JP5178224B2 - Analytical device and analyzer using the same - Google Patents

Analytical device and analyzer using the same Download PDF

Info

Publication number
JP5178224B2
JP5178224B2 JP2008025810A JP2008025810A JP5178224B2 JP 5178224 B2 JP5178224 B2 JP 5178224B2 JP 2008025810 A JP2008025810 A JP 2008025810A JP 2008025810 A JP2008025810 A JP 2008025810A JP 5178224 B2 JP5178224 B2 JP 5178224B2
Authority
JP
Japan
Prior art keywords
sample
unit
receiving
measuring
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008025810A
Other languages
Japanese (ja)
Other versions
JP2009186296A (en
Inventor
幸造 田頭
博司 佐伯
博文 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008025810A priority Critical patent/JP5178224B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to CN201310077581.4A priority patent/CN103252261B/en
Priority to EP19164256.0A priority patent/EP3521833B1/en
Priority to CN2008801022104A priority patent/CN101779129B/en
Priority to EP08845691.8A priority patent/EP2211184B1/en
Priority to US12/740,486 priority patent/US9134286B2/en
Priority to CN201310076947.6A priority patent/CN103226150B/en
Priority to PCT/JP2008/003052 priority patent/WO2009057273A1/en
Priority to CN201310076878.9A priority patent/CN103217538B/en
Priority to CN201310077650.1A priority patent/CN103217539B/en
Priority to CN201410322504.5A priority patent/CN104062454B/en
Publication of JP2009186296A publication Critical patent/JP2009186296A/en
Application granted granted Critical
Publication of JP5178224B2 publication Critical patent/JP5178224B2/en
Priority to US14/741,114 priority patent/US9757722B2/en
Priority to US15/664,660 priority patent/US10543484B2/en
Priority to US16/704,825 priority patent/US10933413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は一般に、種々の生物学的及び化学的組成物の分析に適用されるような多項目生体液分析装置(マルチバイオセンサ)の分野に関する。より具体的には、印加される遠心力および通路の表面特性や液体の表面張力によって生じる毛細管力を利用して液体の計量と移送を行い、分析を実施する分析用デバイスと分析装置に関する。   The present invention relates generally to the field of multi-item biological fluid analyzers (multi-biosensors) as applied to the analysis of various biological and chemical compositions. More specifically, the present invention relates to an analysis device and an analysis apparatus that perform analysis by measuring and transferring a liquid by using a centrifugal force applied and a capillary force generated by a surface characteristic of a passage and a surface tension of the liquid.

従来、試料液を内部に収集した分析用デバイスを用い、この分析用デバイスをその軸中心周りに回転させながら、前記試料液の特性を分析する分析装置が実用化されている。
近年、試料液の少量化、装置の小型化、短時間測定、多項目同時測定など、市場からの要求も多く、血液等の試料液をいろいろな分析試薬と反応させ、その混合物を検出し、短時間で各種病気の進行度合いを検査できるより高精度の分析装置が望まれている。
2. Description of the Related Art Conventionally, an analyzer for analyzing the characteristics of a sample solution has been put into practical use by using an analysis device that collects the sample solution therein and rotating the analysis device around its axial center.
In recent years, there have been many demands from the market, such as sample volume reduction, device miniaturization, short time measurement, multi-item simultaneous measurement, etc., reacting sample liquids such as blood with various analytical reagents, detecting the mixture, There is a demand for a more accurate analyzer that can examine the progress of various diseases in a short time.

図9は毛細管計量セグメント及び親水性ストッパを含む従来の分析用デバイスである。
この分析用デバイスは、雰囲気中に通じる空気孔V1,V2,V3,V4と、試料溜めR1,R2,R3と、毛細管で形成される計量セグメントLと、親水性ストッパS1で構成されている。
FIG. 9 is a conventional analytical device including a capillary metering segment and a hydrophilic stopper.
This analytical device is composed of air holes V1, V2, V3, V4 communicating with the atmosphere, sample reservoirs R1, R2, R3, a measuring segment L formed by a capillary tube, and a hydrophilic stopper S1.

計量セグメントLは、分析精度が改善されるよう正確な量の液体試料が計量分配されることを保証する。試料溜めR1に注入された液体試料は、試料溜めR1から毛細管力によって計量セグメントLを流れ、U字形の計量セグメントLを満たす。   The metering segment L ensures that the correct amount of liquid sample is dispensed so that the analytical accuracy is improved. The liquid sample injected into the sample reservoir R1 flows through the measuring segment L by capillary force from the sample reservoir R1, and fills the U-shaped measuring segment L.

計量セグメントLの両端は空気孔V1,V2を介して大気雰囲気に通じている。試料液体は、毛細管力によって親水性ストッパS1のところまで動くが、計量セグメントLと親水性ストッパS1の接続部で停止する。   Both ends of the measuring segment L communicate with the air atmosphere through the air holes V1 and V2. The sample liquid moves to the position of the hydrophilic stopper S1 by the capillary force, but stops at the connecting portion between the measuring segment L and the hydrophilic stopper S1.

これは、計量セグメントLの幅より親水性ストッパS1の幅が広い構造にすることにより、液体試料が親水性ストッパS1の壁面に触れることができないことにより、毛細管力が停止してしまうためである。   This is because by making the hydrophilic stopper S1 wider than the measuring segment L, the capillary force stops because the liquid sample cannot touch the wall surface of the hydrophilic stopper S1. .

この分析用デバイスが回転プラットフォームに配置され、親水性ストッパS1の抵抗に打ち勝つのに十分な速度で回転させると、計量セグメントLに含まれた液体はストッパS1を通過し、遠心力と毛細管力によって試薬溜めR2に入る。試料液体が遠心力によって親水性ストッパS1を通過するとき、空気孔V1,V2から空気が入り、それにより計量セグメントLの液柱の長さ、ひいては試薬溜めR2に送られる試料の量を決定する。   When this analytical device is placed on a rotating platform and rotated at a speed sufficient to overcome the resistance of the hydrophilic stopper S1, the liquid contained in the metering segment L passes through the stopper S1 and is subjected to centrifugal and capillary forces. Enter reagent reservoir R2. When the sample liquid passes through the hydrophilic stopper S1 by centrifugal force, air enters from the air holes V1 and V2, thereby determining the length of the liquid column of the measuring segment L, and hence the amount of sample sent to the reagent reservoir R2. .

試料溜めR2の下方には、さらなる試薬溜めR3があり、ここでは、試料液体と反応したり、後の分析に備えて試料液体を準備するために使用したりすることができる。試料溜めR2に注入された液体は遠心力によって試料溜めR2から試料溜めR3まで移動する。
特表2005−518531号公報(図2)
Below the sample reservoir R2 is a further reagent reservoir R3, which can react with the sample liquid or be used to prepare the sample liquid for later analysis. The liquid injected into the sample reservoir R2 moves from the sample reservoir R2 to the sample reservoir R3 by centrifugal force.
Japanese translation of PCT publication No. 2005-518531 (FIG. 2)

しかしながら、前記従来の構成では、計量セグメントLの親水面を伝って試料液体が移動する時に、計量セグメントLと親水性ストッパS1の接続部において試料液体が完全に停止しないため、試料液体の一部が親水性ストッパS1に溢流してしまい、計量セグメントLで正確な計量ができないという課題を有している。   However, in the conventional configuration, when the sample liquid moves along the hydrophilic surface of the measuring segment L, the sample liquid does not completely stop at the connecting portion between the measuring segment L and the hydrophilic stopper S1, and thus a part of the sample liquid is used. Overflows the hydrophilic stopper S1, and the weighing segment L has a problem that accurate weighing cannot be performed.

本発明は、前記従来の課題を解決するもので、毛細管力による液体の流れを精度よく停止させることのできる分析用デバイスを提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide an analytical device capable of accurately stopping the flow of liquid due to capillary force.

本発明の請求項1記載の分析用デバイスは、毛細管流路で構成されて分析する試料液を定量だけ計量する試料計量部と、前記試料計量部に接続され前記試料計量部で計量された定量の試料液を受け入れて試薬と反応させる受容部とを有したマイクロチャネルを設けた分析用デバイスであって、前記試料計量部の前記受容部との接続部の毛細管流路が前記受容部に向かって広くなるよう傾斜面を形成していることを特徴とする。   According to a first aspect of the present invention, there is provided an analytical device comprising a capillary channel and a sample metering unit for metering only a sample liquid to be analyzed, and a metering unit connected to the sample metering unit and metered by the sample metering unit. An analysis device provided with a microchannel having a receiving portion for receiving a sample liquid and reacting with a reagent, wherein a capillary channel of a connection portion of the sample measuring portion with the receiving portion faces the receiving portion. An inclined surface is formed so as to be wide.

本発明の請求項2記載の分析用デバイスは、請求項1において、前記試料計量部と前記受容部の接続面における前記試料計量部の高さと前記受容部の高さは、前記試料計量部の高さより前記受容部の高さが高いことを特徴とする。   The analysis device according to claim 2 of the present invention is the analysis device according to claim 1, wherein the height of the sample weighing unit and the height of the receiving unit at the connection surface of the sample weighing unit and the receiving unit are the same as those of the sample weighing unit. The height of the receiving part is higher than the height.

本発明の請求項3記載の分析用デバイスは、請求項1において、前記試料計量部と前記受容部の壁面の一部或いは全ての壁面に、親水性処理が施されていることを特徴とする。
本発明の請求項4記載の分析用デバイスは、請求項1において、前記マイクロチャネルにおける前記傾斜面と対向する面に前記親水処理を施したことを特徴とする。
The analytical device according to claim 3 of the present invention is characterized in that, in claim 1, a part or all of the wall surfaces of the sample measuring section and the receiving section are subjected to hydrophilic treatment. .
The analytical device according to claim 4 of the present invention is characterized in that, in claim 1, the hydrophilic treatment is performed on a surface of the microchannel facing the inclined surface.

本発明の請求項5記載の分析装置は、請求項1に記載の分析用デバイスがセットされる回転盤と、前記回転盤を回転駆動する回転駆動手段と、前記試料計量部で計量された定量の試料液を前記回転盤の回転によって発生する遠心力により前記受容部に移送するよう前記回転駆動手段を制御する制御手段とを設けたことを特徴とする。   According to a fifth aspect of the present invention, there is provided an analyzing apparatus comprising: a rotating disk on which the analyzing device according to the first aspect is set; a rotation driving means for rotating the rotating disk; and a quantitative measurement measured by the sample measuring unit. And control means for controlling the rotation driving means so as to transfer the sample liquid to the receiving portion by centrifugal force generated by rotation of the rotating disk.

本発明の請求項6記載の分析装置は、請求項5において、前記制御手段を、前記受容部における反応物にアクセスして読み取りを実行するよりも前に前記回転盤を時計方向と反時計方向に交互に揺動して前記受容部に設置される試薬と前記試料液を攪拌するように構成したことを特徴とする。   The analyzer according to claim 6 of the present invention is the analyzer according to claim 5, wherein the control means moves the rotating disk clockwise and counterclockwise before executing the reading by accessing the reactant in the receiving portion. The reagent and the sample liquid installed in the receiving portion are alternately swung to stir the sample solution.

この構成によれば、流路形状によって毛細管力による液体の流れを精度よく制御することができ、毛細管による正確な計量を行うことができる。   According to this configuration, the flow of liquid due to the capillary force can be accurately controlled by the shape of the flow path, and accurate measurement by the capillary can be performed.

以下に、本発明の各実施の形態を図1〜図8に基づいて説明する。
(実施の形態1)
図1〜図5は本発明の実施の形態1の分析用デバイスを示す。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
1 to 5 show an analysis device according to Embodiment 1 of the present invention.

図1は本発明の分析用デバイス104を分解した拡大図で、図2(a)(b)(c)は本発明の分析用デバイス104の平面図と断面図および注入口206aからみた正面図である。   FIG. 1 is an exploded view of the analysis device 104 of the present invention, and FIGS. 2A, 2B, and 2C are a plan view and a cross-sectional view of the analysis device 104 of the present invention, and a front view seen from the inlet 206a. It is.

分析用デバイス104は、凹部が形成された板厚が1mm〜7mmのベース基板203と、ベース基板203に張り合わされる板厚が1mm〜7mmのカバー基板204とで構成されている。例えば、ベース基板203とカバー基板204は何れも透明基材で構成されている。   The analysis device 104 includes a base substrate 203 having a thickness of 1 mm to 7 mm in which concave portions are formed, and a cover substrate 204 having a thickness of 1 mm to 7 mm attached to the base substrate 203. For example, both the base substrate 203 and the cover substrate 204 are made of a transparent base material.

接着剤で張り合わされたベース基板203とカバー基板204の間には、マイクロチャネル105が形成されている。マイクロチャネル105は、毛細管流路で構成されて分析する試料液を定量だけ計量する試料計量部201と、試料計量部201に接続され試料計量部201で計量された定量の試料液を受け入れて試薬と反応させる受容部202とを有している。具体的には、受容部202に試料液が移動した際に、すぐに反応するように受容部202には試薬が収容されている。この試薬は、固形の試薬であったり、壁面に塗布されたものであったりしてもよい。例えば、試薬としては、グルコース測定のためのグルコースオキシターゼ、グルコースデヒドロゲナーゼや、コレステロール測定のためのコレステロールエステラーゼ、コレステロールハイドロゲナーゼなどが用いられる。   A microchannel 105 is formed between the base substrate 203 and the cover substrate 204 bonded together with an adhesive. The microchannel 105 is composed of a capillary channel and receives a sample measuring unit 201 that measures only a fixed amount of sample liquid to be analyzed, and a fixed amount of sample liquid that is connected to the sample measuring unit 201 and is measured by the sample measuring unit 201. And a receiving portion 202 that reacts with the. Specifically, the reagent is accommodated in the receiving part 202 so as to react immediately when the sample liquid moves to the receiving part 202. This reagent may be a solid reagent or applied to the wall surface. For example, glucose oxidase and glucose dehydrogenase for measuring glucose, cholesterol esterase and cholesterol hydrogenase for measuring cholesterol, etc. are used as reagents.

試料計量部201の一端の試料採取部206には注入口206aが形成され、試料計量部201の他端が受容部202に接続されている。試料採取部206の形状は、幅Wcを直径とする円弧状に形成されている。   An inlet 206 a is formed in the sample collection unit 206 at one end of the sample measurement unit 201, and the other end of the sample measurement unit 201 is connected to the receiving unit 202. The shape of the sample collection unit 206 is formed in an arc shape having a width Wc as a diameter.

試料計量部201は、試料採取部206から受容部202に向かう方向(矢印F方向)に均一な隙間の毛細管流路の主区間207aと、受容部202と主区間207aの終端位置P1との間の接続部207bとで構成されている。更に詳しくは、試料計量部201の前記接続部207bは、ベース基板203の凹部の底面が惰円弧状の傾斜面205に成形されており、受容部202に向かって毛細管流路が広く構成されている。   The sample weighing unit 201 is provided between the main section 207a of the capillary channel with a uniform gap in the direction from the sample collection section 206 to the receiving section 202 (arrow F direction), and between the receiving section 202 and the terminal position P1 of the main section 207a. The connecting portion 207b. More specifically, the connecting portion 207b of the sample measuring portion 201 has a bottom surface of the concave portion of the base substrate 203 formed into an inclined surface 205 having a circular arc shape, and a capillary channel is widened toward the receiving portion 202. Yes.

図2では、試料計量部201の長さがLc、試料計量部201の注入口206aの側の隙間がDc1、注入口206aの幅がWc、試料採取部206の長さがRc、試料計量部201の受容部202との接続面(傾斜面205の終端位置)P2の隙間がDc2、接続部207bの長さがLとして図示されている。受容部202の隙間は、矢印F方向に一律でDpとして図示されている。また、試料計量部201と受容部202の接続面P2における試料計量部201のカバー基板204からの高さ(=Dc2)と前記受容部202のカバー基板204からの高さ(=Dp)は、“Dc2 < Dp”に成形されている。   In FIG. 2, the length of the sample weighing unit 201 is Lc, the gap on the side of the injection port 206a of the sample measurement unit 201 is Dc1, the width of the injection port 206a is Wc, the length of the sample collection unit 206 is Rc, and the sample measurement unit 201, the gap between the connection surface P2 of the receiving portion 202 (the end position of the inclined surface 205) P2 is Dc2, and the length of the connection portion 207b is L. The gap of the receiving portion 202 is uniformly shown as Dp in the direction of the arrow F. Further, the height (= Dc2) of the sample measuring unit 201 from the cover substrate 204 and the height (= Dp) of the receiving unit 202 from the cover substrate 204 at the connection surface P2 of the sample measuring unit 201 and the receiving unit 202 are: “Dc2 <Dp”.

ベース基板203とカバー基板204には、マイクロチャネル105内の粘性抵抗を減らし流体移動をしやすくするために壁面の一部あるいは全ての壁面に親水性処理を行っている。具体的には、試料計量部201と受容部202の底面(ベース基板203の側)もしくは天井面の(カバー基板204の側)いずれかは親水処理を施した連続面で形成している。   The base substrate 203 and the cover substrate 204 are subjected to hydrophilic treatment on a part or all of the wall surfaces in order to reduce the viscous resistance in the microchannel 105 and facilitate fluid movement. Specifically, either the bottom surface (base substrate 203 side) or the ceiling surface (cover substrate 204 side) of the sample measuring unit 201 and the receiving unit 202 is formed as a continuous surface subjected to hydrophilic treatment.

ここで、親水とは水との接触角が90°未満のことをいい、より好ましくは接触角40°未満である。具体的には、前記親水性処理の方法としては、プラズマ、コロナ、オゾン、フッ素等の活性ガスを用いた表面処理方法や界面活性剤による表面処理が挙げられる。または、ベース基板203とカバー基板204の少なくとも一方にガラス等の親水性材料を用いたり、ベース基板203とカバー基板204の少なくとも一方の成形時に界面活性剤、親水性ポリマー、シリカゲルの如き親性粉末などの親水化剤を添加させて材料表面に親水性を付与させたりしてもかまわない。   Here, hydrophilic means that the contact angle with water is less than 90 °, more preferably less than 40 °. Specifically, examples of the hydrophilic treatment method include a surface treatment method using an active gas such as plasma, corona, ozone, and fluorine, and a surface treatment with a surfactant. Alternatively, a hydrophilic material such as glass is used for at least one of the base substrate 203 and the cover substrate 204, or a hydrophilic powder such as a surfactant, a hydrophilic polymer, or silica gel when molding at least one of the base substrate 203 and the cover substrate 204. A hydrophilizing agent such as may be added to impart hydrophilicity to the material surface.

このように作成された分析用デバイス104に試料液を採取して定量を計量する工程を図3(a)〜(c)に示す。
図3(a)では、まず採血用穿刺器具等を用いて指先501に針を穿刺し、血液だまりを作る。そこで試料計量部201の先端の試料採取部206を血液だまりに触れさせる。一般的に毛細管力は、壁面の一部或いは全部が親水性であり、向かい合う壁面の距離が、1mm以下のときに働く。さらにその距離が0.3mm以下であるときに、試料液及び壁面に働く表面エネルギーに対して毛細管力の方が支配的となり、試料液502となる血液は、外力を加えることなく試料計量部201の毛細管流路への吸上げが開始される。
FIGS. 3A to 3C show the steps of collecting the sample solution in the analytical device 104 thus created and measuring the quantitative amount.
In FIG. 3A, first, a needle is punctured to the fingertip 501 using a blood sampling puncture device or the like to create a blood pool. Therefore, the sample collection unit 206 at the tip of the sample measurement unit 201 is brought into contact with the blood pool. Generally, the capillary force works when part or all of the wall surfaces are hydrophilic and the distance between the facing wall surfaces is 1 mm or less. Further, when the distance is 0.3 mm or less, the capillary force is dominant with respect to the surface energy acting on the sample solution and the wall surface, and the blood that becomes the sample solution 502 does not apply an external force to the sample measuring unit 201. Suction to the capillary channel is started.

次に図3(b)に示すように、試料液502は、試料計量部201に働く毛細管力で吸上げられ、前記傾斜面205の始端位置P1まで満たされて停止する。
これは、試料計量部201の試料液502の流れる方向に連続していた壁面の一部が傾斜面205によって寸断されることにより、試料液502が受容部202の方向に流れるための濡れの界面張力の成分が小さくなり、これまで支配的であった毛細管力が断たれるためである。さらに図3(c)に示すように、試料液502が前記接続部207bに吸い上げられて試料計量部201と受容部202の接続面(傾斜面205の終端位置)P2での断面積が最大となり、試料液502の界面で働く表面張力により、試料液502を試料計量部201の内部に向かって戻る力が発生することにより、受容部202への試料液502の溢流量を抑制できる。
Next, as shown in FIG. 3B, the sample liquid 502 is sucked up by the capillary force acting on the sample measuring unit 201, is filled to the starting end position P1 of the inclined surface 205, and stops.
This is because a part of the wall surface that is continuous in the direction in which the sample liquid 502 flows in the sample measuring unit 201 is cut off by the inclined surface 205, so that the wetting interface for allowing the sample liquid 502 to flow in the direction of the receiving unit 202. This is because the tension component is reduced and the capillary force that has been dominant until now is cut off. Further, as shown in FIG. 3C, the sample liquid 502 is sucked up by the connecting portion 207b, and the cross-sectional area at the connecting surface (end position of the inclined surface 205) P2 between the sample measuring portion 201 and the receiving portion 202 is maximized. By the surface tension acting at the interface of the sample liquid 502, a force that returns the sample liquid 502 toward the inside of the sample measuring unit 201 is generated, so that the overflow flow rate of the sample liquid 502 to the receiving unit 202 can be suppressed.

なお、この実施の形態ではマイクロチャネル105における傾斜面205と対向する面に前記親水性を呈する材料または親水性を付与する親水処理が施されている。
次に具体的な寸法を踏まえて、本発明の実施の形態1の効果について説明する。
In this embodiment, the surface of the microchannel 105 facing the inclined surface 205 is subjected to the hydrophilic material or hydrophilic treatment for imparting hydrophilicity.
Next, based on specific dimensions, the effect of the first embodiment of the present invention will be described.

この分析用デバイス104では、受容部202において、この受容部202に配置された試薬と反応させて吸光度を測定するために、10μLの試料液を試料計量部201で採取する必要がある。さらに、測定精度向上のために試料計量部201での定量ばらつきは、±5%以内、つまり、試料液は9.5〜10.5μLとなるようにしておく必要性がある。ここでは、試料計量部201の形状は、Lc=9.8mm、Wc=4.0mm、Dc=0.3mmとした。さらに、接続部207bの傾斜面205については、図4(b)に示すようにL=1.0mm、短径:Dc2−Dc1=0.3mmの楕円弧の一部となるような傾斜を形成した。   In the analyzing device 104, in order to measure the absorbance in the receiving unit 202 by reacting with the reagent arranged in the receiving unit 202, it is necessary to collect 10 μL of the sample solution by the sample measuring unit 201. Furthermore, in order to improve the measurement accuracy, the quantitative variation in the sample weighing unit 201 needs to be within ± 5%, that is, the sample liquid should be 9.5 to 10.5 μL. Here, the shape of the sample measurement part 201 was Lc = 9.8 mm, Wc = 4.0 mm, and Dc = 0.3 mm. Further, as shown in FIG. 4B, the inclined surface 205 of the connecting portion 207b is inclined so as to be a part of an elliptical arc of L = 1.0 mm and short diameter: Dc2-Dc1 = 0.3 mm. .

その結果、受容部202に溢流する試料液502の量は、0.12μLとなり試料液502の定量ばらつきである±5%を十分満たす結果となった。
図5には、試料計量部201に配置された傾斜面205の楕円弧の形状と、受容部202に溢流する試料液502の溢流量の関係について示す。
As a result, the amount of the sample liquid 502 overflowing to the receiving unit 202 was 0.12 μL, which sufficiently satisfied ± 5%, which is a quantitative variation of the sample liquid 502.
FIG. 5 shows the relationship between the shape of the elliptical arc of the inclined surface 205 arranged in the sample measuring unit 201 and the overflow flow rate of the sample liquid 502 overflowing the receiving unit 202.

楕円弧の長径:L=1.0mmとし、短径:Dc2−Dc1の長さを変化させた。例えば、傾斜面205がない場合、試料液502の受容部202への溢流量が0.68μLであるのに対し、傾斜面205を配置することにより、受容部202に溢流する試料液502の量は、0.2μL以下になっていることがわかる。さらに、楕円弧の短径:Dc2−Dc1を大きくしていくことで、受容部202への溢流量を抑制することができることがわかる。   The major axis of the elliptic arc: L = 1.0 mm, and the length of the minor axis: Dc2-Dc1 was changed. For example, when there is no inclined surface 205, the overflow flow rate of the sample liquid 502 to the receiving unit 202 is 0.68 μL, whereas by arranging the inclined surface 205, the sample liquid 502 overflowing the receiving unit 202 It can be seen that the amount is 0.2 μL or less. Furthermore, it turns out that the overflow flow volume to the receiving part 202 can be suppressed by enlarging the short axis: Dc2-Dc1 of an elliptical arc.

この結果から、試料計量部201と受容部202の接続部207bに傾斜部205を配置させることにより、試料計量部201の形状のみで精度よく試料液の計量を行うことが可能となる。その状態で、試料計量部201で計量された試料液502の採取は完了し、高精度な試料液の分析が可能となる。   From this result, it is possible to accurately measure the sample liquid by using only the shape of the sample weighing unit 201 by disposing the inclined portion 205 in the connecting portion 207b between the sample weighing unit 201 and the receiving unit 202. In this state, the collection of the sample liquid 502 measured by the sample measuring unit 201 is completed, and the sample liquid can be analyzed with high accuracy.

この傾斜部205の形状は、図4(a)に示すような半径Lとなる円弧の一部や、図4(b)に示すような長径L、短径:Dc2−Dc1とするような楕円弧の一部であってもよく、接続部207bの傾斜面205と主区間207aの底面とが連続的に形成されていればよく、楕円弧や円弧に限定する必要が無く、直線の傾斜面であってもよい。   The shape of the inclined portion 205 is a part of an arc having a radius L as shown in FIG. 4A, or an elliptical arc having a major axis L and a minor axis: Dc2-Dc1 as shown in FIG. As long as the inclined surface 205 of the connecting portion 207b and the bottom surface of the main section 207a are formed continuously, it is not necessary to limit to an elliptical arc or arc, and it is a straight inclined surface. May be.

(実施の形態2)
図6〜図8は実施の形態1の分析用デバイス104を使用する本発明の分析装置100を示す。
(Embodiment 2)
6 to 8 show an analysis apparatus 100 of the present invention that uses the analysis device 104 of the first embodiment.

この分析装置は、図6に示すように構成されている。
モータなどの回転駆動手段106で回転中心107の回りに回転駆動される円盤状の回転盤102には、試料液を採取した分析用デバイス104がセットされる凹部103が形成されている。凹部103には、セットされた分析用デバイス104の受容部202の位置に対応して貫通した孔114が設けられている。
This analyzer is configured as shown in FIG.
A disc-shaped rotating disk 102 that is rotated around a rotation center 107 by a rotation driving means 106 such as a motor is formed with a recess 103 in which an analysis device 104 that collects a sample solution is set. The concave portion 103 is provided with a hole 114 penetrating in correspondence with the position of the receiving portion 202 of the set analytical device 104.

回転盤102にセットされた分析用デバイス104の受容部202にアクセスする光学測定部108は、回転盤102の孔114を通過して受光できるように、回転盤102を中央にして配置されたレーザー光源112とフォトディテクタ113とで構成されている。   The optical measurement unit 108 that accesses the receiving unit 202 of the analysis device 104 set on the turntable 102 is a laser disposed around the turntable 102 so that light can be received through the hole 114 of the turntable 102. A light source 112 and a photodetector 113 are included.

制御手段109は、回転盤102の回転速度や回転方向および光学測定部108の測定タイミングなどを制御する。更に詳しくは、制御手段109は、回転駆動手段106を制御して、回転盤102を介して分析用デバイス104を回転中心107の回りに任意の方向に所定の回転速度で回転させるだけではなく、所定の停止位置で回転中心107を中心に所定の振幅範囲、所定周期で左右に往復運動をさせて分析用デバイス104を揺動させることができるように構成されている。   The control means 109 controls the rotation speed and rotation direction of the turntable 102, the measurement timing of the optical measurement unit 108, and the like. More specifically, the control means 109 not only controls the rotation drive means 106 to rotate the analysis device 104 around the rotation center 107 in a given direction at a predetermined rotation speed via the turntable 102. The analyzing device 104 can be swung by reciprocating left and right at a predetermined amplitude range and a predetermined period around the rotation center 107 at a predetermined stop position.

レーザー光源112から出射された検出光115は、回転盤102の孔114とセットされた分析用デバイス104の受容部202の反応物を通過して、フォトディテクタ113によって受光され、演算部110に入力されている。演算部110は、吸光度測定の結果から試料液の特性を分析して表示部111で表示する。   The detection light 115 emitted from the laser light source 112 passes through the reaction product of the receiving unit 202 of the analytical device 104 set with the hole 114 of the turntable 102, is received by the photodetector 113, and is input to the calculation unit 110. ing. The calculation unit 110 analyzes the characteristics of the sample solution from the result of the absorbance measurement, and displays it on the display unit 111.

図7に基づいて、試料計量部201で計量された試料液502の遠心移送プロセス及び試薬反応プロセスについて説明する。
試料液502が試料計量部201に充填された分析用デバイス104を、回転盤102の凹部103にセットし固定の後、図7(a)に示すように回転盤102を矢印方向に回転することにより、分析用デバイス104内の試料計量部201に充填された試料液502に遠心力が発生する。そうすると、接続部207bで停止していた試料液502が受容部202に向かって移動し始める。さらに、回転数を一定に保つことによって、図7(b)に示すように、試料計量部201で計量された試料液502が、受容部202へ全て移動する。
Based on FIG. 7, the centrifugal transfer process and the reagent reaction process of the sample liquid 502 weighed by the sample weighing unit 201 will be described.
After the analysis device 104 filled with the sample liquid 502 in the sample measuring unit 201 is set and fixed in the concave portion 103 of the rotating disk 102, the rotating disk 102 is rotated in the direction of the arrow as shown in FIG. Thus, centrifugal force is generated in the sample liquid 502 filled in the sample measuring unit 201 in the analysis device 104. As a result, the sample liquid 502 stopped at the connection portion 207b starts to move toward the receiving portion 202. Further, by keeping the rotation speed constant, the sample liquid 502 weighed by the sample weighing unit 201 moves to the receiving unit 202 as shown in FIG. 7B.

試薬との反応を加速するために回転盤102を揺動させる。この揺動は、回転盤102の回転方向を繰り返し変更することで行われる。具体的には、分析用デバイス104のマイクロチャネル105が、図7(c)に示すように9時の方向にある状態で、時計回りと反時計回りの方向に±1°ずつ交互に揺動させることで、受容部202に移動した試料液502と試薬を攪拌し、最終的に受容部202の内部で反応液を生成することができる。このときの揺動の角度と、揺動の周波数は、±1°以上、22Hz以上であれば良く、この条件を満たす揺動を行うことにより、短時間で確実な試薬との反応を実施することができる。即ち、22Hz程度の周波数で微小角度、分析用デバイス104を揺動することにより、確実に試料液502と試薬を混合させることができる。   The turntable 102 is swung to accelerate the reaction with the reagent. This rocking is performed by repeatedly changing the rotation direction of the turntable 102. Specifically, with the microchannel 105 of the analysis device 104 in the 9 o'clock direction as shown in FIG. 7 (c), it swings alternately by ± 1 ° in the clockwise and counterclockwise directions. By doing so, the sample liquid 502 and the reagent that have moved to the receiving unit 202 are stirred, and a reaction liquid can be finally generated inside the receiving unit 202. The rocking angle and the rocking frequency at this time may be ± 1 ° or more and 22 Hz or more, and the reaction with the reagent is performed in a short time by performing rocking satisfying this condition. be able to. That is, the sample liquid 502 and the reagent can be reliably mixed by swinging the analyzing device 104 at a minute angle at a frequency of about 22 Hz.

分析装置100は、光学測定部108による吸光度測定の結果を演算部110で処理して試料液の特性の分析結果を表示部111で表示する。
このように、制御手段109が回転駆動手段106に命令して、回転盤102を介して分析用デバイス104を揺動させるので、非常に高精度な試料液201の分析が可能となる。
The analyzer 100 processes the result of absorbance measurement by the optical measurement unit 108 with the calculation unit 110 and displays the analysis result of the characteristics of the sample solution on the display unit 111.
As described above, since the control means 109 commands the rotation driving means 106 to swing the analysis device 104 via the rotating disk 102, it is possible to analyze the sample liquid 201 with very high accuracy.

図8は回転盤102に2つの分析用デバイス104をセットして運転中の分析装置を示す。
なお、上記の各実施の形態において、ベース基板203とカバー基板204は1mm〜7mm板厚で形成しているが、マイクロチャネル105を形成可能な厚みであれば特に制限は無い。ベース基板203とカバー基板204の形状についても特に限定する必要が無く、用途目的に応じた形状、例えば、扇状、円盤状、板状、その他複雑な形状の成形物などの形状が可能である。
FIG. 8 shows an analysis apparatus in operation with two analysis devices 104 set on the turntable 102.
In each of the above embodiments, the base substrate 203 and the cover substrate 204 are formed with a thickness of 1 mm to 7 mm, but there is no particular limitation as long as the microchannel 105 can be formed. The shapes of the base substrate 203 and the cover substrate 204 are not particularly limited, and may be a shape according to the purpose of use, for example, a fan shape, a disk shape, a plate shape, or other complicated shapes.

また、上記の各実施の形態において、 ベース基板203,カバー基板204の材料として、易成形性、高生産性、低価格の面からプラスチックを使用しているが、ガラス、シリコンウェハー、金属、セラミックなど接合できる材料であれば特に制限はない。   In each of the above embodiments, plastic is used as the material of the base substrate 203 and the cover substrate 204 from the viewpoint of easy moldability, high productivity, and low cost. However, glass, silicon wafer, metal, ceramic There is no particular limitation as long as the material can be joined.

上記の実施の形態ではカバー基板204とベース基板203を接着剤を用いて接合したが、使用する材料に応じて溶融接合や陽極接合やレーザー接合などの接合方法で接合してもかまわない。   In the above embodiment, the cover substrate 204 and the base substrate 203 are bonded using an adhesive, but may be bonded by a bonding method such as fusion bonding, anodic bonding, or laser bonding depending on the material to be used.

本発明は、血液、唾液、尿などの生体液の成分分析を行う医療分析検査装置等に適用できる。   The present invention can be applied to a medical analysis / inspection apparatus that analyzes components of biological fluids such as blood, saliva, and urine.

本発明の分析用デバイスの分解斜視図The exploded perspective view of the analytical device of the present invention 同実施の形態の平面図と断面図および正面図Plan view, sectional view and front view of the same embodiment 同実施の形態の試料液採取プロセスの説明図Explanatory drawing of the sample liquid collection process of the same embodiment 同実施の形態におけるマイクロチャネルの接続部の拡大断面図Enlarged sectional view of the connection part of the microchannel in the same embodiment 同実施の形態における受容部に溢流する試料液と傾斜面形状との関係図Relationship diagram between the sample liquid overflowing the receiving portion and the inclined surface shape in the same embodiment 本発明の分析装置の構成図Configuration diagram of analyzer according to the present invention 同実施の形態における試料液移送プロセスの説明図Explanatory drawing of the sample liquid transfer process in the same embodiment 回転盤に2つの分析用デバイスをセットした場合の平面図Top view when two analytical devices are set on a rotating disk 従来の分析用デバイスの試料の制御及び計量の説明図Explanatory drawing of sample control and weighing of conventional analytical device

符号の説明Explanation of symbols

100 分析装置
102 回転盤
103 回転盤102の凹部
104 分析用デバイス
105 マイクロチャネル
106 回転駆動手段
107 回転中心
108 光学測定部
109 制御手段
110 演算部
111 表示部
112 レーザー光源
113 フォトディテクタ
114 回転盤102の孔
115 検出光
201 試料計量部
202 受容部
203 ベース基板
204 カバー基板
205 傾斜面
206 試料採取部
206a 注入口
207a 主区間
207b 接続部
502 試料液(血液)
F 試料採取部206から受容部202に向かう方向
P1 主区間207aの終端位置
Lc 試料計量部201の長さ
Dc1 試料計量部201の注入口206aの側の隙間
Wc 注入口206aの幅
Rc 試料採取部206の長さ
P2 試料計量部201の受容部202との接続面(傾斜面205の終端位置)
L 接続部207bの長さ
Dc2 試料計量部201のカバー基板204からの高さ
Dp 受容部202のカバー基板204からの高さ
DESCRIPTION OF SYMBOLS 100 Analyzing apparatus 102 Turntable 103 Recessed part of turntable 102 Analysis device 105 Micro channel 106 Rotation drive means 107 Rotation center 108 Optical measurement part 109 Control means 110 Calculation part 111 Display part 112 Laser light source 113 Photo detector 114 Hole of the turntable 102 DESCRIPTION OF SYMBOLS 115 Detection light 201 Sample measurement part 202 Receiving part 203 Base board 204 Cover board 205 Inclined surface 206 Sample collection part 206a Inlet 207a Main area 207b Connection part 502 Sample liquid (blood)
F Direction from the sample collection unit 206 toward the receiving unit 202 P1 End position of the main section 207a Lc Length of the sample measurement unit 201 Dc1 Clearance on the inlet 206a side of the sample measurement unit 201 Wc Width of the injection port 206a Rc Sample collection unit 206 length P2 Connection surface of the sample measuring unit 201 to the receiving unit 202 (end position of the inclined surface 205)
L Length of connecting portion 207b Dc2 Height of sample weighing unit 201 from cover substrate 204 Dp Height of receiving unit 202 from cover substrate 204

Claims (6)

毛細管流路で構成されて分析する試料液を定量だけ計量する試料計量部と、前記試料計量部に接続され前記試料計量部で計量された定量の試料液を受け入れて試薬と反応させる受容部とを有したマイクロチャネルを設けた分析用デバイスであって、
前記試料計量部の前記受容部との接続部の毛細管流路が前記受容部に向かって広くなるよう傾斜面を形成した
分析用デバイス。
A sample metering unit configured by a capillary channel for measuring a sample solution to be analyzed only in a fixed amount; a receiving unit connected to the sample metering unit for receiving a sample solution measured by the sample metering unit and reacting with the reagent; An analytical device provided with a microchannel having
An analytical device in which an inclined surface is formed so that a capillary channel of a connection portion of the sample measuring portion with the receiving portion becomes wider toward the receiving portion.
前記試料計量部と前記受容部の接続面における前記試料計量部の高さと前記受容部の高さは、前記試料計量部の高さより前記受容部の高さが高い
請求項1に記載の分析用デバイス。
The height of the said sample measurement part in the connection surface of the said sample measurement part and the said reception part and the height of the said reception part are for analysis of Claim 1 whose height of the said reception part is higher than the height of the said sample measurement part. device.
前記試料計量部と前記受容部の壁面の一部或いは全ての壁面に、親水性処理が施されている
請求項1に記載の分析用デバイス。
The analytical device according to claim 1, wherein a hydrophilic treatment is applied to a part or all of the wall surfaces of the sample measuring unit and the receiving unit.
前記マイクロチャネルにおける前記傾斜面と対向する面に前記親水処理を施した請求項1に記載の分析用デバイス。   The analysis device according to claim 1, wherein the hydrophilic treatment is performed on a surface of the microchannel facing the inclined surface. 請求項1に記載の分析用デバイスがセットされる回転盤と、
前記回転盤を回転駆動する回転駆動手段と、
前記試料計量部で計量された定量の試料液を前記回転盤の回転によって発生する遠心力により前記受容部に移送するよう前記回転駆動手段を制御する制御手段と
を設けた分析装置。
A turntable on which the analysis device according to claim 1 is set;
A rotation driving means for rotating the rotating disk;
An analyzer provided with a control means for controlling the rotation driving means so as to transfer a fixed amount of sample liquid measured by the sample measuring section to the receiving section by a centrifugal force generated by rotation of the rotating disk.
前記制御手段を、
前記受容部における反応物にアクセスして読み取りを実行するよりも前に前記回転盤を時計方向と反時計方向に交互に揺動して前記受容部に設置される試薬と前記試料液を攪拌するように構成した
請求項5に記載の分析装置。
The control means;
Prior to accessing the reactants in the receiving unit and executing reading, the rotating disk is alternately swung clockwise and counterclockwise to stir the reagent and the sample solution installed in the receiving unit. The analyzer according to claim 5 configured as described above.
JP2008025810A 2007-10-30 2008-02-06 Analytical device and analyzer using the same Active JP5178224B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2008025810A JP5178224B2 (en) 2008-02-06 2008-02-06 Analytical device and analyzer using the same
CN201410322504.5A CN104062454B (en) 2007-10-30 2008-10-28 Analysis instrument
CN2008801022104A CN101779129B (en) 2007-10-30 2008-10-28 Analyzing device, analyzing apparatus using the device, and analyzing method
EP08845691.8A EP2211184B1 (en) 2007-10-30 2008-10-28 Analyzing device and analyzing method
US12/740,486 US9134286B2 (en) 2007-10-30 2008-10-28 Analyzing device, analyzing apparatus using the device, and analyzing method
CN201310076947.6A CN103226150B (en) 2007-10-30 2008-10-28 Analyzing device, analyzing apparatus using the device, and analyzing method
PCT/JP2008/003052 WO2009057273A1 (en) 2007-10-30 2008-10-28 Analyzing device, analyzing apparatus using the device, and analyzing method
CN201310076878.9A CN103217538B (en) 2007-10-30 2008-10-28 Analyzing device
CN201310077581.4A CN103252261B (en) 2007-10-30 2008-10-28 Analyzing device
EP19164256.0A EP3521833B1 (en) 2007-10-30 2008-10-28 Analyzing device
CN201310077650.1A CN103217539B (en) 2007-10-30 2008-10-28 Analyzing device and analyzing method
US14/741,114 US9757722B2 (en) 2007-10-30 2015-06-16 Microchannel analyzing device having a filling confirmation region
US15/664,660 US10543484B2 (en) 2007-10-30 2017-07-31 Analyzing device having an inlet with a liquid reservoir
US16/704,825 US10933413B2 (en) 2007-10-30 2019-12-05 Analyzing device having spot application section with inclined face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025810A JP5178224B2 (en) 2008-02-06 2008-02-06 Analytical device and analyzer using the same

Publications (2)

Publication Number Publication Date
JP2009186296A JP2009186296A (en) 2009-08-20
JP5178224B2 true JP5178224B2 (en) 2013-04-10

Family

ID=41069690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025810A Active JP5178224B2 (en) 2007-10-30 2008-02-06 Analytical device and analyzer using the same

Country Status (1)

Country Link
JP (1) JP5178224B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
JP6588908B2 (en) 2014-06-30 2019-10-09 Phcホールディングス株式会社 Sample analysis substrate, sample analysis apparatus, sample analysis system, and program for sample analysis system
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
JP6588910B2 (en) 2014-06-30 2019-10-09 Phcホールディングス株式会社 Sample analysis substrate, sample analysis apparatus, sample analysis system, and program for sample analysis system
EP3232203B1 (en) 2014-12-12 2022-02-02 PHC Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318256B1 (en) * 1987-11-23 1992-12-23 EASTMAN KODAK COMPANY (a New Jersey corporation) Cuvette with non-flexing thermally conductive wall
JPH08247946A (en) * 1995-03-14 1996-09-27 Kdk Corp Test piece used for reflectometer
JP3213566B2 (en) * 1996-04-26 2001-10-02 アークレイ株式会社 Sample analysis tool, sample analysis method and sample analyzer using the same
JP4138512B2 (en) * 2003-01-27 2008-08-27 テルモ株式会社 Body fluid collection tool
JP4391790B2 (en) * 2003-10-03 2009-12-24 独立行政法人物質・材料研究機構 Chip usage and inspection chip
JP2005345259A (en) * 2004-06-03 2005-12-15 Toshiba Mitsubishi-Electric Industrial System Corp Specimen analysis method
JP4501793B2 (en) * 2005-06-24 2010-07-14 パナソニック株式会社 Biosensor
JP2008064701A (en) * 2006-09-11 2008-03-21 Matsushita Electric Ind Co Ltd A device for rotational analysis, measurement method, and testing method
JP2008185517A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Microchannel and rotation analyzing device

Also Published As

Publication number Publication date
JP2009186296A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US10933413B2 (en) Analyzing device having spot application section with inclined face
JP4802925B2 (en) Analytical device and analytical apparatus using the same
JP5247460B2 (en) Microchip
US9182384B2 (en) Analyzing device and analyzing method using same
US4868129A (en) Apparatus and method for dilution and mixing of liquid samples
US4946795A (en) Apparatus and method for dilution and mixing of liquid samples
JP4973800B2 (en) Analytical device and analytical apparatus using the same
JP4619224B2 (en) Rotational analysis device
JP2008064701A (en) A device for rotational analysis, measurement method, and testing method
JP5178224B2 (en) Analytical device and analyzer using the same
JP6581905B2 (en) Automatic analyzer
JP5213432B2 (en) Bioanalytical device and blood separation method using the same
JPH0756492B2 (en) Device and method for dilution and mixing of liquid samples
JP5902426B2 (en) Liquid feeding device and liquid feeding method
JP4375183B2 (en) Microchip
JP4811267B2 (en) Microchip and analytical device using the same
JP2008185517A (en) Microchannel and rotation analyzing device
JP2010032446A (en) Analyzing device and analysis method
JP5178223B2 (en) Analytical device and analyzer using the same
JP4922808B2 (en) Specimen detection method and detection apparatus
JP5354947B2 (en) Bioanalytical device and sample quantitative stirring method using the same
JP5017723B2 (en) Microchip having optical measurement cuvette and method of using the same
JP2009250906A (en) Analyzing device and sample liquid analyzing method using it
JP2009288112A (en) Channel forming method, and living body analyzing device using it
WO2014103865A1 (en) Inspection chip, and inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R151 Written notification of patent or utility model registration

Ref document number: 5178224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250