JP2012078115A - Inspection object acceptor - Google Patents

Inspection object acceptor Download PDF

Info

Publication number
JP2012078115A
JP2012078115A JP2010221080A JP2010221080A JP2012078115A JP 2012078115 A JP2012078115 A JP 2012078115A JP 2010221080 A JP2010221080 A JP 2010221080A JP 2010221080 A JP2010221080 A JP 2010221080A JP 2012078115 A JP2012078115 A JP 2012078115A
Authority
JP
Japan
Prior art keywords
flow path
liquid
cross
sectional area
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221080A
Other languages
Japanese (ja)
Inventor
Chisato Yoshimura
千里 吉村
Yumiko Oshika
由美子 大鹿
Chie Hattori
千恵 服部
Toshiyuki Tanaka
俊行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2010221080A priority Critical patent/JP2012078115A/en
Publication of JP2012078115A publication Critical patent/JP2012078115A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inspection object acceptor which can prevent unintentional outflow of a liquid due to a capillary phenomenon in a flow channel.SOLUTION: In a plate-like member 2 of an inspection object acceptor 1, there are formed: a first liquid sump portion 5 including a recessed portion having a predetermined depth; a measurement portion 4 which measures, by a predetermined amount, a liquid that is an inspection object and outflows from the first liquid sump portion 5; and a first flow channel 7 through which the liquid flows from the first liquid sump portion 5 toward the measurement portion 4. In the plate-like member 2, there are provided a receiving portion 17 into which the liquid measured by the measurement portion 4 flows, a second flow channel 20 through which the liquid flows from the measurement portion 4 to the receiving portion 17, a third flow channel 30 through which a remainder of the liquid outflowing from the first liquid sump portion 5 via the first flow channel 7 and measured by the measurement portion 4 flows, and a surplus portion 10 which is provided at an end of the third flow channel 30. In the second flow channel 20, a cross section enlarged portion 24 is provided. In the third flow channel 30, a cross section enlarged portion 34 is provided.

Description

本発明は、検査対象受体に関し、例えば、化学的、医学的、生物学的な検査を行うための検査対象受体に関する。   The present invention relates to a test target receptor, for example, a test target receiver for performing chemical, medical, and biological tests.

従来、化学的、医学的、生物学的な検査の分野で、DNA(Deoxyribo Nucleic Acid)や酵素、抗原、抗体、タンパク質、ウィルス、細胞などの生体物質、及び化学物質等を検知、定量する場合に使用するマイクロチップ又は検査チップと呼ばれる検査対象受体が提案されている。この検査対象受体では、内部の液体供給路に検査対象の液体を注入して、当該検査対象受体を水平に保持して公転させて、当該公転により生じる遠心力を利用して、検査対象受体内に形成された流路内の複数の混合槽に液体を移動させ検査を行うようになっている(例えば、特許文献1参照)。この検査対象受体では、試料計量室(本願の「計量部」に相当)で液体を所定量計量して、残りの液体が溢流室(本願の「余剰部」に相当)に流れ込むようになっている。また、試料計量室で計量された液体はキュペット室(本願の「受け部」に相当)に流入して他の液体や試薬と混合されるようになっている。   Conventionally, in the field of chemical, medical, and biological examinations, when detecting and quantifying DNA (Deoxyribo Nucleic Acid), enzymes, antigens, antibodies, proteins, viruses, cells and other biological materials, and chemical substances An inspection object receiver called a microchip or an inspection chip used for the above has been proposed. In this inspection object receptacle, the liquid to be inspected is injected into the internal liquid supply path, the inspection object receiver is held horizontally and revolved, and the centrifugal force generated by the revolution is used to inspect the inspection object. The inspection is performed by moving the liquid to a plurality of mixing tanks in the flow path formed in the receiver (for example, see Patent Document 1). In this inspection object receiver, a predetermined amount of liquid is measured in the sample measuring chamber (corresponding to the “metering unit” of the present application), and the remaining liquid flows into the overflow chamber (corresponding to the “extra part” of the present application). It has become. Further, the liquid measured in the sample measuring chamber flows into the cuppet chamber (corresponding to the “receiving portion” in the present application) and is mixed with other liquids and reagents.

特開昭60−238760号公報JP 60-238760 A

流体回路が形成されている検査対象受体は、マイクロタス(μ−TAS)と言われるように、微量な液体を用いるので、その流路は大変細いものとなっている。液溜部から計量部に液体を流す場合に、遠心力をかけたままで、検査対象受体の向きを変えると、液体が意図しない流路に流れ出てしまうことがあった。この場合に、流路は大変細いので毛管現象により、液体が流路の先まで流れてしまうという問題点があった。また、液溜部から計量部に液体を流す方向に遠心力をかけて、液体を液溜部から計量部に流す場合にも、液溜部の流路から流れ出た液体が、計量部に流れずに。試薬と混合される受け部への流路に毛管現象により流れてしまうという問題点があった。この場合には、正確な計量が出来なくなるという問題点があった。   Since the test object receiver in which the fluid circuit is formed uses a very small amount of liquid as is called microtus (μ-TAS), the flow path is very thin. When the liquid is allowed to flow from the liquid reservoir to the measuring part, if the direction of the test target receptacle is changed while the centrifugal force is applied, the liquid may flow out to an unintended flow path. In this case, since the flow path is very thin, there is a problem that the liquid flows to the tip of the flow path due to capillary action. In addition, when a centrifugal force is applied in the direction in which the liquid flows from the liquid reservoir to the measuring unit, and the liquid flows from the liquid reservoir to the measuring unit, the liquid flowing out from the flow path of the liquid reservoir flows to the measuring unit. Without. There is a problem in that it flows into the flow path to the receiving part mixed with the reagent by capillary action. In this case, there was a problem that accurate measurement could not be performed.

本発明は、上記課題を解決するためになされたものであり、流路の毛管現象による液体の意図しない流出を防止できる検査対象受体を実現することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to realize an inspection target receptacle that can prevent unintentional outflow of liquid due to capillary action in a flow path.

上記目的を達成するために、本発明の第1の態様の検査対象受体では、公転により生じる遠心力の方向に対して、自転により複数の所定の回転角度に順次保持されて、検査対象の液体を内部で移動させて検査する用途に用いられる検査対象受体であって、当該検査対象受体は、所定の厚みの板部材と、当該板部材の表面を覆うカバー部材とから構成され、前記板部材の表面には、少なくとも、検査対象の液体を溜める液溜部と、当該液溜部に接続され、前記液溜部から液体が流出する第一流路と、当該第一流路の前記液溜部側と反対側の端部に対向して設けられ、前記液体を所定量量り取る計量部と、前記計量部で量り取られた液体が流れ込む受け部と、前記計量部で量り取られた液体を前記受け部に流す第二流路とを備え、前記第二流路には、前記計量部側から前記受け部に向けて、流路の断面積が連続的に拡大している断面積拡大部分が設けられていることを特徴とする。   In order to achieve the above object, in the inspection target receptacle according to the first aspect of the present invention, the rotational direction of the centrifugal force generated by the revolution is sequentially held at a plurality of predetermined rotation angles by rotation, and the inspection target An inspection object receiver used for an application for inspecting by moving a liquid inside, the inspection object receiver is composed of a plate member having a predetermined thickness and a cover member covering the surface of the plate member, On the surface of the plate member, at least a liquid reservoir that stores a liquid to be inspected, a first channel that is connected to the liquid reservoir and flows out of the liquid reservoir, and the liquid in the first channel Opposed to the end opposite to the reservoir side, the metering unit that weighs a predetermined amount of the liquid, the receiving unit into which the liquid weighed by the metering unit flows, and the metering unit was weighed A second flow path for flowing liquid to the receiving portion, and the second flow path , Toward the receiving portion from the metering portion, the cross-sectional area of the flow path, characterized in that the cross-sectional area enlarged portion has expanded continuously is provided.

この構成の検査対象受体では、液溜部から計量部に液体を流す場合に、受け部への第二流路には、断面積拡大部分が設けられているので、毛管現象による第二流路への意図しない液体の流出を防止できる。   In the test object receiver having this configuration, when the liquid is allowed to flow from the liquid reservoir to the measuring part, the second flow path to the receiver is provided with a cross-sectional area enlarged portion. Unintentional outflow of liquid into the road can be prevented.

また、前記第二流路の断面積拡大部分は、当該流路の前記板部材の厚み方向での深さを連続的に深くすることにより、当該流路の断面積が連続的に拡大していても良い。この場合には、流路の深さを連続的に深くすることで、検査対象受体の面積を増やすことなく断面積拡大部分を形成することができる。   In addition, the cross-sectional area enlarged portion of the second flow path is continuously expanded by increasing the depth of the flow path in the thickness direction of the plate member continuously. May be. In this case, by increasing the depth of the flow path continuously, the cross-sectional area enlarged portion can be formed without increasing the area of the test object receptacle.

前記第二流路の断面積拡大部分は、前記計量部の開口部の前記受け部側の端部から始まっているようにしても良い。この場合には、計量部の開口部の端部から第二流路への毛管現象による意図しない液体の流出を防止できる。従って、計量部にスムーズに液体を流すことができる。   The cross-sectional area enlarged portion of the second flow path may start from an end portion on the receiving portion side of the opening portion of the measuring portion. In this case, unintentional outflow of liquid due to capillary action from the end of the opening of the measuring portion to the second flow path can be prevented. Therefore, it is possible to smoothly flow the liquid to the measuring unit.

また、前記液溜部から液体を前記計量部に流すように遠心力を付加する状態で、前記第二流路の途中には、遠心力の上流方向に対しての変曲点が設けられていても良い。この場合には、第二流路に意図しない液体が流れた場合にも、変曲点から先に流れることを防止できる。   In addition, an inflection point with respect to the upstream direction of the centrifugal force is provided in the middle of the second flow path in a state where a centrifugal force is applied so that the liquid flows from the liquid reservoir to the measuring unit. May be. In this case, even when an unintended liquid flows in the second flow path, it can be prevented from flowing from the inflection point first.

また、前記検査対象受体は、さらに、当該計量部から溢れた液体を溜める余剰部と、前記計量部から溢れた液体を前記余剰部に流す第三流路とを備え、前記第三流路は、前記計量部側から前記余剰部に向けて、流路の断面積が連続的に拡大している断面積拡大部分を有するようにしても良い。この場合には、毛管現象で、第三流路に意図しない液体が流れることを防止できる。   The inspection object receiver further includes a surplus part for storing the liquid overflowing from the measuring part, and a third flow path for flowing the liquid overflowing from the measuring part to the surplus part, and the third flow path. May have a cross-sectional area enlarged portion in which the cross-sectional area of the flow path continuously increases from the measuring portion side toward the surplus portion. In this case, it is possible to prevent an unintended liquid from flowing into the third flow path due to capillary action.

また、前記第三流路の断面積拡大部分は、当該流路の前記板部材の厚み方向での深さを連続的に深くすることにより、当該流路の断面積が連続的に拡大していても良い。流路の深さを連続的に深くすることで、検査対象受体の面積を増やすことなく断面積拡大部分を形成することができる。   In addition, the cross-sectional area enlarged portion of the third flow path has the cross-sectional area of the flow path continuously expanded by continuously increasing the depth of the flow path in the thickness direction of the plate member. May be. By increasing the depth of the flow path continuously, the cross-sectional area enlarged portion can be formed without increasing the area of the test subject receptacle.

また、前記第三流路の断面積拡大部分は、前記計量部の開口部の前記余剰部側の端部から始まっていても良い。この場合には、この場合には、計量部の開口部の端部から第三流路の毛管現象による第三流路への意図しない液体の流出を防止できる。従って、計量部にスムーズに液体を流すことができる。   Further, the cross-sectional area enlarged portion of the third flow path may start from an end portion on the surplus portion side of the opening portion of the measuring portion. In this case, in this case, it is possible to prevent unintentional outflow of the liquid from the end of the opening of the measuring unit to the third channel due to the capillary phenomenon of the third channel. Therefore, it is possible to smoothly flow the liquid to the measuring unit.

検査装置50の平面図である。3 is a plan view of the inspection device 50. FIG. 検査対象受体1の正面図である。It is a front view of the test object receiver. 第一実施形態の検査対象受体1の図2のX−X線に於ける矢視方向の屈曲断面図である。It is a bending sectional view of the direction of an arrow in the XX line of Drawing 2 of inspection subject receptacle 1 of a first embodiment. 第二実施形態の検査対象受体1の図2のX−X線に於ける矢視方向の屈曲断面図である。It is a bending sectional view of the direction of an arrow in the XX line of Drawing 2 of inspection subject receptacle 1 of a second embodiment. 第三実施形態の検査対象受体1の図2のX−X線に於ける矢視方向の屈曲断面図である。It is a bending sectional view of the direction of an arrow in the XX line of Drawing 2 of inspection subject receptacle 1 of a third embodiment. 第四実施形態の検査対象受体1の図2のX−X線に於ける矢視方向の屈曲断面図である。It is a bending sectional view of the direction of an arrow in the XX line of Drawing 2 of inspection subject receptacle 1 of a fourth embodiment. 第五実施形態の検査対象受体1の正面図である。It is a front view of the test object receptacle 1 of 5th embodiment. 液体を注入した状態の検査対象受体1の正面図である。It is a front view of the test subject receptacle 1 in the state which injected the liquid. 検査対象受体1を90度反時計回りに自転させた状態の正面図である。It is a front view of the state which rotated the to-be-inspected receiving body 1 90 degree counterclockwise. 検査対象受体1に遠心力を付与して、計量部4に液体を流し込んだ状態の正面図である。It is a front view of the state which gave the centrifugal force to the test object receiver 1 and poured the liquid into the measurement part. 検査対象受体1の計量部4から液体を受け部17に流し込む状態の正面図である。FIG. 6 is a front view of a state in which a liquid is poured from the measuring unit 4 of the inspection receiver 1 into the receiving unit 17. 検査対象受体1の公転を止めた状態の正面図である。It is a front view of the state which stopped revolution of inspection object receptacle.

以下、本発明の第一実施形態について説明する。本実施の形態では、検査対象受体1は、図1に示す検査装置50に当該検査対象受体1の底面が重力方向(図1の紙面方向)と平行にして装着されて公転されて遠心力が付加される。先ず、図1を参照して、検査装置50の構造を簡単に説明する。図1に示すように、検査装置50の上板52上には、回転する円盤状のターンテーブル53が設けられている。また、当該ターンテーブル53上には、ホルダ角度変更機構54が設けられている。ホルダ角度変更機構54には、検査対象受体1が挿入され固定されて、所定角度自転するホルダ57が一対設けられている。また、上板52の下方には、図示外のモータが設けられ、ターンテーブル53を回転駆動するようになっている。ターンテーブル53がその中心部分55を軸心として回転することにより各ホルダ57に各々挿入された検査対象受体1には、矢印A方向に遠心力が各々働くようになっている。また、ホルダ角度変更機構54の動作によりホルダ57が自転されて、検査対象受体1に働く遠心力の方向を変化させることができるようになっている。   Hereinafter, a first embodiment of the present invention will be described. In the present embodiment, the inspection target receptacle 1 is mounted on the inspection apparatus 50 shown in FIG. 1 so that the bottom surface of the inspection target receptacle 1 is mounted in parallel with the direction of gravity (the paper surface direction in FIG. 1) and revolved and centrifuged. Power is added. First, the structure of the inspection apparatus 50 will be briefly described with reference to FIG. As shown in FIG. 1, a rotating disk-shaped turntable 53 is provided on the upper plate 52 of the inspection apparatus 50. A holder angle changing mechanism 54 is provided on the turntable 53. The holder angle changing mechanism 54 is provided with a pair of holders 57 that are inserted and fixed to the inspection object receiver 1 and rotate by a predetermined angle. A motor (not shown) is provided below the upper plate 52 so as to drive the turntable 53 in rotation. Centrifugal force acts in the direction of arrow A on the test subject receivers 1 inserted into the holders 57 by the turntable 53 rotating about its central portion 55 as an axis. Further, the holder 57 is rotated by the operation of the holder angle changing mechanism 54 so that the direction of the centrifugal force acting on the test subject receptacle 1 can be changed.

次に、検査対象受体1の構造について図2及び図3を参照して説明する。図2は、検査対象受体1が検査装置50に装着された場合の正面図であり、検査対象受体1の正面及び背面が重力方向(図2に於ける下方)と平行になっている。図2及び図3に示すように、検査対象受体1は正面視長方形で所定の厚みを有する板部材2から構成されている。板部材2の材質としては、一例として合成樹脂を用いることができる。検査対象受体1には、その表面側(図3では上側)に検査対象受体1の表面を覆うカバー部材3が貼り付けられている。このカバー部材3が後述する第一液溜部5、第二液溜部6、第一流路7、第二流路20、第三流路30、第四流路8、計量部4、余剰部10及び受け部17を封止する。   Next, the structure of the inspection object receiver 1 will be described with reference to FIGS. FIG. 2 is a front view when the inspection object receiver 1 is mounted on the inspection apparatus 50, and the front and back surfaces of the inspection object receiver 1 are parallel to the direction of gravity (downward in FIG. 2). . As shown in FIG.2 and FIG.3, the test object receptacle 1 is comprised from the board member 2 which has a predetermined | prescribed thickness with a rectangle in front view. As an example of the material of the plate member 2, a synthetic resin can be used. A cover member 3 that covers the surface of the inspection object receiver 1 is attached to the inspection object receiver 1 on the surface side (upper side in FIG. 3). The cover member 3 includes a first liquid reservoir 5, a second liquid reservoir 6, a first flow path 7, a second flow path 20, a third flow path 30, a fourth flow path 8, a metering section 4, and a surplus section, which will be described later. 10 and the receiving part 17 are sealed.

図2及び図3に示すように、カバー部材3は、正面視、板部材2と同一形状の長方形の合成樹脂の透明の薄板から構成されている。また、カバー部材3には、第一液溜部5に検査対象の液体を注入する注入口15及び検査対象の液体と混合する試薬等を第二液溜部6に注入する注入口16が形成されている。   As shown in FIGS. 2 and 3, the cover member 3 is composed of a transparent thin plate of a rectangular synthetic resin having the same shape as the plate member 2 in front view. Further, the cover member 3 is formed with an inlet 15 for injecting a liquid to be inspected into the first liquid reservoir 5 and an inlet 16 for injecting a reagent or the like mixed with the liquid to be inspected into the second liquid reservoir 6. Has been.

図2に示すように、検査対象受体1の板部材2には、板の厚み方向に所定深さに掘り下げられた凹部からなる第一液溜部5、当該第一液溜部5から流出する検査対象の液体を所定量量り取る計量部4、第一液溜部5から計量部4に向けて液体を流す第一流路7が設けられている。また、板部材2には、計量部4で量り取った液体が流入する受け部17、計量部4から受け部17へ液体を流す第二流路20、第一液溜部5から第一流路7を介して流れ出し、計量部4で量り取った残りの液体が流れる第三流路30、第三流路30の先に設けられ計量部4で量り取った残りの液体が溜まる余剰部10が設けられている。また、板部材2には、板の厚み方向に所定深さに掘り下げられた凹部からなる第二液溜部6、第二液溜部6から受け部17へ試薬等の液体を流す第四流路8が設けられている。   As shown in FIG. 2, the plate member 2 of the test object receptacle 1 has a first liquid reservoir portion 5 formed of a concave portion dug down to a predetermined depth in the thickness direction of the plate, and flows out of the first liquid reservoir portion 5. A metering unit 4 that takes a predetermined amount of the liquid to be inspected and a first flow path 7 through which the liquid flows from the first liquid reservoir 5 toward the metering unit 4 are provided. Further, the plate member 2 includes a receiving portion 17 into which the liquid measured by the measuring portion 4 flows, a second flow path 20 for flowing the liquid from the measuring portion 4 to the receiving portion 17, and a first flow path from the first liquid reservoir portion 5. 7 and the third flow path 30 through which the remaining liquid weighed by the measuring section 4 flows, and the surplus section 10 provided at the end of the third flow path 30 where the remaining liquid weighed by the measuring section 4 accumulates. Is provided. The plate member 2 has a second liquid reservoir 6 formed of a recess dug down to a predetermined depth in the thickness direction of the plate, and a fourth flow for flowing a liquid such as a reagent from the second liquid reservoir 6 to the receiving portion 17. A path 8 is provided.

第一液溜部5は、注入口15から注入された検査対象の液体を溜める部分で板部材2に対して、正面視五角形で所定深さ掘り下げられている。また、第二液溜部6は、注入口16から注入された試薬等を溜める部分で板部材2に対して、正面視五角形で所定深さ掘り下げられている。図2に示すように、第一液溜部5からの第一流路7の液体流出方向の出口の対向面に、計量部4が設けられている。計量部4も板部材2に対して所定深さ掘り下げられ、所定長さ斜め方向に延設されている。また、図2に示すように、第二液溜部6からの第四流路8の液体流出方向の出口の対向面に、受け部17が設けられている。   The first liquid reservoir 5 is a portion that accumulates the liquid to be inspected injected from the injection port 15 and is dug down to a predetermined depth with respect to the plate member 2 in a pentagonal view in front view. Further, the second liquid reservoir 6 is a portion that accumulates the reagent and the like injected from the injection port 16 and is dug down to the plate member 2 by a predetermined depth in a pentagonal view in front view. As shown in FIG. 2, the measuring unit 4 is provided on the opposing surface of the outlet of the first flow path 7 from the first liquid reservoir 5 in the liquid outflow direction. The measuring unit 4 is also dug down by a predetermined depth with respect to the plate member 2 and extends in a diagonal direction by a predetermined length. Further, as shown in FIG. 2, a receiving portion 17 is provided on the opposing surface of the outlet in the liquid outflow direction of the fourth flow path 8 from the second liquid reservoir 6.

また、第三流路30の下流側の端部には板部材2の厚み方向に対して所定深さ掘り下げられた余剰部10が形成されている。この余剰部10には、第一液溜部5から流出して計量部4で所定量量計り取られた残りの液体が流れ込み溜まるようになっている。また、第二流路20の下流側の端部には受け部17が形成されている。この受け部17は、板部材2の厚み方向に所定深さ掘り下げられており、計量部4で所定量量り取られた液体が流入して、第二液溜部6から流入する試薬等と混合される。   Further, an excess portion 10 is formed at the downstream end of the third flow path 30 by being dug down by a predetermined depth in the thickness direction of the plate member 2. The surplus portion 10 flows out and accumulates the remaining liquid that has flowed out of the first liquid reservoir 5 and measured by the metering portion 4 by a predetermined amount. A receiving portion 17 is formed at the downstream end of the second flow path 20. The receiving portion 17 is dug down to a predetermined depth in the thickness direction of the plate member 2, and the liquid taken out by the predetermined amount by the measuring portion 4 flows in and mixes with the reagent and the like flowing in from the second liquid reservoir portion 6. Is done.

次に、第二流路20の構造について説明する。図2に示すように、第二流路20は、板部材2の厚み方向に対して所定深さ掘り下げられ、当該第二流路20の延設方向と直交する断面が矩形の溝である。第二流路20は、屈曲部22で受け部17方向に屈曲された流路となっており、第二流路20の延設方向と直交方向における第二流路20の幅は、計量部4の開口部の受け部17側の端部41から変曲点21までは、連続的に拡大している。また、図3に示すように、計量部4の開口部の受け部17側の端部41から変曲点21までは、第二流路20の深さ(板部材2の厚み方向に於ける)も受け部17側に向けて連続的に深くなっている。従って、計量部4の開口部の受け部17側の端部41から変曲点21までは、第二流路20の断面積が連続的に拡大する断面積拡大部分24となっている。   Next, the structure of the second flow path 20 will be described. As shown in FIG. 2, the second flow path 20 is a groove that is dug down by a predetermined depth with respect to the thickness direction of the plate member 2 and has a rectangular cross section perpendicular to the extending direction of the second flow path 20. The second flow path 20 is a flow path bent in the direction of the receiving portion 17 by the bent portion 22, and the width of the second flow path 20 in the direction orthogonal to the extending direction of the second flow path 20 is the measuring section. 4 from the end 41 on the receiving portion 17 side of the opening 4 to the inflection point 21 is continuously enlarged. Further, as shown in FIG. 3, the depth of the second flow path 20 (in the thickness direction of the plate member 2) from the end portion 41 on the receiving portion 17 side of the opening of the measuring portion 4 to the inflection point 21. ) Is continuously deeper toward the receiving portion 17 side. Therefore, from the end portion 41 on the receiving portion 17 side of the opening of the measuring portion 4 to the inflection point 21, a cross-sectional area enlarged portion 24 where the cross-sectional area of the second flow path 20 continuously increases is obtained.

また、図2に示すように、第二流路20の変曲点21と受け部17との間には、第二流路20がヘアーピン状に屈曲する屈曲部22が設けられている。変曲点21は、図10に示すように、第一液溜部5から液体を計量部4に流すように遠心力を付加する状態で、第二流路20の遠心力の上流方向(図10の矢印Aと逆方向)への変曲点となっている。この変曲点21により、第二流路20が遠心力の上流方向に対して曲がっているので、第一液溜部5から計量部4に液体を流す際に第二流路20に漏れ出た液体が、受け部17に流れ込むことを防止できる。   Further, as shown in FIG. 2, between the inflection point 21 of the second flow path 20 and the receiving portion 17, a bent portion 22 where the second flow path 20 is bent in a hairpin shape is provided. As shown in FIG. 10, the inflection point 21 is in the upstream direction of the centrifugal force in the second flow path 20 (see FIG. 10) in a state where a centrifugal force is applied so that the liquid flows from the first liquid reservoir 5 to the measuring unit 4. 10 is the inflection point in the direction opposite to arrow A). Since the second flow path 20 is bent with respect to the upstream direction of the centrifugal force due to the inflection point 21, it leaks into the second flow path 20 when the liquid flows from the first liquid reservoir 5 to the measuring unit 4. The liquid can be prevented from flowing into the receiving part 17.

次に、図2及び図3を参照して、第三流路30の構造を説明する。図2に示すように、第三流路30は、板部材2の厚み方向に対して所定深さ掘り下げられ、当該第三流路30の延設方向(図2に於ける左斜め下方向)と直交する断面が矩形の溝である。第三流路30の延設方向と直交方向における第三流路30の幅は、計量部4の開口部の余剰部10側の端部42から幅が一旦広くなった拡大部31では、連続的に拡大している。また、図3に示すように、計量部4の開口部の余剰部10側の端部42から第三流路30が曲がる変曲点35までは、第三流路30の深さ(板部材2の厚み方向に於ける)も余剰部10側に向けて連続的に深くなっている。従って、計量部4の開口部の余剰部10側の端部42から変曲点35までは、第三流路30の断面積が連続的に拡大する断面積拡大部分34となっている。   Next, the structure of the third flow path 30 will be described with reference to FIGS. 2 and 3. As shown in FIG. 2, the third flow path 30 is dug down by a predetermined depth with respect to the thickness direction of the plate member 2, and the extending direction of the third flow path 30 (downwardly diagonally downward in FIG. 2). The cross section orthogonal to is a rectangular groove. The width of the third flow path 30 in the direction orthogonal to the extending direction of the third flow path 30 is continuous in the enlarged portion 31 whose width is once increased from the end portion 42 on the surplus portion 10 side of the opening of the measuring portion 4. Is expanding. Further, as shown in FIG. 3, the depth of the third flow path 30 (plate member) from the end 42 on the surplus portion 10 side of the opening of the measuring section 4 to the inflection point 35 at which the third flow path 30 bends. 2 in the thickness direction of 2) is continuously deeper toward the surplus portion 10 side. Therefore, from the end part 42 on the surplus part 10 side of the opening part of the measuring part 4 to the inflection point 35 is a cross-sectional area enlarged portion 34 where the cross-sectional area of the third flow path 30 continuously increases.

上記第一実施形態の検査対象受体1では、計量部4から受け部17へ液体を流す第二流路20に、計量部4の開口部の受け部17側の端部41から断面積拡大部分24が所定長さ形成されているので、細い流路であっても毛管現象による第二流路への意図しない液体の流出を防止できる。また、同様に、計量部4から溢れた液体を余剰部10に流す第三流路30にも断面積拡大部分34が計量部4の開口部の余剰部10側の端部42から所定長さ形成されているので、細い流路であっても毛管現象による第三流路への意図しない液体の流出を防止できる。   In the test object receiver 1 of the first embodiment, the cross-sectional area is enlarged from the end 41 on the receiving portion 17 side of the opening of the measuring portion 4 to the second flow path 20 through which the liquid flows from the measuring portion 4 to the receiving portion 17. Since the portion 24 is formed to have a predetermined length, it is possible to prevent unintentional outflow of liquid into the second flow path due to capillary action even in a thin flow path. Similarly, the cross-sectional area enlarged portion 34 also has a predetermined length from the end portion 42 on the surplus portion 10 side of the opening of the measuring portion 4 in the third flow path 30 for flowing the liquid overflowing from the measuring portion 4 to the surplus portion 10. Since it is formed, it is possible to prevent unintentional outflow of liquid into the third channel due to capillary action even in a narrow channel.

次に、図2及び図4を参照して、第二実施形態の検査対象受体1について説明する。この第二実施形態の検査対象受体1では、検査対象受体1を正面視した場合には、第二流路20及び第三流路30の形状は第一実施形態と同様に見えるが、図4に示すように、第二流路20及び第三流路30は、流路の深さは一定である。しかし、第二流路20は、変曲点21までは、流路の幅が連続的に広くなっているので、流路の断面積は連続的に拡大している。また、第三流路30においても、拡大部31が有るので、流路の幅が連続的に広くなっている部分があるので、流路の断面積は連続的に拡大している。この第二実施形態の検査対象受体1においても、流路の断面積は、連続的に拡大しているので、第二流路20及び第三流路30に対する、毛管現象による意図しない液体の流れ込みを防止できる。   Next, with reference to FIG.2 and FIG.4, the test object receptacle 1 of 2nd embodiment is demonstrated. In the inspection target receptacle 1 of the second embodiment, when the inspection target receptacle 1 is viewed from the front, the shapes of the second flow path 20 and the third flow path 30 look the same as in the first embodiment. As shown in FIG. 4, the second flow path 20 and the third flow path 30 have a constant flow path depth. However, since the width of the flow path of the second flow path 20 is continuously increased up to the inflection point 21, the cross-sectional area of the flow path is continuously increased. In addition, since the third flow path 30 also has the enlarged portion 31, there is a portion where the width of the flow path is continuously widened, so that the cross-sectional area of the flow path is continuously expanded. Also in the test target receptacle 1 of the second embodiment, the cross-sectional area of the flow channel is continuously enlarged, so that the liquid flow unintended due to capillary action on the second flow channel 20 and the third flow channel 30 is not achieved. Inflow can be prevented.

次に、図2及び図5を参照して、第三実施形態の検査対象受体1について説明する。この第三実施形態の検査対象受体1では、検査対象受体1を正面視した場合には、第二流路20及び第三流路30の形状は第一実施形態と同様に見える。図5に示すように、第三流路30の深さは一定であるが、第二流路20は、計量部4の開口部の受け部17側の端部41から変曲点21までは、流路の深さが受け部17側に向けて連続的に深くなっている。従って、計量部4の開口部の受け部17側の端部41から変曲点21までは、第二流路20の断面積が連続的に拡大する断面積拡大部分24となっている。また、第三流路30においても、拡大部31が有るので、流路の幅が連続的に広くなっている部分があるので、流路の断面積は連続的に拡大している。この第三実施形態の検査対象受体1においても、流路の断面積は、連続的に拡大しているので、第二流路20及び第三流路30に対する毛管現象による意図しない液体の流れ込みを防止できる。   Next, with reference to FIG.2 and FIG.5, the test object receptacle 1 of 3rd embodiment is demonstrated. In the inspection target receptacle 1 of the third embodiment, when the inspection target receptacle 1 is viewed from the front, the shapes of the second flow path 20 and the third flow path 30 look the same as in the first embodiment. As shown in FIG. 5, the depth of the third flow path 30 is constant, but the second flow path 20 extends from the end 41 on the receiving portion 17 side of the opening of the measuring unit 4 to the inflection point 21. The depth of the channel is continuously increased toward the receiving portion 17 side. Therefore, from the end portion 41 on the receiving portion 17 side of the opening of the measuring portion 4 to the inflection point 21, a cross-sectional area enlarged portion 24 where the cross-sectional area of the second flow path 20 continuously increases is obtained. In addition, since the third flow path 30 also has the enlarged portion 31, there is a portion where the width of the flow path is continuously widened, so that the cross-sectional area of the flow path is continuously expanded. Also in the test subject receptacle 1 of the third embodiment, the cross-sectional area of the flow path is continuously enlarged, so that unintended liquid flows into the second flow path 20 and the third flow path 30 due to capillary action. Can be prevented.

次に、図2及び図6を参照して、第四実施形態の検査対象受体1について説明する。この第四実施形態の検査対象受体1では、検査対象受体1を正面視した場合には、第二流路20及び第三流路30の形状は第一実施形態と同様に見える。図6に示すように、第二流路20の深さは一定であるが、第三流路30は、計量部4の開口部の余剰部10側の端部42から変曲点35までは、流路の深さが連続的に深くなっている。従って、第三流路30の断面積が連続的に拡大する断面積拡大部分34となっている。また、第二流路20においても、流路の幅が連続的に広くなっている部分があるので、流路の断面積は連続的に拡大している。この第四実施形態の検査対象受体1においても、流路の断面積は、連続的に拡大しているので、第二流路20及び第三流路30に対する毛管現象による意図しない液体の流れ込みを防止できる。   Next, with reference to FIG.2 and FIG.6, the test object receptacle 1 of 4th embodiment is demonstrated. In the inspection target receptacle 1 of the fourth embodiment, when the inspection target receptacle 1 is viewed from the front, the shapes of the second flow path 20 and the third flow path 30 look the same as in the first embodiment. As shown in FIG. 6, the depth of the second flow path 20 is constant, but the third flow path 30 extends from the end 42 on the surplus portion 10 side of the opening of the measuring portion 4 to the inflection point 35. The depth of the flow path is continuously increased. Therefore, the cross-sectional area enlarged portion 34 where the cross-sectional area of the third flow path 30 continuously increases. Further, in the second flow path 20, since there is a portion where the width of the flow path is continuously widened, the cross-sectional area of the flow path is continuously expanded. Also in the test target receptacle 1 of the fourth embodiment, the cross-sectional area of the flow path is continuously enlarged, so that unintended liquid flows into the second flow path 20 and the third flow path 30 due to capillary action. Can be prevented.

次に、図3及び図7を参照して、第五実施形態の検査対象受体1について説明する。図7に示すように、第五実施形態の検査対象受体1では、検査対象受体1を正面視した場合には、第二流路20及び第三流路30は、流路の幅は連続的に拡大している部分がない。しかし、図3に示すように、第二流路20に流路の深さが連続的に深くなる断面積拡大部分24があり、同様に、第三流路30に流路の深さが連続的に深くなる断面積拡大部分34がある。従って、この第五実施形態の検査対象受体1においても、流路の断面積は、連続的に拡大しているので、第二流路20及び第三流路30に対する毛管現象による意図しない液体の流れ込みを防止できる。   Next, with reference to FIG.3 and FIG.7, the test object receptacle 1 of 5th embodiment is demonstrated. As shown in FIG. 7, in the inspection object receiver 1 of the fifth embodiment, when the inspection object receiver 1 is viewed from the front, the second flow path 20 and the third flow path 30 have the width of the flow path. There is no continuous expansion. However, as shown in FIG. 3, the second flow path 20 has a cross-sectional area enlarged portion 24 where the flow path depth continuously increases, and similarly, the third flow path 30 has a continuous flow path depth. There is a cross-sectional area enlarged portion 34 that becomes deeper. Accordingly, also in the test object receptacle 1 of the fifth embodiment, the cross-sectional area of the flow channel is continuously enlarged, so that an unintended liquid due to capillary action on the second flow channel 20 and the third flow channel 30 is obtained. Can be prevented.

次に、図8から図12を参照して、上記第一実施形態の検査対象受体1の使用方法について説明する。図8に示すように、検査対象受体1では、注入口15から第一液溜部5に検査対象の液体が注入され、注入口16から第二液溜部6に試薬が注入される。注入された液体は、第一液溜部5及び第二液溜部6に溜まる。次いで、検査対象受体1は、図1に示す検査装置50のターンテーブル53のホルダ57に各々固定される。そして、検査装置50のホルダ57が自転して、検査対象受体1を図9に示す状態に自転させる。次いで、図10に示すように、検査対象受体1は、重力方向(矢印B方向)と平行な回転軸で公転して、検査対象受体1には遠心力が矢印A方向に付与される。この時、図10に示すように、第一液溜部5に溜まっている液体が流れ出て、計量部4で所定量計量される。この時に、第二流路20には、断面積拡大部分24が設けられ、第三流路30には、断面積拡大部分34が設けられているので、第二流路20及び第三流路30に対する毛管現象による意図しない液体の流れ込みを防止し、スムーズに計量部4に液体を流すことができる。ここで、計量部4から溢れた余剰な液体は、付与されている遠心力により第三流路30を流れて余剰部10に溜まる。また、余剰部10に流れ込んだ液体は、遠心力(図10に於ける矢印A方向)により、余剰部10の奥に引き寄せられる。また、第二液溜部6に溜まっていた試薬は、受け部17に流れ込む。   Next, with reference to FIG. 8 to FIG. 12, a method for using the inspection target receptacle 1 of the first embodiment will be described. As shown in FIG. 8, in the test target receptacle 1, the liquid to be tested is injected from the injection port 15 into the first liquid reservoir 5, and the reagent is injected from the injection port 16 into the second liquid reservoir 6. The injected liquid accumulates in the first liquid reservoir 5 and the second liquid reservoir 6. Next, the inspection object receiver 1 is fixed to the holder 57 of the turntable 53 of the inspection apparatus 50 shown in FIG. And the holder 57 of the test | inspection apparatus 50 rotates, and the test object receiver 1 is rotated to the state shown in FIG. Next, as shown in FIG. 10, the inspection object receiver 1 revolves around a rotation axis parallel to the gravity direction (arrow B direction), and centrifugal force is applied to the inspection object receiver 1 in the arrow A direction. . At this time, as shown in FIG. 10, the liquid accumulated in the first liquid reservoir 5 flows out and is measured by the measuring unit 4 by a predetermined amount. At this time, the second flow path 20 is provided with the cross-sectional area enlarged portion 24, and the third flow path 30 is provided with the cross-sectional area enlarged portion 34. Therefore, it is possible to prevent an unintended flow of the liquid due to the capillary phenomenon with respect to 30 and to smoothly flow the liquid to the measuring unit 4. Here, the excess liquid overflowing from the measuring unit 4 flows through the third flow path 30 by the applied centrifugal force and accumulates in the excess unit 10. Further, the liquid that has flowed into the surplus portion 10 is attracted to the back of the surplus portion 10 by centrifugal force (in the direction of arrow A in FIG. 10). Further, the reagent accumulated in the second liquid reservoir 6 flows into the receiver 17.

次いで、図11に示すように、検査対象受体1は、時計回りに90度自転されて公転による遠心力が付与される(図11に於ける矢印A方向)。図11に示すように、計量部4に溜まった液体は、付与されている遠心力により第二流路20を流れて受け部17に流入して、第二液溜部6から先に、受け部17に流入している試薬と混合される。その後、検査装置50のターンテーブル53の回転が止まると、図12に示すように、検査対象の液体の余剰液は余剰部10の奥部13に溜まり、試薬と混合された液体は、受け部17に溜まる。この後、受け部17で混合された液に光をあてて調べる光学等の方法で測定する。   Next, as shown in FIG. 11, the test object receiver 1 is rotated 90 degrees clockwise and is given a centrifugal force due to revolution (in the direction of arrow A in FIG. 11). As shown in FIG. 11, the liquid accumulated in the measuring unit 4 flows through the second flow path 20 by the applied centrifugal force and flows into the receiving unit 17, and is received from the second liquid storing unit 6 first. It is mixed with the reagent flowing into the part 17. Thereafter, when the rotation of the turntable 53 of the inspection apparatus 50 stops, as shown in FIG. 12, the excess liquid of the liquid to be inspected is accumulated in the back part 13 of the excess part 10, and the liquid mixed with the reagent is received by the receiving part. Accumulate at 17. After that, the measurement is performed by a method such as an optical method in which light is applied to the liquid mixed in the receiving portion 17 for examination.

以上説明したように、上記実施形態の検査対象受体1では、第二流路20に断面積拡大部分24を設け、第三流路30に断面積拡大部分34を設けているので、計量部4での計量時に、第二流路20及び第三流路30に対する毛管現象による意図しない液体の流れ込みを防止して第一液溜部5の第一流路7からスムーズに液体を計量部4に流すことが出来る。また、第一液溜部5から液体を計量部4に流すように遠心力を付加する状態で、第二流路20に遠心力の上流方向に対しての変曲点21を設けているので、計量部4から溢れた余剰な液体が、第二流路20に流れ込んでも、受け部17に流れ込んでしまうことを防止できる。   As described above, in the test object receiver 1 of the above embodiment, the cross-sectional area enlarged portion 24 is provided in the second flow path 20, and the cross-sectional area enlarged portion 34 is provided in the third flow path 30. 4, the unintentional flow of liquid due to capillary action into the second flow path 20 and the third flow path 30 is prevented, and the liquid is smoothly supplied from the first flow path 7 of the first liquid reservoir 5 to the measurement section 4. It can flow. In addition, an inflection point 21 with respect to the upstream direction of the centrifugal force is provided in the second flow path 20 with a centrifugal force applied so that the liquid flows from the first liquid reservoir 5 to the measuring unit 4. Even if excess liquid overflowing from the measuring unit 4 flows into the second flow path 20, it can be prevented from flowing into the receiving unit 17.

尚、本発明は、上記実施形態に限られず、各種の変形ができる。例えば、第二流路20の断面積拡大部分24は、変曲点21まででなく、屈曲部22より先まで形成しても良い。また、第三流路30の断面積拡大部分34も変曲点35より先の余剰部10まで形成しても良い。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, the cross-sectional area enlarged portion 24 of the second flow path 20 may be formed not to the inflection point 21 but to the bending portion 22. The cross-sectional area enlarged portion 34 of the third flow path 30 may also be formed up to the surplus portion 10 ahead of the inflection point 35.

また、例えば、検査対象受体1の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアリレート樹脂(PAR)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(PMP)、ポリブタジエン樹脂(PBD)、生分解性ポリマー(BP)、シクロオレフィンポリマー(COP)、ポリジメチルシロキサン(PDMS)などの有機材料を用いることができる。また、シリコン、ガラス、石英等の無機材料を用いても良い。また、検査対象受体1では、液体の注入口は2つ設けているが、1つ、3つ、4つ等適宜設けても良い。   Further, for example, the material of the test object receiver 1 is not particularly limited, and polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), polypropylene (PP) ), Polyethylene (PE), polyethylene naphthalate (PEN), polyarylate resin (PAR), acrylonitrile-butadiene-styrene resin (ABS), vinyl chloride resin (PVC), polymethylpentene resin (PMP), polybutadiene resin (PBD) ), Biodegradable polymer (BP), cycloolefin polymer (COP), polydimethylsiloxane (PDMS), and other organic materials can be used. In addition, an inorganic material such as silicon, glass, or quartz may be used. In addition, in the inspection object receiver 1, two liquid inlets are provided, but one, three, four, etc. may be provided as appropriate.

1 検査対象受体
2 板部材
3 カバー部材
4 計量部
5 第一液溜部
6 第二液溜部
10 余剰部
11 流路
13 貯溜部
15 注入口
16 注入口
17 受け部
20 第二流路
21 変曲点
22 屈曲部
24 断面積拡大部分
30 第三流路
31 拡大部
34 断面積拡大部分
35 変曲点
41 端部
42 端部
DESCRIPTION OF SYMBOLS 1 Inspection object receptacle 2 Plate member 3 Cover member 4 Measuring part 5 1st liquid reservoir part 6 2nd liquid reservoir part 10 Surplus part 11 Flow path 13 Reservoir part 15 Inlet 16 Inlet 17 Receiving part 20 Second flow path 21 Inflection point 22 Bent part 24 Cross-sectional area enlarged part 30 Third flow path 31 Enlarged part 34 Cross-sectional area enlarged part 35 Inflection point 41 End part 42 End part

Claims (7)

公転により生じる遠心力の方向に対して、自転により複数の所定の回転角度に順次保持されて、検査対象の液体を内部で移動させて検査する用途に用いられる検査対象受体であって、
当該検査対象受体は、所定の厚みの板部材と、当該板部材の表面を覆うカバー部材とから構成され、
前記板部材の表面には、少なくとも、
検査対象の液体を溜める液溜部と、
当該液溜部に接続され、前記液溜部から液体が流出する第一流路と、
当該第一流路の前記液溜部側と反対側の端部に対向して設けられ、前記液体を所定量量り取る計量部と、
前記計量部で量り取られた液体が流れ込む受け部と、
前記計量部で量り取られた液体を前記受け部に流す第二流路と
を備え、
前記第二流路には、前記計量部側から前記受け部に向けて、流路の断面積が連続的に拡大している断面積拡大部分が設けられていることを特徴とする検査対象受体。
A test object receiver that is sequentially held at a plurality of predetermined rotation angles by rotation with respect to the direction of centrifugal force generated by revolution, and that is used for inspection by moving a liquid to be inspected inside,
The inspection object receiver is composed of a plate member having a predetermined thickness and a cover member covering the surface of the plate member,
On the surface of the plate member, at least,
A liquid reservoir for storing the liquid to be inspected;
A first flow path connected to the liquid reservoir and through which liquid flows out of the liquid reservoir;
A metering unit provided opposite to the end of the first channel opposite to the liquid reservoir side, and weighing out a predetermined amount of the liquid;
A receiving part into which the liquid weighed in the measuring part flows;
A second flow path for flowing the liquid weighed in the measuring section to the receiving section,
The second flow path is provided with an inspection object receiving portion having a cross-sectional area enlarged portion in which a cross-sectional area of the flow path continuously increases from the measuring section side toward the receiving section. body.
前記第二流路の断面積拡大部分は、当該流路の前記板部材の厚み方向での深さを連続的に深くすることにより、当該流路の断面積が連続的に拡大していることを特徴とする請求項1に記載の検査対象受体。   The cross-sectional area enlargement portion of the second flow path is such that the cross-sectional area of the flow path is continuously expanded by continuously increasing the depth of the flow path in the thickness direction of the plate member. The test object receptacle according to claim 1, wherein: 前記第二流路の断面積拡大部分は、前記計量部の開口部の前記受け部側の端部から始まっていることを特徴とする請求項1または2に記載の検査対象受体。   The test object receptacle according to claim 1, wherein the cross-sectional area enlarged portion of the second flow path starts from an end portion of the opening portion of the measuring portion on the receiving portion side. 前記液溜部から液体を前記計量部に流すように遠心力を付加する状態で、
前記第二流路の途中には、遠心力の上流方向に対しての変曲点が設けられていることを特徴とする請求項1から3の何れかに記載の検査対象受体。
In a state where a centrifugal force is applied so that the liquid flows from the liquid reservoir to the measuring unit,
The inspection object receptacle according to any one of claims 1 to 3, wherein an inflection point with respect to an upstream direction of centrifugal force is provided in the middle of the second flow path.
前記検査対象受体は、さらに、
当該計量部から溢れた液体を溜める余剰部と、
前記計量部から溢れた液体を前記余剰部に流す第三流路と
を備え、
前記第三流路には、前記計量部側から前記余剰部に向けて、流路の断面積が連続的に拡大している断面積拡大部分が設けられていることを特徴とする請求項1から4の何れかに記載の検査対象受体。
The test object receiver further includes:
A surplus part for storing liquid overflowing from the measuring part;
A third flow path for flowing the liquid overflowing from the measuring section to the surplus section,
The cross-sectional area enlarged portion in which the cross-sectional area of the flow path continuously increases from the measuring section side to the surplus section is provided in the third flow path. To 4. The test object receiver according to any one of 1 to 4.
前記第三流路の断面積拡大部分は、当該流路の前記板部材の厚み方向での深さを連続的に深くすることにより、当該流路の断面積が連続的に拡大していることを特徴とする請求項5に記載の検査対象受体。   The cross-sectional area enlargement portion of the third flow path has the cross-sectional area of the flow path continuously expanded by continuously increasing the depth of the flow path in the thickness direction of the plate member. The test object receiver according to claim 5, wherein: 前記第三流路の断面積拡大部分は、前記計量部の開口部の前記余剰部側の端部から始まっていることを特徴とする請求項5または6に記載の検査対象受体。   The test object receptacle according to claim 5 or 6, wherein the cross-sectional area enlarged portion of the third flow path starts from an end portion of the opening portion of the measuring portion on the surplus portion side.
JP2010221080A 2010-09-30 2010-09-30 Inspection object acceptor Pending JP2012078115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221080A JP2012078115A (en) 2010-09-30 2010-09-30 Inspection object acceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221080A JP2012078115A (en) 2010-09-30 2010-09-30 Inspection object acceptor

Publications (1)

Publication Number Publication Date
JP2012078115A true JP2012078115A (en) 2012-04-19

Family

ID=46238550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221080A Pending JP2012078115A (en) 2010-09-30 2010-09-30 Inspection object acceptor

Country Status (1)

Country Link
JP (1) JP2012078115A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050946A1 (en) * 2012-09-28 2014-04-03 ブラザー工業株式会社 Inspection chip
WO2014061636A1 (en) * 2012-10-15 2014-04-24 ブラザー工業株式会社 Inspection chip
WO2014061635A1 (en) * 2012-10-15 2014-04-24 ブラザー工業株式会社 Inspection device, inspection system, inspection method, and computer program
WO2014069511A1 (en) * 2012-10-31 2014-05-08 ブラザー工業株式会社 Inspection chip
JP2014149160A (en) * 2013-01-31 2014-08-21 Brother Ind Ltd Inspection chip, inspection kit, and inspection system
JP2015105891A (en) * 2013-11-29 2015-06-08 ブラザー工業株式会社 Inspection chip
WO2019244888A1 (en) * 2018-06-20 2019-12-26 Phcホールディングス株式会社 Substrate for sample analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JP2009121912A (en) * 2007-11-14 2009-06-04 Rohm Co Ltd Microchip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JP2009121912A (en) * 2007-11-14 2009-06-04 Rohm Co Ltd Microchip

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050946A1 (en) * 2012-09-28 2014-04-03 ブラザー工業株式会社 Inspection chip
JP2014070967A (en) * 2012-09-28 2014-04-21 Brother Ind Ltd Inspection chip
WO2014061636A1 (en) * 2012-10-15 2014-04-24 ブラザー工業株式会社 Inspection chip
WO2014061635A1 (en) * 2012-10-15 2014-04-24 ブラザー工業株式会社 Inspection device, inspection system, inspection method, and computer program
JP2014081247A (en) * 2012-10-15 2014-05-08 Brother Ind Ltd Inspection chip
JP2014081248A (en) * 2012-10-15 2014-05-08 Brother Ind Ltd Inspection apparatus, inspection system, inspection method and computer program
WO2014069511A1 (en) * 2012-10-31 2014-05-08 ブラザー工業株式会社 Inspection chip
JP2014089132A (en) * 2012-10-31 2014-05-15 Brother Ind Ltd Inspection chip
JP2014149160A (en) * 2013-01-31 2014-08-21 Brother Ind Ltd Inspection chip, inspection kit, and inspection system
JP2015105891A (en) * 2013-11-29 2015-06-08 ブラザー工業株式会社 Inspection chip
WO2019244888A1 (en) * 2018-06-20 2019-12-26 Phcホールディングス株式会社 Substrate for sample analysis
CN112334777A (en) * 2018-06-20 2021-02-05 普和希控股公司 Substrate for sample analysis

Similar Documents

Publication Publication Date Title
JP2012078115A (en) Inspection object acceptor
JP5565398B2 (en) Inspection target
US8075853B2 (en) Microchip
JP4619224B2 (en) Rotational analysis device
US20090155125A1 (en) Microchip
US20090232708A1 (en) Microchip
TWI484182B (en) Reaction vessel, assay device, and measuring method
US20100255483A1 (en) Liquid-feeding chip and analysis method
JP5359964B2 (en) Inspection object receiver, inspection apparatus and inspection method
JP2012021854A (en) Inspection object acceptor
JP2012202736A (en) Inspection object acceptor, inspection method, and inspection device
JP2012078094A (en) Inspection object acceptor
US8603415B2 (en) Microchip
JP5177533B2 (en) Microchip
JP5843160B2 (en) Inspection object receiver, inspection device, and inspection method
JP5354947B2 (en) Bioanalytical device and sample quantitative stirring method using the same
JP2012013553A (en) Inspection object acceptor
JP6049446B2 (en) Microchip
JP5408094B2 (en) Inspection target
JP2007040833A (en) Biochemical analyzer
JP5915686B2 (en) Inspection chip
JP6010967B2 (en) Inspection object receiver, inspection device, and inspection method
JP2013164268A (en) Microchip
JP2012078102A (en) Inspection object acceptor
JP6049463B2 (en) Microchip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008