JP5354947B2 - Bioanalytical device and sample quantitative stirring method using the same - Google Patents

Bioanalytical device and sample quantitative stirring method using the same Download PDF

Info

Publication number
JP5354947B2
JP5354947B2 JP2008113265A JP2008113265A JP5354947B2 JP 5354947 B2 JP5354947 B2 JP 5354947B2 JP 2008113265 A JP2008113265 A JP 2008113265A JP 2008113265 A JP2008113265 A JP 2008113265A JP 5354947 B2 JP5354947 B2 JP 5354947B2
Authority
JP
Japan
Prior art keywords
sample
capillary
liquid
bioanalytical device
quantitative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008113265A
Other languages
Japanese (ja)
Other versions
JP2009264858A (en
Inventor
幸造 田頭
賢治 渡部
博文 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008113265A priority Critical patent/JP5354947B2/en
Priority to US12/866,399 priority patent/US8865472B2/en
Priority to CN2009801012751A priority patent/CN101883985B/en
Priority to CN201310030092.3A priority patent/CN103175782B/en
Priority to PCT/JP2009/000420 priority patent/WO2009098866A1/en
Priority to EP09708335.6A priority patent/EP2256501B1/en
Publication of JP2009264858A publication Critical patent/JP2009264858A/en
Application granted granted Critical
Publication of JP5354947B2 publication Critical patent/JP5354947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a living body analyzing device capable of realizing the quantitation of a sample liquid, a reagent reaction and inspection at the same portion. <P>SOLUTION: A liquid in a sample quantifying capillary (109) is transferred to a sample photometry part (106) placed at more outer circumferential side of rotary drive than the sample quantifying capillary (109) by a centrifugal force generated with rotary drive, the liquid in the sample photometry part (106) is arranged to be sucked by the capillary force of the sample quantifying capillary (109) by reducing the centrifugal force, and a flow velocity V1 for sucking a liquid along one sidewall being close to a connection port (116) is arranged to be lower than a flow velocity V2 for sucking a liquid along the other sidewall being distant from the connection port (116). Accordingly, the quantitation of a sample liquid, sample agitation and measurement can be realized at the same portion by using both a capillary force and a centrifugal force. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、生物などから採取した検体の分析に使用する分析用デバイスと、これを使用する分析方法に関するものであり、より詳細には、分析用デバイス内における試料液の定量と試料液と試薬の攪拌技術に関する。   The present invention relates to an analysis device used for analyzing a sample collected from a living organism and the like, and an analysis method using the same, and more specifically, quantification of a sample solution and a sample solution and a reagent in the analysis device. This relates to the stirring technology.

従来、生物学的流体を光学的に分析する方法として液体流路を形成したマイクロデバイスを用いて分析する方法が知られている。マイクロデバイスは回転分析装置を使って流体を制御することが可能であり、遠心力を利用して試料の定量、細胞質材料の分離、分離された流体の移送や分配等を行うことができるため、種々の生物化学的な分析を行うことが可能である。   2. Description of the Related Art Conventionally, as a method for optically analyzing a biological fluid, a method for analyzing using a microdevice having a liquid flow path is known. Microdevices can control fluids using a rotational analyzer, and can use centrifugal force to quantitate samples, separate cytoplasmic materials, transfer and distribute separated fluids, etc. Various biochemical analyzes can be performed.

遠心力と毛細管力を利用して試料の定量・試薬との反応・検出を行う分析方法として特許文献1を挙げることができる。
図7は特許文献1の技術を示している。
Patent Document 1 can be cited as an analysis method for performing quantification of a sample, reaction with a reagent, and detection using centrifugal force and capillary force.
FIG. 7 shows the technique of Patent Document 1.

この分析用デバイスでは、遠心力源となる軸心に最も近い側から外周に向かって矢印15の方向に、注入口31aから検体としての全血(血液)45が注入される全血分離チャンバー31,分離チャンバー32,定量チャンバー33,反応・検出チャンバー34が設けられている。   In this analytical device, a whole blood separation chamber 31 into which whole blood (blood) 45 as a specimen is injected from the injection port 31a in the direction of the arrow 15 from the side closest to the axis serving as the centrifugal force source toward the outer periphery. , A separation chamber 32, a quantitative chamber 33, and a reaction / detection chamber 34 are provided.

全血分離チャンバー31と分離チャンバー32の間は、流路35と試薬チャンバー36と流路37と攪拌部38および流路39を介して分離チャンバー32に連結されている。分離チャンバー32と定量チャンバー33の間は、流路40を介して連結されている。定量チャンバー33と反応・検出チャンバー34との間は、流路41を介して連結されている。   The whole blood separation chamber 31 and the separation chamber 32 are connected to the separation chamber 32 via a flow path 35, a reagent chamber 36, a flow path 37, a stirring unit 38, and a flow path 39. The separation chamber 32 and the quantitative chamber 33 are connected via a flow path 40. The quantitative chamber 33 and the reaction / detection chamber 34 are connected via a flow path 41.

従来の分析方法では、全血分離チャンバー31と分離チャンバー32で生成された試料液を、分析用デバイスに遠心力を加えることによって定量チャンバー33に移送する。そして、定量チャンバー33に流入した試料液について、余分に流入した試料液は排出口33cから排出されることにより流入した試料液は定量チャンバー33の容積に応じた定量がなされる。   In the conventional analysis method, the sample liquid generated in the whole blood separation chamber 31 and the separation chamber 32 is transferred to the quantitative chamber 33 by applying a centrifugal force to the analysis device. And about the sample liquid which flowed into the fixed_quantity | quantitative_assay chamber 33, the sample liquid which flowed in excess is discharged | emitted from the discharge port 33c, and the flowed-in sample liquid is quantified according to the volume of the fixed_quantity | quantitative_assay chamber 33.

次に前記遠心力を停止すると、試料液は毛細管力によって流出口41cまで満たされ表面張力により停止する。そして、分析用デバイスに遠心力が再度加わると、定量チャンバー33内の試料液の全てが反応・検出チャンバー34に移送される。反応・検出チャンバー34に移送された試料液は、反応試薬43に触れることにより反応し、反応した試料液の吸光度を光学的な方法で検出することで、試料液の分析を行うことができる。
特開2006−214955号公報
Next, when the centrifugal force is stopped, the sample solution is filled up to the outlet 41c by the capillary force and stopped by the surface tension. When the centrifugal force is applied again to the analysis device, all of the sample liquid in the quantitative chamber 33 is transferred to the reaction / detection chamber 34. The sample liquid transferred to the reaction / detection chamber 34 reacts by touching the reaction reagent 43, and the sample liquid can be analyzed by detecting the absorbance of the reacted sample liquid by an optical method.
JP 2006-214955 A

しかしながら特許文献1では、試料液の定量と試薬反応及び検出を行うための、最低限必要な構成として、定量チャンバー33と反応・検出チャンバー34の2つのチャンバー構成が必要となり、試料液の定量・反応・検出を同じ部位で実施できない。   However, in Patent Document 1, two chamber configurations, a quantification chamber 33 and a reaction / detection chamber 34, are required as a minimum configuration for quantifying a sample solution and performing a reagent reaction and detection. Reaction / detection cannot be performed at the same site.

そこで、定量チャンバー33を毛細管力の働く深さとし、試料液の定量・反応・検出を同じ部位で構成した場合には、定量された試料液を定量チャンバー33に働く毛細管力によって試料が吸上げられる際に、排出口33cから試料液が排出されてしまい、試料液の定量性が保持できないという課題を有している。   Therefore, when the quantification chamber 33 is set to a depth at which the capillary force acts and the quantification / reaction / detection of the sample liquid is configured at the same site, the sample is sucked up by the capillary force acting on the quantification chamber 33. At this time, the sample solution is discharged from the discharge port 33c, and there is a problem that the quantitative property of the sample solution cannot be maintained.

本発明は、前記従来の課題を解決するもので、試料液の定量と試薬との反応を同じ部位で実現できる生体分析用デバイスおよびそれを用いた定量攪拌方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide a bioanalytical device capable of realizing the quantification of the sample solution and the reaction with the reagent at the same site and a quantitative stirring method using the same.

本発明の請求項1記載の生体分析用デバイスは、回転中心の近傍から外周方向に向かってマイクロチャネルが形成され、前記回転中心の回りに回転駆動して前記マイクロチャネルの内部での液体の移送を制御する生体分析用デバイスであって、前記マイクロチャネルは、試料液が注入される試料保持部が、前記回転中心に向かって形成された毛細管サイフォンを介して、試料液の定量および試薬反応を行う試料定量毛細管における前記回転中心から見て内周側の一方の側壁側の接続口に連結され、前記試料定量毛細管の前記回転中心から見て外周側に試薬と反応した試料液の測定を行う試料測光部を設け、かつ回転駆動に伴って発生する遠心力によって前記試料定量毛細管から前記試料測光部に移送した液体を毛細管力によって吸い上げる前記試料定量毛細管を囲むように配置された第1の凹部を設け、前記試料定量毛細管には、前記接続口に近接する側壁に沿って形成された第2の凹部と、前記接続口から離れた側壁に沿って形成された凸部を設け、前記第2の凹部は前記試料定量毛細管より深いことを特徴とする。 In the biological analysis device according to claim 1 of the present invention, a microchannel is formed from the vicinity of the rotation center toward the outer circumferential direction, and the liquid is transferred around the rotation channel by being driven to rotate around the rotation center. The microchannel is a device for biological analysis, in which the sample holding portion into which the sample solution is injected performs sample solution quantification and reagent reaction via a capillary siphon formed toward the center of rotation. The sample liquid capillary is connected to a connection port on one side wall on the inner peripheral side as viewed from the rotation center of the sample quantification capillary to be measured, and the sample liquid reacted with the reagent on the outer peripheral side as viewed from the rotation center of the sample quantification capillary is measured. Before the sample photometry unit is sucked up by the capillary force by the sample metering unit and the liquid transferred from the sample metering capillary to the sample photometry unit by the centrifugal force generated by the rotation drive A first recess is provided so as to surround the sample quantification capillary, and the sample quantification capillary has a second recess formed along a side wall close to the connection port, and a side wall away from the connection port. The second concave portion is deeper than the sample quantitative capillary.

本発明の請求項記載の生体分析用デバイスは、請求項1において、記試料定量毛細管には、試料液と反応させる試薬が担持されていることを特徴とする。
本発明の請求項記載の生体分析用デバイスは、請求項1において、前記試料定量毛細管の前記回転駆動の外周端が、前記試料測光部の内部に突出して形成されていることを特徴とする。
The bioanalytical device according to claim 2 of the present invention is characterized in that, in claim 1, the sample quantitative capillary carries a reagent that reacts with the sample solution.
According to a third aspect of the present invention, there is provided the bioanalytical device according to the first aspect, wherein an outer peripheral end of the rotational drive of the sample quantitative capillary is formed so as to protrude into the sample photometric unit. .

本発明の請求項記載の生体分析用デバイスは、請求項において、前記試料定量毛細管が、前記試料測光部の外周方向の側壁に連結されていることを特徴とする。
本発明の請求項記載の生体分析用デバイスは、請求項1において、前記試料定量毛細管の深さは、前記毛細管サイフォンの深さと同じまたは前記毛細管サイフォンの深さよりも浅いことを特徴とする。
The bioanalytical device according to claim 4 of the present invention is characterized in that, in claim 3 , the sample quantitative capillary is connected to a side wall in the outer peripheral direction of the sample photometry unit.
The bioanalytical device according to claim 5 of the present invention is characterized in that, in claim 1, the depth of the sample fixed capillary is the same as the depth of the capillary siphon or shallower than the depth of the capillary siphon.

本発明の請求項記載の生体分析用デバイスは、請求項1において、前記毛細管サイフォンの前記回転駆動の外周端が、前記試料保持部の内部に突出して形成されていることを特徴とする。 According to a sixth aspect of the present invention, the bioanalytical device according to the first aspect is characterized in that an outer peripheral end of the rotational drive of the capillary siphon protrudes into the sample holding portion.

本発明の請求項記載の生体分析用デバイスは、請求項において、前記毛細管サイフォンの前記回転駆動の外周端が、前記試料保持部の外周方向の底部から離間していることを特徴とする。 According to a seventh aspect of the present invention, in the bioanalytical device according to the sixth aspect , the outer peripheral end of the rotational drive of the capillary siphon is separated from the bottom in the outer peripheral direction of the sample holder. .

本発明の請求項記載の生体分析用デバイスは、請求項1において、前記試料定量毛細管と前記毛細管サイフォンの内壁の一部あるいは全面に親水処理が施されていることを特徴とする。 The bioanalytical device according to an eighth aspect of the present invention is characterized in that, in the first aspect, a hydrophilic treatment is applied to a part or the whole of the inner wall of the sample fixed capillary and the capillary siphon.

本発明の請求項記載の試料定量攪拌方法は、分析すべき試料液を請求項1に記載の生体分析用デバイスの試料保持部に注入し、前記生体分析用デバイスの回転と停止を繰り返して、前記生体分析用デバイスを回転させて発生する遠心力と生体分析用デバイスの試料定量毛細管での毛細管力により試料定量毛細管の内部で試料液と試薬とを混合攪拌することを特徴とする。 In the sample quantitative stirring method according to claim 9 of the present invention, the sample solution to be analyzed is injected into the sample holder of the bioanalytical device according to claim 1, and the rotation and stop of the bioanalytical device are repeated. The sample solution and the reagent are mixed and stirred inside the sample quantification capillary by the centrifugal force generated by rotating the bioanalysis device and the capillary force in the sample quantification capillary of the bioanalysis device.

本発明の請求項10記載の試料定量攪拌方法は、請求項において、前記遠心力を発生させる回転数は、前記試料定量毛細管に移送された試料液にかかる遠心力が毛細管力よりも強くなる回転数であることを特徴とする。 In the sample fixed quantity stirring method according to claim 10 of the present invention, in claim 9 , the rotational speed for generating the centrifugal force is such that the centrifugal force applied to the sample liquid transferred to the sample fixed capillary is stronger than the capillary force. It is the number of revolutions.

本発明の構成によれば、試料液の定量と試薬との反応を同じ部位で行うことが可能となる。   According to the configuration of the present invention, it is possible to perform the determination of the sample solution and the reaction with the reagent at the same site.

以下、本発明の生体分析用デバイスおよびそれを用いた定量攪拌方法の実施の形態を図面とともに詳細に説明する。
図1は本発明の実施の形態における生体分析用デバイス101を示す。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a bioanalytical device and a quantitative stirring method using the same according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a bioanalytical device 101 according to an embodiment of the present invention.

生体分析用デバイス101は、円形のベース基板102と円形のカバー基板103を貼り合わせて構成されている。図2はベース基板102のカバー基板103との貼り合わせ面を示しており、図2のA−AA断面図を図3に示す。   The bioanalytical device 101 is configured by bonding a circular base substrate 102 and a circular cover substrate 103 together. FIG. 2 shows a bonding surface of the base substrate 102 to the cover substrate 103, and FIG. 3 shows a cross-sectional view taken along the line A-AA in FIG.

ベース基板102のカバー基板103との貼り合わせ面には、深さの異なる複数の凹部が形成されて毛細管流路と貯留部と検査部などから形成されるマイクロチャネル114が形成されている。ベース基板102とカバー基板103は、何れも合成樹脂材料製であり、マイクロチャネル114は、ベース基板102の射出成形時、あるいはベース基板102を切削して形成されている。カバー基板103はこのベース基板102に形成された前記凹部を覆うようにベース基板102に接合されてマイクロチャネル114を形成している。   On the bonding surface of the base substrate 102 to the cover substrate 103, a plurality of recesses having different depths are formed, and a microchannel 114 formed from a capillary channel, a storage unit, an inspection unit, and the like is formed. The base substrate 102 and the cover substrate 103 are both made of a synthetic resin material, and the microchannel 114 is formed at the time of injection molding of the base substrate 102 or by cutting the base substrate 102. The cover substrate 103 is bonded to the base substrate 102 so as to cover the concave portion formed in the base substrate 102 to form a microchannel 114.

マイクロチャネル114を詳しく説明する。
図1に示すように、マイクロチャネル114は、回転中心104の近傍からベース基板102の外周方向に向かって形成されている。
The microchannel 114 will be described in detail.
As shown in FIG. 1, the microchannel 114 is formed from the vicinity of the rotation center 104 toward the outer peripheral direction of the base substrate 102.

具体的には、回転中心104から離れた位置に配置された試料保持部105と、試料液118の定量ならびに試薬112との反応を行うための試料定量毛細管109と、試薬112と反応した試料液118を光学的に測定するための試料測光部106とで構成されており、試料保持部105と試料定量毛細管109は、回転中心104に最も接近した位置にサイフォン頂点108を持つ毛細管サイフォン107で連結されている。   Specifically, the sample holding unit 105 arranged at a position away from the rotation center 104, the sample quantification capillary 109 for performing the quantification of the sample liquid 118 and the reaction with the reagent 112, and the sample liquid reacted with the reagent 112 A sample photometry unit 106 for optically measuring 118, and a sample holding unit 105 and a sample quantitative capillary 109 are connected by a capillary siphon 107 having a siphon apex 108 at a position closest to the rotation center 104. Has been.

試料定量毛細管109の周りには、試料定量毛細管109の深さよりも深い第1の凹部110が形成されている。これは、毛細管定量部109の周りに空気の流れる通路を形成することによって、試料液118の遠心移送や毛細管移送の際に、気泡が混入することを防ぐためである。試料定量毛細管109と毛細管サイフォン107の深さの関係は、同じ深さで形成されているが、試料定量毛細管109の深さが、毛細管サイフォン107の深さよりも浅く形成していてもよい。   A first recess 110 deeper than the depth of the sample quantitative capillary 109 is formed around the sample quantitative capillary 109. This is to prevent air bubbles from being mixed during the centrifugal transfer or capillary transfer of the sample liquid 118 by forming a passage through which air flows around the capillary quantification unit 109. The depth relationship between the sample fixed capillary 109 and the capillary siphon 107 is formed at the same depth, but the sample fixed capillary 109 may be formed shallower than the capillary siphon 107.

試料定量毛細管109は、試料保持部105と試料測光部106の内部に突出するように形成されている。さらに、試料保持部105内に突出した試料定量毛細管109は、試料保持部105の外周側の側壁に連結しないように形成されている。   The sample fixed capillary 109 is formed so as to protrude into the sample holder 105 and the sample photometer 106. Furthermore, the sample fixed capillary 109 protruding into the sample holding part 105 is formed so as not to be connected to the outer peripheral side wall of the sample holding part 105.

試料測光部106内に突出した試料定量毛細管109は、試料測光部106の外周側の側壁に連結するように形成されている。これは、試料保持部105では、試料保持部105内に移送された試料液118の液面が、試料定量毛細管109に届いたときにのみ試料定量毛細管109に移送されるようにすることによって、定量後の不要な試料液118が試料定量毛細管109に混入することを防ぐためである。また、試料測光部106では、試料液118と試薬112と反応性を向上させるために、定量された試料液118をすべて試料定量毛細管109に移送するためである。   The sample quantitative capillary 109 protruding into the sample photometry unit 106 is formed so as to be connected to the outer peripheral side wall of the sample photometry unit 106. This is because in the sample holding unit 105, the liquid level of the sample liquid 118 transferred into the sample holding unit 105 is transferred to the sample quantitative capillary 109 only when it reaches the sample quantitative capillary 109. This is to prevent unnecessary sample liquid 118 after quantification from being mixed into the sample quantification capillary 109. Further, the sample photometry unit 106 is for transferring all the quantified sample solution 118 to the sample quantification capillary 109 in order to improve the reactivity between the sample solution 118 and the reagent 112.

更に、試料定量毛細管109には、毛細管サイフォン107の側に第2の凹部117を形成し、毛細管サイフォン107から離れた位置に凸部111を形成している。具体的には、接続口116に近接する側壁(109s)に沿って、かつこの側壁(109s)に接して第2の凹部117が形成されている。図3に示すように第2の凹部117は試料定量毛細管109より深く、凸部111はカバー基板103と接するように形成されている。   Further, in the sample fixed amount capillary 109, a second concave portion 117 is formed on the capillary siphon 107 side, and a convex portion 111 is formed at a position away from the capillary siphon 107. Specifically, a second recess 117 is formed along the side wall (109s) close to the connection port 116 and in contact with the side wall (109s). As shown in FIG. 3, the second concave portion 117 is deeper than the sample quantitative capillary 109, and the convex portion 111 is formed in contact with the cover substrate 103.

このような構成にすることにより、試料液118を毛細管力で吸上げる際に、凹部110側では流速V1が、凸部111側の流速V2よりも遅くなり、毛細管サイフォン107から遠い側から試料液118を移送させることができ、試料液118が接続口116に接近するに従って試料液118に働く表面張力によって液面が縮小しようとするため、最終的に接続口116で試料液118を停止させることが可能となり、毛細管サイフォン107への逆流を防止することができる。   With such a configuration, when the sample liquid 118 is sucked up by capillary force, the flow velocity V1 is slower than the flow velocity V2 on the convex portion 111 side on the concave portion 110 side, and the sample liquid from the side far from the capillary siphon 107 is obtained. 118, the liquid surface tends to shrink due to the surface tension acting on the sample liquid 118 as the sample liquid 118 approaches the connection port 116, so that the sample liquid 118 is finally stopped at the connection port 116. Thus, backflow to the capillary siphon 107 can be prevented.

従来、このような第2の凹部117や凸部111の構成がない場合は、試料液118を毛細管で吸上げる際に、試料液118の液面の速度V1がV2よりも速いため、試料液118が、試料定量毛細管109を満たす前に毛細管サイフォン107へ流入してしまい、試料液118の定量性が保持できない。   Conventionally, when there is no such configuration of the second concave portion 117 and the convex portion 111, when the sample liquid 118 is sucked up by a capillary tube, the liquid surface speed V1 is faster than V2, so the sample liquid Before 118 fills the sample fixed capillary 109, it flows into the capillary siphon 107, and the quantitative property of the sample liquid 118 cannot be maintained.

試料定量毛細管109の表面には、試料液118の特性を測定するための試薬112が塗布されており、測定内容によって試薬112の種類を変更して配置することができる。
次に生体分析用デバイス101の構成について具体的に説明する。
A reagent 112 for measuring the characteristics of the sample liquid 118 is applied to the surface of the sample fixed capillary 109, and the type of the reagent 112 can be changed depending on the measurement contents.
Next, the configuration of the bioanalytical device 101 will be specifically described.

本発明における生体分析用デバイス101はベース基板102とカバー基板103で構成されており、それぞれの基板は射出成型あるいは切削された基板で構成されている。ベース基板102とカバー基板103の厚みは、1mm〜5mmで形成しているが、特に制限は無く、マイクロチャネル114を形成可能な厚みであればよい。ベース基板102とカバー基板103の形状については、生体分析用デバイス101を単独で回転させる際には円形の形状が好ましいが、生体分析用デバイス101を外部のアタッチメントに装着するような構成にして回転させる場合は、特に限定する必要が無く、用途目的に応じた形状、例えば、四角形、三角形、扇形、その他複雑な形状の成形物などの形状が可能である。   The bioanalytical device 101 according to the present invention includes a base substrate 102 and a cover substrate 103, and each substrate includes an injection molded or cut substrate. The thicknesses of the base substrate 102 and the cover substrate 103 are 1 mm to 5 mm, but are not particularly limited as long as the microchannel 114 can be formed. As for the shapes of the base substrate 102 and the cover substrate 103, a circular shape is preferable when the bioanalytical device 101 is rotated alone, but the bioanalytical device 101 is configured to be mounted on an external attachment. In the case of making it, there is no particular limitation, and a shape according to the purpose of use, for example, a shape such as a quadrangular shape, a triangular shape, a sector shape, or other complicated shapes is possible.

ベース基板102とカバー基板103の材料として、易成形性、高生産性、低価格の面から合成樹脂を使用しているが、ガラス、シリコンウェハー、金属、セラミックなど接合できる材料であれば特に制限はない。   Synthetic resin is used as the material of the base substrate 102 and the cover substrate 103 from the viewpoint of easy moldability, high productivity, and low cost, but there is a limit as long as it is a material that can be joined, such as glass, silicon wafer, metal, and ceramic There is no.

ベース基板102とカバー基板103には、それぞれの基板に形成されるマイクロチャネル114内の粘性抵抗を減らし流体移動を促進するために壁面の一部或いは全ての壁面に親水性処理を行っているが、ガラス等の親水性材料を用いたり、成形時に界面活性剤、親水性ポリマー、シリカゲルの如き親性粉末などの親水化剤を添加させて材料表面に親水性を付与させたりしてもかまわない。親水性処理方法としては、プラズマ、コロナ、オゾン、フッ素等の活性ガスを用いた表面処理方法や界面活性剤による表面処理が挙げられる。ここで親水性とは、水との接触角が90°未満のことをいい、より好ましくは接触角40°未満である。少なくとも試料定量毛細管109と毛細管サイフォン107の内壁の一部あるいは全面に親水処理が施されていればよい。   The base substrate 102 and the cover substrate 103 are subjected to hydrophilic treatment on part or all of the wall surfaces in order to reduce the viscous resistance in the microchannels 114 formed on the respective substrates and promote fluid movement. It is also possible to use a hydrophilic material such as glass, or to add a hydrophilic agent such as a surfactant, a hydrophilic polymer, or a silica powder such as silica gel during molding to impart hydrophilicity to the material surface. . Examples of the hydrophilic treatment method include a surface treatment method using an active gas such as plasma, corona, ozone, and fluorine, and a surface treatment with a surfactant. Here, the hydrophilic property means that the contact angle with water is less than 90 °, and more preferably the contact angle is less than 40 °. It is sufficient that at least a part or the entire inner wall of the sample fixed capillary 109 and the capillary siphon 107 is subjected to a hydrophilic treatment.

この実施の形態ではベース基板102とカバー基板103を超音波溶着にて接合しているが、使用する材料に応じて粘着性接合シートや陽極接合やレーザー接合などの接合方法で接合してもかまわない。   In this embodiment, the base substrate 102 and the cover substrate 103 are bonded by ultrasonic welding, but may be bonded by a bonding method such as an adhesive bonding sheet, anodic bonding, or laser bonding depending on the material to be used. Absent.

次に、試料液118の注入から移送および試料液118の成分の測定までのプロセスを詳しく説明する。
図5(a),図5(b),図5(c)は、試料液118の注入から定量分配までを説明するための概略図であり、図6(a),図6(b),図6(c),図6(d)は試料液118の毛細管移送状態の概略図である。
Next, a process from injection of the sample liquid 118 to transfer and measurement of the components of the sample liquid 118 will be described in detail.
5 (a), 5 (b), and 5 (c) are schematic diagrams for explaining from the injection of the sample liquid 118 to the quantitative distribution, and FIG. 6 (a), FIG. 6 (b), FIG. FIGS. 6C and 6D are schematic views showing a state in which the sample liquid 118 is transferred into the capillary.

試料液118を、図5(a)に示すようにピペット501で注入口115から試料保持部105に注入する。注入された試料液118は、図5(b)に示すように試料保持部105を満たすとともに、毛細管サイフォン107で働く毛細管力502によって吸上げられ、試料定量毛細管109に移送される。さらに、注入を続けると試料定量毛細管109は試料液118で満たされる。その際に、第1,第2の凹部110,117には試料液118は移送されない。   As shown in FIG. 5A, the sample liquid 118 is injected into the sample holding unit 105 from the injection port 115 with a pipette 501. The injected sample liquid 118 fills the sample holding unit 105 as shown in FIG. 5 (b), is sucked up by the capillary force 502 working in the capillary siphon 107, and is transferred to the sample fixed capillary 109. Further, when the injection is continued, the sample fixed capillary 109 is filled with the sample liquid 118. At that time, the sample liquid 118 is not transferred to the first and second recesses 110 and 117.

これは、第1,第2の凹部110,117の深さが、試料定量毛細管109の深さよりも深く形成されていることにより、試料定量毛細管109と第1,第2の凹部110,117の接続部分で毛細管力502が遮断され、表面張力により試料液の界面が保持されることにより、第1,第2の凹部110,117に試料液が侵入するのを防いでいるためである。さらに、試料液118は、試料定量毛細管109に塗布された試薬112と接触することによって、試薬112が試料液118によって溶解されて反応が開始される。   This is because the depth of the first and second concave portions 110 and 117 is formed deeper than the depth of the sample quantitative capillary 109, so that the sample quantitative capillary 109 and the first and second concave portions 110 and 117 have a depth. This is because the capillary force 502 is cut off at the connecting portion and the interface of the sample solution is maintained by the surface tension, thereby preventing the sample solution from entering the first and second recesses 110 and 117. Further, when the sample liquid 118 comes into contact with the reagent 112 applied to the sample fixed capillary 109, the reagent 112 is dissolved by the sample liquid 118 and the reaction is started.

ここで、毛細管力とは、一般的に細管の内径寸法が2.5mm以下である場合に影響力が大きくなると言われており、壁面と液体のなす接触角と気液界面の間に働く表面張力の間のバランスを保とうとする力によって毛細管内部の液体が移動する力である。   Here, it is said that the capillary force generally has a large influence when the inner diameter of the capillary is 2.5 mm or less, and the surface acting between the contact angle between the wall surface and the liquid and the gas-liquid interface. This is the force by which the liquid inside the capillary moves due to the force that tries to maintain the balance between the tensions.

次に、試料液118の定量を行うために、回転中心104を軸に生体分析用デバイス101を回転させることによって遠心力503を発生させる。
これによって試料液118は、図5(c)に示すように、遠心力503によって外周方向に配置された試料保持部105と試料測光部106に移送される。その際に、試料液118はサイフォン頂点108で分断されることにより、定量されるとともに試薬112を溶解し始めた試料液118は溶解した試薬112とともに試料測光部106に移送され、不要な試料液118は試料保持部105に移送される。
Next, in order to quantify the sample liquid 118, the centrifugal force 503 is generated by rotating the bioanalytical device 101 around the rotation center 104.
As a result, the sample liquid 118 is transferred to the sample holder 105 and the sample photometer 106 arranged in the outer circumferential direction by the centrifugal force 503 as shown in FIG. At that time, the sample liquid 118 is quantified by being divided at the siphon apex 108, and the sample liquid 118 that has started to dissolve the reagent 112 is transferred to the sample photometric unit 106 together with the dissolved reagent 112, and unnecessary sample liquid is obtained. 118 is transferred to the sample holder 105.

より具体的には、このときの回転速度は、試料定量毛細管109に移送された試料液118にかかる力が500G以上になるように設定し、試料液118を確実に試料測光部106と試料保持部105に移送できるようにする。この実施の形態では、前記試料定量毛細管に移送された試料液にかかる遠心力が毛細管力よりも強くなる回転数である2500rpmとした。   More specifically, the rotational speed at this time is set so that the force applied to the sample liquid 118 transferred to the sample fixed capillary 109 is 500 G or more, and the sample liquid 118 is securely held between the sample photometry unit 106 and the sample. It can be transferred to the unit 105. In this embodiment, the rpm is 2500 rpm, which is the rotational speed at which the centrifugal force applied to the sample liquid transferred to the sample fixed capillary is stronger than the capillary force.

試料液118を確実に試料保持部105と試料測光部106に移送した後、回転を停止させることによって試料定量毛細管109の毛細管力が支配的になり、図6(a)に示すように試料測光部106に定量された試料液118は試料定量毛細管109に再度移送される。その際に、試料液118は凸部111を形成した側壁側の毛細管力に比べて、第2の凹部117が形成された側壁側の毛細管力が弱くなるため、凸部111まで到達した液面の速度V2と第2の凹部117に到達した液面の速度V1の間で、
V1 < V2
となるような速度差が生じる。さらにその状態で図6(b)のように、速度V2の液面が先に接続口116の近傍に接近する。さらに、図6(c)に示すように、速度V1の液面と速度V2の液面が接近すると、試料液118の液面の表面張力Stによって、液面の面積を小さくしようとする力が支配的になるため、最終的には図6(d)に示すように接続口116で液面は停止する。
After the sample liquid 118 is reliably transferred to the sample holding unit 105 and the sample photometry unit 106, the capillary force of the sample quantitative capillary 109 becomes dominant by stopping the rotation, and the sample photometry is performed as shown in FIG. The sample liquid 118 quantified in the unit 106 is transferred again to the sample quantification capillary 109. At that time, since the capillary force on the side wall side where the second concave portion 117 is formed becomes weaker than the capillary force on the side wall side where the convex portion 111 is formed, the sample liquid 118 reaches the convex surface 111. Between the velocity V2 of the liquid surface and the velocity V1 of the liquid level reaching the second recess 117,
V1 <V2
A speed difference is generated. In this state, as shown in FIG. 6B, the liquid surface at the speed V2 approaches the vicinity of the connection port 116 first. Further, as shown in FIG. 6 (c), when the liquid surface at the speed V1 and the liquid surface at the speed V2 approach each other, a force for reducing the area of the liquid surface is generated by the surface tension St of the liquid surface of the sample liquid 118. Since it becomes dominant, the liquid level finally stops at the connection port 116 as shown in FIG.

このような試料液118の流れのメカニズムを利用することで、試料液118を試料定量毛細管109に全て吸上げたときに接続口116に液面が到達するようにコントロールすることができ、試料液118がサイフォン頂点108を越えて毛細管サイフォン107に移送されることを防ぐことが可能となり、試料液118の定量性を保持することができる。   By utilizing such a flow mechanism of the sample liquid 118, it is possible to control the liquid level to reach the connection port 116 when the sample liquid 118 is all sucked into the sample fixed capillary 109. It is possible to prevent 118 from being transferred to the capillary siphon 107 beyond the siphon apex 108, and the quantitative property of the sample liquid 118 can be maintained.

一方、試料保持部105に移送された不要な試料液118は、液面が毛細管に到達しないように、つまり、前記毛細管サイフォン107の前記回転駆動の外周端が、試料保持部105の外周方向の底部から離間しているため、試料保持部105に保持された状態になる。   On the other hand, the unnecessary sample liquid 118 transferred to the sample holder 105 is disposed so that the liquid surface does not reach the capillary, that is, the outer peripheral end of the rotational drive of the capillary siphon 107 is in the outer peripheral direction of the sample holder 105. Since it is separated from the bottom, it is held by the sample holder 105.

試料液118が、試料定量毛細管109に全て移送された後、遠心力によって試料定量毛細管109に吸上げられた試料液118を試料測光部106に再度移送する。
このように、遠心力を発生させたり止めたりすることにより、試料液118を試料測光部106と試料定量毛細管109の間で交互に移送し、試料液118の界面が試薬112と何回も触れ合うことによって、試薬112の溶解および攪拌が促進され、試薬112を確実に溶解することが可能となる。
After all the sample liquid 118 is transferred to the sample quantitative capillary 109, the sample liquid 118 sucked into the sample quantitative capillary 109 by centrifugal force is transferred again to the sample photometric unit 106.
In this way, by generating or stopping the centrifugal force, the sample liquid 118 is alternately transferred between the sample photometry unit 106 and the sample quantitative capillary 109, and the interface of the sample liquid 118 contacts the reagent 112 many times. Thus, dissolution and stirring of the reagent 112 are promoted, and the reagent 112 can be surely dissolved.

この方法により試料液118と試薬112を混合攪拌した後、最後に遠心力を発生させて試料測光部106に移送する。
移送された試料液118と試薬112との混合液は、光学的な方法で測定することで分析を行うことができる。
After the sample liquid 118 and the reagent 112 are mixed and stirred by this method, a centrifugal force is finally generated and transferred to the sample photometry unit 106.
The mixed liquid of the transferred sample liquid 118 and the reagent 112 can be analyzed by measuring by an optical method.

この生体分析用デバイス101においては、このようなマイクロチャネル114を構成することで、試料液118の定量と試薬112との反応を同じ部位で実現することが可能となる。   In this bioanalytical device 101, by configuring such a microchannel 114, it is possible to realize the determination of the sample liquid 118 and the reaction with the reagent 112 at the same site.

図4は分析装置401を示す。
この分析装置401は、生体分析用デバイス101を回転させるための回転駆動手段407と、生体分析用デバイス101内の溶液を光学的に測定する光学測定部402と、生体分析用デバイス101の回転速度や回転方向、および光学測定手段の測定タイミングなどを制御する制御手段408と、光学測定部402によって得られた信号を処理し測定結果を演算するための演算部404と、演算部404で得られた結果を表示するための表示部405とで構成される。光学測定部402には、レーザー光源406とフォトディテクタ403とを備えている。
FIG. 4 shows the analyzer 401.
The analysis apparatus 401 includes a rotation driving unit 407 for rotating the biological analysis device 101, an optical measurement unit 402 for optically measuring a solution in the biological analysis device 101, and a rotation speed of the biological analysis device 101. Control unit 408 for controlling the rotation direction and the measurement timing of the optical measurement unit, a calculation unit 404 for processing a signal obtained by the optical measurement unit 402 and calculating a measurement result, and a calculation unit 404 And a display unit 405 for displaying the result. The optical measurement unit 402 includes a laser light source 406 and a photodetector 403.

検査すべき試料液118と試薬112を反応させた後、試料測光部106にレーザー光源406から透過光を照射し、その反応状態をフォトディテクタ403で受光し、演算部404にて分析して表示部405で測定結果を表示する。   After the sample liquid 118 to be inspected and the reagent 112 are reacted, the sample photometric unit 106 is irradiated with transmitted light from the laser light source 406, the reaction state is received by the photodetector 403, analyzed by the arithmetic unit 404, and displayed. At 405, the measurement result is displayed.

この測定時には、試料測光部106に充填された反応液が、反応の割合で吸光度を変化させるため、レーザー光源406から試料測光部106に透過光を照射し、フォトディテクタ403にてその透過光の光量を測定することで、反応液を透過した光量の変化を測定して試料液118の成分を分析できる。   At the time of this measurement, since the reaction solution filled in the sample photometry unit 106 changes the absorbance at the rate of reaction, the sample photometry unit 106 is irradiated with transmitted light from the laser light source 406, and the amount of the transmitted light is detected by the photodetector 403. By measuring the above, it is possible to analyze the components of the sample liquid 118 by measuring the change in the amount of light transmitted through the reaction liquid.

本発明は、試料液の定量と試薬反応を同じ部位で実現できることから、診療所等で使用される小型の生体分析装置の普及に寄与できる。   The present invention can realize the quantification of the sample solution and the reagent reaction at the same site, and thus can contribute to the spread of a small-sized bioanalyzer used in a clinic or the like.

本発明の実施の形態における生体分析用デバイスの分解斜視図1 is an exploded perspective view of a bioanalytical device according to an embodiment of the present invention. 同実施の形態におけるベース基板102のカバー基板103との貼り合わせ面の平面図Plan view of a bonding surface of base substrate 102 to cover substrate 103 in the same embodiment 同実施の形態における図2のA−AA断面図A-AA sectional view of FIG. 2 in the same embodiment 同実施の形態における分析装置の構成図Configuration diagram of analyzer in the same embodiment 同実施の形態における試料液の注入から定量分配プロセスの工程図Process diagram of injection process from sample liquid injection in the same embodiment 同実施の形態における試料液の毛細管移送状態の工程図Process diagram of capillary transfer state of sample liquid in the same embodiment 従来の生体分析用デバイスの平面図Plan view of a conventional bioanalytical device

符号の説明Explanation of symbols

101 生体分析用デバイス
102 ベース基板
103 カバー基板
104 回転中心
105 試料保持部
106 試料測光部
107 毛細管サイフォン
108 サイフォン頂点
109 試料定量毛細管
110 第1の凹部
111 凸部
112 試薬
113 空気孔
114 マイクロチャネル
115 注入口
116 接続口
117 第2の凹部
118 試料液
401 分析装置
402 光学測定部
403 フォトディテクタ
404 演算部
405 表示部
406 レーザー光源
407 回転駆動手段
408 制御手段
502 毛細管力
503 遠心力
V1,V2 流速
St 表面張力
101 Bioanalytical device 102 Base substrate 103 Cover substrate 104 Center of rotation 105 Sample holding unit 106 Sample photometric unit 107 Capillary siphon 108 Siphon apex 109 Sample quantitative capillary 110 First concave portion 111 Convex portion 112 Reagent 113 Air hole 114 Micro channel 115 Note Inlet 116 Connection port 117 Second recess 118 Sample liquid 401 Analyzer 402 Optical measurement unit 403 Photo detector 404 Calculation unit 405 Display unit 406 Laser light source 407 Rotation drive unit 408 Control unit 502 Capillary force 503 Centrifugal force V1, V2 Flow rate St Surface tension

Claims (10)

回転中心の近傍から外周方向に向かってマイクロチャネルが形成され、前記回転中心の回りに回転駆動して前記マイクロチャネルの内部での液体の移送を制御する生体分析用デバイスであって、
前記マイクロチャネルは、
試料液が注入される試料保持部が、前記回転中心に向かって形成された毛細管サイフォンを介して、試料液の定量および試薬反応を行う試料定量毛細管における前記回転中心から見て内周側の一方の側壁側の接続口に連結され、
前記試料定量毛細管の前記回転中心から見て外周側に試薬と反応した試料液の測定を行う試料測光部を設け、
かつ回転駆動に伴って発生する遠心力によって前記試料定量毛細管から前記試料測光部に移送した液体を毛細管力によって吸い上げる前記試料定量毛細管を囲むように配置された第1の凹部を設け、
前記試料定量毛細管には、
前記接続口に近接する側壁に沿って形成された第2の凹部と、
前記接続口から離れた側壁に沿って形成された凸部を設け、
前記第2の凹部は前記試料定量毛細管より深い
生体分析用デバイス。
A device for bioanalysis in which a microchannel is formed from the vicinity of a rotation center toward an outer peripheral direction, and is driven to rotate around the rotation center to control liquid transfer inside the microchannel.
The microchannel is
A sample holding part into which the sample liquid is injected is connected to one of the inner peripheral sides as viewed from the rotation center in the sample quantification capillary that performs the quantification of the sample liquid and the reagent reaction via the capillary siphon formed toward the rotation center. Connected to the side wall side connection port ,
A sample photometry unit for measuring the sample solution that has reacted with the reagent on the outer peripheral side when viewed from the rotation center of the sample fixed capillary,
And a first recess arranged to surround the sample quantification capillary that sucks up the liquid transferred from the sample quantification capillary to the sample photometry unit by the capillary force generated by the rotational drive by the capillary force;
In the sample fixed capillary,
A second recess formed along the side wall proximate to the connection port;
Providing a convex portion formed along the side wall away from the connection port,
The second recess is a bioanalytical device deeper than the sample quantitative capillary.
前記試料定量毛細管には、試料液と反応させる試薬が担持されている
請求項1に記載の生体分析用デバイス。
The bioanalytical device according to claim 1, wherein the sample quantification capillary carries a reagent that reacts with the sample solution.
前記試料定量毛細管の前記回転駆動の外周端が、前記試料測光部の内部に突出して形成されている
請求項1に記載の生体分析用デバイス。
The bioanalytical device according to claim 1, wherein an outer peripheral end of the rotational drive of the sample fixed capillary is formed so as to protrude into the sample photometry unit.
前記試料定量毛細管が、前記試料測光部の外周方向の側壁に連結されている
請求項3に記載の生体分析用デバイス。
The bioanalytical device according to claim 3, wherein the sample quantification capillary is connected to a side wall in an outer peripheral direction of the sample photometry unit.
前記試料定量毛細管の深さは、前記毛細管サイフォンの深さと同じまたは前記毛細管サイフォンの深さよりも浅い
請求項1に記載の生体分析用デバイス。
The bioanalytical device according to claim 1, wherein a depth of the sample fixed capillary is the same as a depth of the capillary siphon or shallower than a depth of the capillary siphon.
前記毛細管サイフォンの前記回転駆動の外周端が、前記試料保持部の内部に突出して形成されている
請求項1に記載の生体分析用デバイス。
The bioanalytical device according to claim 1, wherein an outer peripheral end of the rotational drive of the capillary siphon is formed so as to protrude into the sample holding portion.
前記毛細管サイフォンの前記回転駆動の外周端が、前記試料保持部の外周方向の底部から離間している
請求項6に記載の生体分析用デバイス。
The bioanalytical device according to claim 6, wherein an outer peripheral end of the rotational drive of the capillary siphon is separated from a bottom portion in an outer peripheral direction of the sample holding unit.
前記試料定量毛細管と前記毛細管サイフォンの内壁の一部あるいは全面に親水処理が施されている
請求項1に記載の生体分析用デバイス。
The bioanalytical device according to claim 1, wherein a hydrophilic treatment is applied to a part of or the entire inner wall of the sample fixed capillary and the capillary siphon.
分析すべき試料液を請求項1に記載の生体分析用デバイスの試料保持部に注入し、
前記生体分析用デバイスの回転と停止を繰り返して、
前記生体分析用デバイスを回転させて発生する遠心力と生体分析用デバイスの試料定量毛細管での毛細管力により試料定量毛細管の内部で試料液と試薬とを混合攪拌する
試料定量攪拌方法。
The sample liquid to be analyzed is injected into the sample holder of the bioanalytical device according to claim 1,
Repeat the rotation and stop of the bioanalytical device,
A sample quantitative stirring method in which a sample liquid and a reagent are mixed and stirred inside a sample quantitative capillary by a centrifugal force generated by rotating the biological analytical device and a capillary force in the sample quantitative capillary of the biological analytical device.
前記遠心力を発生させる回転数は、前記試料定量毛細管に移送された試料液にかかる遠心力が毛細管力よりも強くなる回転数である
請求項9に記載の試料定量攪拌方法。
The sample quantitative stirring method according to claim 9, wherein the rotational speed for generating the centrifugal force is a rotational speed at which the centrifugal force applied to the sample liquid transferred to the sample quantitative capillary is stronger than the capillary force.
JP2008113265A 2008-02-05 2008-04-24 Bioanalytical device and sample quantitative stirring method using the same Active JP5354947B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008113265A JP5354947B2 (en) 2008-04-24 2008-04-24 Bioanalytical device and sample quantitative stirring method using the same
US12/866,399 US8865472B2 (en) 2008-02-05 2009-02-04 Analyzing apparatus and method that use centrifugal force
CN2009801012751A CN101883985B (en) 2008-02-05 2009-02-04 Analyzing device, and analyzing apparatus and analyzing method using the device
CN201310030092.3A CN103175782B (en) 2008-02-05 2009-02-04 Analyzing device and analyzing method using the device
PCT/JP2009/000420 WO2009098866A1 (en) 2008-02-05 2009-02-04 Analyzing device, and analyzing apparatus and analyzing method using the device
EP09708335.6A EP2256501B1 (en) 2008-02-05 2009-02-04 Analyzing device, and analyzing apparatus and analyzing method using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113265A JP5354947B2 (en) 2008-04-24 2008-04-24 Bioanalytical device and sample quantitative stirring method using the same

Publications (2)

Publication Number Publication Date
JP2009264858A JP2009264858A (en) 2009-11-12
JP5354947B2 true JP5354947B2 (en) 2013-11-27

Family

ID=41390898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113265A Active JP5354947B2 (en) 2008-02-05 2008-04-24 Bioanalytical device and sample quantitative stirring method using the same

Country Status (1)

Country Link
JP (1) JP5354947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2755490T3 (en) * 2013-04-15 2020-04-22 Becton Dickinson Co Biological Fluid Extraction Device and Biological Fluid Separation System
JP2015105889A (en) * 2013-11-29 2015-06-08 ブラザー工業株式会社 Inspection device, inspection method, and inspection program
CN112334777A (en) * 2018-06-20 2021-02-05 普和希控股公司 Substrate for sample analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69130986T2 (en) * 1990-06-04 1999-09-30 Abay Sa Rotors for analysis and methods for the analysis of biological fluids
JP4403954B2 (en) * 2004-11-24 2010-01-27 パナソニック株式会社 Stirring apparatus and stirring method using the same
JP4619224B2 (en) * 2005-07-27 2011-01-26 パナソニック株式会社 Rotational analysis device

Also Published As

Publication number Publication date
JP2009264858A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5247460B2 (en) Microchip
JP4802925B2 (en) Analytical device and analytical apparatus using the same
JP5213432B2 (en) Bioanalytical device and blood separation method using the same
JP4301952B2 (en) Sample measuring device
JP5174723B2 (en) Analytical device
US20160047794A1 (en) Analyzing device
JP4619224B2 (en) Rotational analysis device
EP2211184A1 (en) Analyzing device, analyzing apparatus using the device, and analyzing method
US7247487B2 (en) Reducing working fluid dilution in liquid systems
JP4973800B2 (en) Analytical device and analytical apparatus using the same
WO2009098866A1 (en) Analyzing device, and analyzing apparatus and analyzing method using the device
JP2007232673A (en) Micro fluid chip
EP2374540B1 (en) Chip for analyzing fluids being moved without an outside power source
JP5408992B2 (en) Analytical device and analytical method using this analytical device
TWI484182B (en) Reaction vessel, assay device, and measuring method
JP2008064701A (en) A device for rotational analysis, measurement method, and testing method
JP2009014529A (en) Analyzing device, analyzer using it and liquid sample component measuring method
JP5361633B2 (en) Analytical device
JP5224961B2 (en) Analytical devices and methods
JP5354947B2 (en) Bioanalytical device and sample quantitative stirring method using the same
JP2012078115A (en) Inspection object acceptor
JP5178224B2 (en) Analytical device and analyzer using the same
JP2008185517A (en) Microchannel and rotation analyzing device
JP5178223B2 (en) Analytical device and analyzer using the same
Tanaka et al. Development of a N-Acetyl-β-D-glucosaminidase (NAG) Assay on a Centrifugal Lab-on-a-compact-disc (Lab-CD) Platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5354947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250