those of the above-described embodiment and the modification are obtained.
  • each of the reagent guide unit and the sample guide unit of each measurement unit may include holding units having different quantities.
  • each of the plurality of measurement units includes an independent reagent or specimen surplus part.
  • the inspection chip is not limited to this example, and at least two measurement units may include a common surplus part. Since the plurality of measurement units share the surplus part, the structure of the inspection chip can be simplified. In this case, it is preferable that the common surplus portion is provided on the downstream side in the direction in which the reagent or the specimen is guided with respect to the measurement unit having the smallest number of holding portions among the plurality of measurement units.
  • an empty space in the test chip 2 is likely to occur on the downstream side in the direction in which the reagents 11B and 11C are guided with respect to the first measurement unit 100 having the smallest number of holding units.
  • the inspection chip 2 can be reduced in size.
  • the holding unit provided on the most upstream side in the direction in which the reagent is guided among the plurality of holding units is the quantitative unit.
  • the quantification unit may be any one of a plurality of holding units.
  • the holding unit provided on the most downstream side in the direction in which the specimen or the reagent is guided among the plurality of holding units may be a quantitative unit. In this case, since the sample or reagent can be quantified immediately before the mixed solution is generated, loss of the sample or reagent used for generating the mixed solution can be reduced.
  • three first to third measurement units 100, 200, 300 are provided on the front surface of the inspection chip 2. It is not limited to this example, What is necessary is just a plurality of measurement units. Moreover, you may provide a measurement unit in both surfaces of the test
  • the first measurement unit 100 may be provided on the front surface of the inspection chip 2
  • the second measurement unit 200 may be provided on the rear surface of the inspection chip 2.
  • each of the first to third measurement units 100, 200, 300 includes one holding part, two holding parts, and three holding parts. Without being limited to this example, each measurement unit only needs to have a different number of holding units.
  • the direction in which the holding unit is provided in each of the plurality of measurement units is not limited to the downward direction, and may be another direction.
  • the inspection chip 2 is composed of the plate material 20 and the sheet 29. Without being limited to this example, the inspection chip 2 may not include the sheet 29. For example, you may use the test
  • FIG. The number of reagents injected into the test chip 2 is not limited to two, and may be one reagent or three or more reagents.

Abstract

Provided is an inspection chip with which it is possible to accurately measure multiple mixed liquids by using one light source. An inspection chip (2) is provided with first to third measurement units (100, 200, 300) which each have spaces in which an injected specimen and a reagent can move. A mixing part (170) creates a mixed liquid of a specimen (11A) guided in a specimen guiding part (110), reagent (11B) guided in reagent guiding part (130), and reagent (11C) guided in reagent guiding part (150). The created mixed liquid is stored in a storage part (175) and is measured. Similarly, a mixed liquid of an injected specimen and a reagent is created, stored, and measured in the second measurement unit (200) and the third measurement unit (300). The first to third measurement units (100, 200, 300) have different numbers of holding parts for each reagent.

Description

検査チップInspection chip
 本発明は、検査対象物の化学的、医学的、または生物学的な検査を行うための検査チップに関する。 The present invention relates to an inspection chip for performing a chemical, medical, or biological inspection of an inspection object.
 従来、生体物質、または化学物質等を検査するための検査チップが知られている。例えば特許文献1に開示のマイクロチップは、複数項目の検査および分析を行うために、各項目に対応する複数のセクションを有する検査チップである。検体導入口から導入された検体は、各セクションに分配される。分配された検体は、各セクションの検体計量部により定量される。各検体計量部により定量された検体は、各セクションの検出部に導入される。各検出部では、定量された検体と試薬との混合液が、各項目の光学測定に使用される。光学測定の手法としては、例えば検体と試薬との混合液の透過率の経時的変化に基づくレート法が知られている。 Conventionally, an inspection chip for inspecting a biological substance or a chemical substance is known. For example, the microchip disclosed in Patent Document 1 is an inspection chip having a plurality of sections corresponding to each item in order to perform inspection and analysis of a plurality of items. The sample introduced from the sample introduction port is distributed to each section. The distributed specimen is quantified by the specimen weighing section of each section. The sample quantified by each sample measurement unit is introduced into the detection unit of each section. In each detection unit, the quantified liquid mixture of the sample and the reagent is used for optical measurement of each item. As an optical measurement method, for example, a rate method based on a change over time in the transmittance of a mixed solution of a specimen and a reagent is known.
特開2009-109429号公報JP 2009-109429 A
 特許文献1に開示のマイクロチップでは、複数の検出部を一の光源を用いて測定する場合、各検出部に貯留されている混合液が順に一つずつ光学測定される。この場合、測定順の早い検出部において光学測定が実行されている間に、測定順の遅い検出部において混合液の反応が進行する。レート法などの継時的変化に基づき混合液を測定する場合、測定順の遅い検出部において混合液の反応が完結していると、正確な検査結果を得ることができないおそれがあった。 In the microchip disclosed in Patent Document 1, when a plurality of detectors are measured using a single light source, the liquid mixture stored in each detector is optically measured one by one. In this case, while the optical measurement is being performed in the detection unit with the earlier measurement order, the reaction of the mixed solution proceeds in the detection unit with the later measurement order. When measuring a mixed solution based on a change over time such as a rate method, if the reaction of the mixed solution is completed in a detection unit whose measurement order is slow, an accurate test result may not be obtained.
 本発明の目的は、複数の混合液を一の光源を用いて正確に測定可能な検査チップを提供することである。 An object of the present invention is to provide an inspection chip capable of accurately measuring a plurality of mixed solutions using a single light source.
 本開示の一態様は、液体である検体および試薬が注入され、所定の第一軸を中心に回転されることにより遠心力が付与され、且つ、前記第一軸とは異なる第二軸を中心に回転されることにより前記遠心力の方向が変化される検査チップであって、注入された前記検体および前記試薬が各々移動可能な空間を含む複数の測定ユニットを備え、前記複数の測定ユニットの各々は、前記検体および前記試薬とが混合され、前記検体および前記試薬の混合液を生成可能な部位である混合部と、前記測定ユニットに注入された前記検体が前記混合部に向けて案内される部位である検体案内部と、前記測定ユニットに注入された前記試薬が前記混合部に向けて案内される部位である試薬案内部と、前記混合部において生成された前記混合液を貯留可能であって、且つ、貯留された前記混合液が測定される部位である貯留部とを備え、前記検体案内部および前記試薬案内部の少なくとも一方は、案内される前記検体または前記試薬を保持可能な部位である少なくとも一つの保持部を備え、前記保持部は、前記複数の測定ユニット毎に数量が異なることを特徴とする。 In one embodiment of the present disclosure, a liquid specimen and a reagent are injected, and a centrifugal force is applied by being rotated about a predetermined first axis, and the second axis is different from the first axis. A test chip in which the direction of the centrifugal force is changed by being rotated, and includes a plurality of measurement units each including a space in which the injected specimen and the reagent can move, and the plurality of measurement units In each of the above, the sample and the reagent are mixed, and a mixing unit that is a part capable of generating a mixed solution of the sample and the reagent, and the sample injected into the measurement unit are guided toward the mixing unit. A specimen guide part that is a part to be stored, a reagent guide part that is a part to which the reagent injected into the measurement unit is guided toward the mixing part, and the liquid mixture generated in the mixing part can be stored. And at least one of the specimen guide part and the reagent guide part can hold the specimen or the reagent to be guided. It comprises at least one holding part which is a part, and the quantity of the holding parts differs for each of the plurality of measurement units.
 上記態様に係る検査チップによれば、注入された検体および試薬が各々移動可能な空間を含む複数の測定ユニットを備える。各測定ユニットでは、注入された検体が検体案内部において混合部に向けて案内され、且つ注入された試薬が試薬案内部において混合部に向けて案内される。案内された検体と試薬との混合液が、混合部において生成される。生成された混合液は、貯留部において貯留および測定される。検体案内部および試薬案内部の少なくとも一方では、案内される検体または試薬が少なくとも一つの保持部により保持される。 The test chip according to the above aspect includes a plurality of measurement units each including a space in which the injected specimen and reagent can move. In each measurement unit, the injected sample is guided toward the mixing unit in the sample guide unit, and the injected reagent is guided toward the mixing unit in the reagent guide unit. A mixed liquid of the guided specimen and reagent is generated in the mixing unit. The generated mixed liquid is stored and measured in the storage unit. At least one of the sample guide unit and the reagent guide unit holds the sample or reagent to be guided by at least one holding unit.
 複数の保持部は測定ユニット毎に数量が異なるため、保持部の数量が多い測定ユニットは、保持部の少ない測定ユニットよりも、混合部において混合液が生成されるタイミングが遅い。つまり、複数の測定ユニットでは、混合液が生成されるタイミングが各々異なる。複数の測定ユニットにおいて順次生成される混合液を、各混合液が生成された直後に一の光源を用いて測定することにより、各混合液の反応が完結する前に測定結果を得ることができる。したがって、複数の混合液を一の光源を用いて正確に測定することができる。 Since the quantity of the plurality of holding units is different for each measurement unit, a measurement unit with a large number of holding units has a later timing of generating a mixed liquid in the mixing unit than a measurement unit with few holding units. That is, the timing at which the liquid mixture is generated is different among the plurality of measurement units. Measurement results can be obtained before the reaction of each liquid mixture is completed by measuring the liquid mixture sequentially generated in a plurality of measurement units using one light source immediately after each liquid mixture is generated. . Therefore, a plurality of mixed liquids can be accurately measured using one light source.
 前記保持部は、前記複数の測定ユニットの各々において、前記検査チップに対して同じ方向に並んで設けられてもよい。この場合、各測定ユニットにおいて保持部の並ぶ方向が同じである。そのため、検査チップに同じ方向の外力を付与することにより、各測定ユニットの保持部において検体または試薬を同時に移動させることができる。 The holding unit may be provided side by side in the same direction with respect to the inspection chip in each of the plurality of measurement units. In this case, the holding units are arranged in the same direction in each measurement unit. Therefore, by applying an external force in the same direction to the test chip, the specimen or reagent can be moved simultaneously in the holding unit of each measurement unit.
 前記複数の測定ユニットに対して共通の前記検体または前記試薬が注入される部位である一つの注入部を備え、前記注入部は、前記検査チップにおいて最も数量が少ない前記保持部を備えた前記測定ユニットに対して、前記検体または前記試薬の案内される方向の上流側に設けられてもよい。この場合、保持部が最も少ない測定ユニットに対して検体または試薬の案内される方向の上流側は、検査チップにおける空きスペースが生じやすい。この空きスペースに共通の注入部を設けることにより、検査チップの小型化を実現できる。 The measurement unit includes one injection unit that is a portion into which the sample or the reagent is injected into the plurality of measurement units, and the injection unit includes the holding unit with the smallest quantity in the test chip. It may be provided upstream of the unit in the direction in which the specimen or the reagent is guided. In this case, a vacant space in the test chip tends to occur on the upstream side in the direction in which the specimen or reagent is guided with respect to the measurement unit having the smallest number of holding units. By providing a common injection part in this empty space, it is possible to reduce the size of the inspection chip.
 前記保持部の一つは、前記測定ユニットに注入された前記検体または前記試薬を定量可能な部位である定量部であってもよい。この場合、混合部に適正な量の検体または試薬を供給できる。 One of the holding units may be a quantification unit that is a part capable of quantifying the specimen or the reagent injected into the measurement unit. In this case, an appropriate amount of specimen or reagent can be supplied to the mixing unit.
 少なくとも二つの前記測定ユニットは、各々の前記定量部から流出した前記所定量を超える前記検体または前記試薬を収容可能な共通の余剰部を備え、前記検査チップにおいて最も数量が少ない前記保持部を備えた前記測定ユニットに対して、前記検体または前記試薬の案内される方向の下流側に設けられてもよい。この場合、保持部が最も少ない測定ユニットに対して検体または試薬の案内される方向の下流側は、検査チップにおける空きスペースが生じやすい。この空きスペースに共通の余剰部を設けることにより、検査チップの小型化を実現できる。 At least two of the measurement units include a common surplus part that can store the sample or the reagent exceeding the predetermined amount that has flowed out from each of the quantification units, and includes the holding unit with the smallest quantity in the test chip. Further, it may be provided downstream of the measurement unit in the direction in which the sample or the reagent is guided. In this case, an empty space in the test chip is likely to occur on the downstream side in the direction in which the sample or reagent is guided with respect to the measurement unit having the smallest number of holding units. By providing a common surplus portion in this empty space, it is possible to reduce the size of the inspection chip.
 前記定量部は、複数の前記保持部を備える前記測定ユニットにおいて、前記複数の保持部のうちで前記検体または前記試薬の案内される方向の最上流側に設けられた前記保持部であってもよい。この場合、全ての測定ユニットにおいて同じタイミングにおいて検体または試薬を定量できるので、検査時間を短縮できる。 In the measurement unit including the plurality of holding units, the quantification unit may be the holding unit provided on the most upstream side in the direction in which the specimen or the reagent is guided among the plurality of holding units. Good. In this case, since the sample or reagent can be quantified at the same timing in all measurement units, the examination time can be shortened.
 前記定量部は、複数の前記保持部を備える前記測定ユニットにおいて、前記複数の保持部のうちで前記検体または前記試薬の案内される方向の最下流側に設けられた前記保持部であってもよい。この場合、混合液が生成される直前に検体または試薬を定量できるので、混合液の生成に用いられる検体または試薬の損失を低減できる。 In the measurement unit including the plurality of holding units, the quantification unit may be the holding unit provided on the most downstream side in the direction in which the sample or the reagent is guided among the plurality of holding units. Good. In this case, since the sample or reagent can be quantified immediately before the mixed solution is generated, loss of the sample or reagent used for generating the mixed solution can be reduced.
検査装置1の背面図である。2 is a rear view of the inspection apparatus 1. FIG. 検査装置1の他の背面図である。4 is another rear view of the inspection apparatus 1. FIG. 図1に示す検査装置1の平面図である。It is a top view of the inspection apparatus 1 shown in FIG. 検査チップ2の斜視図である。2 is a perspective view of an inspection chip 2. FIG. 遠心処理前の検査チップ2の正面図である。It is a front view of the test | inspection chip 2 before a centrifugation process. 第一測定ユニット100の拡大正面図である。2 is an enlarged front view of a first measurement unit 100. FIG. 第二測定ユニット200の拡大正面図である。4 is an enlarged front view of a second measurement unit 200. FIG. 第三測定ユニット300の拡大正面図である。FIG. 6 is an enlarged front view of a third measurement unit 300. 図5の後、自転角度90度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in the autorotation angle of 90 degree | times after FIG. 図9の後、自転角度90度において公転される検査チップ2の正面図である。FIG. 10 is a front view of the inspection chip 2 revolved at a rotation angle of 90 degrees after FIG. 9. 図10の後、自転角度45度において光学測定される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 optically measured in the autorotation angle of 45 degree | times after FIG. 図11の後、自転角度90度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in 90 degrees of autorotation angles after FIG. 図12の後、自転角度0度において光学測定される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 optically measured in the autorotation angle 0 degree after FIG. 図13の後、自転角度90度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in 90 autorotation angles after FIG. 図14の後、自転角度-45度において光学測定される検査チップ2の正面図である。FIG. 15 is a front view of the inspection chip 2 optically measured at a rotation angle of −45 degrees after FIG. 14. 変形例に係る検査チップ2の正面図である。It is a front view of the test | inspection chip 2 which concerns on a modification.
 本開示を具体化した実施の形態について、図面を参照して説明する。参照する図面は、本開示が採用しうる技術的特徴を説明するために用いられるものであり、単なる説明例である。 Embodiments embodying the present disclosure will be described with reference to the drawings. The drawings to be referred to are used to explain technical features that can be adopted by the present disclosure, and are merely illustrative examples.
<1.検査システム3の概略構造>
 本開示の実施形態を説明する。図1および図2を参照して、検査システム3の概略構造について説明する。本実施形態の検査システム3は、液体である検体および試薬を収容可能な検査チップ2と、検査チップ2を用いて検査を行う検査装置1とを含む。検査装置1は、検査チップ2から離間した垂直軸線を中心とした回転により、検査チップ2に遠心力を付与できる。検査装置1は、水平軸線を中心に検査チップ2を回転させることにより、検査チップ2に付与される遠心力の方向である遠心方向を切り替え可能である。
<1. Schematic structure of inspection system 3>
An embodiment of the present disclosure will be described. A schematic structure of the inspection system 3 will be described with reference to FIGS. 1 and 2. The inspection system 3 of the present embodiment includes an inspection chip 2 that can store a specimen and a reagent that are liquids, and an inspection apparatus 1 that performs an inspection using the inspection chip 2. The inspection apparatus 1 can apply a centrifugal force to the inspection chip 2 by rotation about a vertical axis separated from the inspection chip 2. The inspection apparatus 1 can switch the centrifugal direction that is the direction of the centrifugal force applied to the inspection chip 2 by rotating the inspection chip 2 about the horizontal axis.
<2.検査装置1の詳細構造>
 図1~図3を参照して、検査装置1の詳細構造について説明する。以下の説明では、図1および図2の上方、下方、右方、左方、紙面手前側、および紙面奥側を、それぞれ、検査装置1の上方、下方、右方、左方、後方、および前方とする。図3の上方、下方、右方、左方、紙面手前側、および紙面奥側を、それぞれ、検査装置1の前方、下方、右方、左方、上方、および下方とする。本実施形態では、垂直軸の方向は上下方向であり、水平軸の方向は検査チップ2が垂直軸を中心とした回転の際の速度の方向である。なお、理解を容易にするために、図1および図2では上部筐体30を仮想線により示し、図3では上部筐体30の天板が取り除かれた状態を示す。
<2. Detailed structure of the inspection apparatus 1>
The detailed structure of the inspection apparatus 1 will be described with reference to FIGS. In the following description, the upper, lower, right, left, front side, and rear side of FIG. 1 and FIG. 2 are respectively the upper, lower, right, left, rear, and rear sides of the inspection device 1. Let it be in front. The upper, lower, right, left, front side, and back side of FIG. 3 are the front, lower, right, left, upper, and lower sides of the inspection apparatus 1, respectively. In this embodiment, the direction of the vertical axis is the vertical direction, and the direction of the horizontal axis is the direction of the speed when the inspection chip 2 rotates around the vertical axis. For ease of understanding, FIGS. 1 and 2 show the upper housing 30 by phantom lines, and FIG. 3 shows a state where the top plate of the upper housing 30 is removed.
 図1~図3に示すように、検査装置1は、上部筐体30、下部筐体31、ターンテーブル33、角度変更機構34、および制御装置90を備える。ターンテーブル33は、下部筐体31の上面側に設けられる円盤状の回転体である。検査チップ2は、ターンテーブル33の上方に保持される。角度変更機構34は、ターンテーブル33に設けられた駆動機構である。この駆動機構は、水平軸線を中心に検査チップ2を回転させる。上部筐体30は、下部筐体31の上側に固定されており、検査チップ2に対して光学測定を行う測定部7が内部に設けられている。制御装置90は、検査装置1の各種処理を制御するコントローラである。 As shown in FIGS. 1 to 3, the inspection apparatus 1 includes an upper housing 30, a lower housing 31, a turntable 33, an angle changing mechanism 34, and a control device 90. The turntable 33 is a disk-shaped rotating body provided on the upper surface side of the lower housing 31. The inspection chip 2 is held above the turntable 33. The angle changing mechanism 34 is a drive mechanism provided on the turntable 33. This drive mechanism rotates the inspection chip 2 around the horizontal axis. The upper housing 30 is fixed to the upper side of the lower housing 31, and the measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside. The control device 90 is a controller that controls various processes of the inspection device 1.
 下部筐体31の詳細構造を説明する。図1および図2に示すように、下部筐体31は、枠部材を組み合わせた箱状のフレーム構造を有する。下部筐体31の上面には、長方形の板材である上板32が設けられている。上板32の上側には、ターンテーブル33が回転自在に設けられている。下部筐体31の内部には、垂直軸線を中心にターンテーブル33を回転させる駆動機構が、次のように設けられている。 The detailed structure of the lower housing 31 will be described. As shown in FIGS. 1 and 2, the lower housing 31 has a box-like frame structure in which frame members are combined. An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 31. A turntable 33 is rotatably provided above the upper plate 32. A drive mechanism for rotating the turntable 33 around the vertical axis is provided in the lower housing 31 as follows.
 下部筐体31内の左方寄りに、ターンテーブル33を回転させるための駆動力を供給する主軸モータ35が設置されている。主軸モータ35の軸36は、上方に突出しており、プーリ37が固定されている。下部筐体31の中央部には、下部筐体31の内部から上方に延びる垂直な主軸57が設けられている。主軸57は、上板32を貫通して、下部筐体31の上側に突出している。主軸57の上端部は、ターンテーブル33の中央部に接続されている。 A spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 31. A shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed. A vertical main shaft 57 extending upward from the inside of the lower housing 31 is provided at the center of the lower housing 31. The main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 31. The upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
 主軸57は、上板32の直下に設けられた支持部材53により、回転自在に保持されている。支持部材53の下側では、主軸57にプーリ38が固定されている。プーリ37、38に亘って、ベルト39が掛け渡されている。主軸モータ35が軸36を回転させると、プーリ37、ベルト39、およびプーリ38を介して駆動力が主軸57に伝達される。このとき、主軸57の回転に連動して、ターンテーブル33が主軸57を中心に回転する。 The main shaft 57 is rotatably held by a support member 53 provided immediately below the upper plate 32. A pulley 38 is fixed to the main shaft 57 below the support member 53. A belt 39 is stretched over the pulleys 37 and 38. When the main shaft motor 35 rotates the shaft 36, driving force is transmitted to the main shaft 57 via the pulley 37, the belt 39, and the pulley 38. At this time, the turntable 33 rotates around the main shaft 57 in conjunction with the rotation of the main shaft 57.
 下部筐体31内の右方寄りに、下部筐体31の内部において上下方向に延びるガイドレール56が設けられている。T型プレート48は、ガイドレール56に沿って下部筐体31内において上下方向に移動可能である。T型プレート48の前側、すなわち図1および図2では紙面奥側の面には、左右方向に長い溝部80が形成されている。 A guide rail 56 extending in the vertical direction inside the lower housing 31 is provided on the right side in the lower housing 31. The T-shaped plate 48 is movable in the vertical direction in the lower housing 31 along the guide rail 56. A groove 80 that is long in the left-right direction is formed on the front side of the T-shaped plate 48, that is, on the back side in FIG. 1 and FIG.
 先述の主軸57は、内部が中空の筒状体である。内軸40は、主軸57の内部において上下方向に移動可能な軸である。内軸40の上端部は、主軸57内を貫通して後述のラックギア43に接続されている。T型プレート48の左端部には、軸受41が設けられている。軸受41の内部では、内軸40の下端部が回転自在に保持される。 The above-described main shaft 57 is a hollow cylindrical body. The inner shaft 40 is a shaft that can move in the vertical direction inside the main shaft 57. An upper end portion of the inner shaft 40 passes through the main shaft 57 and is connected to a rack gear 43 described later. A bearing 41 is provided at the left end of the T-shaped plate 48. Inside the bearing 41, the lower end portion of the inner shaft 40 is rotatably held.
 T型プレート48の前方には、T型プレート48を上下動させるためのステッピングモータ51が固定されている。ステッピングモータ51の軸58は後方、すなわち図1および図2では紙面手前側に向けて突出している。軸58の先端には、円盤状のカム板59が固定されている。カム板59の後側の面には、円柱状の突起70が設けられている。突起70の先端部は、先述の溝部80に挿入されている。突起70は、溝部80内を摺動可能である。ステッピングモータ51が軸58を回転させると、カム板59の回転に連動して突起70が上下動する。このとき、溝部80に挿入されている突起70に連動して、T型プレート48がガイドレール56に沿って上下動する。 A stepping motor 51 for moving the T-shaped plate 48 up and down is fixed in front of the T-shaped plate 48. The shaft 58 of the stepping motor 51 protrudes rearward, that is, toward the front side of the page in FIGS. A disc-shaped cam plate 59 is fixed to the tip of the shaft 58. A cylindrical projection 70 is provided on the rear surface of the cam plate 59. The tip of the protrusion 70 is inserted into the groove 80 described above. The protrusion 70 can slide in the groove 80. When the stepping motor 51 rotates the shaft 58, the projection 70 moves up and down in conjunction with the rotation of the cam plate 59. At this time, the T-shaped plate 48 moves up and down along the guide rail 56 in conjunction with the protrusion 70 inserted in the groove 80.
 角度変更機構34の詳細構造を説明する。角度変更機構34は、ターンテーブル33の上面に固定された一対のL型プレート60を有する。各L型プレート60は、ターンテーブル33の中心近傍に固定された基部から上方に延び、且つ、その上端部がターンテーブル33の径方向外側に向けて延びている。一対のL型プレート60の間には、内軸40に固定されたラックギア43が設けられている。ラックギア43は、上下方向に長い金属製の板状部材であり、両端面にギアが各々刻まれている。 The detailed structure of the angle changing mechanism 34 will be described. The angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33. A rack gear 43 fixed to the inner shaft 40 is provided between the pair of L-shaped plates 60. The rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.
 各L型プレート60の延設方向の先端側では、ギア45を有する水平な支軸46が回転自在に軸支されている。支軸46は図示外の装着用ホルダを介して検査チップ2に固定されている。このため、ギア45の回転に連動して検査チップ2も支軸46を中心に回転する。ギア45とラックギア43との間には、L型プレート60により水平軸線を中心に回転自在に支持されたピニオンギア44が介在している。ピニオンギア44は、ギア45およびラックギア43にそれぞれ噛合している。ラックギア43の上下動に連動して、ピニオンギア44、およびギア45がそれぞれ従動回転し、ひいては検査チップ2が支軸46を中心に回転する。 A horizontal support shaft 46 having a gear 45 is rotatably supported at the distal end side in the extending direction of each L-shaped plate 60. The support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45. Between the gear 45 and the rack gear 43, a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis is interposed. The pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 rotates about the support shaft 46.
 本実施形態では、主軸モータ35がターンテーブル33を回転駆動するのに伴って、検査チップ2が垂直軸である主軸57を中心に回転して、検査チップ2に遠心力が付与される。検査チップ2の垂直軸線を中心とした回転を、公転と呼ぶ。一方、ステッピングモータ51が内軸40を上下動させるのに伴って、検査チップ2が水平軸である支軸46を中心に回転して、検査チップ2に作用する遠心力の方向が相対変化する。検査チップ2の水平軸線を中心とした回転を、自転と呼ぶ。 In this embodiment, as the main shaft motor 35 rotates and drives the turntable 33, the inspection chip 2 rotates around the main shaft 57, which is a vertical axis, and centrifugal force is applied to the inspection chip 2. The rotation around the vertical axis of the inspection chip 2 is called revolution. On the other hand, as the stepping motor 51 moves the inner shaft 40 up and down, the inspection chip 2 rotates around the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively. . The rotation around the horizontal axis of the inspection chip 2 is called rotation.
 図5に例示するように、検査チップ2の上下方向が検査装置1の上下方向と一致する状態を、検査チップ2の定常状態という。検査チップ2が定常状態である場合、検査チップ2の自転角度は0度である。図1に示すように、T型プレート48が可動範囲の最下端まで下降した場合、ラックギア43も可動範囲の最下端まで下降する。このとき、検査チップ2は、図5に例示する定常状態に対して、前方からみて時計回り方向に90度自転した状態になる。すなわち、検査チップ2の自転角度が-90度になる。図2に示すように、T型プレート48が可動範囲の最上端まで上昇した場合、ラックギア43も可動範囲の最上端まで上昇する。このとき検査チップ2は、図5に例示する定常状態に対して、前方からみて反時計回り方向に90度自転した状態になる。すなわち、検査チップ2の自転角度が90度になる。つまり、本実施形態の検査装置1は、検査チップ2の自転角度を-90度~90度の範囲において変更可能である。  As illustrated in FIG. 5, a state in which the vertical direction of the inspection chip 2 coincides with the vertical direction of the inspection device 1 is referred to as a steady state of the inspection chip 2. When the inspection chip 2 is in a steady state, the rotation angle of the inspection chip 2 is 0 degree. As shown in FIG. 1, when the T-shaped plate 48 is lowered to the lowermost end of the movable range, the rack gear 43 is also lowered to the lowermost end of the movable range. At this time, the test | inspection chip 2 will be in the state which rotated 90 degree | times in the clockwise direction seeing from the front with respect to the steady state illustrated in FIG. That is, the rotation angle of the inspection chip 2 is −90 degrees. As shown in FIG. 2, when the T-shaped plate 48 is raised to the uppermost end of the movable range, the rack gear 43 is also raised to the uppermost end of the movable range. At this time, the inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front with respect to the steady state illustrated in FIG. That is, the rotation angle of the inspection chip 2 is 90 degrees. That is, the inspection apparatus 1 of the present embodiment can change the rotation angle of the inspection chip 2 in the range of −90 degrees to 90 degrees.
 上部筐体30の詳細構造を説明する。図3に示すように、上部筐体30は、枠部材を組み合わせた箱状のフレーム構造を有し、上板32の左部上側に設置されている。より詳細には、上部筐体30は、ターンテーブル33の回転中心にある主軸57からみて、検査チップ2が回転される範囲の外側に設けられている。 The detailed structure of the upper housing 30 will be described. As shown in FIG. 3, the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.
 上部筐体30の内部に設けられた測定部7は、測定光を発光する光源71と、光源71から発せられた測定光を検出する光センサ72とを有する。光源71および光センサ72は、検査チップ2の回転範囲の外側において、ターンテーブル33の前後両側に配置されている。本実施形態では、検査チップ2の公転可能範囲のうちで主軸57の左側位置が、検査チップ2に測定光が照射される測定位置である。検査チップ2が測定位置にある場合、光源71と光センサ72とを結ぶ測定光が、検査チップ2の前後面に対して略垂直に交差する。 The measurement unit 7 provided in the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71. The light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2. In the present embodiment, the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light. When the inspection chip 2 is at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 intersects the front and rear surfaces of the inspection chip 2 substantially perpendicularly.
<3.検査チップ2>
 図4~図8を参照して、本実施形態に係る検査チップ2の構造を説明する。以下の説明では、図4の上方、下方、左下方、右上方、右下方、および左上方を、それぞれ、検査チップ2の上方、下方、前方、後方、右方、および左方とする。図5~図8ではシート29を取り除いて、検査チップ2の正面図を示している。後述の図9~図16も同様である。
<3. Inspection chip 2>
The structure of the test chip 2 according to this embodiment will be described with reference to FIGS. In the following description, the upper, lower, lower left, upper right, lower right, and upper left in FIG. 4 are the upper, lower, front, rear, right, and left sides of the test chip 2, respectively. 5 to 8 show front views of the inspection chip 2 with the sheet 29 removed. The same applies to FIGS. 9 to 16 described later.
<3-1.検査チップ2の概略構造>
 図4に示すように、検査チップ2は一例として前方から見た場合に正方形状であり、所定の厚みを有する透明な合成樹脂の板材20を主体とする。板材20の前面は、透明の合成樹脂の薄板から構成されたシート29により封止されている。板材20とシート29との間には、検査チップ2に封入された液体が移動可能な液体流路25が形成されている。液体流路25は、板材20の前面側に所定深さにより形成された凹部であり、板材20の厚み方向である前後方向と直交する方向に延びる。すなわち、シート29は、板材20の流路形成面を封止する。
<3-1. Schematic structure of inspection chip 2>
As shown in FIG. 4, the inspection chip 2 has a square shape when viewed from the front as an example, and mainly includes a transparent synthetic resin plate material 20 having a predetermined thickness. The front surface of the plate member 20 is sealed with a sheet 29 made of a transparent synthetic resin thin plate. Between the plate member 20 and the sheet 29, a liquid flow path 25 is formed in which the liquid sealed in the inspection chip 2 can move. The liquid flow path 25 is a recess formed on the front side of the plate member 20 with a predetermined depth, and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate member 20. That is, the sheet 29 seals the flow path forming surface of the plate material 20.
 図5に示すように、図4に示す液体流路25は、注入された検体および試薬が各々移動可能な空間を含む三つの第一~第三測定ユニット100、200、300を備える。第一測定ユニット100では、検体11A、試薬11Bおよび試薬11Cが移動されて、これらの混合液を用いた検査が行われる。第二測定ユニット200では、検体13A、試薬13Bおよび試薬13Cが移動されて、これらの混合液を用いた検査が行われる。第三測定ユニット300では、検体15A、試薬15Bおよび試薬15Cが移動されて、これらの混合液を用いた検査が行われる。 As shown in FIG. 5, the liquid flow path 25 shown in FIG. 4 includes three first to third measurement units 100, 200, and 300 each including a space in which the injected specimen and reagent can move. In the first measurement unit 100, the specimen 11A, the reagent 11B, and the reagent 11C are moved, and an inspection using these mixed solutions is performed. In the second measurement unit 200, the specimen 13A, the reagent 13B, and the reagent 13C are moved, and an inspection using these mixed solutions is performed. In the third measurement unit 300, the specimen 15A, the reagent 15B, and the reagent 15C are moved, and an inspection using these mixed solutions is performed.
 第一~第三測定ユニット100、200、300は、板材20の前面において左右方向に並び、且つ上下方向に延びている。第一~第三測定ユニット100、200、300のうち、第一測定ユニット100が検査チップ2の左側の壁面である左辺部23に最も近い。第三測定ユニット300が検査チップ2の右側の壁面である右辺部22に最も近い。第二測定ユニット200が第一測定ユニット100と第三測定ユニット300との間に位置する。なお、検査チップ2の上側の壁面は、上辺部21である。検査チップ2の下側の壁面は、下辺部24である。 The first to third measurement units 100, 200, 300 are arranged in the left-right direction on the front surface of the plate member 20, and extend in the up-down direction. Of the first to third measurement units 100, 200, and 300, the first measurement unit 100 is closest to the left side portion 23 that is the left wall surface of the test chip 2. The third measurement unit 300 is closest to the right side portion 22 which is the right wall surface of the inspection chip 2. The second measurement unit 200 is located between the first measurement unit 100 and the third measurement unit 300. The upper wall surface of the inspection chip 2 is the upper side portion 21. The lower wall surface of the inspection chip 2 is a lower side portion 24.
<3-2.第一測定ユニット100の詳細構造>
 図6を参照して、第一測定ユニット100の詳細を説明する。第一測定ユニット100は、検体案内部110、試薬案内部130、試薬案内部150、混合部170、および貯留部175を備える。検体案内部110は、第一測定ユニット100における上側部分に設けられている。試薬案内部130、150は、検体案内部110の下方に設けられ、且つ、それぞれ左側および右側に並んで配置されている。混合部170は、試薬案内部150の下方に設けられている。貯留部175は、混合部170の左下端部に設けられている。
<3-2. Detailed structure of first measurement unit 100>
Details of the first measurement unit 100 will be described with reference to FIG. 6. The first measurement unit 100 includes a sample guide unit 110, a reagent guide unit 130, a reagent guide unit 150, a mixing unit 170, and a storage unit 175. The sample guide unit 110 is provided in the upper part of the first measurement unit 100. The reagent guides 130 and 150 are provided below the sample guide 110, and are arranged side by side on the left and right sides, respectively. The mixing unit 170 is provided below the reagent guide unit 150. The reservoir 175 is provided at the lower left end of the mixing unit 170.
 検体案内部110は、注入された検体11Aが混合部170に向けて案内される部位である。試薬案内部130は、注入された試薬11Bが混合部170に向けて案内される部位である。試薬案内部150は、注入された試薬11Cが混合部170に向けて案内される部位である。混合部170は、案内された検体11A、試薬11B、および試薬11Cが混合され、図10に示す混合液11Dを生成可能な部位である。貯留部175は、生成された混合液11Dを貯留可能であって、且つ、貯留された混合液11Dが測定される部位である。 The specimen guide section 110 is a part where the injected specimen 11A is guided toward the mixing section 170. The reagent guide part 130 is a part where the injected reagent 11B is guided toward the mixing part 170. The reagent guide part 150 is a part where the injected reagent 11C is guided toward the mixing part 170. The mixing unit 170 is a part where the guided specimen 11A, the reagent 11B, and the reagent 11C are mixed to generate a mixed liquid 11D shown in FIG. The storage unit 175 is a part that can store the generated mixed liquid 11D and that measures the stored mixed liquid 11D.
 検体案内部110は、検体注入部111、保持部114、および検体余剰部116を備える。検体注入部111は、検体11Aが注入および貯留される部位であり、上側に開口する凹部である。検体注入部111の右上部分は、下方に延びる検体供給路112に接続する。検体供給路112の下端部は、流路が狭く形成された検体供給部113に接続する。検体供給部113の下方には、保持部114が設けられている。保持部114は、検体案内部110において案内される検体11Aを保持可能な部位であり、上側に開口する凹部である。保持部114は、検体11Aを定量可能な部位である定量部として機能する。検体供給部113から保持部114の凹部内側に向けて遠心力が付与されることにより、保持部114の凹部内側の体積と同量の検体11Aが定量される。 The sample guide unit 110 includes a sample injection unit 111, a holding unit 114, and a sample surplus unit 116. The specimen injection part 111 is a part into which the specimen 11A is injected and stored, and is a recess that opens upward. The upper right part of the specimen injection part 111 is connected to the specimen supply path 112 extending downward. The lower end portion of the sample supply path 112 is connected to a sample supply section 113 having a narrow flow path. A holding unit 114 is provided below the sample supply unit 113. The holding part 114 is a part that can hold the specimen 11A guided by the specimen guiding part 110, and is a concave part that opens upward. The holding unit 114 functions as a quantification unit that is a part capable of quantifying the specimen 11A. By applying a centrifugal force from the sample supply unit 113 toward the inside of the concave portion of the holding unit 114, the amount of the sample 11A having the same volume as the volume inside the concave portion of the holding unit 114 is quantified.
 検体供給部113と保持部114とが連通する部位から、分岐路115が左方向に延び、且つ分岐路117が右方向に延びている。分岐路115は、保持部114の下方に設けられた検体余剰部116まで延びている。すなわち分岐路115は、流路の形成方向が変わるように前方からみて屈曲している。これにより、分岐路115において検体11が保持部114と検体余剰部116との間を移動するためには、検体11に複数の異なる方向の外力を付与する必要がある。つまり検体余剰部116に貯留された検体11は、分岐路115を介して保持部114に逆流しにくい。 From the site where the sample supply unit 113 and the holding unit 114 communicate with each other, the branch path 115 extends leftward and the branch path 117 extends rightward. The branch path 115 extends to the specimen surplus part 116 provided below the holding part 114. That is, the branch path 115 is bent when viewed from the front so that the flow path formation direction changes. Thus, in order for the sample 11 to move between the holding unit 114 and the sample surplus unit 116 in the branch path 115, it is necessary to apply external forces in a plurality of different directions to the sample 11. That is, the specimen 11 stored in the specimen surplus section 116 is unlikely to flow back to the holding section 114 via the branch path 115.
 検体余剰部116は、保持部114から溢れ出た検体11Aが収容される部位であり、分岐路115の下端部から右方向に延びる凹部である。分岐路117は、試薬案内部150の右側を通って、混合部170の右上端部まで下方に延びている。すなわち分岐路117は、分岐路115と同様の理由により、流路の形成方向が変わる。 The specimen surplus part 116 is a part in which the specimen 11A overflowing from the holding part 114 is accommodated, and is a concave part extending rightward from the lower end part of the branch path 115. The branch path 117 extends downward to the upper right end of the mixing unit 170 through the right side of the reagent guide unit 150. That is, in the branch path 117, the flow path formation direction is changed for the same reason as the branch path 115.
 試薬案内部130は、試薬注入部131、一つの保持部134、および試薬余剰部136を備える。試薬注入部131は、試薬11Bが注入および貯留される部位であり、上側に開口する凹部である。試薬注入部131の右上部分は、下方に延びる試薬供給路132に接続する。試薬供給路132の下端部は、流路が狭く形成された試薬供給部133に接続する。試薬供給部133の下方には、保持部134が設けられている。保持部134は、試薬案内部130において案内される試薬11Bを保持可能な部位であり、上側に開口する凹部である。保持部134は、試薬11Bを定量可能な部位である定量部として機能する。試薬供給部133から保持部134の凹部内側に向けて遠心力が付与されることにより、保持部134の凹部内側の体積と同量の試薬11Bが定量される。 The reagent guide unit 130 includes a reagent injection unit 131, a single holding unit 134, and a reagent surplus unit 136. The reagent injection part 131 is a part into which the reagent 11B is injected and stored, and is a recess that opens upward. The upper right part of the reagent injection part 131 is connected to a reagent supply path 132 extending downward. The lower end of the reagent supply path 132 is connected to a reagent supply part 133 having a narrow channel. A holding unit 134 is provided below the reagent supply unit 133. The holding part 134 is a part that can hold the reagent 11 </ b> B guided by the reagent guiding part 130, and is a concave part that opens upward. The holding unit 134 functions as a quantification unit that is a part capable of quantifying the reagent 11B. By applying a centrifugal force from the reagent supply unit 133 toward the inside of the recess of the holding unit 134, the same amount of reagent 11B as the volume inside the recess of the holding unit 134 is quantified.
 試薬供給部133と保持部134とが連通する部位から、分岐路135が左方向に延び、且つ分岐路137が右方向に延びている。分岐路135は、保持部134の下方に設けられた試薬余剰部136まで延びている。すなわち分岐路135は、分岐路115と同様の理由により、流路の形成方向が変わる。試薬余剰部136は、保持部134から溢れ出た試薬11Bが収容される部位であり、分岐路135の下端部から右方向に延びる凹部である。分岐路137は、保持部134の右側を通って、混合部170の左上端部まで下方に延びている。すなわち分岐路137は、分岐路115と同様の理由により、流路の形成方向が変わる。 The branch path 135 extends to the left and the branch path 137 extends to the right from the part where the reagent supply unit 133 and the holding unit 134 communicate with each other. The branch path 135 extends to the reagent surplus part 136 provided below the holding part 134. In other words, the flow path formation direction of the branch path 135 changes for the same reason as the branch path 115. The reagent surplus part 136 is a part in which the reagent 11B overflowing from the holding part 134 is accommodated, and is a concave part extending rightward from the lower end part of the branch path 135. The branch path 137 extends downward to the upper left end of the mixing unit 170 through the right side of the holding unit 134. That is, the flow path formation direction of the branch path 137 changes for the same reason as the branch path 115.
 試薬案内部150は、試薬案内部130と同様に、試薬注入部151、試薬供給路152、試薬供給部153、一つの保持部154、分岐路155、試薬余剰部156、および分岐路157を備える。ただし分岐路157は、混合部170の中央上端部に接続している。したがって、試薬注入部151に注入された試薬11Cのうち、保持部154における定量時に溢れた余剰の試薬11Cは分岐路155を介して試薬余剰部156に収容される。一方、保持部154において定量された試薬11Cは、分岐路157を介して混合部170まで移動する。 Similar to the reagent guide unit 130, the reagent guide unit 150 includes a reagent injection unit 151, a reagent supply channel 152, a reagent supply unit 153, one holding unit 154, a branch channel 155, a reagent surplus unit 156, and a branch channel 157. . However, the branch path 157 is connected to the central upper end of the mixing unit 170. Therefore, of the reagent 11C injected into the reagent injection unit 151, the excess reagent 11C overflowed at the time of quantification in the holding unit 154 is accommodated in the reagent excess unit 156 via the branch path 155. On the other hand, the reagent 11 </ b> C quantified in the holding unit 154 moves to the mixing unit 170 via the branch path 157.
<3-3.第二測定ユニット200の詳細構造>
 図7を参照して、第二測定ユニット200の詳細を説明する。第二測定ユニット200は、検体案内部210、試薬案内部230、試薬案内部250、混合部270、および貯留部275を備える。検体案内部210は、第二測定ユニット200における上側部分に設けられている。試薬案内部230、250は、検体案内部210の右下方に設けられ、且つ、それぞれ左側および右側に並んで配置されている。混合部270は、試薬案内部230および試薬案内部250の下方に設けられている。貯留部275は、混合部270の中央下端部に設けられている。
<3-3. Detailed structure of second measurement unit 200>
Details of the second measurement unit 200 will be described with reference to FIG. The second measurement unit 200 includes a sample guide unit 210, a reagent guide unit 230, a reagent guide unit 250, a mixing unit 270, and a storage unit 275. The sample guide unit 210 is provided in the upper part of the second measurement unit 200. The reagent guides 230 and 250 are provided on the lower right side of the sample guide 210 and are arranged side by side on the left side and the right side, respectively. The mixing unit 270 is provided below the reagent guide unit 230 and the reagent guide unit 250. The storage unit 275 is provided at the central lower end of the mixing unit 270.
 検体案内部210は、注入された検体13Aが混合部270に向けて案内される部位である。試薬案内部230は、注入された試薬13Bが混合部270に向けて案内される部位である。試薬案内部250は、注入された試薬13Cが混合部270に向けて案内される部位である。混合部270は、案内された検体13A、試薬13B、および試薬13Cが混合され、図12に示す混合液13Dを生成可能な部位である。貯留部275は、生成された混合液13Dを貯留可能であって、且つ、貯留された混合液13Dが測定される部位である。 The specimen guide unit 210 is a part where the injected specimen 13A is guided toward the mixing unit 270. The reagent guide unit 230 is a part where the injected reagent 13B is guided toward the mixing unit 270. The reagent guiding part 250 is a part where the injected reagent 13C is guided toward the mixing part 270. The mixing unit 270 is a part where the guided specimen 13A, reagent 13B, and reagent 13C are mixed to generate a mixed liquid 13D shown in FIG. The storage part 275 is a part where the generated mixed liquid 13D can be stored and the stored mixed liquid 13D is measured.
 検体案内部210は、図6に示す検体案内部110と同様に、検体注入部211、検体供給路212、検体供給部213、保持部214、分岐路215、検体余剰部216、および分岐路217を備える。但し分岐路217は、試薬案内部250の右側を通って、混合部270の右上端部まで下方に延びている。すなわち分岐路217は、分岐路115と同様の理由により、流路の形成方向が変わる。したがって、検体注入部211に注入された検体13Aのうち、保持部214において定量された検体13Aは、分岐路217を介して混合部270まで移動する。保持部214における定量時に溢れた余剰の検体13Aは、分岐路215を介して検体余剰部216に収容される。 Similar to the sample guide unit 110 illustrated in FIG. 6, the sample guide unit 210 includes a sample injection unit 211, a sample supply path 212, a sample supply unit 213, a holding unit 214, a branch path 215, a sample surplus section 216, and a branch path 217. Is provided. However, the branch path 217 extends downward to the upper right end of the mixing unit 270 through the right side of the reagent guide unit 250. That is, the flow path formation direction of the branch path 217 changes for the same reason as the branch path 115. Therefore, of the sample 13A injected into the sample injection unit 211, the sample 13A quantified in the holding unit 214 moves to the mixing unit 270 via the branch path 217. The surplus sample 13A overflowing at the time of determination in the holding unit 214 is accommodated in the sample surplus unit 216 via the branch path 215.
 試薬案内部230は、図6に示す試薬案内部130と同様に、試薬注入部231、試薬供給路232、試薬供給部233、一つの保持部234、分岐路235、試薬余剰部236、および分岐路237を備える。保持部234は、図6に示す保持部134と同様に、試薬13Bの定量部として機能する。 Similar to the reagent guide unit 130 shown in FIG. 6, the reagent guide unit 230 includes a reagent injection unit 231, a reagent supply channel 232, a reagent supply unit 233, one holding unit 234, a branch channel 235, a reagent surplus unit 236, and a branch. A path 237 is provided. The holding unit 234 functions as a quantification unit for the reagent 13B, similarly to the holding unit 134 shown in FIG.
 さらに試薬案内部230は、保持部238を備える。保持部238は、定量された試薬13Bを保持可能な部位であり、上側に開口する凹部である。つまり試薬案内部230は、案内される試薬13Bを保持可能な部位として、二つの保持部234、238を備える。保持部238は、保持部234の下方に設けられている。つまり二つの保持部234、238は、試薬供給部233に対していずれも下方向に設けられる。 Furthermore, the reagent guide unit 230 includes a holding unit 238. The holding part 238 is a part that can hold the quantified reagent 13B, and is a concave part that opens upward. That is, the reagent guide unit 230 includes two holding units 234 and 238 as parts that can hold the guided reagent 13B. The holding part 238 is provided below the holding part 234. That is, the two holding units 234 and 238 are both provided downward with respect to the reagent supply unit 233.
 分岐路237は、保持部234の右側を通って保持部238の左上端部まで延びている。すなわち分岐路237は、分岐路115と同様の理由により、流路の形成方向が変わる。保持部238の右上端部は、下方に延びる案内路239に接続する。案内路239は、保持部238の右側を通って保持部238の下方まで延び、混合部270の左上端部に接続している。すなわち案内路239は、分岐路115と同様の理由により、流路の形成方向が変わる。したがって、試薬注入部231に注入された試薬13Bのうち、保持部238における定量時に溢れた余剰の試薬13Bは、分岐路235を介して試薬余剰部236に収容される。一方、保持部234において定量された試薬13Bは、分岐路237を介して保持部238まで移動する。さらに、試薬13Bは保持部238から案内路239を介して、混合部270まで移動する。 The branch path 237 extends to the upper left end of the holding part 238 through the right side of the holding part 234. That is, in the branch path 237, the flow path forming direction is changed for the same reason as the branch path 115. The upper right end portion of the holding portion 238 is connected to a guide path 239 extending downward. The guide path 239 extends to the lower side of the holding unit 238 through the right side of the holding unit 238 and is connected to the upper left end of the mixing unit 270. That is, in the guide path 239, the flow path formation direction is changed for the same reason as the branch path 115. Therefore, of the reagent 13 </ b> B injected into the reagent injection unit 231, the excess reagent 13 </ b> B overflowing at the time of determination in the holding unit 238 is accommodated in the reagent excess unit 236 via the branch path 235. On the other hand, the reagent 13 </ b> B quantified in the holding unit 234 moves to the holding unit 238 via the branch path 237. Furthermore, the reagent 13B moves from the holding unit 238 to the mixing unit 270 via the guide path 239.
 試薬案内部250は、試薬案内部230と同様に、試薬注入部251、試薬供給路252、試薬供給部253、二つの保持部254、258、分岐路255、試薬余剰部256、分岐路257、および案内路259を備える。ただし案内路259は、混合部270の中央上端部に接続している。したがって、試薬注入部251に注入された試薬13Cのうち、保持部254における定量時に溢れた余剰の試薬13Cは分岐路255を介して試薬余剰部256に収容される。一方、保持部254において定量された試薬13Cは、分岐路257を介して保持部258まで移動する。さらに、試薬13Cは保持部258から案内路259を介して、混合部270まで移動する。 Similar to the reagent guide unit 230, the reagent guide unit 250 includes a reagent injection unit 251, a reagent supply channel 252, a reagent supply unit 253, two holding units 254 and 258, a branch channel 255, a reagent surplus unit 256, a branch channel 257, And a guide path 259. However, the guide path 259 is connected to the central upper end of the mixing unit 270. Therefore, of the reagent 13 </ b> C injected into the reagent injection unit 251, the excess reagent 13 </ b> C overflowing at the time of determination in the holding unit 254 is accommodated in the reagent excess unit 256 via the branch path 255. On the other hand, the reagent 13 </ b> C quantified in the holding unit 254 moves to the holding unit 258 via the branch path 257. Furthermore, the reagent 13 </ b> C moves from the holding unit 258 to the mixing unit 270 via the guide path 259.
<3-4.第三測定ユニット300の詳細構造>
 図8を参照して、第三測定ユニット300の詳細を説明する。第三測定ユニット300は、検体案内部310、試薬案内部330、試薬案内部350、混合部370、および貯留部375を備える。検体案内部310は、第三測定ユニット300における上側部分に設けられている。試薬案内部330、350は、検体案内部310の右下方に設けられ、且つ、それぞれ左側および右側に並んで配置されている。混合部370は、試薬案内部330、350の下方に設けられている。貯留部375は、混合部370の右下端部に設けられている。
<3-4. Detailed Structure of Third Measurement Unit 300>
The details of the third measurement unit 300 will be described with reference to FIG. The third measurement unit 300 includes a sample guide unit 310, a reagent guide unit 330, a reagent guide unit 350, a mixing unit 370, and a storage unit 375. The sample guide 310 is provided in the upper part of the third measurement unit 300. The reagent guides 330 and 350 are provided on the lower right side of the sample guide 310 and are arranged side by side on the left side and the right side, respectively. The mixing unit 370 is provided below the reagent guide units 330 and 350. The reservoir 375 is provided at the lower right end of the mixing unit 370.
 検体案内部310は、注入された検体15Aが混合部370に向けて案内される部位である。試薬案内部330は、注入された試薬15Bが混合部370に向けて案内される部位である。試薬案内部350は、注入された試薬15Cが混合部370に向けて案内される部位である。混合部370は、案内された検体15A、試薬15B、および試薬15Cが混合され、図14に示す混合液15Dを生成可能な部位である。貯留部375は、生成された混合液15Dを貯留可能であって、且つ、貯留された混合液15Dが測定される部位である。 The specimen guide unit 310 is a part where the injected specimen 15A is guided toward the mixing unit 370. The reagent guide part 330 is a part where the injected reagent 15B is guided toward the mixing part 370. The reagent guide part 350 is a part where the injected reagent 15C is guided toward the mixing part 370. The mixing unit 370 is a part where the guided specimen 15A, reagent 15B, and reagent 15C are mixed to generate a mixed liquid 15D shown in FIG. The storage unit 375 is a part capable of storing the generated mixed liquid 15D and measuring the stored mixed liquid 15D.
 検体案内部310は、図6に示す検体案内部110と同様に、検体注入部311、検体供給路312、検体供給部313、保持部314、分岐路315、検体余剰部316、および分岐路317を備える。但し分岐路317は、試薬案内部350の右側を通って、混合部370の右上端部まで下方に延びている。すなわち分岐路317は、分岐路115と同様の理由により、流路の形成方向が変わる。したがって、検体注入部311に注入された検体15Aのうち、保持部314において定量された検体15Aは、分岐路317を介して混合部370まで移動する。保持部314における定量時に溢れた余剰の検体15Aは、分岐路315を介して検体余剰部316に収容される。 Similar to the sample guide unit 110 shown in FIG. 6, the sample guide unit 310 includes a sample injection unit 311, a sample supply channel 312, a sample supply unit 313, a holding unit 314, a branch channel 315, a sample surplus unit 316, and a branch channel 317. Is provided. However, the branch path 317 extends downward to the upper right end of the mixing unit 370 through the right side of the reagent guide unit 350. That is, the flow path formation direction of the branch path 317 changes for the same reason as the branch path 115. Therefore, of the sample 15A injected into the sample injection unit 311, the sample 15A quantified in the holding unit 314 moves to the mixing unit 370 via the branch path 317. The surplus sample 15A overflowed at the time of determination in the holding unit 314 is accommodated in the sample surplus unit 316 via the branch path 315.
 試薬案内部330は、図7に示す試薬案内部230と同様に、試薬注入部331、試薬供給路332、試薬供給部333、二つの保持部334、338、分岐路335、試薬余剰部336、分岐路337、および案内路339を備える。保持部334は、図6に示す保持部134と同様に、試薬15Bの定量部として機能する。 Similar to the reagent guide unit 230 shown in FIG. 7, the reagent guide unit 330 includes a reagent injection unit 331, a reagent supply channel 332, a reagent supply unit 333, two holding units 334 and 338, a branch channel 335, a reagent surplus unit 336, A branch path 337 and a guide path 339 are provided. The holding unit 334 functions as a quantification unit for the reagent 15B, similarly to the holding unit 134 shown in FIG.
 さらに試薬案内部330は、保持部340を備える。保持部340は、定量された試薬15Bを保持可能な部位であり、上側に開口する凹部である。つまり試薬案内部330は、案内される試薬15Bを保持可能な部位として、三つの保持部334、338、340を備える。保持部340は、保持部338の下方に設けられている。つまり三つの保持部334、338、340は、試薬供給部333に対していずれも下方向に設けられる。 Furthermore, the reagent guide unit 330 includes a holding unit 340. The holding part 340 is a part that can hold the quantified reagent 15B, and is a concave part that opens upward. That is, the reagent guide unit 330 includes three holding units 334, 338, and 340 as portions that can hold the guided reagent 15B. The holding unit 340 is provided below the holding unit 338. That is, the three holding units 334, 338, and 340 are all provided downward with respect to the reagent supply unit 333.
 案内路339は、保持部338の右側を通って保持部340の左上端部まで延びている。すなわち案内路339は、分岐路115と同様の理由により、流路の形成方向が変わる。保持部340の右上端部は、下方に延びる案内路341に接続する。案内路341は、保持部340の右側を通って保持部340の下方まで延び、混合部370の左上端部に接続している。すなわち案内路341は、分岐路115と同様の理由により、流路の形成方向が変わる。したがって、試薬注入部331に注入された試薬15Bのうち、保持部338における定量時に溢れた余剰の試薬15Bは分岐路335を介して試薬余剰部336に収容される。一方、保持部334において定量された試薬15Bは、分岐路337を介して保持部338まで移動する。次いで試薬15Bは保持部338から案内路339を介して、保持部340まで移動する。さらに、試薬15Bは保持部340から案内路341を介して、混合部370まで移動する。 The guide path 339 extends through the right side of the holding part 338 to the upper left end of the holding part 340. That is, in the guide path 339, the flow path forming direction is changed for the same reason as the branch path 115. The upper right end portion of the holding portion 340 is connected to a guide path 341 that extends downward. The guide path 341 passes through the right side of the holding unit 340 and extends below the holding unit 340, and is connected to the upper left end of the mixing unit 370. That is, in the guide path 341, the flow path formation direction changes for the same reason as the branch path 115. Therefore, of the reagent 15 </ b> B injected into the reagent injection unit 331, the excess reagent 15 </ b> B overflowing at the time of determination in the holding unit 338 is accommodated in the reagent excess unit 336 via the branch path 335. On the other hand, the reagent 15 </ b> B quantified in the holding unit 334 moves to the holding unit 338 via the branch path 337. Next, the reagent 15B moves from the holding unit 338 to the holding unit 340 via the guide path 339. Furthermore, the reagent 15 </ b> B moves from the holding unit 340 to the mixing unit 370 through the guide path 341.
 試薬案内部350は、試薬案内部330と同様に、試薬注入部351、試薬供給路352、試薬供給部353、三つの保持部354、358、360、分岐路355、試薬余剰部356、分岐路357、および案内路359、361を備える。ただし案内路361は、混合部370の中央上端部に接続している。したがって、試薬注入部351に注入された試薬15Cのうち、保持部354における定量時に溢れた余剰の試薬15Cは分岐路355を介して試薬余剰部356に収容される。一方、保持部354において定量された試薬15Cは、分岐路357を介して保持部358まで移動する。次いで試薬15Cは保持部358から案内路359を介して、保持部360まで移動する。さらに、試薬15Cは保持部360から案内路361を介して、混合部370まで移動する。 Similar to the reagent guide unit 330, the reagent guide unit 350 includes a reagent injection unit 351, a reagent supply channel 352, a reagent supply unit 353, three holding units 354, 358, and 360, a branch channel 355, a reagent surplus unit 356, and a branch channel. 357, and guide paths 359 and 361. However, the guide path 361 is connected to the central upper end of the mixing unit 370. Therefore, of the reagent 15C injected into the reagent injection unit 351, the excess reagent 15C overflowed at the time of determination in the holding unit 354 is accommodated in the reagent excess unit 356 via the branch path 355. On the other hand, the reagent 15 </ b> C quantified in the holding unit 354 moves to the holding unit 358 via the branch path 357. Next, the reagent 15 </ b> C moves from the holding unit 358 to the holding unit 360 via the guide path 359. Furthermore, the reagent 15 </ b> C moves from the holding unit 360 to the mixing unit 370 through the guide path 361.
<3-5.検査チップ2のその他構造>
 図4に示すシート29のうちで第一測定ユニット100を封止する部位には、図6に示す検体11Aを検体注入部111に注入するための図示外の注入穴が形成されている。例えば、図示外の器具に収容された検体11Aが、ユーザの操作により注入穴から注入されればよい。すなわち、公知の手法を用いて、注入穴を介して検体11Aが検体注入部111に注入されればよい。同様にシート29には、試薬11Bを試薬注入部131に注入するための図示外の注入穴、および試薬11Cを試薬注入部151に注入するための図示外の注入穴が形成されている。第二測定ユニット200および第三測定ユニット300についても同様である。尚、これらの注入穴は、例えば上辺部21が開口している形状でもよい。
<3-5. Other structures of inspection chip 2>
A portion of the sheet 29 shown in FIG. 4 that seals the first measurement unit 100 is formed with an injection hole (not shown) for injecting the sample 11A shown in FIG. For example, the specimen 11A housed in a tool not shown may be injected from the injection hole by the user's operation. That is, the sample 11A may be injected into the sample injection unit 111 through the injection hole using a known method. Similarly, an injection hole (not shown) for injecting the reagent 11B into the reagent injection part 131 and an injection hole (not shown) for injecting the reagent 11C into the reagent injection part 151 are formed in the sheet 29. The same applies to the second measurement unit 200 and the third measurement unit 300. These injection holes may have a shape in which, for example, the upper side portion 21 is open.
 図1に示すように、L型プレート60から延びる支軸46は、図示外の装着用ホルダを介して板材20の後面中央に垂直に連結される。図5に示す中心Ctは、検査チップ2における支軸46の連結位置であり、且つ検査チップ2の自転中心である。本実施形態では、中心Ctから貯留部175までの距離L1と、中心Ctから貯留部275までの距離L2と、中心Ctから貯留部375までの距離L3とが等しい。 As shown in FIG. 1, the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 20 via a mounting holder (not shown). A center Ct shown in FIG. 5 is a connection position of the support shaft 46 in the inspection chip 2 and a rotation center of the inspection chip 2. In the present embodiment, the distance L1 from the center Ct to the storage unit 175, the distance L2 from the center Ct to the storage unit 275, and the distance L3 from the center Ct to the storage unit 375 are equal.
 支軸46の回転に伴って、中心Ctを中心に前方からみて反時計回り方向に検査チップ2が自転する。検査チップ2は図5に示す定常状態である場合、上辺部21および下辺部24が重力Zの方向と直交し、右辺部22および左辺部23が重力Zの方向と平行、且つ、左辺部23が右辺部22よりも主軸57側に配置される。定常状態の検査チップ2が測定位置に配置されている場合、光源71と光センサ72とを結ぶ測定光が貯留部275を上方からみて垂直に通過する。 As the support shaft 46 rotates, the inspection chip 2 rotates counterclockwise around the center Ct as viewed from the front. When the inspection chip 2 is in the steady state shown in FIG. 5, the upper side 21 and the lower side 24 are orthogonal to the direction of the gravity Z, the right side 22 and the left side 23 are parallel to the direction of the gravity Z, and the left side 23 Is disposed closer to the main shaft 57 than the right side portion 22. When the inspection chip 2 in the steady state is arranged at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 passes vertically through the storage unit 275.
<4.検査方法の一例>
 図5~図15を参照して、検査装置1および検査チップ2を用いた検査方法について説明する。ユーザは検査チップ2を支軸46に取り付けて、制御装置90に処理開始のコマンドを入力すると、以下の測定動作が実行される。なお、検査装置1は二つの検査チップ2を同時に検査可能であるが、以下では説明の便宜のため、一つの検査チップ2を検査する手順を説明する。
<4. Example of inspection method>
An inspection method using the inspection device 1 and the inspection chip 2 will be described with reference to FIGS. When the user attaches the inspection chip 2 to the support shaft 46 and inputs a processing start command to the control device 90, the following measurement operation is executed. Note that the inspection apparatus 1 can inspect two inspection chips 2 at the same time, but the procedure for inspecting one inspection chip 2 will be described below for convenience of explanation.
 まず主軸モータ35の駆動制御により、図5に示す定常状態の検査チップ2が公転される。遠心方向の下流側に向けて、検査チップ2に遠心力Xが作用する。本実施形態では、図1に示す右方向に図5に示す右方向が一致するように、検査チップ2が検査装置1にセットされる。したがって、定常状態の検査チップ2が公転されると、左辺部23から右辺部22に向けて遠心力Xが作用する。遠心力Xの作用により、図6に示す第一測定ユニット100では、検体注入部111に貯留されている検体11Aは検体供給路112に移動する。同時に、試薬注入部131に貯留されている試薬11Bは、試薬供給路132に移動する。試薬注入部151に貯留されている試薬11Cは、試薬供給路152に移動する。 First, the stationary inspection chip 2 shown in FIG. 5 is revolved by driving control of the spindle motor 35. A centrifugal force X acts on the inspection chip 2 toward the downstream side in the centrifugal direction. In the present embodiment, the inspection chip 2 is set in the inspection apparatus 1 so that the right direction shown in FIG. Therefore, when the inspection chip 2 in the steady state is revolved, the centrifugal force X acts from the left side portion 23 toward the right side portion 22. Due to the action of the centrifugal force X, in the first measurement unit 100 shown in FIG. 6, the specimen 11A stored in the specimen injection part 111 moves to the specimen supply path 112. At the same time, the reagent 11 </ b> B stored in the reagent injection part 131 moves to the reagent supply path 132. The reagent 11C stored in the reagent injection part 151 moves to the reagent supply path 152.
 同様に、図7に示す第二測定ユニット200では、検体注入部211に貯留されている検体13Aは検体供給路212に移動する。試薬注入部231に貯留されている試薬13Bは、試薬供給路232に移動する。試薬注入部251に貯留されている試薬13Cは、試薬供給路252に移動する。図8に示す第三測定ユニット300では、検体注入部311に貯留されている検体15Aは検体供給路312に移動する。試薬注入部331に貯留されている試薬15Bは、試薬供給路332に移動する。試薬注入部351に貯留されている試薬15Cは、試薬供給路352に移動する。 Similarly, in the second measurement unit 200 shown in FIG. 7, the sample 13A stored in the sample injection unit 211 moves to the sample supply path 212. The reagent 13B stored in the reagent injection unit 231 moves to the reagent supply path 232. The reagent 13C stored in the reagent injection part 251 moves to the reagent supply path 252. In the third measurement unit 300 shown in FIG. 8, the sample 15 </ b> A stored in the sample injection unit 311 moves to the sample supply path 312. The reagent 15B stored in the reagent injection part 331 moves to the reagent supply path 332. The reagent 15C stored in the reagent injection part 351 moves to the reagent supply path 352.
 次に図9に示すように、ステッピングモータ51の駆動制御により、公転状態の検査チップ2は前方からみて反時計周り方向に90度自転される。これにより検査チップ2の自転角度が90度に変化し、上辺部21から下辺部24に向けて遠心力Xが作用する。遠心力Xの作用により、図6に示す第一測定ユニット100では、検体11Aは検体供給部113を介して保持部114に流入する。保持部114では、所定量を超える検体11Aが分岐路115に溢れ出して検体余剰部116に収容される。この結果、検体11Aが定量される。 Next, as shown in FIG. 9, by the drive control of the stepping motor 51, the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts from the upper side portion 21 toward the lower side portion 24. Due to the action of the centrifugal force X, the sample 11A flows into the holding unit 114 via the sample supply unit 113 in the first measurement unit 100 shown in FIG. In the holding unit 114, the sample 11 A exceeding a predetermined amount overflows the branch path 115 and is stored in the sample surplus unit 116. As a result, the specimen 11A is quantified.
 同時に、試薬11Bは試薬供給部133を介して保持部134に流入する。保持部134では、所定量を超える試薬11Bが分岐路135に溢れ出す。溢れ出した試薬11Bは、試薬余剰部136に収容される。この結果、試薬11Bが定量される。試薬11Cは試薬供給部153を介して保持部154に流入する。保持部154では、所定量を超える試薬11Cが分岐路155に溢れ出す。溢れ出した試薬11Cは、試薬余剰部156に収容される。この結果、試薬11Cが定量される。 At the same time, the reagent 11B flows into the holding unit 134 via the reagent supply unit 133. In the holding unit 134, the reagent 11 </ b> B exceeding a predetermined amount overflows into the branch path 135. The overflowing reagent 11B is stored in the reagent surplus part 136. As a result, the reagent 11B is quantified. The reagent 11 </ b> C flows into the holding unit 154 through the reagent supply unit 153. In the holding unit 154, the reagent 11C exceeding a predetermined amount overflows into the branch path 155. The overflowing reagent 11C is stored in the reagent surplus portion 156. As a result, the reagent 11C is quantified.
 同様に、図7に示す第二測定ユニット200では、検体13Aは検体供給部213を介して保持部214に流入して定量され、且つ保持部214における定量時に溢れた余剰の検体13Aが分岐路215を介して検体余剰部216に収容される。試薬13Bは試薬供給部233を介して保持部234に流入して定量され、且つ保持部234における定量時に溢れた余剰の試薬13Bが分岐路235を介して試薬余剰部236に収容される。試薬13Cは試薬供給部253を介して保持部254に流入して定量され、且つ保持部254における定量時に溢れた余剰の試薬13Cが分岐路255を介して試薬余剰部256に収容される。 Similarly, in the second measurement unit 200 shown in FIG. 7, the sample 13A flows into the holding unit 214 via the sample supply unit 213 and is quantified, and the excess sample 13A overflowed at the time of quantification in the holding unit 214 is branched. It is accommodated in the specimen surplus part 216 via 215. The reagent 13B flows into the holding unit 234 through the reagent supply unit 233 and is quantified, and the excess reagent 13B overflowing at the time of quantification in the holding unit 234 is stored in the reagent surplus unit 236 through the branch path 235. The reagent 13 </ b> C flows into the holding unit 254 via the reagent supply unit 253 and is quantified, and excess reagent 13 </ b> C overflowing at the time of quantification in the holding unit 254 is accommodated in the reagent surplus unit 256 via the branch path 255.
 図8に示す第三測定ユニット300では、検体15Aは検体供給部313を介して保持部314に流入して定量され、且つ保持部314における定量時に溢れた余剰の検体15Aが分岐路315を介して検体余剰部316に収容される。試薬15Bは試薬供給部333を介して保持部334に流入して定量され、且つ保持部334における定量時に溢れた余剰の試薬15Bが分岐路335を介して試薬余剰部336に収容される。試薬15Cは試薬供給部353を介して保持部354に流入して定量され、且つ保持部354における定量時に溢れた余剰の試薬15Cが分岐路355を介して試薬余剰部356に収容される。 In the third measurement unit 300 shown in FIG. 8, the sample 15A flows into the holding unit 314 via the sample supply unit 313 and is quantified, and the surplus sample 15A overflowed at the time of quantification in the holding unit 314 passes through the branch path 315. And stored in the specimen surplus part 316. The reagent 15B flows into the holding unit 334 via the reagent supply unit 333 and is quantified, and the excess reagent 15B overflowing at the time of quantification in the holding unit 334 is stored in the reagent surplus unit 336 via the branch path 335. The reagent 15 </ b> C flows into the holding unit 354 through the reagent supply unit 353 and is quantified, and excess reagent 15 </ b> C overflowing at the time of quantification in the holding unit 354 is stored in the reagent surplus unit 356 through the branch path 355.
 次にステッピングモータ51の駆動制御により、図9に示す公転状態の検査チップ2が、前方からみて時計周り方向に90度自転される。これにより検査チップ2の自転角度が0度に戻り、左辺部23から右辺部22に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図6に示す第一測定ユニット100では、保持部114において定量された検体11Aが分岐路117に移動する。検体余剰部116は右方向に閉じているため、余剰の検体11Aは検体余剰部116に留まる。同時に、保持部134において定量された試薬11Bが分岐路137に移動する。試薬余剰部136は右方向に閉じているため、余剰の試薬11Bは試薬余剰部136に留まる。保持部154において定量された試薬11Cが分岐路157に移動する。試薬余剰部156は右方向に閉じる凹部であるため、余剰の試薬11Cは試薬余剰部156に留まる。 Next, by the drive control of the stepping motor 51, the revolution inspection chip 2 shown in FIG. 9 is rotated 90 degrees in the clockwise direction when viewed from the front. As a result, the rotation angle of the inspection chip 2 returns to 0 degrees, and the centrifugal force X acts on the inspection chip 2 from the left side portion 23 toward the right side portion 22. Due to the action of the centrifugal force X, in the first measurement unit 100 shown in FIG. 6, the specimen 11A quantified in the holding unit 114 moves to the branch path 117. Since the specimen surplus part 116 is closed in the right direction, the surplus specimen 11A remains in the specimen surplus part 116. At the same time, the reagent 11B quantified in the holding unit 134 moves to the branch path 137. Since the reagent surplus portion 136 is closed in the right direction, the surplus reagent 11B remains in the reagent surplus portion 136. The reagent 11 </ b> C quantified in the holding unit 154 moves to the branch path 157. Since the reagent surplus portion 156 is a recess that closes in the right direction, the surplus reagent 11C remains in the reagent surplus portion 156.
 同様に、図7に示す第二測定ユニット200では、保持部214において定量された検体13Aは分岐路217に移動し、且つ余剰の検体13Aは検体余剰部216に留まる。保持部234において定量された試薬13Bは分岐路237に移動し、且つ余剰の試薬13Bは試薬余剰部236に留まる。保持部254において定量された試薬13Cは分岐路257に移動し、且つ余剰の試薬13Cは試薬余剰部256に留まる。 Similarly, in the second measurement unit 200 shown in FIG. 7, the sample 13A quantified in the holding unit 214 moves to the branch path 217, and the surplus sample 13A remains in the sample surplus unit 216. The reagent 13B quantified in the holding unit 234 moves to the branch path 237, and the excess reagent 13B remains in the reagent excess unit 236. The reagent 13C quantified in the holding unit 254 moves to the branch path 257, and the surplus reagent 13C remains in the reagent surplus portion 256.
 図8に示す第三測定ユニット300では、保持部314において定量された検体15Aは分岐路317に移動し、且つ余剰の検体15Aは検体余剰部316に留まる。保持部334において定量された試薬15Bは分岐路337に移動し、且つ余剰の試薬15Bは試薬余剰部336に留まる。保持部354において定量された試薬15Cは分岐路357に移動し、且つ余剰の試薬15Cは試薬余剰部356に留まる。 In the third measurement unit 300 shown in FIG. 8, the sample 15A quantified in the holding unit 314 moves to the branch path 317, and the surplus sample 15A remains in the sample surplus unit 316. The reagent 15B quantified in the holding unit 334 moves to the branch path 337, and the excess reagent 15B remains in the reagent excess unit 336. The reagent 15C quantified in the holding unit 354 moves to the branch path 357, and the surplus reagent 15C remains in the reagent surplus portion 356.
 次に図10に示すように、ステッピングモータ51の駆動制御により、公転状態の検査チップ2は前方からみて反時計周り方向に90度自転される。これにより、検査チップ2の自転角度が90度に変化し、上辺部21から下辺部24に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図6に示す第一測定ユニット100では、分岐路117に移動した検体11Aは混合部170に流入する。分岐路137に移動した試薬11Bは、混合部170に流入する。分岐路157に移動した試薬11Cは、混合部170に流入する。混合部170に流入した検体11A、試薬11B、および試薬11Cは、遠心力Xの作用により混合され、混合液11Dが生成される。 Next, as shown in FIG. 10, by the driving control of the stepping motor 51, the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24. In the first measurement unit 100 shown in FIG. 6 due to the action of the centrifugal force X, the specimen 11A moved to the branch path 117 flows into the mixing unit 170. The reagent 11 </ b> B that has moved to the branch path 137 flows into the mixing unit 170. The reagent 11 </ b> C that has moved to the branch path 157 flows into the mixing unit 170. The specimen 11A, the reagent 11B, and the reagent 11C that have flowed into the mixing unit 170 are mixed by the action of the centrifugal force X to generate a mixed solution 11D.
 このとき、図7に示す第二測定ユニット200では、分岐路217に移動した検体13Aは混合部270に流入する。分岐路237に移動した試薬13Bは、保持部238に流入する。分岐路257に移動した試薬13Cは、保持部258に流入する。同様に、図8に示す第三測定ユニット300では、分岐路317に移動した検体15Aは、混合部370に流入する。分岐路337に移動した試薬15Bは、保持部338に流入する。分岐路357に移動した試薬15Cは、保持部358に流入する。 At this time, in the second measurement unit 200 shown in FIG. 7, the specimen 13A moved to the branch path 217 flows into the mixing unit 270. The reagent 13 </ b> B that has moved to the branch path 237 flows into the holding unit 238. The reagent 13 </ b> C that has moved to the branch path 257 flows into the holding unit 258. Similarly, in the third measurement unit 300 shown in FIG. 8, the sample 15 </ b> A that has moved to the branch path 317 flows into the mixing unit 370. The reagent 15 </ b> B that has moved to the branch path 337 flows into the holding unit 338. The reagent 15 </ b> C that has moved to the branch path 357 flows into the holding unit 358.
 次に図11に示すように、主軸モータ35の駆動制御により、検査チップ2を測定位置まで移動させる。ステッピングモータ51の駆動制御により、図10に示す検査チップ2は前方からみて時計周り方向に45度自転される。これにより、検査チップ2の自転角度が45度に変化する。このとき重力Zの作用する方向は、検査チップ2の右上側から左下側に向く。重力Zの作用により、図6に示す第一測定ユニット100では、混合部170において生成された混合液11Dが、混合部170の左下端部に設けられた貯留部175に貯留される。この状態において測定部7が駆動されて、測定光が貯留部175を通る。検査装置1では、光センサ72が受光した測定光の変化量に基づいて、レート法などの継時的変化に基づく混合液11Dの光学測定が実行される。 Next, as shown in FIG. 11, the inspection chip 2 is moved to the measurement position by driving control of the spindle motor 35. By the driving control of the stepping motor 51, the inspection chip 2 shown in FIG. 10 is rotated 45 degrees clockwise as viewed from the front. Thereby, the rotation angle of the test | inspection chip 2 changes to 45 degree | times. At this time, the direction in which the gravity Z acts is from the upper right side to the lower left side of the inspection chip 2. Due to the action of gravity Z, in the first measurement unit 100 shown in FIG. 6, the liquid mixture 11 </ b> D generated in the mixing unit 170 is stored in the storage unit 175 provided at the lower left end of the mixing unit 170. In this state, the measurement unit 7 is driven, and the measurement light passes through the storage unit 175. In the inspection apparatus 1, optical measurement of the liquid mixture 11 </ b> D based on a temporal change such as a rate method is performed based on the amount of change in the measurement light received by the optical sensor 72.
 このとき、図7に示す第二測定ユニット200では、保持部238が左下方向に閉じているため、定量された試薬13Bは保持部238に留まる。保持部258が左下方向に閉じているため、定量された試薬13Cは保持部258に留まる。したがって試薬13B、13Cは、混合部270に貯留されている検体13Aと混合しない。同様に、図8に示す第三測定ユニット300では、定量された試薬15Bは保持部338に留まり、且つ定量された試薬15Cは保持部358に留まる。したがって試薬15B、15Cは、混合部370に貯留されている検体15Aと混合しない。 At this time, in the second measurement unit 200 shown in FIG. 7, since the holding unit 238 is closed in the lower left direction, the quantified reagent 13B remains in the holding unit 238. Since the holding unit 258 is closed in the lower left direction, the quantified reagent 13C remains in the holding unit 258. Therefore, the reagents 13B and 13C are not mixed with the sample 13A stored in the mixing unit 270. Similarly, in the third measurement unit 300 shown in FIG. 8, the quantified reagent 15B stays in the holding unit 338, and the quantified reagent 15C stays in the holding unit 358. Therefore, the reagents 15B and 15C are not mixed with the sample 15A stored in the mixing unit 370.
 次にステッピングモータ51の駆動制御により、図11に示す検査チップ2が前方からみて時計周り方向に45度自転される。自転角度が0度に変化した検査チップ2が、主軸モータ35の駆動制御により公転される。これにより、左辺部23から右辺部22に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図7に示す第二測定ユニット200では、保持部238により保持されている試薬13Bは、案内路239に移動する。保持部258により保持されている試薬13Cは、案内路259に移動する。同様に、図8に示す第三測定ユニット300では、保持部338により保持されている試薬15Bは、案内路339に移動する。保持部358により保持されている試薬15Cは、案内路359に移動する。 Next, by the drive control of the stepping motor 51, the inspection chip 2 shown in FIG. 11 is rotated 45 degrees clockwise as viewed from the front. The inspection chip 2 whose rotation angle has changed to 0 degrees is revolved by driving control of the spindle motor 35. Thereby, the centrifugal force X acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, the reagent 13 </ b> B held by the holding unit 238 moves to the guide path 239 in the second measurement unit 200 shown in FIG. 7. The reagent 13 </ b> C held by the holding unit 258 moves to the guide path 259. Similarly, in the third measurement unit 300 shown in FIG. 8, the reagent 15 </ b> B held by the holding unit 338 moves to the guide path 339. The reagent 15C held by the holding unit 358 moves to the guide path 359.
 次に図12に示すように、ステッピングモータ51の駆動制御により、公転状態の検査チップ2は前方からみて反時計周り方向に90度自転される。これにより、検査チップ2の自転角度が90度に変化し、上辺部21から下辺部24に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図7に示す第二測定ユニット200では、案内路239に移動した試薬13Bは、混合部270に流入する。案内路259に移動した試薬13Cは、混合部270に流入する。混合部270に流入した試薬13B、13Cは、遠心力Xの作用により検体13Aと混合され、混合液13Dが生成される。このとき、図8に示す第三測定ユニット300では、案内路339に移動した試薬15Bは、保持部340に流入する。案内路359に移動した試薬15Cは、保持部360に流入する。 Next, as shown in FIG. 12, by the drive control of the stepping motor 51, the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24. In the second measurement unit 200 shown in FIG. 7 due to the action of the centrifugal force X, the reagent 13B moved to the guide path 239 flows into the mixing unit 270. The reagent 13 </ b> C that has moved to the guide path 259 flows into the mixing unit 270. The reagents 13B and 13C that have flowed into the mixing unit 270 are mixed with the specimen 13A by the action of the centrifugal force X, and a mixed liquid 13D is generated. At this time, in the third measurement unit 300 illustrated in FIG. 8, the reagent 15 </ b> B that has moved to the guide path 339 flows into the holding unit 340. The reagent 15C moved to the guide path 359 flows into the holding unit 360.
 次に図13に示すように、主軸モータ35の駆動制御により、検査チップ2を測定位置まで移動させる。ステッピングモータ51の駆動制御により、図12に示す検査チップ2は前方からみて時計周り方向に90度自転される。これにより、検査チップ2の自転角度が0度に変化する。このとき重力Zの作用する方向は、検査チップ2の上辺部21から下辺部24に向く。重力Zの作用により、混合部270において生成された混合液13Dは、混合部270の中央下端部に設けられた貯留部275に貯留される。この状態において測定部7が駆動されて、測定光が貯留部275を通る。検査装置1では、光センサ72が受光した測定光の変化量に基づいて、レート法などの継時的変化に基づく混合液13Dの光学測定が実行される。 Next, as shown in FIG. 13, the inspection chip 2 is moved to the measurement position by drive control of the spindle motor 35. By the driving control of the stepping motor 51, the inspection chip 2 shown in FIG. 12 is rotated 90 degrees in the clockwise direction when viewed from the front. Thereby, the rotation angle of the test | inspection chip 2 changes to 0 degree | times. At this time, the direction in which the gravity Z acts is from the upper side 21 to the lower side 24 of the inspection chip 2. Due to the action of gravity Z, the liquid mixture 13 </ b> D generated in the mixing unit 270 is stored in a storage unit 275 provided at the central lower end of the mixing unit 270. In this state, the measurement unit 7 is driven, and the measurement light passes through the storage unit 275. In the inspection apparatus 1, based on the change amount of the measurement light received by the optical sensor 72, the optical measurement of the mixed liquid 13 </ b> D based on the temporal change such as the rate method is performed.
 このとき、図8に示す第三測定ユニット300では、保持部340が下方向に閉じているため、定量された試薬15Bは保持部340に留まる。保持部360が下方向に閉じているため、定量された試薬15Cは保持部360に留まる。したがって試薬15B、15Cは、混合部370に貯留されている検体15Aと混合しない。 At this time, in the third measurement unit 300 shown in FIG. 8, since the holding unit 340 is closed downward, the quantified reagent 15B remains in the holding unit 340. Since the holding unit 360 is closed downward, the quantified reagent 15C remains in the holding unit 360. Therefore, the reagents 15B and 15C are not mixed with the sample 15A stored in the mixing unit 370.
 次に主軸モータ35の駆動制御により、図13に示す検査チップ2が公転される。これにより、左辺部23から右辺部22に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図8に示す第三測定ユニット300では、保持部340により保持されている試薬15Bは、案内路341に移動する。保持部360により保持されている試薬15Cは、案内路361に移動する。 Next, the inspection chip 2 shown in FIG. 13 is revolved by driving control of the spindle motor 35. Thereby, the centrifugal force X acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, in the third measurement unit 300 shown in FIG. 8, the reagent 15 </ b> B held by the holding unit 340 moves to the guide path 341. The reagent 15C held by the holding unit 360 moves to the guide path 361.
 次に図14に示すように、ステッピングモータ51の駆動制御により、公転状態の検査チップ2は前方からみて反時計周り方向に90度自転される。これにより、検査チップ2の自転角度が90度に変化し、上辺部21から下辺部24に向けて検査チップ2に遠心力Xが作用する。遠心力Xの作用により、図8に示す第三測定ユニット300では、案内路341に移動した試薬15Bは、混合部370に流入する。案内路361に移動した試薬15Cは、混合部370に流入する。混合部370に流入した試薬15B、15Cは、遠心力Xの作用により検体15Aと混合され、混合液15Dが生成される。 Next, as shown in FIG. 14, by the driving control of the stepping motor 51, the revolving inspection chip 2 is rotated 90 degrees counterclockwise as viewed from the front. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and the centrifugal force X acts on the inspection chip 2 from the upper side portion 21 toward the lower side portion 24. In the third measurement unit 300 shown in FIG. 8, the reagent 15 </ b> B that has moved to the guide path 341 flows into the mixing unit 370 due to the action of the centrifugal force X. The reagent 15C moved to the guide path 361 flows into the mixing unit 370. The reagents 15B and 15C that have flowed into the mixing unit 370 are mixed with the specimen 15A by the action of the centrifugal force X to generate a mixed solution 15D.
 次に図15に示すように、主軸モータ35の駆動制御により、検査チップ2を測定位置まで移動させる。ステッピングモータ51の駆動制御により、図14に示す検査チップ2は前方からみて時計周り方向に135度自転される。これにより、検査チップ2の自転角度が-45度に変化する。このとき重力Zの作用する方向が、検査チップ2の左上側から右下側に向く。重力Zの作用により、混合部370において生成された混合液15Dは、混合部370の右下端部に設けられた貯留部375に貯留される。この状態において測定部7が駆動されて、測定光が貯留部375を通る。検査装置1では、光センサ72が受光した測定光の変化量に基づいて、レート法などの継時的変化に基づく混合液15Dの光学測定が実行される。 Next, as shown in FIG. 15, the inspection chip 2 is moved to the measurement position by driving control of the spindle motor 35. By the driving control of the stepping motor 51, the inspection chip 2 shown in FIG. 14 is rotated 135 degrees in the clockwise direction when viewed from the front. As a result, the rotation angle of the inspection chip 2 changes to −45 degrees. At this time, the direction in which the gravity Z acts is directed from the upper left side to the lower right side of the inspection chip 2. Due to the action of gravity Z, the liquid mixture 15 </ b> D generated in the mixing unit 370 is stored in a storage unit 375 provided at the lower right end of the mixing unit 370. In this state, the measurement unit 7 is driven, and the measurement light passes through the storage unit 375. In the inspection apparatus 1, optical measurement of the mixed liquid 15 </ b> D based on a temporal change such as a rate method is performed based on the change amount of the measurement light received by the optical sensor 72.
 以上のように、二つの保持部234、238は、第二測定ユニット200を流れる試薬13Bを各々異なるタイミングにおいて保持可能である。具体的には、保持部234は注入された試薬13Bを定量するために、保持部238よりも先に試薬13Bを保持できる。保持部238は、混合部270に向けて移動する定量済みの試薬13Bを、混合部270の直前において保持できる。同様に、二つの保持部254、258は、第二測定ユニット200を流れる試薬13Cを各々異なるタイミングにおいて保持可能である。 As described above, the two holding units 234 and 238 can hold the reagent 13B flowing through the second measurement unit 200 at different timings. Specifically, the holding unit 234 can hold the reagent 13B before the holding unit 238 in order to quantify the injected reagent 13B. The holding unit 238 can hold the quantified reagent 13 </ b> B moving toward the mixing unit 270 immediately before the mixing unit 270. Similarly, the two holding units 254 and 258 can hold the reagent 13C flowing through the second measurement unit 200 at different timings.
 三つの保持部334、338、340は、第三測定ユニット300を流れる試薬15Bを各々異なるタイミングにおいて保持可能である。具体的には、保持部334は、注入された試薬15Bを定量するために、保持部338、340よりも先に試薬15Bを保持できる。保持部338は、混合部370に向けて移動する定量済みの試薬15Bを、保持部340よりも先に保持できる。保持部340は、混合部370に向けて移動する定量済みの試薬15Bを、混合部370の直前において保持できる。同様に、三つの保持部354、358、360は、第三測定ユニット300を流れる試薬15Cを各々異なるタイミングにおいて保持可能である The three holding units 334, 338, and 340 can hold the reagent 15B flowing through the third measurement unit 300 at different timings. Specifically, the holding unit 334 can hold the reagent 15B before the holding units 338 and 340 in order to quantify the injected reagent 15B. The holding unit 338 can hold the quantified reagent 15 </ b> B moving toward the mixing unit 370 before the holding unit 340. The holding unit 340 can hold the quantified reagent 15 </ b> B moving toward the mixing unit 370 immediately before the mixing unit 370. Similarly, the three holding units 354, 358, 360 can hold the reagent 15C flowing through the third measurement unit 300 at different timings.
 その結果、三つの混合液11D、13D、15Dがそれぞれ異なるタイミングにおいて生成および光学測定される。各混合液11D、13D、15Dの測定結果は、例えば図示しないディスプレイに表示される。本実施形態では、図5に示すように距離L1、L2、L3が等しい。そのため、検査チップ2を自転させることにより、三つの貯留部175、275、375を同一の光源71により測定できる。 As a result, the three mixed solutions 11D, 13D, and 15D are generated and optically measured at different timings. The measurement results of the mixed liquids 11D, 13D, and 15D are displayed on a display (not shown), for example. In the present embodiment, the distances L1, L2, and L3 are equal as shown in FIG. Therefore, the three storage parts 175, 275, and 375 can be measured by the same light source 71 by rotating the inspection chip 2.
<5.本実施形態の主たる作用・効果>
 以上説明したように、本実施形態の検査チップ2によれば、注入された検体および試薬が各々移動可能な空間を含む第一~第三測定ユニット100、200、300を備える。第一測定ユニット100では、注入された検体11Aが検体案内部110において混合部170に向けて案内される。注入された試薬11Bが、試薬案内部130において混合部270に向けて案内される。注入された試薬11Cが、試薬案内部150において混合部370に向けて案内される。案内された検体11Aと試薬11B、11Cとの混合液11Dが、混合部170において生成される。生成された混合液11Dは、貯留部175において貯留および測定される。第二測定ユニット200および第三測定ユニット300も同様に、注入された検体および検体の混合液が生成、貯留および測定される。
<5. Main actions and effects of this embodiment>
As described above, according to the test chip 2 of the present embodiment, the first to third measurement units 100, 200, and 300 each including a space in which the injected specimen and reagent can move are provided. In the first measurement unit 100, the injected sample 11A is guided toward the mixing unit 170 in the sample guide unit 110. The injected reagent 11B is guided toward the mixing unit 270 in the reagent guide unit 130. The injected reagent 11 </ b> C is guided toward the mixing unit 370 in the reagent guide unit 150. A mixed solution 11D of the guided specimen 11A and reagents 11B and 11C is generated in the mixing unit 170. The generated mixed liquid 11D is stored and measured in the storage unit 175. Similarly, the second measurement unit 200 and the third measurement unit 300 generate, store, and measure the injected sample and the mixed solution of the sample.
 第一~第三測定ユニット100、200、300は、各試薬に対して異なる数量の保持部を備える。例えば、第一測定ユニット100は試薬11Bに対して、一つの保持部134を備える。第二測定ユニット200は試薬13Bに対して、二つの保持部234、238を備える。第三測定ユニット300は試薬15Bに対して、三つの保持部334、338、340を備える。つまり、第一~第三測定ユニット100、200、300毎に、保持部の数量が異なる。 The first to third measurement units 100, 200, 300 are provided with a different number of holding units for each reagent. For example, the first measurement unit 100 includes one holding unit 134 for the reagent 11B. The second measurement unit 200 includes two holders 234 and 238 for the reagent 13B. The third measurement unit 300 includes three holders 334, 338, and 340 for the reagent 15B. That is, the number of holding units differs for each of the first to third measurement units 100, 200, and 300.
 そのため、第一測定ユニット100よりも保持部の数量が多い第二測定ユニット200は、第一測定ユニット100よりも混合液が生成されるタイミングが遅い。第二測定ユニット200よりも保持部の数量が多い第三測定ユニット300は、第二測定ユニット200よりも混合液が生成されるタイミングが遅い。つまり、第一~第三測定ユニット100、200、300では、混合液が生成されるタイミングが各々異なる。第一~第三測定ユニット100、200、300において順次生成される混合液を、各混合液が生成された直後に一の光源を用いて測定することにより、各混合液の反応が完結する前に測定結果を得ることができる。したがって、複数の混合液を一の光源を用いて正確に測定することが
できる。
For this reason, the second measurement unit 200 having a larger number of holding units than the first measurement unit 100 is later in timing for generating the mixed liquid than the first measurement unit 100. The third measurement unit 300 having a larger number of holding units than the second measurement unit 200 has a later timing for generating the mixed liquid than the second measurement unit 200. That is, the first to third measurement units 100, 200, and 300 have different timings at which the mixed liquid is generated. Before the reaction of each liquid mixture is completed by measuring the liquid mixture sequentially generated in the first to third measurement units 100, 200, and 300 using one light source immediately after each liquid mixture is generated. Measurement results can be obtained. Therefore, a plurality of mixed liquids can be accurately measured using one light source.
 第一測定ユニット100では、試薬供給部133に対して保持部134は下方向に設けられている。第二測定ユニット200では、試薬供給部233に対して保持部234、238は、いずれも下方向に設けられている。第三測定ユニット300では、試薬供給部333に対して保持部334、338、340は、いずれも下方向に設けられている。つまり、各第一~第三測定ユニット100、200、300では、保持部の並ぶ方向が同じである。 In the first measurement unit 100, the holding unit 134 is provided downward with respect to the reagent supply unit 133. In the second measurement unit 200, the holding units 234 and 238 are both provided downward with respect to the reagent supply unit 233. In the third measurement unit 300, the holding units 334, 338, and 340 are all provided downward with respect to the reagent supply unit 333. That is, in each of the first to third measurement units 100, 200, 300, the direction in which the holding portions are arranged is the same.
 そのため、検査チップ2に同じ方向の外力を付与することにより、第一~第三測定ユニット100、200、300の保持部において試薬を同時に移動させることができる。例えば、検査チップ2に下方向の外力を付与することにより、第一~第三測定ユニット100、200、300の保持部に試薬を流入させることができる。検査チップ2に右方向の外力を付与することにより、第一~第三測定ユニット100、200、300の保持部から試薬を流出させることができる。 Therefore, by applying an external force in the same direction to the test chip 2, the reagent can be moved simultaneously in the holding portions of the first to third measurement units 100, 200, 300. For example, by applying a downward external force to the test chip 2, the reagent can be caused to flow into the holding portions of the first to third measurement units 100, 200, 300. By applying an external force in the right direction to the test chip 2, the reagent can flow out from the holders of the first to third measurement units 100, 200, 300.
 第一測定ユニット100では、保持部134が定量部である。第二測定ユニット200では、保持部234が定量部である。第三測定ユニット300では、保持部334が定量部である。したがって、各第一~第三測定ユニット100、200、300では、混合部に適正な量の試薬を供給できる。 In the first measurement unit 100, the holding unit 134 is a quantitative unit. In the second measurement unit 200, the holding unit 234 is a quantitative unit. In the third measurement unit 300, the holding unit 334 is a quantitative unit. Therefore, in each of the first to third measurement units 100, 200, and 300, an appropriate amount of reagent can be supplied to the mixing unit.
 第二測定ユニット200では、二つの保持部234、238のうち、試薬13Bの案内される方向の最上流側に設けられた保持部234が定量部である。第三測定ユニット300では、三つの保持部334、338、340のうち、試薬15Bの案内される方向の最上流側に設けられた保持部334が定量部である。したがって、全ての第一~第三測定ユニット100、200、300において同じタイミングで試薬を定量できるので、検査時間を短縮できる。 In the second measurement unit 200, of the two holding units 234 and 238, the holding unit 234 provided on the most upstream side in the direction in which the reagent 13B is guided is a quantitative unit. In the third measurement unit 300, of the three holding units 334, 338, and 340, the holding unit 334 provided on the most upstream side in the direction in which the reagent 15B is guided is a quantitative unit. Accordingly, since the reagent can be quantified at the same timing in all the first to third measurement units 100, 200, 300, the examination time can be shortened.
<6.その他>
 本開示は、上記実施形態に限定されるものではなく、各種の変形が可能である。上記実施形態の検査チップ2は単なる例示であり、各々の構造、形状および処理などを変更可能である。
<6. Other>
The present disclosure is not limited to the above-described embodiment, and various modifications can be made. The inspection chip 2 of the above embodiment is merely an example, and the structure, shape, processing, and the like of each can be changed.
(1)図16に示す変形例の検査チップ2では、検体案内部110、130、150よりも上方に一つの共通注入部401を設けている点が、上記実施形態の検査チップ2と異なる。以下の説明では、上記実施形態と同一の構成には、同一の符号を付して説明を省略する。なお、本変形例の検体案内部110、130、150は、共通注入部400を配置するために各々の形状、大きさおよび位置が調整されているが、基本的な構成は上記実施形態と同じである。但し本変形例では、検体注入部111、131、151に対して、図示しない注入穴から検体が注入されるのではなく、共通注入部400から検体17が供給される。 (1) The test chip 2 of the modified example shown in FIG. 16 is different from the test chip 2 of the above embodiment in that one common injection unit 401 is provided above the sample guide units 110, 130, and 150. In the following description, the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted. In addition, although the shape, size, and position of the sample guide units 110, 130, and 150 of this modification are adjusted in order to arrange the common injection unit 400, the basic configuration is the same as that of the above embodiment. It is. However, in this modification, the sample 17 is supplied from the common injection unit 400 to the sample injection units 111, 131, and 151 instead of being injected from an injection hole (not shown).
 共通注入部401は、検体17が注入および貯留される部位であり、上側に開口する凹部である。検体17は、第一~第三測定ユニット100、200、300において共通に使用される検体である。共通注入部401は、第一~第三測定ユニット100、200、300のうちで保持部の数量が最も少ない第一測定ユニット100の上方に設けられている。図4に示すシート29には、検体17を共通注入部401に注入するための図示外の注入穴が設けられている。また、図示外の注入穴がシート29に設けられず、共通注入部401の上方の上辺部21が開口している形状でもよい。この開口から、検体17が注入される。 The common injection part 401 is a part where the specimen 17 is injected and stored, and is a concave part opened upward. The sample 17 is a sample commonly used in the first to third measurement units 100, 200, and 300. The common injection unit 401 is provided above the first measurement unit 100 having the smallest number of holding units among the first to third measurement units 100, 200, and 300. The sheet 29 shown in FIG. 4 is provided with an injection hole (not shown) for injecting the specimen 17 into the common injection unit 401. Further, a shape in which an injection hole (not shown) is not provided in the sheet 29 and the upper side portion 21 above the common injection portion 401 is open may be employed. The specimen 17 is injected from this opening.
 共通注入部401の下端部には、前後方向の流路幅が狭く形成された共通供給部402に接続する。共通注入部401に注入および貯留された検体17には、図16に示すように重力Zが下方向に作用する。しかしながら、共通供給部402において毛管保持力が発生するため、検体17は重力Zによって共通供給部402を介して下方に移動することが抑制されている。 The lower end of the common injection part 401 is connected to a common supply part 402 having a narrow channel width in the front-rear direction. Gravity Z acts downward on the specimen 17 injected and stored in the common injection unit 401 as shown in FIG. However, since the capillary holding force is generated in the common supply unit 402, the specimen 17 is prevented from moving downward by the gravity Z through the common supply unit 402.
 共通供給部402の下流側は、三つの分配路403、404、405に分岐している。分配路403は、共通供給部402の下流端から左下方に延び、検体注入部111の左上端部に接続する。分配路404は、共通供給部402の下流端から略下方に延び、検体注入部211の左上端部に接続する。分配路405は、共通供給部402の下流端から右下方に延び、検体注入部311の左上端部に接続する。 The downstream side of the common supply unit 402 is branched into three distribution paths 403, 404, and 405. The distribution path 403 extends from the downstream end of the common supply unit 402 to the lower left and is connected to the upper left end of the sample injection unit 111. The distribution path 404 extends substantially downward from the downstream end of the common supply unit 402 and is connected to the upper left end of the sample injection unit 211. The distribution path 405 extends from the downstream end of the common supply unit 402 to the lower right and is connected to the upper left end of the sample injection unit 311.
 本変形例の場合も、検査装置1は先述した測定動作を行うことにより、検査チップ2を用いた検査を実行できる。但し、第一~第三測定ユニット100、200、300に検体17を供給する態様が、上記実施形態とは異なる。すなわち、測定動作時の開始時には、ステッピングモータ51の駆動制御により、図16に示す検査チップ2は前方からみて反時計周り方向に90度自転される。さらに、主軸モータ35の駆動制御により、検査チップ2が公転される。これにより、検査チップ2の自転角度は90度に変化し、上辺部21から下辺部24に向けて重力Zよりも大きい遠心力Xが作用する。この遠心力Xの作用により、検査チップ2では検体17は共通供給部402を経由して下方に移動し、さらに三つの分配路403、404、405に分配される。各分配路403、404、405に分配された検体17は、それぞれ検体注入部111、211、311に流入する。以降の処理は、上記実施形態と同様である。 Also in this modification, the inspection apparatus 1 can perform inspection using the inspection chip 2 by performing the above-described measurement operation. However, the aspect in which the specimen 17 is supplied to the first to third measurement units 100, 200, and 300 is different from the above embodiment. That is, at the start of the measurement operation, the test chip 2 shown in FIG. 16 is rotated 90 degrees counterclockwise as viewed from the front by drive control of the stepping motor 51. Further, the inspection chip 2 is revolved by driving control of the spindle motor 35. As a result, the rotation angle of the inspection chip 2 changes to 90 degrees, and a centrifugal force X greater than the gravity Z acts from the upper side 21 toward the lower side 24. By the action of the centrifugal force X, the specimen 17 moves downward via the common supply unit 402 in the test chip 2 and is further distributed to the three distribution paths 403, 404, and 405. The sample 17 distributed to the distribution paths 403, 404, and 405 flows into the sample injection units 111, 211, and 311, respectively. The subsequent processing is the same as in the above embodiment.
 これにより、第一測定ユニット100では、検体17と試薬11B、11Cとの混合液が生成および測定される。第二測定ユニット200では、検体17と試薬13B、13Cとの混合液が生成および測定される。第三測定ユニット300では、検体17と試薬15B、15Cとの混合液が生成および測定される。したがって、上記実施形態と同様に、複数の混合液を一の光源を用いて正確に測定することができる。 Thereby, in the first measurement unit 100, a mixed solution of the sample 17 and the reagents 11B and 11C is generated and measured. In the second measurement unit 200, a mixed liquid of the sample 17 and the reagents 13B and 13C is generated and measured. In the third measurement unit 300, a mixed liquid of the sample 17 and the reagents 15B and 15C is generated and measured. Therefore, similarly to the above embodiment, a plurality of mixed liquids can be accurately measured using one light source.
 さらに、本変形例によれば、検体注入部401は、第一~第三測定ユニット100、200、300のうちで保持部の数量が最も少ない第一測定ユニット100に対して、試薬11B、11Cの案内される方向の上流側に設けられている。保持部の数量が最も少ない第一測定ユニット100に対して試薬11B、11Cの案内される方向の上流側は、検査チップ2における空きスペースが生じやすい。この空きスペースに共通の検体注入部401を設けることにより、検査チップ2の小型化を実現できる。 Further, according to the present modification, the specimen injection unit 401 has the reagents 11B, 11C compared to the first measurement unit 100 having the smallest number of holding units among the first to third measurement units 100, 200, 300. Is provided on the upstream side in the guided direction. An empty space in the test chip 2 tends to occur on the upstream side in the direction in which the reagents 11B and 11C are guided with respect to the first measurement unit 100 having the smallest number of holding units. By providing the common sample injection part 401 in this empty space, the test chip 2 can be reduced in size.
(2)上記実施形態では、各測定ユニットの試薬案内部が、それぞれ数量の異なる保持部を備えている。この例に限定されず、各測定ユニットの検体案内部が、それぞれ数量の異なる保持部を備えてもよい。例えば、上記実施形態および変形例において、検体と試薬を入れ替えてもよい。この場合も、上記実施形態および変形例と同様の効果を奏する。さらに、各測定ユニットの試薬案内部および検体案内部が、いずれも、それぞれ数量の異なる保持部を備えてもよい。 (2) In the said embodiment, the reagent guide part of each measurement unit is provided with the holding part from which quantity differs, respectively. It is not limited to this example, The sample guide part of each measurement unit may be provided with the holding part from which quantity differs, respectively. For example, the sample and the reagent may be exchanged in the embodiment and the modification. Also in this case, the same effects as those of the above-described embodiment and the modification are obtained. Furthermore, each of the reagent guide unit and the sample guide unit of each measurement unit may include holding units having different quantities.
(3)上記実施形態では、複数の測定ユニットがそれぞれ独立した試薬または検体の余剰部を備えている。この例に限定されず、検査チップは少なくとも二つの測定ユニットは共通の余剰部を備えてもよい。複数の測定ユニットが余剰部を共有することにより、検査チップの構造を簡易にすることができる。この場合、共通の余剰部は、複数の測定ユニットのうちで保持部の数量が最も少ない測定ユニットに対して、試薬または検体の案内される方向の下流側に設けられることが好適である。 (3) In the above embodiment, each of the plurality of measurement units includes an independent reagent or specimen surplus part. The inspection chip is not limited to this example, and at least two measurement units may include a common surplus part. Since the plurality of measurement units share the surplus part, the structure of the inspection chip can be simplified. In this case, it is preferable that the common surplus portion is provided on the downstream side in the direction in which the reagent or the specimen is guided with respect to the measurement unit having the smallest number of holding portions among the plurality of measurement units.
 例えば、上記実施形態の例では、保持部の数量が最も少ない第一測定ユニット100に対して試薬11B、11Cの案内される方向の下流側は、検査チップ2における空きスペースが生じやすい。この空きスペースに共通の余剰部を設けることにより、検査チップ2の小型化を実現できる。 For example, in the example of the above embodiment, an empty space in the test chip 2 is likely to occur on the downstream side in the direction in which the reagents 11B and 11C are guided with respect to the first measurement unit 100 having the smallest number of holding units. By providing a common surplus part in this empty space, the inspection chip 2 can be reduced in size.
(4)上記実施形態では、複数の保持部のうちで試薬の案内される方向の最上流側に設けられた保持部が定量部である。この例に限定されず、定量部は複数の保持部のいずれかであればよい。例えば、複数の保持部のうちで検体または試薬の案内される方向の最下流側に設けられた保持部が、定量部であってもよい。この場合、混合液が生成される直前に検体または試薬を定量できるので、混合液の生成に用いられる検体または試薬の損失を低減できる。 (4) In the above embodiment, the holding unit provided on the most upstream side in the direction in which the reagent is guided among the plurality of holding units is the quantitative unit. Without being limited to this example, the quantification unit may be any one of a plurality of holding units. For example, the holding unit provided on the most downstream side in the direction in which the specimen or the reagent is guided among the plurality of holding units may be a quantitative unit. In this case, since the sample or reagent can be quantified immediately before the mixed solution is generated, loss of the sample or reagent used for generating the mixed solution can be reduced.
(5)上記実施形態では、検査チップ2の前面に三つの第一~第三測定ユニット100、200、300が設けられている。この例に限定されず、計測ユニットは複数であればよい。また、検査チップ2の両面に、それぞれ計測ユニットを設けてもよい。上記実施形態の例では、検査チップ2の前面に第一測定ユニット100を設け、検査チップ2の後面に第二測定ユニット200を設けてもよい。 (5) In the above embodiment, three first to third measurement units 100, 200, 300 are provided on the front surface of the inspection chip 2. It is not limited to this example, What is necessary is just a plurality of measurement units. Moreover, you may provide a measurement unit in both surfaces of the test | inspection chip 2, respectively. In the example of the above embodiment, the first measurement unit 100 may be provided on the front surface of the inspection chip 2, and the second measurement unit 200 may be provided on the rear surface of the inspection chip 2.
(6)上記実施形態では、第一~第三測定ユニット100、200、300がそれぞれ一つの保持部、二つの保持部、および三つの保持部を備えている。この例に限定されず、各測定ユニットはそれぞれ異なる数量の保持部を備えていればよい。複数の測定ユニットの各々において保持部が設けられる方向は、下方向に限らず、他の方向でもよい。 (6) In the above embodiment, each of the first to third measurement units 100, 200, 300 includes one holding part, two holding parts, and three holding parts. Without being limited to this example, each measurement unit only needs to have a different number of holding units. The direction in which the holding unit is provided in each of the plurality of measurement units is not limited to the downward direction, and may be another direction.
(7)上記実施形態では、検査チップ2は板材20とシート29とにより構成されている。この例に限定されず、検査チップ2はシート29を備えていなくてもよい。例えば、液体流路25が板材20に直接形成された検査チップ2を用いてもよい。検査チップ2に注入される試薬の数量は、二つに限定されず、一つの試薬でもよいし、三つ以上の試薬でもよい。 (7) In the above embodiment, the inspection chip 2 is composed of the plate material 20 and the sheet 29. Without being limited to this example, the inspection chip 2 may not include the sheet 29. For example, you may use the test | inspection chip 2 in which the liquid flow path 25 was directly formed in the board | plate material 20. FIG. The number of reagents injected into the test chip 2 is not limited to two, and may be one reagent or three or more reagents.
2    検査チップ
11A  検体
11B  試薬
11C  試薬
11D  混合液
13A  検体
13B  試薬
13C  試薬
13D  混合液
15A  検体
15B  試薬
15C  試薬
15D  混合液
17   検体
100  第一測定ユニット
110  検体案内部
130  試薬案内部
134  保持部
150  試薬案内部
154  保持部
170  混合部
175  貯留部
200  第二測定ユニット
210  検体案内部
230  試薬案内部
234  保持部
238  保持部
250  試薬案内部
254  保持部
258  保持部
270  混合部
275  貯留部
300  第三測定ユニット
310  検体案内部
330  試薬案内部
334  保持部
338  保持部
340  保持部
350  試薬案内部
354  保持部
358  保持部
360  保持部
370  混合部
375  貯留部
401  共通注入部
2 Test chip 11A Specimen 11B Reagent 11C Reagent 11D Mixed liquid 13A Specimen 13B Reagent 13C Reagent 13D Mixed liquid 15A Specimen 15B Reagent 15C Reagent 15D Mixed liquid 17 Specimen 100 First measurement unit 110 Specimen guide part 130 Reagent guide part 134 Holding part 150 Reagent Guide section 154 Holding section 170 Mixing section 175 Storage section 200 Second measurement unit 210 Sample guide section 230 Reagent guide section 234 Holding section 238 Holding section 250 Reagent guide section 254 Holding section 258 Holding section 270 Mixing section 275 Storage section 300 Third measurement Unit 310 Specimen guide unit 330 Reagent guide unit 334 Holding unit 338 Holding unit 340 Holding unit 350 Reagent guide unit 354 Holding unit 358 Holding unit 360 Holding unit 370 Mixing unit 375 Storage unit 401 Common injection unit

Claims (7)

  1.  液体である検体および試薬が注入され、所定の第一軸を中心に回転されることにより遠心力が付与され、且つ、前記第一軸とは異なる第二軸を中心に回転されることにより前記遠心力の方向が変化される検査チップであって、
     注入された前記検体および前記試薬が各々移動可能な空間を含む複数の測定ユニットを備え、
     前記複数の測定ユニットの各々は、
     前記検体および前記試薬が混合され、前記検体および前記試薬の混合液を生成可能な部位である混合部と、
     前記測定ユニットに注入された前記検体が前記混合部に向けて案内される部位である検体案内部と、
     前記測定ユニットに注入された前記試薬が前記混合部に向けて案内される部位である試薬案内部と、
     前記混合部において生成された前記混合液を貯留可能であって、且つ、貯留された前記混合液が測定される部位である貯留部とを備え、
     前記検体案内部および前記試薬案内部の少なくとも一方は、案内される前記検体または前記試薬を保持可能な部位である少なくとも一つの保持部を備え、
     前記保持部は、前記複数の測定ユニット毎に数量が異なることを特徴とする検査チップ。
    A liquid specimen and reagent are injected, and a centrifugal force is applied by being rotated about a predetermined first axis, and by rotating about a second axis different from the first axis, An inspection chip whose direction of centrifugal force is changed,
    A plurality of measurement units each including a space in which the injected specimen and the reagent can move;
    Each of the plurality of measurement units is
    A mixing unit that is a portion where the sample and the reagent are mixed and a mixed solution of the sample and the reagent can be generated;
    A specimen guide part that is a part where the specimen injected into the measurement unit is guided toward the mixing part;
    A reagent guide part which is a part where the reagent injected into the measurement unit is guided toward the mixing part;
    A storage section that is capable of storing the mixed liquid generated in the mixing section and that is a part where the stored mixed liquid is measured;
    At least one of the sample guide part and the reagent guide part includes at least one holding part which is a part capable of holding the sample to be guided or the reagent,
    The holding chip has a different quantity for each of the plurality of measurement units.
  2.  前記保持部は、前記複数の測定ユニットの各々において、前記検査チップに対して同じ方向に並んで設けられたことを特徴とする請求項1に記載の検査チップ。 2. The inspection chip according to claim 1, wherein the holding portion is provided in the same direction with respect to the inspection chip in each of the plurality of measurement units.
  3.  前記複数の測定ユニットに対して共通の前記検体または前記試薬が注入される部位である一つの注入部を備え、
     前記注入部は、前記検査チップにおいて最も数量が少ない前記保持部を備えた前記測定ユニットに対して、前記検体または前記試薬の案内される方向の上流側に設けられたことを特徴とする請求項2に記載の検査チップ。
    A single injection part that is a part into which the sample or the reagent common to the plurality of measurement units is injected;
    The injection unit is provided on an upstream side in a direction in which the sample or the reagent is guided with respect to the measurement unit including the holding unit with the smallest quantity in the test chip. 2. The inspection chip according to 2.
  4.  前記保持部の一つは、前記測定ユニットに注入された前記検体または前記試薬を定量可能な部位である定量部であることを特徴とする請求項1に記載の検査チップ。 2. The test chip according to claim 1, wherein one of the holding units is a quantification unit that is a part capable of quantifying the specimen or the reagent injected into the measurement unit.
  5.  少なくとも二つの前記測定ユニットは、各々の前記定量部から流出した前記所定量を超える前記検体または前記試薬を収容可能な共通の余剰部を備え、
     前記余剰部は、前記検査チップにおいて最も数量が少ない前記保持部を備えた前記測定ユニットに対して、前記検体または前記試薬の案内される方向の下流側に設けられたことを特徴とする請求項4に記載の検査チップ。
    At least two of the measurement units include a common surplus part capable of accommodating the specimen or the reagent exceeding the predetermined amount that has flowed out from each of the quantification parts,
    The surplus part is provided on the downstream side in the direction in which the sample or the reagent is guided with respect to the measurement unit including the holding part with the smallest quantity in the test chip. 4. The inspection chip according to 4.
  6.  前記定量部は、複数の前記保持部を備える前記測定ユニットにおいて、前記複数の保持部のうちで前記検体または前記試薬の案内される方向の最上流側に設けられた前記保持部であることを特徴とする請求項4に記載の検査チップ。 In the measurement unit including the plurality of holding units, the quantitative unit is the holding unit provided on the most upstream side in the direction in which the sample or the reagent is guided among the plurality of holding units. The inspection chip according to claim 4, wherein
  7.  前記定量部は、複数の前記保持部を備える前記測定ユニットにおいて、前記複数の保持部のうちで前記検体または前記試薬の案内される方向の最下流側に設けられた前記保持部であることを特徴とする請求項4に記載の検査チップ。 In the measurement unit including the plurality of holding units, the quantification unit is the holding unit provided on the most downstream side in the direction in which the sample or the reagent is guided among the plurality of holding units. The inspection chip according to claim 4, wherein
PCT/JP2013/076014 2012-09-28 2013-09-26 Inspection chip WO2014050946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216278 2012-09-28
JP2012216278A JP5900269B2 (en) 2012-09-28 2012-09-28 Inspection chip

Publications (1)

Publication Number Publication Date
WO2014050946A1 true WO2014050946A1 (en) 2014-04-03

Family

ID=50388341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076014 WO2014050946A1 (en) 2012-09-28 2013-09-26 Inspection chip

Country Status (2)

Country Link
JP (1) JP5900269B2 (en)
WO (1) WO2014050946A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220026454A1 (en) * 2020-07-22 2022-01-27 Skyla Corporation Biological detection system and biological detection device
EP4180127A1 (en) * 2021-11-11 2023-05-17 SKYLA Corporation Detection cassette and detection system
EP4180126A1 (en) * 2021-11-11 2023-05-17 SKYLA Corporation Cartridge and biological detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2008197097A (en) * 2007-02-12 2008-08-28 Samsung Electronics Co Ltd Centrifugal force based microflow apparatus for dilution and microflow system comprising it
JP2009109429A (en) * 2007-10-31 2009-05-21 Rohm Co Ltd Microchip and method using same
JP2010091362A (en) * 2008-10-07 2010-04-22 Rohm Co Ltd Microchip
JP2012078115A (en) * 2010-09-30 2012-04-19 Brother Ind Ltd Inspection object acceptor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2008197097A (en) * 2007-02-12 2008-08-28 Samsung Electronics Co Ltd Centrifugal force based microflow apparatus for dilution and microflow system comprising it
JP2009109429A (en) * 2007-10-31 2009-05-21 Rohm Co Ltd Microchip and method using same
JP2010091362A (en) * 2008-10-07 2010-04-22 Rohm Co Ltd Microchip
JP2012078115A (en) * 2010-09-30 2012-04-19 Brother Ind Ltd Inspection object acceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220026454A1 (en) * 2020-07-22 2022-01-27 Skyla Corporation Biological detection system and biological detection device
EP4180127A1 (en) * 2021-11-11 2023-05-17 SKYLA Corporation Detection cassette and detection system
EP4180126A1 (en) * 2021-11-11 2023-05-17 SKYLA Corporation Cartridge and biological detection system

Also Published As

Publication number Publication date
JP5900269B2 (en) 2016-04-06
JP2014070967A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6011156B2 (en) Inspection chip
JP5998760B2 (en) Reagent container and test chip
JP5900269B2 (en) Inspection chip
JP5958238B2 (en) Inspection chip and inspection device
JP2014106207A (en) Inspection chip
JP6028624B2 (en) Inspection chip and inspection system
WO2014061635A1 (en) Inspection device, inspection system, inspection method, and computer program
WO2015080193A1 (en) Inspection chip
JP5958452B2 (en) Inspection chip
JP5958330B2 (en) Inspection chip
WO2014061636A1 (en) Inspection chip
JP5915686B2 (en) Inspection chip
JP5958451B2 (en) Inspection chip, liquid feeding method, and liquid feeding program
JP5958331B2 (en) Inspection chip and inspection system
JP5958249B2 (en) Inspection chip and inspection device
JP2015118042A (en) Inspection device, inspection method and computer program
WO2014133126A1 (en) Test chip
JP2015105886A (en) Inspection device
JP2014010043A (en) Inspection system, inspection object acceptor and inspection method
JP5910657B2 (en) Inspection chip and inspection system
JP5971082B2 (en) Inspection chip
JP2016033454A (en) Inspection chip
JP2013076588A (en) Acceptor holder and inspection apparatus
JP2014048194A (en) Inspection chip, and inspection unit
JP2014119319A (en) Inspection chip and inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841720

Country of ref document: EP

Kind code of ref document: A1