JP5910657B2 - Inspection chip and inspection system - Google Patents

Inspection chip and inspection system Download PDF

Info

Publication number
JP5910657B2
JP5910657B2 JP2014074677A JP2014074677A JP5910657B2 JP 5910657 B2 JP5910657 B2 JP 5910657B2 JP 2014074677 A JP2014074677 A JP 2014074677A JP 2014074677 A JP2014074677 A JP 2014074677A JP 5910657 B2 JP5910657 B2 JP 5910657B2
Authority
JP
Japan
Prior art keywords
supply
inspection
cleaning liquid
unit
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014074677A
Other languages
Japanese (ja)
Other versions
JP2015195750A (en
Inventor
由美子 大鹿
由美子 大鹿
千里 吉村
千里 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2014074677A priority Critical patent/JP5910657B2/en
Priority to PCT/JP2015/060103 priority patent/WO2015152229A1/en
Publication of JP2015195750A publication Critical patent/JP2015195750A/en
Application granted granted Critical
Publication of JP5910657B2 publication Critical patent/JP5910657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Description

本発明は、ビーズを多段階洗浄する検査チップ及び検査システムに関する。   The present invention relates to an inspection chip and an inspection system for cleaning beads in multiple stages.

従来、抗原抗体反応のためのビーズを備える検査チップが知られている。例えば、特許文献1に記載の分析チップは、複数の槽と、複数の槽の相互間を接続する微細流路とを備える流体回路を備えている。分析チップに遠心力が作用することにより、検体、試薬、及び洗浄液などの液体が流体回路内を移動する。分析チップを用いた検査工程には、ビーズを多段階洗浄する工程が含まれる。複数の槽のうちの第7槽には、ビーズが配置され、第1槽には、洗浄液が配置される。第1槽から第7槽に至る経路には、バッファ槽となる第2層、第3層、第9槽、及び第10槽が設けられている。分析チップに遠心力が作用すると、洗浄液はバッファ槽を連続的に通過し、ビーズを保持する第7槽に供給される。このため、ビーズが洗浄される。分析チップへの遠心力の作用が停止されると、バッファ槽によって洗浄液が分断される。即ち、第7槽内のビーズの多段階洗浄は、遠心力の作用、及び作用の停止が繰り返し行われることで実行される。   Conventionally, a test chip including beads for antigen-antibody reaction is known. For example, the analysis chip described in Patent Document 1 includes a fluid circuit including a plurality of tanks and a fine channel that connects the plurality of tanks to each other. When a centrifugal force acts on the analysis chip, liquids such as a specimen, a reagent, and a cleaning liquid move in the fluid circuit. The inspection process using the analysis chip includes a process of washing the beads in multiple stages. Beads are arranged in the seventh tank among the plurality of tanks, and a cleaning liquid is arranged in the first tank. In the path from the first tank to the seventh tank, a second layer, a third layer, a ninth tank, and a tenth tank are provided as buffer tanks. When centrifugal force acts on the analysis chip, the cleaning solution passes through the buffer tank continuously and is supplied to the seventh tank holding the beads. For this reason, the beads are washed. When the action of the centrifugal force on the analysis chip is stopped, the washing solution is divided by the buffer tank. That is, the multistage washing of the beads in the seventh tank is executed by repeatedly performing the action of the centrifugal force and stopping the action.

特開2013−50435号公報JP 2013-50435 A

しかしながら、従来の分析チップでは、ビーズの多段階洗浄を行うために、遠心力の作用を停止する工程が検査工程に含まれる。遠心力の作用が停止された場合、各槽に保持された液体が拡散する可能性がある。液体が拡散すると、予期せぬタイミングで呈色などの反応が起こり、検査精度が低下する可能性がある。   However, in the conventional analysis chip, in order to perform multi-stage washing of beads, a process of stopping the action of centrifugal force is included in the inspection process. When the action of the centrifugal force is stopped, the liquid held in each tank may diffuse. When the liquid diffuses, a reaction such as coloration occurs at an unexpected timing, which may reduce the inspection accuracy.

本発明の目的は、検査精度が低下する可能性を低減する検査チップ、及び検査システムを提供することである。   The objective of this invention is providing the test | inspection chip and test | inspection system which reduce possibility that a test | inspection precision falls.

本発明の第一の態様に係る検査チップは、酵素反応のための基質溶液が注入される基質溶液注入部と、前記基質溶液注入部よりも下流に配置され、洗浄液が注入される洗浄液注入部と、前記洗浄液注入部よりも下流に配置され、検査対象物質を含む検査液体が注入される検査液体注入部と、前記検査液体注入部よりも下流に配置され、前記基質溶液注入部に注入された前記基質溶液と、前記洗浄液注入部に注入された前記洗浄液と、前記検査液体注入部に注入された前記検査液体とが流入する受け部と、前記受け部よりも下流に配置され、抗原抗体反応のためのビーズが保持されるビーズ保持部と、前記ビーズ保持部よりも下流に配置され、前記検査液体と前記ビーズとに反応した前記基質溶液を含む反応液が測定される測定部と、前記測定部よりも下流に配置された廃液部とを備え、前記基質溶液注入部、前記洗浄液注入部、前記検査液体注入部、前記受け部、及び前記測定部は同じ形成方向に凹む形状であり、前記受け部は、前記ビーズ保持部に繋がり、前記形成方向に並んだ複数の供給流路を備え、前記複数の供給流路は、前記形成方向側の前記供給流路ほど、前記形成方向に対して大きな角度で延びる。   The inspection chip according to the first aspect of the present invention includes a substrate solution injection part into which a substrate solution for an enzyme reaction is injected, and a cleaning liquid injection part that is arranged downstream of the substrate solution injection part and into which a cleaning liquid is injected. And a test liquid injection part that is arranged downstream of the cleaning liquid injection part and into which a test liquid containing a test target substance is injected, and is arranged downstream of the test liquid injection part and injected into the substrate solution injection part The substrate solution, the cleaning liquid injected into the cleaning liquid injection part, the receiving part into which the test liquid injected into the test liquid injection part flows, and arranged downstream of the receiving part, the antigen antibody A bead holding unit for holding beads for reaction, a measurement unit that is arranged downstream of the bead holding unit and that measures a reaction solution containing the substrate solution that has reacted with the test liquid and the beads, Measurement The substrate solution injection part, the cleaning liquid injection part, the inspection liquid injection part, the receiving part, and the measuring part are recessed in the same forming direction, and the receiving part The portion includes a plurality of supply channels connected to the bead holding unit and arranged in the forming direction, and the plurality of supply channels are larger in the forming direction as the supply channel on the forming direction side. Extends at an angle.

受け部には洗浄液が流入する。複数の供給流路は、形成方向側の供給流路ほど、形成方向に対して大きな角度で延びる。このため、検査チップに遠心力を作用させながら、形成方向と形成方向に垂直な垂直方向との間で振れ幅を次第に大きくすることで、形成方向側の反対方向側の供給流路から順番に洗浄液をビーズ保持部に供給することができる。よって、遠心力の作用を停止することなくビーズを多段階洗浄することができる。故に、遠心力の作用が停止されて試薬が拡散することがなく、検査精度が低下する可能性を低減できる。   The cleaning liquid flows into the receiving part. The plurality of supply channels extend at a larger angle with respect to the formation direction as the supply channel on the formation direction side. For this reason, by gradually increasing the swing width between the forming direction and the vertical direction perpendicular to the forming direction while applying a centrifugal force to the inspection chip, the supply flow path on the opposite direction side to the forming direction side is used in turn. The cleaning liquid can be supplied to the bead holding unit. Therefore, the beads can be washed in multiple stages without stopping the action of the centrifugal force. Therefore, the action of the centrifugal force is stopped, the reagent does not diffuse, and the possibility that the inspection accuracy is lowered can be reduced.

前記検査チップにおいて、前記ビーズ保持部は、前記形成方向側に、前記測定部に繋がる取り出し流路を備え、前記取り出し流路が延びる方向と前記形成方向とがなす第一角度は、前記複数の供給流路のうち、前記形成方向の反対方向側から2番目の前記供給流路が延びる方向と前記形成方向とがなす第二角度より小さくてもよい。   In the inspection chip, the bead holding unit includes a take-out channel connected to the measurement unit on the formation direction side, and a first angle formed by a direction in which the take-out channel extends and the formation direction is the plurality of Of the supply flow paths, the second flow path may be smaller than the second angle formed by the direction in which the second supply flow path extends from the direction opposite to the formation direction and the formation direction.

前記検査チップにおいて、前記検査液体注入部を形成する面のうち、前記受け部に繋がる流路を形成する形成面が延びる方向と前記形成方向とがなす第三角度は、前記複数の供給流路のうち、前記形成方向側から2番目の前記供給流路が延びる方向と前記形成方向とがなす第四角度より大きくてもよい。   In the inspection chip, a third angle formed by a direction in which a forming surface forming a flow path connected to the receiving portion extends and a forming direction among surfaces forming the inspection liquid injection portion is the plurality of supply flow paths. Of these, the second supply channel extending from the formation direction side may be larger than a fourth angle formed by the direction in which the supply channel extends and the formation direction.

前記検査チップにおいて、前記測定部を形成する面のうち、前記廃液部に繋がる流路を形成する廃液流路面が延びる方向と前記形成方向とがなす第五角度は、前記第一角度以下であってもよい。   In the inspection chip, a fifth angle formed by a direction in which a waste liquid flow channel surface that forms a flow channel connected to the waste liquid portion extends and a formation direction among the surfaces that form the measurement unit is equal to or less than the first angle. May be.

前記検査チップは、前記受け部に対して前記供給流路側の反対側に設けられた余剰部と、前記検査液体注入部と前記受け部との間に設けられ、前記受け部に繋がる面である第一案内面と、前記受け部から前記余剰部側に延びる第二案内面と、前記第一案内面における前記受け部側の第一端部と、前記第二案内面における前記受け部側の第二端部とを備え、前記第二端部から前記第一端部に向かう方向と前記形成方向とがなす第六角度は、前記形成方向の反対方向側の1番目の前記供給流路が延びる方向と前記形成方向とがなす第七角度より大きくてもよい。   The inspection chip is a surface that is provided between the surplus portion provided on the opposite side of the supply flow channel side with respect to the receiving portion, the inspection liquid injection portion, and the receiving portion, and is connected to the receiving portion. A first guide surface; a second guide surface extending from the receiving portion toward the surplus portion; a first end portion on the receiving portion side of the first guide surface; and a receiving portion side of the second guide surface. A second end portion, and a hexagonal degree formed by the direction from the second end portion toward the first end portion and the forming direction is determined by the first supply channel on the opposite side of the forming direction. It may be larger than a seventh angle formed by the extending direction and the forming direction.

前記検査チップにおいて、前記第一案内面と前記形成方向とがなす第八角度は、前記第七角度より小さくてもよい。   In the inspection chip, an eighth angle formed by the first guide surface and the forming direction may be smaller than the seventh angle.

前記検査チップにおいて、前記複数の供給流路の夫々は、前記形成方向側の第一供給壁面と、前記形成方向の反対方向側の第二供給壁面とを備え、前記複数の供給流路のうち、前記形成方向の反対方向側からn番目の前記供給流路の前記第二供給壁面における上流側の入口端部から、前記形成方向の反対方向側からn−1番目の前記供給流路が延びる方向と平行に引いた入口仮想線は、n番目の前記供給流路における前記第一供給壁面と交差してもよい。   In the inspection chip, each of the plurality of supply channels includes a first supply wall surface on the forming direction side and a second supply wall surface on the opposite direction side of the forming direction, and among the plurality of supply channels The (n−1) th supply flow path extends from the upstream inlet end of the second supply wall surface of the nth supply flow path from the direction opposite to the formation direction from the direction opposite to the formation direction. The inlet imaginary line drawn parallel to the direction may intersect the first supply wall surface in the nth supply channel.

前記検査チップは、前記第一供給壁面における下流側の出口端部に接続された出口壁面を備え、前記出口壁面は、前記出口端部から前記供給流路が延びる方向と直交する方向に引いた出口仮想線よりも、前記受け部側に傾斜してもよい。   The inspection chip includes an outlet wall surface connected to a downstream outlet end portion of the first supply wall surface, and the outlet wall surface is pulled in a direction orthogonal to a direction in which the supply flow path extends from the outlet end portion. You may incline to the said receiving part side rather than an exit virtual line.

前記検査チップにおいて、前記形成方向の反対方向側からn番目の前記供給流路における前記第一供給壁面は、n−1番目の前記供給流路における前記出口端部から引いた前記出口仮想線より前記受け部側に位置してもよい。   In the inspection chip, the first supply wall surface in the nth supply channel from the opposite side of the forming direction is from the exit virtual line drawn from the outlet end portion in the n−1th supply channel. You may be located in the said receiving part side.

本発明の第二の態様に係る検査システムは、検査チップと、前記検査チップを所定の第一軸を中心に回転させることにより前記検査チップに遠心力を作用させ、且つ、前記第一軸とは異なる第二軸を中心に前記検査チップを回転させることにより前記遠心力の方向を変化させる検査装置とから構成される検査システムであって、前記検査チップは、酵素反応のための基質溶液が注入される基質溶液注入部と、前記基質溶液注入部よりも下流に配置され、洗浄液が注入される洗浄液注入部と、前記洗浄液注入部よりも下流に配置され、検査対象物質を含む検査液体が注入される検査液体注入部と、前記検査液体注入部よりも下流に配置され、前記基質溶液注入部に注入された前記基質溶液と、前記洗浄液注入部に注入された前記洗浄液と、前記検査液体注入部に注入された前記検査液体とが流入する受け部と、前記受け部よりも下流に配置され、抗原抗体反応のためのビーズが保持されるビーズ保持部と、前記ビーズ保持部よりも下流に配置され、前記検査液体と前記ビーズとに反応した前記基質溶液を含む反応液が測定される測定部と、前記測定部よりも下流に配置された廃液部とを備え、前記基質溶液注入部、前記洗浄液注入部、前記検査液体注入部、前記受け部、及び前記測定部は同じ形成方向に凹む形状であり、前記受け部は、前記ビーズ保持部に繋がり、前記形成方向に並んだ複数の供給流路を備え、前記複数の供給流路は、前記形成方向側の前記供給流路ほど、前記形成方向に対して大きな角度で延び、前記検査装置は、前記受け部から前記ビーズ保持部へ、前記複数の供給流路のいずれかを介して前記洗浄液を供給する場合に、前記形成方向に向けて前記検査チップに前記遠心力を作用させる第一動作と、前記形成方向とは異なる方向に向けて前記検査チップに前記遠心力を作用させる第二動作とを繰り返し実行する作用手段を備え、前記作用手段は、n回目の前記第二動作を行う場合に、前記遠心力を作用させる方向と前記形成方向とがなす角度が、前記形成方向の反対方向側からn番目の前記供給流路が延びる方向に垂直な方向と前記形成方向とがなす角度以上、且つ、n+1番目の前記供給流路が延びる方向に垂直な方向と前記形成方向とがなす角度より小さい範囲になる方向に、前記遠心力を作用させる。   The inspection system according to the second aspect of the present invention includes an inspection chip, a centrifugal force acting on the inspection chip by rotating the inspection chip about a predetermined first axis, and the first axis. Is an inspection system configured to change the direction of the centrifugal force by rotating the inspection chip around a different second axis, and the inspection chip has a substrate solution for an enzyme reaction. A substrate solution injection part to be injected, a cleaning liquid injection part which is arranged downstream of the substrate solution injection part and into which a cleaning liquid is injected, and a test liquid which is arranged downstream of the cleaning liquid injection part and which includes a test target substance. An inspection liquid injection part to be injected; the substrate solution which is disposed downstream of the inspection liquid injection part and injected into the substrate solution injection part; the cleaning liquid injected into the cleaning liquid injection part; From the receiving part into which the test liquid injected into the inspection liquid injection part flows, a bead holding part arranged downstream of the receiving part and holding beads for antigen-antibody reaction, from the bead holding part And a measuring part for measuring a reaction liquid containing the substrate solution reacted with the test liquid and the beads, and a waste liquid part arranged downstream of the measuring part, and the substrate solution The injection part, the cleaning liquid injection part, the inspection liquid injection part, the receiving part, and the measurement part are recessed in the same forming direction, and the receiving part is connected to the bead holding part and arranged in the forming direction. A plurality of supply channels, and the plurality of supply channels extend at a larger angle with respect to the forming direction as the supply channel on the forming direction side, and the inspection apparatus holds the beads from the receiving portion. To the part When supplying the cleaning liquid via any of the supply flow paths, a first operation for applying the centrifugal force to the inspection chip in the formation direction and the inspection in a direction different from the formation direction An action means for repeatedly executing the second operation for applying the centrifugal force to the chip, and the action means includes a direction for applying the centrifugal force and a forming direction when performing the second operation of the second time. Is at least an angle formed by a direction perpendicular to the direction in which the nth supply channel extends from the opposite side of the formation direction and the formation direction, and in a direction in which the n + 1th supply channel extends. The centrifugal force is applied in a direction that is smaller than an angle formed by a vertical direction and the forming direction.

この場合、受け部には洗浄液が流入する。複数の供給流路は、形成方向側の供給流路ほど、形成方向に対して大きな角度で延びる。検査装置の作用手段は、第一動作と第二動作を繰り返し、洗浄液を供給流路からビーズ保持部に流出させる。このとき、作用手段は、n回目の第二動作を行う場合に、遠心力を作用させる方向と前記形成方向とがなす角度が、形成方向の反対方向側からn番目の供給流路が延びる方向に垂直な方向と形成方向とがなす角度以上、且つ、n+1番目の供給流路が延びる方向に垂直な方向と形成方向とがなす角度より小さい範囲になる方向に、遠心力を作用させる。このため、形成方向側の反対方向側の供給流路から順番に洗浄液をビーズ保持部に供給することができる。よって、遠心力の作用を停止することなくビーズを多段階洗浄することができる。故に、遠心力の作用が停止されて試薬が拡散することがなく、検査精度が低下する可能性を低減できる   In this case, the cleaning liquid flows into the receiving portion. The plurality of supply channels extend at a larger angle with respect to the formation direction as the supply channel on the formation direction side. The action means of the inspection apparatus repeats the first operation and the second operation, and causes the cleaning liquid to flow out from the supply channel to the bead holding unit. At this time, when the action means performs the n-th second operation, the angle formed by the direction in which the centrifugal force is applied and the forming direction is a direction in which the n-th supply flow channel extends from the opposite side of the forming direction. The centrifugal force is applied in a direction that is equal to or greater than the angle formed by the direction perpendicular to the forming direction and the direction formed by the direction perpendicular to the direction in which the (n + 1) th supply channel extends and the forming direction. For this reason, a washing | cleaning liquid can be sequentially supplied to a bead holding part from the supply flow path of the opposite direction side of a formation direction side. Therefore, the beads can be washed in multiple stages without stopping the action of the centrifugal force. Therefore, the action of the centrifugal force is stopped, the reagent does not diffuse, and the possibility that the inspection accuracy is lowered can be reduced.

検査装置1及び制御装置90を含む検査システム3の構成を示す図である。It is a figure which shows the structure of the test | inspection system 3 containing the test | inspection apparatus 1 and the control apparatus 90. FIG. 検査チップ2の正面図である。It is a front view of the test | inspection chip 2. FIG. 検査チップ2の要部拡大図である。It is a principal part enlarged view of the test | inspection chip 2. FIG. 遠心処理のフローチャートである。It is a flowchart of a centrifugation process. 遠心処理における検査チップ2の状態遷移図である。It is a state transition diagram of the test | inspection chip 2 in a centrifugation process. 図5の続きの状態遷移図である。FIG. 6 is a continuation state transition diagram of FIG. 5. 図6の続きの状態遷移図である。FIG. 7 is a state transition diagram continued from FIG. 6. 図7の続きの状態遷移図である。FIG. 8 is a state transition diagram continued from FIG. 7. 洗浄液93が受け部20に流入する状態を示す検査チップ2の要部拡大図である。FIG. 4 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 93 flows into the receiving unit 20. 洗浄液93が供給流路21から流れる状態を示す検査チップ2の要部拡大図である。3 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 93 flows from a supply flow path 21. FIG. 洗浄液931が取り出し流路412から流れる状態を示す検査チップ2の要部拡大図である。FIG. 4 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 931 flows from a take-out channel 412. 洗浄液93が供給流路22から流れる状態を示す検査チップ2の要部拡大図である。FIG. 4 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 93 flows from a supply channel 22. 洗浄液93が供給流路23から流れる状態を示す検査チップ2の要部拡大図である。FIG. 4 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 93 flows from a supply channel 23. 洗浄液93が供給流路24から流れる状態を示す検査チップ2の要部拡大図である。3 is an enlarged view of a main part of the inspection chip 2 showing a state in which a cleaning liquid 93 flows from a supply flow path 24. FIG.

本発明を具体化した実施形態について、図面を参照して説明する。尚、図1は、検査システム3を構成する検査装置1の平面及び制御装置90の内部の機能ブロックを示している。   DESCRIPTION OF EMBODIMENTS Embodiments embodying the present invention will be described with reference to the drawings. FIG. 1 shows a plane of the inspection apparatus 1 constituting the inspection system 3 and functional blocks inside the control apparatus 90.

<1.検査システム3の概略構造>
図1を参照して、検査システム3の概略構造について説明する。本実施形態の検査システム3は、液体である試薬を収容可能な検査チップ2と、検査チップ2を用いて検査を行う検査装置1とを含む。検査装置1が検査チップ2から離間した垂直軸線A1を中心として検査チップ2を回転させると、遠心力が検査チップ2に作用する。検査装置1が水平軸線A2を中心に検査チップ2を回転させると、検査チップ2に作用する遠心力の方向である遠心方向が切り替えられる。尚、本実施形態の検査システム3及び検査装置1は、特開2012−78107号公報に記載されているように周知の構造であるので、以下の説明では、検査装置1の構造の概略について説明する。
<1. Schematic structure of inspection system 3>
A schematic structure of the inspection system 3 will be described with reference to FIG. The inspection system 3 of the present embodiment includes an inspection chip 2 that can store a reagent that is a liquid, and an inspection device 1 that performs inspection using the inspection chip 2. When the inspection device 1 rotates the inspection chip 2 around the vertical axis A <b> 1 separated from the inspection chip 2, centrifugal force acts on the inspection chip 2. When the inspection apparatus 1 rotates the inspection chip 2 around the horizontal axis A2, the centrifugal direction, which is the direction of the centrifugal force acting on the inspection chip 2, is switched. In addition, since the inspection system 3 and the inspection apparatus 1 of this embodiment have a known structure as described in JP 2012-78107 A, in the following description, an outline of the structure of the inspection apparatus 1 will be described. To do.

<2.検査装置1の構造>
図1を参照して、検査装置1の構造について説明する。以下の説明では、図1の上方、下方、右方、左方、紙面手前側、及び紙面奥側を、夫々、検査装置1の前方、後方、右方、左方、上方、及び下方とする。本実施形態では、垂直軸線A1の方向は検査装置1の上下方向であり、水平軸線A2の方向は、検査チップ2が垂直軸線A1を中心として回転される際の速度の方向である。尚、図1は検査装置1の上部筐体30の天板が取り除かれた状態を示す。
<2. Structure of the inspection apparatus 1>
The structure of the inspection apparatus 1 will be described with reference to FIG. In the following description, the upper side, the lower side, the right side, the left side, the front side of the paper surface, and the rear side of the paper surface in FIG. . In the present embodiment, the direction of the vertical axis A1 is the vertical direction of the inspection apparatus 1, and the direction of the horizontal axis A2 is the direction of the speed when the inspection chip 2 is rotated about the vertical axis A1. FIG. 1 shows a state in which the top plate of the upper housing 30 of the inspection apparatus 1 has been removed.

図1に示すように、検査装置1は、上部筐体30、下部筐体29、上板32、ターンテーブル33、角度変更機構34、及び制御装置90を備える。ターンテーブル33は、後述する上板32の上側に回転可能に設けられた円盤である。検査チップ2は、ターンテーブル33の上方に保持される。角度変更機構34は、ターンテーブル33に設けられた駆動機構である。この角度変更機構34は、水平軸線A2を中心に検査チップ2を各々回転させる。上部筐体30は、後述する上板32に固定されており、検査チップ2に対して光学測定を行う測定部7が内部に設けられている。制御装置90は、検査装置1の各種処理を制御するコントローラである。   As shown in FIG. 1, the inspection apparatus 1 includes an upper housing 30, a lower housing 29, an upper plate 32, a turntable 33, an angle changing mechanism 34, and a control device 90. The turntable 33 is a disk rotatably provided on the upper side of an upper plate 32 described later. The inspection chip 2 is held above the turntable 33. The angle changing mechanism 34 is a drive mechanism provided on the turntable 33. The angle changing mechanism 34 rotates the inspection chip 2 around the horizontal axis A2. The upper housing 30 is fixed to an upper plate 32 described later, and a measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside. The control device 90 is a controller that controls various processes of the inspection device 1.

下部筐体29の概略構造を説明する。下部筐体29は、枠部材を組み合わせた箱状のフレーム構造を有する。下部筐体29の上面には、長方形の板材である上板32が設けられている。下部筐体29の内部には、垂直軸線A1を中心にターンテーブル33を回転させる駆動機構が、次のように設けられている。   A schematic structure of the lower housing 29 will be described. The lower housing 29 has a box-like frame structure in which frame members are combined. An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 29. A drive mechanism for rotating the turntable 33 around the vertical axis A1 is provided in the lower housing 29 as follows.

下部筐体29内の左方寄りに、ターンテーブル33を回転させるための駆動力を供給する主軸モータ35が設置されている。主軸モータ35の軸36は、上方に突出しており、プーリ37が固定されている。下部筐体29の中央部には、下部筐体29の内部から上方に延びる垂直な主軸57が設けられている。主軸57は、上板32を貫通して、下部筐体29の上側に突出している。主軸57の上端部は、ターンテーブル33の中央部に接続されている。   A spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 29. A shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed. A vertical main shaft 57 extending upward from the inside of the lower housing 29 is provided at the center of the lower housing 29. The main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 29. The upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.

主軸57は、上板32の直下に設けられた図示しない支持部材により、回転自在に保持されている。支持部材の下側では、主軸57にプーリ38が固定されている。プーリ37とプーリ38とに亘って、ベルト39が掛け渡されている。主軸モータ35が軸36を回転させると、プーリ37、ベルト39、及びプーリ38を介して駆動力が主軸57に伝達される。このとき、主軸57の回転に連動して、ターンテーブル33が主軸57を中心に回転する。   The main shaft 57 is rotatably held by a support member (not shown) provided immediately below the upper plate 32. A pulley 38 is fixed to the main shaft 57 below the support member. A belt 39 is stretched over the pulley 37 and the pulley 38. When the main shaft motor 35 rotates the shaft 36, the driving force is transmitted to the main shaft 57 via the pulley 37, the belt 39, and the pulley 38. At this time, the turntable 33 rotates around the main shaft 57 in conjunction with the rotation of the main shaft 57.

下部筐体29内の右方寄りに、下部筐体29の内部において上下方向に延びる図示しないガイドレールが設けられている。図示しないT型プレートは、ガイドレールに沿って下部筐体29内において上下方向に移動可能である。   A guide rail (not shown) extending in the vertical direction inside the lower housing 29 is provided on the right side in the lower housing 29. A T-shaped plate (not shown) is movable in the vertical direction in the lower housing 29 along the guide rail.

先述の主軸57は、内部が中空の筒状体である。図示しない内軸は、主軸57の内部において上下方向に移動可能な軸である。内軸の上端部は、主軸57内を貫通してラックギア43に接続されている。T型プレートの左端部には、図示しない軸受が設けられている。軸受の内部では、内軸の下端部が回転自在に保持される。   The aforementioned main shaft 57 is a cylindrical body having a hollow inside. An inner shaft (not shown) is a shaft that can move in the vertical direction inside the main shaft 57. The upper end portion of the inner shaft passes through the main shaft 57 and is connected to the rack gear 43. A bearing (not shown) is provided at the left end of the T-shaped plate. Inside the bearing, the lower end portion of the inner shaft is rotatably held.

T型プレートの前方には、T型プレートを上下動させるためのステッピングモータ51が固定されている。ステッピングモータ51の軸58は後方、すなわち図1では下方側に向けて突出している。軸58の先端には、図示しない円盤状のカム板が固定されている。カム板の後側の面には、図示しない円柱状の突起が設けられている。突起の先端部は、図示しない溝部に挿入されている。突起は、溝部内を摺動可能である。ステッピングモータ51が軸58を回転させると、カム板の回転に連動して突起が上下動する。このとき、溝部に挿入されている突起に連動して、T型プレートがガイドレールに沿って上下動する。   A stepping motor 51 for moving the T-shaped plate up and down is fixed in front of the T-shaped plate. The shaft 58 of the stepping motor 51 protrudes rearward, that is, downward in FIG. A disc-shaped cam plate (not shown) is fixed to the tip of the shaft 58. A cylindrical projection (not shown) is provided on the rear surface of the cam plate. The tip of the protrusion is inserted into a groove (not shown). The protrusion can slide in the groove. When the stepping motor 51 rotates the shaft 58, the protrusion moves up and down in conjunction with the rotation of the cam plate. At this time, the T-shaped plate moves up and down along the guide rail in conjunction with the protrusion inserted in the groove.

角度変更機構34の詳細構造を説明する。角度変更機構34は、ターンテーブル33の上面に固定された一対のL型プレート60を有する。各L型プレート60は、ターンテーブル33の中心近傍に固定された基部から上方に延び、且つ、その上端部がターンテーブル33の径方向外側に向けて延びている。一対のL型プレート60の間には、内軸に固定された図示しないラックギア43が設けられている。ラックギア43は、上下方向に長い金属製の板状部材であり、両端面にギアが各々刻まれている。   The detailed structure of the angle changing mechanism 34 will be described. The angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33. A rack gear 43 (not shown) fixed to the inner shaft is provided between the pair of L-shaped plates 60. The rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.

各L型プレート60の延設方向の先端側では、ギア45を有する水平な支軸46が回転自在に軸支されている。支軸46は図示外の装着用ホルダを介して検査チップ2に固定されている。このため、ギア45の回転に連動して検査チップ2も支軸46を中心に回転する。ギア45とラックギア43との間には、L型プレート60により図示略の水平軸線を中心に回転自在に支持されたピニオンギア44が介在している。ピニオンギア44は、ギア45及びラックギア43に夫々噛合している。ラックギア43の上下動に連動して、ピニオンギア44、及びギア45が夫々従動回転し、ひいては検査チップ2が支軸46を中心に回転する。   On the front end side in the extending direction of each L-shaped plate 60, a horizontal support shaft 46 having a gear 45 is rotatably supported. The support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45. Between the gear 45 and the rack gear 43, a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis (not shown) is interposed. The pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 is rotated about the support shaft 46.

本実施形態では、主軸モータ35がターンテーブル33を回転駆動するのに伴って、検査チップ2が垂直軸である主軸57を中心に回転して、検査チップ2に遠心力が作用される。検査チップ2の垂直軸線A1を中心とした回転を、公転と呼ぶ。一方、ステッピングモータ51が内軸を上下動させるのに伴って、検査チップ2が水平軸である支軸46を中心に回転して、検査チップ2に作用する遠心力の方向が相対変化する。検査チップ2の水平軸線A2を中心とした回転を、自転と呼ぶ。   In the present embodiment, as the main shaft motor 35 rotationally drives the turntable 33, the inspection chip 2 rotates around the main shaft 57 that is a vertical axis, and a centrifugal force acts on the inspection chip 2. The rotation around the vertical axis A1 of the inspection chip 2 is referred to as revolution. On the other hand, as the stepping motor 51 moves the inner shaft up and down, the inspection chip 2 rotates about the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively. The rotation around the horizontal axis A2 of the inspection chip 2 is called autorotation.

T型プレートが可動範囲の最下端まで下降した状態では、ラックギア43も可動範囲の最下端まで下降する。このとき、検査チップ2は、自転角度が0度の定常状態になる。また、T型プレートが可動範囲の最上端まで上昇した状態では、ラックギア43も可動範囲の最上端まで上昇する。このとき、検査チップ2は、定常状態から水平軸線A2を中心に180度回転した状態になる。つまり、本実施形態では検査チップ2が自転可能な角度幅は、自転角度0度〜180度である。   In a state where the T-shaped plate is lowered to the lowermost end of the movable range, the rack gear 43 is also lowered to the lowermost end of the movable range. At this time, the inspection chip 2 is in a steady state where the rotation angle is 0 degree. Further, in the state where the T-shaped plate is raised to the uppermost end of the movable range, the rack gear 43 is also raised to the uppermost end of the movable range. At this time, the test | inspection chip 2 will be in the state rotated 180 degree | times centering on the horizontal axis line A2 from the steady state. That is, in this embodiment, the angle width that the test chip 2 can rotate is the rotation angle of 0 degrees to 180 degrees.

上部筐体30の詳細構造を説明する。図1に示すように、上部筐体30は、枠部材を組み合わせた箱状のフレーム構造を有し、上板32の左部上側に設置されている。より詳細には、上部筐体30は、ターンテーブル33の回転中心にある主軸57からみて、検査チップ2が回転される範囲の外側に設けられている。   The detailed structure of the upper housing 30 will be described. As shown in FIG. 1, the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.

上部筐体30の内部に設けられた測定部7は、測定光を発光する光源71と、光源71から発せられた測定光を検出する光センサ72とを有する。光源71及び光センサ72は、検査チップ2の回転範囲の外側において、ターンテーブル33の前後両側に配置されている。本実施形態では、検査チップ2の公転可能範囲のうちで主軸57の左側位置が、検査チップ2に測定光が照射される測定位置である。検査チップ2が測定位置にある場合、光源71と光センサ72とを結ぶ測定光が、検査チップ2の前面及び後面に対して略垂直に交差する。   The measurement unit 7 provided inside the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71. The light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2. In the present embodiment, the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light. When the inspection chip 2 is at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 intersects the front surface and the rear surface of the inspection chip 2 substantially perpendicularly.

<3.制御装置90の電気的構成>
図1を参照して、制御装置90の電気的構成について説明する。制御装置90は、検査装置1の主制御を司るCPU101と、各種データを一時的に記憶するRAM102と、制御プログラムを記憶したROM103とを有する。CPU101には、ユーザが制御装置90に対する指示を入力するための操作部104と、各種データ、及びプログラムを記憶するハードディスク装置105と、各種情報を表示するディスプレイ106とが接続されている。制御装置90としては、パーソナルコンピュータを用いてもよいし、専用の制御装置を用いてもよい。
<3. Electrical configuration of control device 90>
The electrical configuration of the control device 90 will be described with reference to FIG. The control device 90 includes a CPU 101 that controls the main control of the inspection device 1, a RAM 102 that temporarily stores various data, and a ROM 103 that stores a control program. Connected to the CPU 101 are an operation unit 104 for a user to input an instruction to the control device 90, a hard disk device 105 for storing various data and programs, and a display 106 for displaying various information. As the control device 90, a personal computer may be used, or a dedicated control device may be used.

さらに、CPU101には、公転コントローラ97、自転コントローラ98、及び測定コントローラ99が接続されている。公転コントローラ97は、主軸モータ35を回転駆動させる制御信号を主軸モータ35に送信することによって、検査チップ2の公転を制御する。自転コントローラ98は、ステッピングモータ51を回転駆動させる制御信号をステッピングモータ51に送信することによって、検査チップ2の自転を制御する。測定コントローラ99は、測定部7を駆動することによって、検査チップ2の光学測定を実行する。詳細には、測定コントローラ99は、光源71の発光、及び光センサ72の光検出を実行させる制御信号を、光源71及び光センサ72に送信する。尚、CPU101が公転コントローラ97、自転コントローラ98及び測定コントローラ99を制御する。   Further, a revolution controller 97, a rotation controller 98, and a measurement controller 99 are connected to the CPU 101. The revolution controller 97 controls the revolution of the inspection chip 2 by transmitting a control signal for rotating the spindle motor 35 to the spindle motor 35. The rotation controller 98 controls the rotation of the inspection chip 2 by transmitting a control signal for rotating the stepping motor 51 to the stepping motor 51. The measurement controller 99 performs the optical measurement of the inspection chip 2 by driving the measurement unit 7. Specifically, the measurement controller 99 transmits a control signal for executing light emission of the light source 71 and light detection of the optical sensor 72 to the light source 71 and the optical sensor 72. The CPU 101 controls the revolution controller 97, the rotation controller 98, and the measurement controller 99.

<4.検査チップ2の構造>
図2及び図3を参照して、本実施形態に係る検査チップ2の詳細構造を説明する。以下の説明では、図2の上方、下方、左方、右方、紙面手前側、及び紙面奥側を、それぞれ、検査チップ2の上方、下方、左方、右方、前方、及び後方とする。本実施形態では、検査チップ2が使用され、ELISA法によって検査が行われる。ELISAは、Enzyme−linked immunosorbent assayの略である。
<4. Structure of inspection chip 2>
With reference to FIG.2 and FIG.3, the detailed structure of the test | inspection chip 2 which concerns on this embodiment is demonstrated. In the following description, the upper, lower, left, right, front side, and back side of FIG. 2 are the upper, lower, left, right, front, and rear sides of the inspection chip 2, respectively. . In the present embodiment, the inspection chip 2 is used, and the inspection is performed by the ELISA method. ELISA is an abbreviation for Enzyme-linked immunosorbent assay.

図2に示すように、検査チップ2は一例として前方から見た場合に上辺部81、下辺部84、右辺部82、及び左辺部83を有する正方形状であり、所定の厚みを有する透明な合成樹脂の板材19を主体とする。図2に示すように、板材19の前面203は、透明の合成樹脂の薄板から構成されたシート291によって封止されている。板材19とシート291との間には、検査チップ2に封入された液体が流動可能な液体流路25が形成されている。液体流路25は、板材19の前面203に所定深さに形成された凹部であり、板材19の厚み方向である前後方向と直交する方向に延びる。シート291は、板材19の流路形成面を封止する。シート291は、図2以外では図示を省略している。   As shown in FIG. 2, the inspection chip 2 has a square shape having an upper side portion 81, a lower side portion 84, a right side portion 82, and a left side portion 83 when viewed from the front as an example, and is a transparent composite having a predetermined thickness. Resin plate 19 is mainly used. As shown in FIG. 2, the front surface 203 of the plate 19 is sealed with a sheet 291 made of a transparent synthetic resin thin plate. Between the plate material 19 and the sheet 291, a liquid flow path 25 is formed through which the liquid sealed in the inspection chip 2 can flow. The liquid channel 25 is a recess formed at a predetermined depth on the front surface 203 of the plate material 19 and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate material 19. The sheet 291 seals the flow path forming surface of the plate material 19. The sheet 291 is not shown except in FIG.

液体流路25は、4つの測定流路251〜254を含む。測定流路251〜254は、夫々、左から右方向に並んで設けられている。測定流路251〜254は、互いに同じ流路を有するので、以下の説明では、測定流路251について説明する。   The liquid channel 25 includes four measurement channels 251 to 254. The measurement channels 251 to 254 are provided side by side from the left to the right, respectively. Since the measurement flow paths 251 to 254 have the same flow path, the measurement flow path 251 will be described in the following description.

測定流路251は、反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、検査液体注入部370、受け部20、余剰部390、ビーズ保持部410、取り出し流路412、測定部430、廃液部440、及び供給部320,340,360,380,400,420等を含む。反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、検査液体注入部370、ビーズ保持部410、及び測定部430は、互いに同じ方向である下方向に凹んで形成されている。以下の説明では、反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、検査液体注入部370、受け部20、ビーズ保持部410、及び測定部430が凹む方向である下方向を、形成方向という場合がある。また、上方向を、形成方向の反対方向という場合がある。   The measurement flow path 251 includes a reaction stop liquid injection section 310, a substrate solution injection section 330, a cleaning liquid injection section 350, a test liquid injection section 370, a receiving section 20, a surplus section 390, a bead holding section 410, an extraction flow path 412, and a measurement section. 430, a waste liquid section 440, and supply sections 320, 340, 360, 380, 400, 420, and the like. The reaction stop liquid injection unit 310, the substrate solution injection unit 330, the cleaning liquid injection unit 350, the test liquid injection unit 370, the bead holding unit 410, and the measurement unit 430 are formed to be recessed downward in the same direction. In the following description, the reaction stop liquid injection unit 310, the substrate solution injection unit 330, the cleaning liquid injection unit 350, the test liquid injection unit 370, the receiving unit 20, the bead holding unit 410, and the measurement unit 430 are in the downward direction. , Sometimes referred to as the formation direction. Further, the upward direction may be referred to as a direction opposite to the forming direction.

反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、検査液体注入部370、及びビーズ保持部410は、夫々、反応停止液91、基質溶液92、洗浄液93、検査液体94、及びビーズ分散液95が貯留される部位である。ビーズ分散液95は、抗原抗体反応のためのビーズ31を含む液体である。ビーズ31は、球状であり、表面に固相化された抗体を有する。本実施形態では、一例として、ビーズ31は直径100μmのポリスチレンビーズであるとする。検査液体94は、例えば、血液、血漿、血球、骨髄、尿、膣組織、上皮組織、腫瘍、精液、唾液、又は食料品などの成分を含む液体である。また、検査液体94は、酵素標識抗体を含む。酵素標識抗体は、検査対象の物質とビーズ31の抗体との結合体に特異的に結合する、酵素で標識された抗体である。検査液体94が、ビーズ31に接触すると、ビーズ31に固相化された抗体に、検査液体94に含まれる検査対象の物質が結合し、さらに、検査対象の物質とビーズ31の抗体との結合体に酵素標識抗体が特異的に結合する。   The reaction stop solution injection unit 310, the substrate solution injection unit 330, the cleaning solution injection unit 350, the test liquid injection unit 370, and the bead holding unit 410 are respectively a reaction stop solution 91, a substrate solution 92, a cleaning solution 93, a test liquid 94, and This is a site where the bead dispersion 95 is stored. The bead dispersion 95 is a liquid containing beads 31 for antigen-antibody reaction. The beads 31 are spherical and have antibodies immobilized on the surface. In this embodiment, as an example, it is assumed that the beads 31 are polystyrene beads having a diameter of 100 μm. The test liquid 94 is a liquid containing components such as blood, plasma, blood cells, bone marrow, urine, vaginal tissue, epithelial tissue, tumor, semen, saliva, or food. The test liquid 94 includes an enzyme-labeled antibody. The enzyme-labeled antibody is an antibody labeled with an enzyme that specifically binds to a conjugate of the substance to be examined and the antibody of the beads 31. When the test liquid 94 comes into contact with the bead 31, the test target substance contained in the test liquid 94 is bound to the antibody solid-phased on the bead 31, and further, the test target substance and the antibody of the bead 31 are bound. The enzyme-labeled antibody specifically binds to the body.

洗浄液93は、ビーズ31を洗浄する液体であり、ビーズ31の抗体に結合していない検査液体94の成分を除去する。詳細は後述するが、本実施形態では、洗浄液93によって複数回洗浄を行う多段階洗浄が実行される。基質溶液92は、洗浄液93によって洗浄された後のビーズ31に接触し、酵素標識抗体と酵素反応する液体である。反応停止液91は、基質溶液92と混合される液体であり、酵素反応が進行するのを停止する液体である。本実施形態では、後述する光学測定において、基質溶液92が酵素反応することによって生じる蛍光物質又は呈色物質を検出して、検査対象の物質を測定することができる。以下の説明では、反応停止液91、基質溶液92、洗浄液93、検査液体94、及びビーズ分散液95を総称する場合、又は、いずれかを特定しない場合、試薬9という。   The cleaning liquid 93 is a liquid for cleaning the beads 31 and removes components of the test liquid 94 that are not bound to the antibodies of the beads 31. Although details will be described later, in this embodiment, multi-stage cleaning is performed in which cleaning is performed a plurality of times with the cleaning liquid 93. The substrate solution 92 is a liquid that comes into contact with the beads 31 after being washed with the washing solution 93 and undergoes an enzyme reaction with the enzyme-labeled antibody. The reaction stop liquid 91 is a liquid mixed with the substrate solution 92 and is a liquid that stops the progress of the enzyme reaction. In the present embodiment, in the optical measurement described later, a fluorescent substance or a colored substance generated by the enzyme reaction of the substrate solution 92 can be detected to measure the substance to be inspected. In the following description, the reaction stop solution 91, the substrate solution 92, the cleaning solution 93, the test solution 94, and the bead dispersion 95 are collectively referred to as “reagent 9” or when any of them is not specified.

反応停止液注入部310は、検査チップ2の左上部に設けられている。反応停止液注入部310は、上方に開口する凹部である。供給部320は、反応停止液注入部310の右上部分から下方向に延びる流路である。供給部320の左下部は、基質溶液注入部330に繋がっている。即ち、基質溶液注入部330は、反応停止液注入部310よりも下流に配置されている。   The reaction stop liquid injection unit 310 is provided in the upper left part of the inspection chip 2. The reaction stop liquid injection unit 310 is a recess that opens upward. The supply unit 320 is a flow path that extends downward from the upper right portion of the reaction stop liquid injection unit 310. The lower left portion of the supply unit 320 is connected to the substrate solution injection unit 330. That is, the substrate solution injection unit 330 is disposed downstream of the reaction stop solution injection unit 310.

基質溶液注入部330は、上方に開口する凹部である。供給部340は、基質溶液注入部330の右上部分から下方向に延びる流路である。供給部340の左下部は、洗浄液注入部350に繋がっている。即ち、洗浄液注入部350は、基質溶液注入部330よりも下流に配置されている。   The substrate solution injection part 330 is a concave part that opens upward. The supply unit 340 is a flow path extending downward from the upper right part of the substrate solution injection unit 330. The lower left portion of the supply unit 340 is connected to the cleaning liquid injection unit 350. That is, the cleaning liquid injection unit 350 is disposed downstream of the substrate solution injection unit 330.

洗浄液注入部350は、上方に開口する凹部である。洗浄液注入部350を形成する面のうち、後述する検査液体注入部370に繋がる面を形成面351という。供給部360は、洗浄液注入部350の右上部分から下方向に延びる流路である。供給部360の左下部は、検査液体注入部370に繋がっている。即ち、検査液体注入部370は、洗浄液注入部350よりも下流に配置されている。   The cleaning liquid injection unit 350 is a recess that opens upward. Of the surfaces on which the cleaning liquid injection portion 350 is formed, the surface connected to the test liquid injection portion 370 described later is referred to as a formation surface 351. The supply unit 360 is a flow path extending downward from the upper right part of the cleaning liquid injection unit 350. The lower left portion of the supply unit 360 is connected to the test liquid injection unit 370. That is, the test liquid injection part 370 is arranged downstream of the cleaning liquid injection part 350.

検査液体注入部370は、上方に開口する凹部である。検査液体注入部370を形成する面のうち、後述する受け部20に繋がる面を形成面371という。供給部380は、検査液体注入部370の右上部分から下方向に延びる流路である。供給部380の左下部は、受け部20に繋がっている。即ち、受け部20は、検査液体注入部370よりも下流に配置されている。   The inspection liquid injection part 370 is a recess that opens upward. Of the surfaces on which the test liquid injection part 370 is formed, the surface connected to the receiving part 20 described later is referred to as a formation surface 371. The supply unit 380 is a flow path that extends downward from the upper right portion of the test liquid injection unit 370. The lower left portion of the supply unit 380 is connected to the receiving unit 20. That is, the receiving part 20 is disposed downstream of the test liquid injection part 370.

受け部20は、反応停止液91、基質溶液92、洗浄液93、及び検査液体94が流入する部位である。受け部20は、貯留部201とn個の供給流路200を備えている。尚、nは、2以上の自然数であり、供給流路200は複数設けられている。本実施形態では、nは4であるとし、夫々の供給流路200を供給流路21〜24という。貯留部201は、上方に開口し、右下方に凹む凹部である。供給流路21〜24は、形成方向の反対方向側から、形成方向に順番に並んでおり、右上方に延びる。供給流路21〜24は、後述する供給部400を介して後述するビーズ保持部410に繋がる。   The receiving part 20 is a part into which the reaction stop liquid 91, the substrate solution 92, the cleaning liquid 93, and the test liquid 94 flow. The receiving unit 20 includes a storage unit 201 and n supply channels 200. Note that n is a natural number of 2 or more, and a plurality of supply flow paths 200 are provided. In the present embodiment, n is 4, and each supply channel 200 is referred to as a supply channel 21 to 24. The storage unit 201 is a recess that opens upward and is recessed downward to the right. The supply flow paths 21 to 24 are arranged in order in the formation direction from the opposite side of the formation direction, and extend to the upper right. The supply flow paths 21 to 24 are connected to a bead holding unit 410 described later via a supply unit 400 described later.

図3に示すように、供給流路21〜24の夫々が延びる方向と形成方向とがなす角度を、夫々、角度R1〜R4とする。供給流路21〜24は、形成方向側の供給流路ほど、形成方向に対して大きな角度で延びる。即ち、角度R1<角度R2<角度R3<角度R4の関係が成り立つ。本実施形態では、一例として、角度R1〜R4は、夫々、135度、150度、160度、及び170度であるとする。また、検査液体注入部370の形成面371と形成方向とがなす角度R20は、複数の供給流路21〜24のうち、形成方向側から2番目の供給流路23が延びる方向と形成方向とがなす角度R3より大きい。本実施形態では、一例として、角度R20は、角度R4と同じ170度であるとする。また、洗浄液注入部350の形成面351と形成方向とがなす図2に示す角度R41は、角度R3より大きい。本実施形態では、一例として、角度R41は、角度R4と同じ170度であるとする。   As shown in FIG. 3, angles formed by the extending direction of the supply flow paths 21 to 24 and the forming direction are angles R1 to R4, respectively. The supply flow paths 21 to 24 extend at a larger angle with respect to the formation direction as the supply flow path is closer to the formation direction. That is, the relationship of angle R1 <angle R2 <angle R3 <angle R4 is established. In the present embodiment, as an example, it is assumed that the angles R1 to R4 are 135 degrees, 150 degrees, 160 degrees, and 170 degrees, respectively. In addition, an angle R20 formed by the formation surface 371 of the test liquid injection unit 370 and the formation direction is the direction in which the second supply flow path 23 extends from the formation direction side and the formation direction among the plurality of supply flow paths 21 to 24. Is greater than the angle R3 formed by. In the present embodiment, as an example, the angle R20 is assumed to be 170 degrees, which is the same as the angle R4. Further, an angle R41 shown in FIG. 2 formed by the formation surface 351 of the cleaning liquid injection portion 350 and the formation direction is larger than the angle R3. In the present embodiment, as an example, the angle R41 is assumed to be 170 degrees, which is the same as the angle R4.

図2及び図3に示すように、余剰部390は、受け部20に対して供給流路21〜24側の反対側である左側に設けられている。余剰部390は、受け部20から溢れた余剰の試薬9が貯留される部位である。   As shown in FIGS. 2 and 3, the surplus portion 390 is provided on the left side, which is the opposite side to the supply flow paths 21 to 24 with respect to the receiving portion 20. The surplus part 390 is a part where the surplus reagent 9 overflowing from the receiving part 20 is stored.

図3に示すように、供給部380から受け部20に繋がる面を第一案内面41という。第一案内面41は、検査液体注入部370と受け部20との間に位置している。第一案内面41における受け部20側の端部を第一端部411という。   As shown in FIG. 3, a surface connecting the supply unit 380 to the receiving unit 20 is referred to as a first guide surface 41. The first guide surface 41 is located between the test liquid injection part 370 and the receiving part 20. An end portion on the receiving portion 20 side in the first guide surface 41 is referred to as a first end portion 411.

受け部20の上部から余剰部390側に延びる面を第二案内面42という。第二案内面42は、受け部20の上部から左下方に延びる。第二案内面42における受け部20側の端部を第二端部421という。第二端部421から第一端部411に向かう方向と形成方向とがなす角度を角度R21という。第一案内面41と形成方向とがなす角度を角度R22という。角度R21は、形成方向の反対方向側の1番目の供給流路21が延びる方向と形成方向とがなす角度R1より大きい。また、角度R22は角度R1より小さい。   A surface extending from the upper portion of the receiving portion 20 toward the surplus portion 390 is referred to as a second guide surface 42. The second guide surface 42 extends downward from the upper portion of the receiving portion 20. An end portion on the receiving portion 20 side in the second guide surface 42 is referred to as a second end portion 421. An angle formed by the direction from the second end 421 toward the first end 411 and the forming direction is referred to as an angle R21. An angle formed by the first guide surface 41 and the formation direction is referred to as an angle R22. The angle R21 is larger than the angle R1 formed by the direction in which the first supply channel 21 on the side opposite to the formation direction extends and the formation direction. Further, the angle R22 is smaller than the angle R1.

図2に示すように、供給部400は、供給流路21〜24の右部から、下方向に延びる流路である。供給部400の左下部は、ビーズ保持部410に繋がっている。即ち、ビーズ保持部410は、受け部20よりも下流に設けられている。ビーズ保持部410は、上方に開口を有する凹部である。ビーズ保持部410は、複数のビーズ31を保持する部位である。ビーズ31は、ビーズ分散液95に含まれる。   As shown in FIG. 2, the supply unit 400 is a flow channel that extends downward from the right part of the supply flow channels 21 to 24. The lower left portion of the supply unit 400 is connected to the bead holding unit 410. That is, the bead holding unit 410 is provided downstream of the receiving unit 20. The bead holding part 410 is a recessed part having an opening upward. The bead holding unit 410 is a part that holds a plurality of beads 31. The beads 31 are included in the bead dispersion 95.

ビーズ保持部410は、形成方向側の端部に、流路が狭く形成された取り出し流路412を備えている。取り出し流路412は、右上方に延びる。取り出し流路412は、ビーズ31の直径である100μm以下の流路幅を有する。取り出し流路412は、後述する供給部420を介して後述する測定部430に繋がる。取り出し流路412が延びる方向と形成方向とがなす角度を角度R23という。角度R23は、複数の供給流路21〜24のうち、形成方向の反対方向側から2番目の供給流路22が延びる方向と形成方向とがなす角度R2より小さい。   The bead holding unit 410 includes an extraction channel 412 in which the channel is narrowly formed at the end on the formation direction side. The take-out flow path 412 extends to the upper right. The take-out channel 412 has a channel width of 100 μm or less, which is the diameter of the beads 31. The take-out channel 412 is connected to a measurement unit 430 described later via a supply unit 420 described later. An angle formed by the direction in which the take-out flow path 412 extends and the formation direction is referred to as an angle R23. The angle R23 is smaller than the angle R2 formed by the direction in which the second supply channel 22 extends from the direction opposite to the formation direction and the formation direction among the plurality of supply channels 21 to 24.

供給部420は、取り出し流路412の右上部から下方向に延びる流路である。供給部420の左下部は、測定部430に繋がっている。即ち、測定部430は、ビーズ保持部410よりも下流に配置されている。測定部430は、上方に開口する凹部である。後述する光学測定が行われる際には、測定部430に測定光が透過され、図8(S)に示す後述する測定溶液921が測定される。   The supply unit 420 is a channel that extends downward from the upper right part of the extraction channel 412. The lower left portion of the supply unit 420 is connected to the measurement unit 430. That is, the measurement unit 430 is disposed downstream of the bead holding unit 410. The measurement unit 430 is a recess that opens upward. When optical measurement to be described later is performed, measurement light is transmitted through the measurement unit 430, and a measurement solution 921 to be described later shown in FIG.

測定部430の右上部は、廃液部440に繋がっている。即ち、廃液部440は、測定部430よりも下流に配置されている。廃液部440は、測定部430において測定されない試薬9が測定部430から廃液される部位である。   The upper right part of the measurement part 430 is connected to the waste liquid part 440. That is, the waste liquid part 440 is disposed downstream of the measurement part 430. The waste liquid part 440 is a part where the reagent 9 that is not measured by the measurement part 430 is drained from the measurement part 430.

測定部430を形成する面の内、廃液部440に繋がる流路を形成する面を廃液流路面431という。廃液流路面431は右上方向に延びる。廃液流路面431が延びる方向と形成方向とがなす角度R24は、図2に示す角度R23より大きい。   Of the surfaces on which the measurement unit 430 is formed, a surface that forms a channel connected to the waste liquid unit 440 is referred to as a waste liquid channel surface 431. The waste liquid channel surface 431 extends in the upper right direction. An angle R24 formed by the direction in which the waste liquid flow path surface 431 extends and the formation direction is larger than the angle R23 shown in FIG.

供給流路21〜24について詳述する。図3に示すように、供給流路21〜24における形成方向側の面を、夫々、第一供給壁面211,221,231,241という。供給流路21〜24における形成方向の反対方向側である上側の面を第二供給壁面212,222,232,242という。第一供給壁面211,221,231,241における下流側の端部を、夫々、出口端部215,225,235,245という。   The supply channels 21 to 24 will be described in detail. As shown in FIG. 3, the surfaces on the formation direction side in the supply flow paths 21 to 24 are referred to as first supply wall surfaces 211, 221, 231, 241 respectively. The upper surface on the opposite side of the formation direction in the supply flow paths 21 to 24 is referred to as second supply wall surfaces 212, 222, 232, and 242. The downstream end portions of the first supply wall surfaces 211, 221, 231, and 241 are referred to as outlet end portions 215, 225, 235, and 245, respectively.

出口端部215,225,235,245には、夫々、出口壁面214,224,234,244が接続されている。出口壁面214,224,234,244は、夫々、右斜め下方に延びる。出口端部215,225,235,245から、供給流路21,22,23,24が延びる方向と直交する方向に引いた仮想線を、夫々、出口仮想線219,229,239,249という。出口壁面214,224,234,244は、夫々、出口仮想線219,229,239,249よりも、受け部20側である左側に傾斜している。   Exit wall surfaces 214, 224, 234, and 244 are connected to the exit ends 215, 225, 235, and 245, respectively. The exit wall surfaces 214, 224, 234, 244 respectively extend obliquely downward to the right. Virtual lines drawn from the outlet end portions 215, 225, 235, and 245 in a direction orthogonal to the direction in which the supply flow paths 21, 22, 23, and 24 extend are referred to as outlet virtual lines 219, 229, 239, and 249, respectively. The outlet wall surfaces 214, 224, 234, and 244 are inclined to the left side, which is the receiving portion 20 side, with respect to the outlet virtual lines 219, 229, 239, and 249, respectively.

形成方向の反対方向側からn番目の供給流路22〜24における第一供給壁面221,231,241は、n−1番目の供給流路21〜23における出口端部215,225,235から引いた出口仮想線219,229,239より受け部20側にある。このため、第一供給壁面221は出口仮想線219より左側にある。第一供給壁面231は、出口仮想線229より左側にある。第一供給壁面241は、出口仮想線239より左側にある。   The first supply wall surfaces 221, 231, 241 in the nth supply flow paths 22-24 from the direction opposite to the forming direction are drawn from the outlet ends 215, 225, 235 in the n-1th supply flow paths 21-23. The exit imaginary lines 219, 229, and 239 are on the receiving portion 20 side. For this reason, the first supply wall surface 221 is on the left side of the virtual exit line 219. The first supply wall surface 231 is on the left side of the virtual exit line 229. The first supply wall surface 241 is on the left side of the exit virtual line 239.

第二供給壁面212,222,232,242における上流側の端部を、夫々、入口端部213,223,233,243という。また、形成方向の反対方向側からn番目の供給流路200における入口端部223,233,243から、n−1番目の供給流路21〜23が延びる方向と平行に引いた仮想線を、入口仮想線228,238,248という。即ち、入口仮想線228は、供給流路21が延びる方向と平行である。入口仮想線238は、供給流路22が延びる方向と平行である。入口仮想線248は、供給流路23が延びる方向と平行である。入口仮想線228,238,248は、夫々、形成方向の反対方向側からn番目の第一供給壁面221,231,241と交差する。   The upstream end portions of the second supply wall surfaces 212, 222, 232, and 242 are referred to as inlet end portions 213, 223, 233, and 243, respectively. Further, an imaginary line drawn in parallel with the direction in which the (n-1) th supply flow paths 21 to 23 extend from the inlet end portions 223, 233, 243 in the nth supply flow path 200 from the direction opposite to the forming direction, It is called entrance virtual lines 228, 238, 248. That is, the entrance virtual line 228 is parallel to the direction in which the supply flow path 21 extends. The inlet virtual line 238 is parallel to the direction in which the supply flow path 22 extends. The entrance virtual line 248 is parallel to the direction in which the supply flow path 23 extends. The virtual entry lines 228, 238, and 248 intersect with the nth first supply wall surfaces 221, 231, and 241 from the direction opposite to the formation direction, respectively.

<5.検査チップ2のその他構造>
図1に示すように、L型プレート60から延びる支軸46は、図示外の装着用ホルダを介して板材19の後面中央に垂直に連結される。支軸46の回転に伴って、検査チップ2が支軸46を中心に自転する。検査チップ2は図2に示す定常状態である場合、上辺部81及び下辺部84が重力Gの方向と直交し、右辺部82及び左辺部83が重力Gの方向と平行、且つ、左辺部83が右辺部82よりも主軸57側に配置される。定常状態の検査チップ2が測定位置に配置されている状態において、光源71と光センサ72とを結ぶ測定光を測定部430に通過させることで、検査装置1は光学測定による検査を行う。
<5. Other structures of inspection chip 2>
As shown in FIG. 1, the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 19 via a mounting holder (not shown). As the support shaft 46 rotates, the inspection chip 2 rotates around the support shaft 46. When the inspection chip 2 is in the steady state shown in FIG. 2, the upper side portion 81 and the lower side portion 84 are orthogonal to the direction of gravity G, the right side portion 82 and the left side portion 83 are parallel to the direction of gravity G, and the left side portion 83. Is disposed closer to the main shaft 57 than the right side portion 82. In a state where the inspection chip 2 in the steady state is arranged at the measurement position, the inspection apparatus 1 performs inspection by optical measurement by passing the measurement light connecting the light source 71 and the optical sensor 72 through the measurement unit 430.

<6.検査方法の一例>
検査装置1及び検査チップ2を用いた検査方法について説明する。図2に示すように、測定流路251〜254の反応停止液注入部310に、反応停止液91が注入される。測定流路251〜254の基質溶液注入部330に、基質溶液92が注入される。測定流路251〜254の洗浄液注入部350に、洗浄液93が注入される。測定流路251の検査液体注入部370に、検査液体94が注入される。測定流路252〜254の検査液体注入部370に、夫々、基準検査液体941〜943が注入される。基準検査液体941〜943は、検査液体94を用いた測定データと比較する測定データを得るための検査液体である。後述する光学測定においては、検査液体94が使用された後述する測定溶液921の測定データと、基準検査液体941〜943が使用された測定溶液921の測定データとが比較されて、測定結果が算出される。
<6. Example of inspection method>
An inspection method using the inspection apparatus 1 and the inspection chip 2 will be described. As shown in FIG. 2, the reaction stop solution 91 is injected into the reaction stop solution injection section 310 of the measurement flow channels 251 to 254. The substrate solution 92 is injected into the substrate solution injection section 330 of the measurement flow paths 251 to 254. The cleaning liquid 93 is injected into the cleaning liquid injection section 350 of the measurement channels 251 to 254. The test liquid 94 is injected into the test liquid injection part 370 of the measurement channel 251. Reference inspection liquids 941 to 943 are injected into the inspection liquid injection portions 370 of the measurement flow paths 252 to 254, respectively. The reference inspection liquids 941 to 943 are inspection liquids for obtaining measurement data to be compared with measurement data using the inspection liquid 94. In the optical measurement described later, measurement data of a measurement solution 921 described later using the test liquid 94 and measurement data of the measurement solution 921 using the reference test liquids 941 to 943 are compared to calculate a measurement result. Is done.

試薬9の配置方法は限定されない。例えば、シート291における反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、及び検査液体注入部370に対応する位置に穴が開いており、ユーザが穴から試薬9を注入し、さらにシールをして封止してもよい。また、予め試薬9が反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、及び検査液体注入部370に配置されて、シート291によって封止されていてもよい。この場合、シート291における測定流路251の検査液体注入部370に対応する位置に穴が開いており、ユーザが穴から検査液体94を注入し、さらにシールをして封止してもよい。また、測定流路251の検査液体注入部370の左側の壁部に孔が開いており、孔から検査液体94を注入し、孔にシールをして封止してもよい。   The arrangement method of the reagent 9 is not limited. For example, a hole is opened at a position corresponding to the reaction stop liquid injection unit 310, the substrate solution injection unit 330, the cleaning liquid injection unit 350, and the test liquid injection unit 370 in the sheet 291, and the user injects the reagent 9 from the hole, Further, sealing may be performed. Alternatively, the reagent 9 may be disposed in advance in the reaction stop liquid injection unit 310, the substrate solution injection unit 330, the cleaning liquid injection unit 350, and the test liquid injection unit 370 and sealed with the sheet 291. In this case, a hole may be opened at a position corresponding to the test liquid injection part 370 of the measurement channel 251 in the sheet 291, and the user may inject the test liquid 94 from the hole and then seal and seal. Further, a hole may be formed in the left wall portion of the test liquid injection part 370 of the measurement channel 251, and the test liquid 94 may be injected from the hole and sealed by sealing the hole.

ユーザは検査チップ2を図示外の装着用ホルダに取り付けて、操作部104から処理開始のコマンドを入力する。これによって、CPU101は、ROM103に記憶されている制御プログラムに基づいて、図4に示す遠心処理を実行する。尚、検査装置1は二つの検査チップ2を同時に検査可能であるが、以下では説明の便宜のため、一つの検査チップ2を検査する手順を説明する。また、測定流路251〜254における試薬9の流れは同じであるので、図5〜図8においては、測定流路251のみを図示している。また、図2及び図5(A)に示す検査チップ2の定常状態を自転角度0度といい、定常状態から90度反時計回りに回転した状態を自転角度90度という。尚、以下の説明においてCPU101が検査チップ2を自転角度0度、40度、45度、60度、又は70度から、90度に回転させる場合、検査チップ2は、前方から見て反時計回りに回転する。また、CPU101が検査チップ2を自転角度90度から、0度、40度、45度、60度、又は70度に回転させる場合、検査チップ2は、前方から見て時計回りに回転する。   The user attaches the inspection chip 2 to a mounting holder (not shown) and inputs a processing start command from the operation unit 104. As a result, the CPU 101 executes the centrifugal process shown in FIG. 4 based on the control program stored in the ROM 103. The inspection apparatus 1 can inspect two inspection chips 2 at the same time. For convenience of explanation, a procedure for inspecting one inspection chip 2 will be described below. Moreover, since the flow of the reagent 9 in the measurement flow paths 251 to 254 is the same, only the measurement flow path 251 is illustrated in FIGS. Moreover, the steady state of the test | inspection chip 2 shown to FIG.2 and FIG.5 (A) is called rotation angle 0 degree, and the state rotated 90 degree | times counterclockwise from the steady state is called rotation angle 90 degree | times. In the following description, when the CPU 101 rotates the inspection chip 2 from the rotation angle 0 degree, 40 degrees, 45 degrees, 60 degrees, or 70 degrees to 90 degrees, the inspection chip 2 rotates counterclockwise as viewed from the front. Rotate to. When the CPU 101 rotates the inspection chip 2 from the rotation angle of 90 degrees to 0 degree, 40 degrees, 45 degrees, 60 degrees, or 70 degrees, the inspection chip 2 rotates clockwise as viewed from the front.

図4に示すように、CPU101は、HDD105に予め記憶されているモータの駆動情報を読み込み、公転コントローラ97に主軸モータ35の駆動情報をセットし、自転コントローラ98にステッピングモータ51の駆動情報をセットする(S1)。このとき、検査チップ2は図2及び図5(A)に示すように、定常状態であり自転角度0度である。次いで、図1に示すCPU101が公転コントローラ97を制御し、主軸モータ35の駆動を開始する(S2)。この結果、自転角度が0度の検査チップ2が公転する。主軸モータ35は、公転コントローラ97の指示に基づき、ターンテーブル33の回転速度を速度Vに上げる。速度Vは、例えば3000rpmである。この速度Vでターンテーブル33が回転されると、検査チップ2に、数百Gほどの遠心力Xが作用する。   As shown in FIG. 4, the CPU 101 reads the motor drive information stored in advance in the HDD 105, sets the drive information of the spindle motor 35 in the revolution controller 97, and sets the drive information of the stepping motor 51 in the rotation controller 98. (S1). At this time, as shown in FIGS. 2 and 5A, the inspection chip 2 is in a steady state and has a rotation angle of 0 degree. Next, the CPU 101 shown in FIG. 1 controls the revolution controller 97 to start driving the spindle motor 35 (S2). As a result, the inspection chip 2 having a rotation angle of 0 degrees revolves. The spindle motor 35 increases the rotation speed of the turntable 33 to the speed V based on an instruction from the revolution controller 97. The speed V is, for example, 3000 rpm. When the turntable 33 is rotated at this speed V, a centrifugal force X of several hundred G acts on the inspection chip 2.

CPU101は主軸モータ35の回転速度を速度Vに保持する(S3)。図5(B)に示すように、左辺部83から図2に示す右辺部82に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91、基質溶液92、洗浄液93、及び検査液体94は、夫々、反応停止液注入部310、基質溶液注入部330、洗浄液注入部350、及び検査液体注入部370から供給部320,340,360,380に移動する。また、ビーズ分散液95のうち、ビーズ31以外の液体をビーズ分散液951という。ビーズ分散液951は、ビーズ保持部410から取り出し流路412を介して供給部420に移動する。取り出し流路412の流路幅は、ビーズ31の直径である100μm以下であるので、ビーズ31はビーズ保持部410に残る。尚、以下の説明では、ターンテーブル33の回転速度は速度Vで一定であるとするが、速度Vの値が遠心処理の途中で変更されてもよい。   The CPU 101 maintains the rotation speed of the spindle motor 35 at the speed V (S3). As shown in FIG. 5B, the centrifugal force X acts on the test chip 2 from the left side portion 83 toward the right side portion 82 shown in FIG. Due to the action of the centrifugal force X, the reaction stop liquid 91, the substrate solution 92, the cleaning liquid 93, and the test liquid 94 are changed into a reaction stop liquid injection section 310, a substrate solution injection section 330, a cleaning liquid injection section 350, and a test liquid injection section, respectively. Move from 370 to supply units 320, 340, 360 and 380. Further, in the bead dispersion 95, the liquid other than the beads 31 is referred to as a bead dispersion 951. The bead dispersion 951 is removed from the bead holding unit 410 and moved to the supply unit 420 via the flow path 412. Since the channel width of the extraction channel 412 is 100 μm or less which is the diameter of the bead 31, the bead 31 remains in the bead holding unit 410. In the following description, the rotation speed of the turntable 33 is assumed to be constant at the speed V, but the value of the speed V may be changed during the centrifugal process.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図5(C)に示すように、自転角度90度まで検査チップ2を回転させる(S4)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91、基質溶液92、及び洗浄液93は、夫々、供給部320,340,360から、基質溶液注入部330、洗浄液注入部350、及び検査液体注入部370に移動する。また、検査液体94は、供給部380から受け部20に移動する。ビーズ分散液951は、供給部420から測定部430に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and rotates the inspection chip 2 up to a rotation angle of 90 degrees as shown in FIG. 5C (S4). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. Due to the action of the centrifugal force X, the reaction stop liquid 91, the substrate solution 92, and the cleaning liquid 93 are transferred from the supply units 320, 340, and 360 to the substrate solution injection unit 330, the cleaning liquid injection unit 350, and the test liquid injection unit 370, respectively. Moving. Further, the test liquid 94 moves from the supply unit 380 to the receiving unit 20. The bead dispersion 951 moves from the supply unit 420 to the measurement unit 430.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図5(D)に示すように、自転角度0度まで検査チップ2を回転させる(S5)。この結果、左辺部83から、図2に示す右辺部82に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91、基質溶液92、及び洗浄液93は、夫々、基質溶液注入部330、洗浄液注入部350、及び検査液体注入部370から、供給部340,360,380に移動する。また、検査液体94は、供給流路200を介して、供給部400に移動する。ビーズ分散液951は、測定部430から廃液部440に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 5D, the inspection chip 2 is rotated to a rotation angle of 0 degrees (S5). As a result, the centrifugal force X acts on the test chip 2 from the left side portion 83 toward the right side portion 82 shown in FIG. Due to the action of the centrifugal force X, the reaction stop liquid 91, the substrate solution 92, and the cleaning liquid 93 are supplied from the substrate solution injection unit 330, the cleaning liquid injection unit 350, and the test liquid injection unit 370 to the supply units 340, 360, and 380, respectively. Moving. In addition, the test liquid 94 moves to the supply unit 400 via the supply channel 200. The bead dispersion 951 moves from the measurement unit 430 to the waste liquid unit 440.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図5(E)に示すように、自転角度90度まで検査チップ2を回転させる(S6)。図9に示すように、CPU101が検査チップ2を自転角度90度まで回転させる過程において、遠心力Xが第一案内面41に垂直に作用した場合に、洗浄液93が受け部20に流入する。角度R22が角度R1〜R4より小さいので、洗浄液93が受け部20に流入する時に、洗浄液93が供給流路21〜24を通って供給部400に流出し難い。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 5E, the inspection chip 2 is rotated to a rotation angle of 90 degrees (S6). As shown in FIG. 9, in the process in which the CPU 101 rotates the inspection chip 2 to the rotation angle of 90 degrees, the cleaning liquid 93 flows into the receiving unit 20 when the centrifugal force X acts perpendicularly to the first guide surface 41. Since the angle R22 is smaller than the angles R1 to R4, when the cleaning liquid 93 flows into the receiving unit 20, the cleaning liquid 93 hardly flows out to the supply unit 400 through the supply channels 21 to 24.

図5(E)に示すように、検査チップ2が自転角度90度まで回転すると、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91及び基質溶液92は、夫々、供給部340,360から、洗浄液注入部350及び検査液体注入部370に移動する。洗浄液93は、受け部20に移動する。受け部20から溢れた洗浄液93は、第二案内面42を通って余剰部390に移動する。検査液体94は、ビーズ保持部410に移動する。検査液体94がビーズ31に接触すると、ビーズ31に固相化された抗体に、検査液体94に含まれる検査対象の物質が結合し、さらに、検査対象の物質とビーズ31の抗体との結合体に酵素標識抗体が特異的に結合する。   As shown in FIG. 5E, when the inspection chip 2 rotates to a rotation angle of 90 degrees, centrifugal force X acts on the inspection chip 2 from the upper side portion 81 toward the lower side portion 84. Due to the action of the centrifugal force X, the reaction stop solution 91 and the substrate solution 92 move from the supply units 340 and 360 to the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively. The cleaning liquid 93 moves to the receiving unit 20. The cleaning liquid 93 overflowing from the receiving part 20 moves to the surplus part 390 through the second guide surface 42. The inspection liquid 94 moves to the bead holding unit 410. When the inspection liquid 94 comes into contact with the beads 31, the substance to be inspected contained in the inspection liquid 94 is bound to the antibody solid-phased on the beads 31, and further, a conjugate of the substance to be inspected and the antibody of the beads 31. The enzyme-labeled antibody specifically binds to the.

CPU101は複数の供給流路21〜24のいずれかを介して受け部20からビーズ保持部410に洗浄液93を複数回供給し、ビーズ31を多段階に洗浄する。CPU101は、第一動作と第二動作とを繰り返し実行することで、洗浄液93を多段階にビーズ保持部410に供給する。第一動作は、形成方向に向けて検査チップ2に遠心力Xを作用させる動作である。第二動作は、形成方向とは異なる方向に向けて検査チップ2に遠心力Xを作用させる動作である。CPU101は、n回目の第二動作を行う場合に、遠心力Xを作用させる方向と形成方向とがなす角度が、n番目の供給流路200が延びる方向に垂直な方向と形成方向とがなす角度以上、且つ、n+1番目の供給流路200が延びる方向に垂直な方向と形成方向とがなす角度より小さい範囲になる方向に、遠心力Xを作用させる。本実施形態では、一例として、第二動作は、供給流路200が延びる方向に垂直な方向に遠心力を作用させる動作であるとする。また、CPU101は、n回目の第二動作を行う場合に、形成方向の反対方向側からn番目の供給流路200が延びる方向に垂直な方向に遠心力を作用させるとする。   The CPU 101 supplies the cleaning liquid 93 from the receiving unit 20 to the bead holding unit 410 a plurality of times via any one of the plurality of supply channels 21 to 24 to wash the beads 31 in multiple stages. The CPU 101 supplies the cleaning liquid 93 to the bead holding unit 410 in multiple stages by repeatedly executing the first operation and the second operation. The first operation is an operation in which the centrifugal force X is applied to the inspection chip 2 in the forming direction. The second operation is an operation in which the centrifugal force X is applied to the inspection chip 2 in a direction different from the forming direction. When the CPU 101 performs the n-th second operation, the angle formed between the direction in which the centrifugal force X is applied and the formation direction is the direction perpendicular to the direction in which the n-th supply channel 200 extends and the formation direction. Centrifugal force X is applied in a direction that is equal to or larger than the angle and smaller than the angle formed by the direction perpendicular to the direction in which the (n + 1) th supply flow path 200 extends and the formation direction. In the present embodiment, as an example, the second operation is an operation in which a centrifugal force is applied in a direction perpendicular to the direction in which the supply flow path 200 extends. Further, when the CPU 101 performs the n-th second operation, it is assumed that the centrifugal force is applied in a direction perpendicular to the direction in which the n-th supply flow path 200 extends from the direction opposite to the formation direction.

CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図6(F)及び図10に示すように、自転角度45度まで検査チップ2を回転させる1回目の第二動作を行う(S7)。この結果、形成方向の反対方向側から1番目の供給流路21が延びる方向に垂直な方向に遠心力Xが作用する。図10に示すように、遠心力Xの作用によって、洗浄液93が供給流路21から供給部400に流れる。このとき、洗浄液93は出口仮想線219に沿って流れる。出口壁面214は出口仮想線219よりも受け部20側である左側に傾斜している。このため、出口壁面214が出口仮想線219よりも受け部20側とは反対側の右側に傾斜している場合に比べて、供給流路21からビーズ保持部410側に流れる洗浄液93が、出口壁面214を伝い難い。   The CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIGS. 6F and 10, performs the first second operation of rotating the inspection chip 2 to the rotation angle of 45 degrees ( S7). As a result, the centrifugal force X acts in a direction perpendicular to the direction in which the first supply channel 21 extends from the side opposite to the formation direction. As shown in FIG. 10, the cleaning liquid 93 flows from the supply channel 21 to the supply unit 400 by the action of the centrifugal force X. At this time, the cleaning liquid 93 flows along the exit virtual line 219. The exit wall surface 214 is inclined to the left side, which is the receiving portion 20 side, with respect to the exit virtual line 219. For this reason, compared with the case where the outlet wall surface 214 is inclined to the right side opposite to the receiving portion 20 side from the outlet virtual line 219, the cleaning liquid 93 flowing from the supply flow path 21 to the bead holding portion 410 side is Difficult to travel along the wall 214.

また、第一供給壁面221は、出口仮想線219より受け部20側である左側に位置する。このため、第一供給壁面221が、出口仮想線219と交差する場合に比べて、出口仮想線219に沿って流れる洗浄液93が、第一供給壁面221に当たり難い。また、形成方向の反対方向側から2番目の供給流路22に流入する洗浄液93の液面93Aは、入口仮想線228に沿って第一供給壁面221と交差する。このため、供給流路22から供給部400に洗浄液93が流れ難い。また、供給流路23,24に流入する洗浄液93の液面も、第一供給壁面231,241と交差するので、供給流路23,24から供給部400に洗浄液93が流れ難い。   In addition, the first supply wall surface 221 is located on the left side, which is the receiving portion 20 side, from the exit virtual line 219. For this reason, compared with the case where the 1st supply wall surface 221 crosses the exit virtual line 219, the washing | cleaning liquid 93 which flows along the exit virtual line 219 does not hit the 1st supply wall surface 221 easily. Further, the liquid level 93 </ b> A of the cleaning liquid 93 flowing into the second supply flow path 22 from the side opposite to the formation direction intersects the first supply wall surface 221 along the entrance virtual line 228. For this reason, it is difficult for the cleaning liquid 93 to flow from the supply channel 22 to the supply unit 400. Further, since the liquid level of the cleaning liquid 93 flowing into the supply flow paths 23 and 24 also intersects the first supply wall surfaces 231 and 241, the cleaning liquid 93 hardly flows from the supply flow paths 23 and 24 to the supply unit 400.

図3に示す角度R20及び図2に示す角度R41は、図3に示す角度R1より大きい。このため、図6(F)に示すように、検査チップ2が自転角度45度まで回転し、供給流路21が延びる方向に垂直な方向に遠心力Xが作用しても、反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。また、検査液体94は、取り出し流路412を通って、供給部420に移動する。また、受け部20には、一部が供給流路21から供給部400に移動した後の洗浄液93が残る。以下の説明では、供給流路21から供給部400に移動した洗浄液93を、洗浄液931という。   The angle R20 shown in FIG. 3 and the angle R41 shown in FIG. 2 are larger than the angle R1 shown in FIG. For this reason, as shown in FIG. 6F, even if the test chip 2 rotates to a rotation angle of 45 degrees and the centrifugal force X acts in the direction perpendicular to the direction in which the supply flow path 21 extends, the reaction stop solution 91 The substrate solution 92 is held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively. Further, the test liquid 94 moves to the supply unit 420 through the take-out flow path 412. In addition, the cleaning liquid 93 that has partially moved from the supply channel 21 to the supply unit 400 remains in the receiving unit 20. In the following description, the cleaning liquid 93 that has moved from the supply channel 21 to the supply unit 400 is referred to as a cleaning liquid 931.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図6(G)に示すように、自転角度90度まで検査チップ2を回転させる第一動作を行う(S8)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、洗浄液931は、ビーズ保持部410に移動する。洗浄液931によってビーズ31の1回目の洗浄が行われる。また、検査液体94は、測定部430に移動する。反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 6G, performs a first operation for rotating the test chip 2 to a rotation angle of 90 degrees (S8). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. The cleaning liquid 931 moves to the bead holding unit 410 by the action of the centrifugal force X. The first cleaning of the beads 31 is performed with the cleaning liquid 931. Further, the test liquid 94 moves to the measurement unit 430. The reaction stop solution 91 and the substrate solution 92 are held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図6(H)及び図12に示すように、自転角度60度まで検査チップ2を回転させる2回目の第二動作を行う(S9)。この結果、形成方向の反対方向側から2番目の供給流路22が延びる方向に垂直な方向に遠心力Xが作用する。図11に示すように、CPU101が検査チップ2を自転角度60度まで回転させる過程において、遠心力Xが取り出し流路412が延びる方向に垂直な方向に作用する。角度R23が角度R2より小さいので、洗浄液93が供給流路22からビーズ保持部410側の供給部400に流れる前に、ビーズ保持部410に残留している洗浄液931が、取り出し流路412を通って測定部430側の供給部420に流れる。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIGS. 6 (H) and 12, the second operation of rotating the inspection chip 2 to the rotation angle 60 degrees is performed. Perform (S9). As a result, the centrifugal force X acts in a direction perpendicular to the direction in which the second supply flow path 22 extends from the side opposite to the formation direction. As shown in FIG. 11, in the process in which the CPU 101 rotates the inspection chip 2 to a rotation angle of 60 degrees, the centrifugal force X acts in a direction perpendicular to the direction in which the take-out flow path 412 extends. Since the angle R23 is smaller than the angle R2, the cleaning liquid 931 remaining in the bead holding part 410 passes through the take-out flow path 412 before the cleaning liquid 93 flows from the supply flow path 22 to the supply part 400 on the bead holding part 410 side. Flow to the supply unit 420 on the measurement unit 430 side.

そして、図12に示すように、供給流路22が延びる方向に垂直な方向に遠心力Xが作用すると、遠心力Xの作用によって、洗浄液93が供給流路22から供給部400に流れる。このとき、洗浄液93は出口仮想線229に沿って流れる。出口壁面224は出口仮想線229よりも受け部20側である左側に傾斜している。このため、出口壁面224が出口仮想線229よりも受け部20側とは反対側の右側に傾斜している場合に比べて、供給流路22からビーズ保持部410側に流れる洗浄液93が、出口壁面224を伝い難い。   Then, as shown in FIG. 12, when the centrifugal force X acts in a direction perpendicular to the direction in which the supply flow path 22 extends, the cleaning liquid 93 flows from the supply flow path 22 to the supply unit 400 by the action of the centrifugal force X. At this time, the cleaning liquid 93 flows along the exit virtual line 229. The outlet wall surface 224 is inclined to the left side, which is the receiving unit 20 side, with respect to the outlet virtual line 229. For this reason, compared with the case where the outlet wall surface 224 is inclined to the right side opposite to the receiving portion 20 side with respect to the outlet virtual line 229, the cleaning liquid 93 flowing from the supply flow path 22 to the bead holding portion 410 side is It is difficult to travel along the wall surface 224.

また、第一供給壁面231は、出口仮想線229より受け部20側である左側に位置する。このため、第一供給壁面231が、出口仮想線229と交差する場合に比べて、出口仮想線229に沿って流れる洗浄液93が、第一供給壁面231に当たり難い。形成方向の反対方向側から3番目の供給流路23に流入する洗浄液93の液面93Bは、入口仮想線238に沿って第一供給壁面231と交差する。このため、供給流路23から供給部400に洗浄液93が流れ難い。また、供給流路24に流入する洗浄液93の液面も、第一供給壁面241と交差するので、供給流路24から供給部400に洗浄液93が流れ難い。   In addition, the first supply wall surface 231 is located on the left side, which is the receiving portion 20 side, from the exit virtual line 229. For this reason, compared with the case where the 1st supply wall surface 231 cross | intersects the exit virtual line 229, the washing | cleaning liquid 93 which flows along the exit virtual line 229 hardly hits the 1st supply wall surface 231. The liquid surface 93 </ b> B of the cleaning liquid 93 flowing into the third supply channel 23 from the side opposite to the formation direction intersects the first supply wall surface 231 along the entrance virtual line 238. For this reason, it is difficult for the cleaning liquid 93 to flow from the supply channel 23 to the supply unit 400. Further, since the liquid level of the cleaning liquid 93 flowing into the supply flow path 24 also intersects the first supply wall surface 241, it is difficult for the cleaning liquid 93 to flow from the supply flow path 24 to the supply unit 400.

図3に示す角度R20及び図2に示す角度R41は、図3に示す角度R2より大きい。このため、図6(H)に示すように、検査チップ2が自転角度60度まで回転し、供給流路22が延びる方向に垂直な方向に遠心力Xが作用しても、反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。検査液体94は、測定部430から廃液部440に移動する。また、受け部20には、一部が供給流路22から供給部400に移動した後の洗浄液93が残る。以下の説明では、供給流路22から供給部400に移動した洗浄液93を、洗浄液932という。   The angle R20 shown in FIG. 3 and the angle R41 shown in FIG. 2 are larger than the angle R2 shown in FIG. For this reason, as shown in FIG. 6H, even when the inspection chip 2 rotates to a rotation angle of 60 degrees and the centrifugal force X acts in the direction perpendicular to the direction in which the supply flow path 22 extends, The substrate solution 92 is held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively. The inspection liquid 94 moves from the measurement unit 430 to the waste liquid unit 440. In addition, the cleaning liquid 93 that has partially moved from the supply channel 22 to the supply unit 400 remains in the receiving unit 20. In the following description, the cleaning liquid 93 that has moved from the supply flow path 22 to the supply unit 400 is referred to as a cleaning liquid 932.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図6(I)に示すように、自転角度90度まで検査チップ2を回転させる第一動作を行う(S10)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、洗浄液932は、ビーズ保持部410に移動する。洗浄液932によってビーズ31の2回目の洗浄が行われる。また、洗浄液931は、測定部430に移動する。反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 6 (I), performs a first operation for rotating the inspection chip 2 to a rotation angle of 90 degrees (S10). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. Due to the action of the centrifugal force X, the cleaning liquid 932 moves to the bead holding unit 410. The beads 31 are washed a second time with the washing liquid 932. In addition, the cleaning liquid 931 moves to the measurement unit 430. The reaction stop solution 91 and the substrate solution 92 are held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図6(J)及び図13に示すように、自転角度70度まで検査チップ2を回転させる3回目の第二動作を行う(S11)。この結果、形成方向の反対方向側から3番目の供給流路23が延びる方向に垂直な方向に遠心力Xが作用する。図13に示すように、遠心力Xの作用によって、洗浄液93が供給流路23から供給部400に流れる。このとき、洗浄液93は出口仮想線239に沿って流れる。出口壁面234は出口仮想線239よりも受け部20側である左側に傾斜している。このため、出口壁面234が出口仮想線239よりも受け部20側とは反対側の右側に傾斜している場合に比べて、供給流路23からビーズ保持部410側に流れる洗浄液93が、出口壁面234を伝い難い。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIGS. 6 (J) and 13, the CPU 101 performs a second second operation for rotating the inspection chip 2 to a rotation angle of 70 degrees. Perform (S11). As a result, the centrifugal force X acts in a direction perpendicular to the direction in which the third supply flow path 23 extends from the side opposite to the formation direction. As shown in FIG. 13, the cleaning liquid 93 flows from the supply channel 23 to the supply unit 400 by the action of the centrifugal force X. At this time, the cleaning liquid 93 flows along the exit virtual line 239. The outlet wall surface 234 is inclined to the left side which is the receiving portion 20 side with respect to the outlet virtual line 239. For this reason, compared with the case where the outlet wall surface 234 is inclined to the right side opposite to the receiving portion 20 side from the outlet virtual line 239, the cleaning liquid 93 flowing from the supply flow path 23 to the bead holding portion 410 side is It is difficult to travel along the wall surface 234.

また、第一供給壁面241は、出口仮想線239より受け部20側である左側に位置する。このため、第一供給壁面241が、出口仮想線239と交差する場合に比べて、出口仮想線239に沿って流れる洗浄液93が、第一供給壁面241に当たり難い。また、形成方向の反対方向側から4番目の供給流路23に流入する洗浄液93の液面93Cは、入口仮想線248に沿って第一供給壁面241と交差する。このため、供給流路24から供給部400に洗浄液93が流れ難い。   Further, the first supply wall surface 241 is located on the left side that is the receiving portion 20 side from the virtual exit line 239. For this reason, compared with the case where the 1st supply wall surface 241 crosses the exit virtual line 239, the washing | cleaning liquid 93 which flows along the exit virtual line 239 does not hit the 1st supply wall surface 241 easily. Further, the liquid level 93 </ b> C of the cleaning liquid 93 flowing into the fourth supply flow path 23 from the side opposite to the formation direction intersects the first supply wall surface 241 along the virtual inlet line 248. For this reason, it is difficult for the cleaning liquid 93 to flow from the supply channel 24 to the supply unit 400.

図3に示す角度R20及び図2に示す角度R41は、図3に示す角度R3より大きい。このため、図6(J)に示すように、検査チップ2が自転角度70度まで回転し、供給流路23が延びる方向に垂直な方向に遠心力Xが作用しても、反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。角度R23が角度R3より小さいので、洗浄液93が供給流路23から供給部400に流れる前に、ビーズ保持部410に残留している洗浄液932が、取り出し流路412を通って供給部420に流れる。洗浄液931は、測定部430から廃液部440に移動する。また、受け部20には、一部が供給流路21から供給部400に移動した後の洗浄液93が残る。以下の説明では、供給流路23から供給部400に移動した洗浄液93を、洗浄液933という。   The angle R20 shown in FIG. 3 and the angle R41 shown in FIG. 2 are larger than the angle R3 shown in FIG. For this reason, as shown in FIG. 6J, even if the inspection chip 2 rotates to a rotation angle of 70 degrees and the centrifugal force X acts in a direction perpendicular to the direction in which the supply flow path 23 extends, the reaction stop solution 91 The substrate solution 92 is held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively. Since the angle R23 is smaller than the angle R3, the cleaning liquid 932 remaining in the bead holding unit 410 flows to the supply unit 420 through the extraction channel 412 before the cleaning liquid 93 flows from the supply channel 23 to the supply unit 400. . The cleaning liquid 931 moves from the measurement unit 430 to the waste liquid unit 440. In addition, the cleaning liquid 93 that has partially moved from the supply channel 21 to the supply unit 400 remains in the receiving unit 20. In the following description, the cleaning liquid 93 that has moved from the supply flow path 23 to the supply unit 400 is referred to as a cleaning liquid 933.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(K)に示すように、自転角度90度まで検査チップ2を回転させる第一動作を行う(S12)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、洗浄液933は、ビーズ保持部410に移動する。洗浄液933によってビーズ31の3回目の洗浄が行われる。また、洗浄液932は、測定部430に移動する。反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370に保持される。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 7K, performs the first operation of rotating the inspection chip 2 to the rotation angle of 90 degrees (S12). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. Due to the action of the centrifugal force X, the cleaning liquid 933 moves to the bead holding unit 410. The beads 31 are washed a third time with the washing solution 933. In addition, the cleaning liquid 932 moves to the measurement unit 430. The reaction stop solution 91 and the substrate solution 92 are held in the cleaning liquid injection unit 350 and the test liquid injection unit 370, respectively.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(L)に示すように、自転角度0度まで検査チップ2を回転させる(S13)。図14に示すように、CPU101が検査チップを自転角度90度まで回転させる過程において、最も形成方向側の供給流路24が延びる方向に垂直な方向に遠心力Xが作用した場合に、洗浄液93が供給流路24から供給部400に流入する。このとき、洗浄液93は出口仮想線249に沿って流れる。出口壁面244は出口仮想線249よりも受け部20側である左側に傾斜している。このため、出口壁面244が出口仮想線249よりも受け部20側とは反対側の右側に傾斜している場合に比べて、供給流路24からビーズ保持部410側に流れる洗浄液93が、出口壁面244を伝い難い。また、R4、R20、及び図2に示すR41は同じ角度であるので、反応停止液91及び基質溶液92は、夫々、洗浄液注入部350及び検査液体注入部370から供給部360,380に流れる。以下の説明では、供給流路24から供給部400に移動した洗浄液93を、洗浄液934という。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 7 (L), the inspection chip 2 is rotated to a rotation angle of 0 degree (S13). As shown in FIG. 14, in the process in which the CPU 101 rotates the inspection chip to the rotation angle of 90 degrees, the cleaning liquid 93 is applied when the centrifugal force X acts in the direction perpendicular to the direction in which the supply flow path 24 on the most forming direction side extends. Flows into the supply section 400 from the supply flow path 24. At this time, the cleaning liquid 93 flows along the exit virtual line 249. The exit wall surface 244 is inclined to the left side, which is the receiving portion 20 side, with respect to the exit virtual line 249. For this reason, compared with the case where the outlet wall surface 244 is inclined to the right side opposite to the receiving portion 20 side from the outlet virtual line 249, the cleaning liquid 93 flowing from the supply flow path 24 to the bead holding portion 410 side is It is difficult to travel along the wall surface 244. Further, since R4 and R20 and R41 shown in FIG. 2 have the same angle, the reaction stop solution 91 and the substrate solution 92 flow from the cleaning liquid injection unit 350 and the test liquid injection unit 370 to the supply units 360 and 380, respectively. In the following description, the cleaning liquid 93 that has moved from the supply channel 24 to the supply unit 400 is referred to as a cleaning liquid 934.

図7(L)に示すように、検査チップ2が自転角度90度まで回転すると、反応停止液91及び基質溶液92は、夫々、供給部360,380に保持される。角度R23が角度R4より小さいので、洗浄液93が供給流路23から供給部400に流れる前に、洗浄液933は、取り出し流路412を通って、供給部420に移動する。洗浄液932は、測定部430から廃液部440に移動する。尚、CPU101はS13において、供給流路24が延びる方向に垂直な方向に遠心力Xが作用する位置まで検査チップ2を自転させてもよい。   As shown in FIG. 7L, when the inspection chip 2 rotates to a rotation angle of 90 degrees, the reaction stop solution 91 and the substrate solution 92 are held in the supply units 360 and 380, respectively. Since the angle R <b> 23 is smaller than the angle R <b> 4, the cleaning liquid 933 moves to the supply unit 420 through the extraction flow path 412 before the cleaning liquid 93 flows from the supply flow path 23 to the supply unit 400. The cleaning liquid 932 moves from the measurement unit 430 to the waste liquid unit 440. In S13, the CPU 101 may rotate the inspection chip 2 to a position where the centrifugal force X acts in a direction perpendicular to the direction in which the supply flow path 24 extends.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(M)に示すように、自転角度90度まで検査チップ2を回転させる(S14)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、洗浄液934は、ビーズ保持部410に移動する。洗浄液934によってビーズ31の4回目の洗浄が行われる。洗浄液933は、測定部430に移動する。反応停止液91及び基質溶液92は、夫々、供給部360,380から、検査液体注入部370及び受け部20に流入する。以上のように、CPU101は、検査チップ2への遠心力Xを作用を停止させることなく、ビーズ31の多段階洗浄を実行する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51 to rotate the inspection chip 2 to a rotation angle of 90 degrees as shown in FIG. 7M (S14). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. The cleaning liquid 934 moves to the bead holding unit 410 by the action of the centrifugal force X. A fourth cleaning of the beads 31 is performed by the cleaning liquid 934. The cleaning liquid 933 moves to the measurement unit 430. The reaction stop solution 91 and the substrate solution 92 flow into the test liquid injection unit 370 and the receiving unit 20 from the supply units 360 and 380, respectively. As described above, the CPU 101 performs multi-stage washing of the beads 31 without stopping the action of the centrifugal force X on the inspection chip 2.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(N)に示すように、自転角度0度まで検査チップ2を回転させる(S13)。この結果、左辺部83から、図2に示す右辺部82に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91及び基質溶液92は、夫々、検査液体注入部370及び受け部20から、供給部380,400に移動する。また、洗浄液934は、ビーズ保持部410から取り出し流路412を介して供給部420に移動する。洗浄液933は、測定部430から廃液部440に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 7N, rotates the inspection chip 2 to the rotation angle of 0 degree (S13). As a result, the centrifugal force X acts on the test chip 2 from the left side portion 83 toward the right side portion 82 shown in FIG. Due to the action of the centrifugal force X, the reaction stop solution 91 and the substrate solution 92 move from the test liquid injection unit 370 and the receiving unit 20 to the supply units 380 and 400, respectively. In addition, the cleaning liquid 934 is taken out from the bead holding unit 410 and moved to the supply unit 420 via the flow path 412. The cleaning liquid 933 moves from the measurement unit 430 to the waste liquid unit 440.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(O)に示すように、自転角度90度まで検査チップ2を回転させる(S14)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、基質溶液92が供給部400からビーズ保持部410に移動する。基質溶液92は、洗浄液93によって洗浄された後のビーズ31に接触し、酵素標識抗体と酵素反応する。また、反応停止液91及び洗浄液934は、夫々、供給部380,420から受け部20及び測定部430に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and rotates the inspection chip 2 to a rotation angle of 90 degrees as shown in FIG. 7O (S14). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. Due to the action of the centrifugal force X, the substrate solution 92 moves from the supply unit 400 to the bead holding unit 410. The substrate solution 92 comes into contact with the beads 31 after being washed with the washing liquid 93 and reacts with the enzyme-labeled antibody. In addition, the reaction stop solution 91 and the cleaning solution 934 move from the supply units 380 and 420 to the receiving unit 20 and the measurement unit 430, respectively.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図8(P)に示すように、自転角度0度まで検査チップ2を回転させる(S15)。この結果、左辺部83から、図2に示す右辺部82に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用によって、反応停止液91は、受け部20から供給部400に移動する。基質溶液92は、取り出し流路412を通って供給部420に移動する。洗浄液934は、測定部430から廃液部440に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 8 (P), the inspection chip 2 is rotated to a rotation angle of 0 degrees (S15). As a result, the centrifugal force X acts on the test chip 2 from the left side portion 83 toward the right side portion 82 shown in FIG. Due to the action of the centrifugal force X, the reaction stop solution 91 moves from the receiving unit 20 to the supply unit 400. The substrate solution 92 moves to the supply unit 420 through the take-out channel 412. The cleaning liquid 934 moves from the measurement unit 430 to the waste liquid unit 440.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図8(Q)に示すように、自転角度90度まで検査チップ2を回転させる(S16)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。反応停止液91は、供給部400からビーズ保持部410に移動する。基質溶液92は、供給部420から測定部430に移動する。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 8 (Q), the inspection chip 2 is rotated up to a rotation angle of 90 degrees (S16). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. The reaction stopping liquid 91 moves from the supply unit 400 to the bead holding unit 410. The substrate solution 92 moves from the supply unit 420 to the measurement unit 430.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図8(R)に示すように、自転角度40度まで検査チップ2を回転させる(S17)。この結果、取り出し流路412が延びる方向に垂直な方向の遠心力Xが検査チップ2に作用する。反応停止液91は、ビーズ保持部410から取り出し流路412を介して供給部420に移動する。角度R24が角度R23より大きいので、基質溶液92は、測定部430に保持される。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51 to rotate the inspection chip 2 to a rotation angle of 40 degrees as shown in FIG. 8R (S17). As a result, the centrifugal force X in the direction perpendicular to the direction in which the take-out flow path 412 extends acts on the test chip 2. The reaction stop solution 91 is removed from the bead holding unit 410 and moved to the supply unit 420 via the flow path 412. Since the angle R24 is larger than the angle R23, the substrate solution 92 is held in the measurement unit 430.

次いで、CPU101は自転コントローラ98を制御してステッピングモータ51を駆動制御し、図7(S)に示すように、自転角度90度まで検査チップ2を回転させる(S18)。この結果、上辺部81から下辺部84に向けて、検査チップ2に遠心力Xが作用する。反応停止液91は、供給部420から測定部430に移動する。測定部430において基質溶液92に反応停止液91が混合され、基質溶液92の酵素反応の進行が停止する。以下の説明では、反応停止液91が混合された基質溶液92を、測定溶液921という。   Next, the CPU 101 controls the rotation controller 98 to drive and control the stepping motor 51, and as shown in FIG. 7S, rotates the inspection chip 2 to a rotation angle of 90 degrees (S18). As a result, the centrifugal force X acts on the test chip 2 from the upper side portion 81 toward the lower side portion 84. The reaction stop solution 91 moves from the supply unit 420 to the measurement unit 430. In the measurement unit 430, the reaction stop solution 91 is mixed with the substrate solution 92, and the progress of the enzyme reaction of the substrate solution 92 is stopped. In the following description, the substrate solution 92 mixed with the reaction stop solution 91 is referred to as a measurement solution 921.

図8には図示しないが、S18が実行された後、CPU101は自転コントローラ98を制御し、ステッピングモータ51を駆動する。CPU101は、自転角度0度まで検査チップ2を回転させる(S19)。また、CPU101は公転コントローラ97を制御し、主軸モータ35の回転を停止する(S19)。故に、検査チップ2の公転が終了する。遠心処理は終了される。   Although not shown in FIG. 8, after S18 is executed, the CPU 101 controls the rotation controller 98 to drive the stepping motor 51. The CPU 101 rotates the inspection chip 2 until the rotation angle is 0 degree (S19). The CPU 101 controls the revolution controller 97 to stop the rotation of the spindle motor 35 (S19). Therefore, the revolution of the inspection chip 2 is completed. Centrifugation is terminated.

遠心処理の実行後、CPU101は公転コントローラ97を制御し、検査チップ2を測定位置の角度まで回転移動させる。測定流路251の測定部430には、検査液体94が使用された測定溶液921が保持されている。図示しないが、測定流路252〜254の測定部430には、基準検査液体941〜943が使用された測定溶液921が保持されている。図1に示す測定コントローラ99は光源71を発光させ、測定光を測定流路251〜254の測定部430に貯溜された測定溶液921に順に透過させる。CPU101は、光センサ72が受光した測定光の変化量に基づいて、測定流路251〜254の測定部430に貯溜された測定溶液921の光学測定を行い、測定データを取得する。CPU101は、測定流路252〜254の測定溶液921を用いて取得された測定データと、測定流路251の測定溶液921を用いて取得された測定データとを比較して、検査液体94が使用されて生成された測定溶液921の測定結果を算出する。CPU101は、検査結果を図1に示すディスプレイ106に表示する。   After executing the centrifugal process, the CPU 101 controls the revolution controller 97 to rotate and move the inspection chip 2 to the angle of the measurement position. A measurement solution 921 using the test liquid 94 is held in the measurement unit 430 of the measurement channel 251. Although not shown, the measurement solution 921 using the reference test liquids 941 to 943 is held in the measurement unit 430 of the measurement flow paths 252 to 254. The measurement controller 99 shown in FIG. 1 causes the light source 71 to emit light and sequentially transmits the measurement light to the measurement solution 921 stored in the measurement unit 430 of the measurement flow paths 251 to 254. The CPU 101 performs optical measurement of the measurement solution 921 stored in the measurement unit 430 of the measurement flow paths 251 to 254 based on the change amount of the measurement light received by the optical sensor 72, and acquires measurement data. The CPU 101 compares the measurement data acquired using the measurement solution 921 of the measurement flow paths 252 to 254 with the measurement data acquired using the measurement solution 921 of the measurement flow path 251 and uses the test liquid 94. The measurement result of the measurement solution 921 thus generated is calculated. The CPU 101 displays the inspection result on the display 106 shown in FIG.

尚、例えば、検査液体94が使用された測定溶液921のみを用いて測定結果を算出した場合、温度等の外部環境のばらつき、又は、遠心処理における試薬9に移動態様のばらつき等によって、測定結果がばらつく可能性がある。本実施形態では、検査液体94が使用された測定溶液921に基づく測定データと、基準検査液体941〜943が使用された測定溶液921に基づく測定データとの比較によって測定結果が算出されるので、測定結果のばらつきを低減することができる。また、本実施形態では、4か所の測定部430に貯留された測定溶液921を測定する。この場合、図1に示す光源71と光センサ72とが左右方向に移動し、4か所の測定部430に順に測定光を透過させてもよいし、4か所の測定部430に測定光を透過可能に夫々4つの光源71と光センサ72とが左右方向に並べて設けられてもよい。また、測定溶液921の測定方法は、光学測定に限られず、他の方法でもよい。   For example, when the measurement result is calculated using only the measurement solution 921 in which the test liquid 94 is used, the measurement result may be due to variations in the external environment such as temperature, or variations in the movement mode of the reagent 9 in the centrifugation process. May vary. In the present embodiment, the measurement result is calculated by comparing the measurement data based on the measurement solution 921 using the test liquid 94 and the measurement data based on the measurement solution 921 using the reference test liquids 941 to 943. Variations in measurement results can be reduced. In the present embodiment, the measurement solution 921 stored in the four measurement units 430 is measured. In this case, the light source 71 and the optical sensor 72 shown in FIG. 1 may move in the left-right direction, and the measurement light may be sequentially transmitted through the four measurement units 430, or the measurement light may be transmitted to the four measurement units 430. Each of the four light sources 71 and the optical sensor 72 may be provided side by side in the left-right direction so that the light can be transmitted. Further, the measurement method of the measurement solution 921 is not limited to optical measurement, and other methods may be used.

<7.本実施形態の主たる作用・効果>
以上のように本実施形態における測定が実行される。本実施形態では、受け部20に洗浄液93が流入する。複数の供給流路200は、形成方向側の供給流路200ほど、形成方向に対して大きな角度で延びる。CPU101は、n回目の第二動作を行う場合に、形成方向の反対方向側からn番目の供給流路200が延びる方向に垂直な方向に遠心力を作用させ、形成方向側の反対方向側の供給流路200から順番に洗浄液93をビーズ保持部410に供給する。このとき、図4のS7、S9、S11、S12に示すように、検査チップ2の回転角度である振れ幅が、形成方向と形成方向に垂直な垂直方向との間で次第に大きくなる。すなわち、検査チップ2に遠心力を作用させながら、形成方向と形成方向に垂直な垂直方向との間で振れ幅を次第に大きくすることで、形成方向側の反対方向側の供給流路200から順番に洗浄液93をビーズ保持部410に供給することができる。よって、遠心力の作用を停止することなくビーズ31の多段階洗浄することができる。故に、遠心力の作用が停止されて試薬9が拡散することがなく、検査精度が低下する可能性を低減できる。
<7. Main actions and effects of this embodiment>
As described above, the measurement in the present embodiment is performed. In the present embodiment, the cleaning liquid 93 flows into the receiving portion 20. The plurality of supply flow paths 200 extend at a larger angle with respect to the formation direction as the supply flow path 200 on the formation direction side. When performing the n-th second operation, the CPU 101 applies centrifugal force in a direction perpendicular to the direction in which the nth supply channel 200 extends from the direction opposite to the formation direction, The cleaning liquid 93 is supplied to the bead holding unit 410 in order from the supply channel 200. At this time, as shown in S7, S9, S11, and S12 of FIG. 4, the deflection width that is the rotation angle of the test chip 2 gradually increases between the formation direction and the vertical direction perpendicular to the formation direction. That is, by gradually increasing the swing width between the forming direction and the vertical direction perpendicular to the forming direction while applying a centrifugal force to the inspection chip 2, the supply flow path 200 on the opposite side to the forming direction side is sequentially increased. In addition, the cleaning liquid 93 can be supplied to the bead holder 410. Therefore, the beads 31 can be washed in multiple stages without stopping the action of the centrifugal force. Therefore, the action of the centrifugal force is stopped and the reagent 9 does not diffuse, and the possibility that the inspection accuracy is lowered can be reduced.

また、図11に示すように、角度R23が角度R2より小さいので、2回目の洗浄液93が、形成方向の反対方向側から2番目の供給流路22からビーズ保持部410側に供給される前に、ビーズ保持部410に残留している洗浄液931が、取り出し流路412を通って測定部430側に排出される。また、複数の供給流路200は、形成方向側の供給流路200ほど、形成方向に対して大きな角度で延びる。このため、角度R23が角度R2より小さい場合、角度R23は、形成方向の反対方向側から3番目以降の供給流路23,24と形成方向とがなす角度R3,R4より小さくなる。このため、3番目以降の供給流路の夫々から洗浄液93がビーズ保持部410側に供給される前に、ビーズ保持部410に残留している洗浄液93が、取り出し流路412を通って測定部430に排出される。よって、ビーズ保持部410の洗浄液93が排出された後に、新たにビーズ保持部410に洗浄液93を供給し、ビーズ31の洗浄を多段階に行うことができる。よって、ビーズ31の洗浄に使用された洗浄液93と、新たにビーズ保持部410に供給される洗浄液93とが混ざる可能性を低減できる。よって、ビーズ31の洗浄に使用された洗浄液93と、新たにビーズ保持部410に供給される洗浄液93とが混ざる場合に比べて、検査精度が低下する可能性を低減できる。   Further, as shown in FIG. 11, since the angle R23 is smaller than the angle R2, the second cleaning liquid 93 is supplied from the second supply flow path 22 from the opposite side to the forming direction to the bead holding unit 410 side. In addition, the cleaning liquid 931 remaining in the bead holding unit 410 is discharged to the measurement unit 430 side through the take-out flow path 412. In addition, the plurality of supply channels 200 extend at a larger angle with respect to the formation direction as the supply channel 200 on the formation direction side. For this reason, when the angle R23 is smaller than the angle R2, the angle R23 is smaller than the angles R3, R4 formed by the third and subsequent supply channels 23, 24 from the direction opposite to the formation direction and the formation direction. For this reason, before the cleaning liquid 93 is supplied to the bead holding unit 410 from each of the third and subsequent supply channels, the cleaning liquid 93 remaining in the bead holding unit 410 passes through the extraction channel 412 and the measurement unit. It is discharged to 430. Therefore, after the cleaning liquid 93 in the bead holding unit 410 is discharged, the cleaning liquid 93 is newly supplied to the bead holding unit 410, and the beads 31 can be cleaned in multiple stages. Therefore, the possibility that the cleaning liquid 93 used for cleaning the beads 31 and the cleaning liquid 93 newly supplied to the bead holding unit 410 may be reduced. Therefore, compared with the case where the cleaning liquid 93 used for cleaning the beads 31 and the cleaning liquid 93 newly supplied to the bead holding unit 410 are mixed, it is possible to reduce the possibility that the inspection accuracy is lowered.

また、図13に示すように、角度R20が角度R3より大きいので、形成方向側から2番目の供給流路23から洗浄液93が流れるまで、基質溶液92が検査液体注入部370に保持される。よって、洗浄液93と基質溶液92とが混ざる可能性を低減できる。そして、図14に示すように、最も形成方向側の供給流路24から洗浄液93が流れる時に、検査液体注入部370から基質溶液92が移動する。このため、図7(M)〜(O)に示すように、洗浄液93によってビーズ31を洗浄し終えた直後に、基質溶液92をビーズ31に接触させることができる。よって、洗浄後にビーズ31が乾く前に、基質溶液92がビーズ31に接触する。故に、洗浄後にビーズ31が乾き、基質溶液92との反応精度が低下する可能性を低減でき、検査精度が低下する可能性を低減できる。   As shown in FIG. 13, since the angle R20 is larger than the angle R3, the substrate solution 92 is held in the test liquid injection unit 370 until the cleaning liquid 93 flows from the second supply flow path 23 from the formation direction side. Therefore, the possibility that the cleaning solution 93 and the substrate solution 92 are mixed can be reduced. Then, as shown in FIG. 14, the substrate solution 92 moves from the test liquid injection part 370 when the cleaning liquid 93 flows from the supply flow path 24 on the most forming direction side. For this reason, as shown in FIGS. 7M to 7O, the substrate solution 92 can be brought into contact with the beads 31 immediately after the beads 31 have been washed with the washing solution 93. Therefore, the substrate solution 92 contacts the beads 31 before the beads 31 are dried after washing. Therefore, the possibility that the beads 31 are dried after washing and the reaction accuracy with the substrate solution 92 is lowered can be reduced, and the possibility that the inspection accuracy is lowered can be reduced.

また、図10に示すように、形成方向の反対方向側の1番目の供給流路21が延びる方向に垂直な方向に遠心力Xが作用したとき、1番目の供給流路21から洗浄液93が流出し始める。このとき、受け部20内の洗浄液93の液面93Dが、1番目の供給流路21と平行に傾く。このため、洗浄液93の液面93Dと形成方向とがなす角度R25が角度R1と同じになる。角度R21が角度R1より大きいので、洗浄液93の液面93Dが、角度R1と平行に傾いても、液面93Dは第一端部411よりも形成方向側に位置する。このため、液面が傾いた洗浄液93が、第一端部411から上流側に逆流する可能性を低減できる。よって、洗浄液93が逆流して、他の試薬9と混ざり、検査精度が低下する可能性を低減できる。   Further, as shown in FIG. 10, when the centrifugal force X acts in a direction perpendicular to the direction in which the first supply channel 21 on the opposite side of the formation direction extends, the cleaning liquid 93 is discharged from the first supply channel 21. It begins to flow out. At this time, the liquid level 93 </ b> D of the cleaning liquid 93 in the receiving unit 20 is inclined in parallel with the first supply flow path 21. For this reason, the angle R25 formed by the liquid surface 93D of the cleaning liquid 93 and the forming direction is the same as the angle R1. Since the angle R21 is larger than the angle R1, the liquid level 93D is positioned closer to the formation direction than the first end 411 even if the liquid level 93D of the cleaning liquid 93 is inclined in parallel to the angle R1. For this reason, it is possible to reduce the possibility that the cleaning liquid 93 with the inclined liquid surface flows backward from the first end 411 to the upstream side. Accordingly, it is possible to reduce the possibility that the cleaning liquid 93 flows backward and mixes with other reagents 9 and the inspection accuracy is lowered.

また、図9に示すように、第一案内面41に垂直な方向に遠心力Xが作用した時に、洗浄液が受け部20に流入する。角度R22が角度R1より小さいので、角度R22が角度R1以上である場合に比べて、洗浄液93が受け部20に流入する時に、形成方向の反対方向側の1番目の供給流路21から洗浄液93が下流側に流出する可能性を低減できる。よって、洗浄液93が検査液体94に混ざる可能性を低減でき、検査精度が低下する可能性を低減できる。   Further, as shown in FIG. 9, when the centrifugal force X is applied in a direction perpendicular to the first guide surface 41, the cleaning liquid flows into the receiving unit 20. Since the angle R22 is smaller than the angle R1, as compared with the case where the angle R22 is equal to or larger than the angle R1, when the cleaning liquid 93 flows into the receiving portion 20, the cleaning liquid 93 is supplied from the first supply channel 21 on the opposite side to the formation direction. Can be reduced to the downstream side. Therefore, the possibility that the cleaning liquid 93 is mixed with the inspection liquid 94 can be reduced, and the possibility that the inspection accuracy is lowered can be reduced.

また、図10、図12、及び図13に示すように、形成方向の反対方向側からn−1番目の供給流路21,22,23が延びる方向に垂直な方向に遠心力Xが作用した場合、n−1番目の供給流路21,22,23から洗浄液93がビーズ保持部410側に流れる。このとき、n番目の供給流路22,23,24に流入する洗浄液93の液面93A,93B,93Cは、夫々、入口仮想線228,238,248に沿って第一供給壁面221,231,241と交差する。故に、入口仮想線228,238,248が第一供給壁面221,231,241と交差しない場合に比べて、n番目の供給流路22,23,24から洗浄液93がビーズ保持部410側に流れ難い。故に、n番目の供給流路22,23,24からビーズ保持部410側に洗浄液93が流れる時に、洗浄液93が不足する可能性を低減できる。故に、検査精度が低下する可能性を低減できる。   In addition, as shown in FIGS. 10, 12, and 13, centrifugal force X is applied in a direction perpendicular to the direction in which the (n-1) th supply channels 21, 22, and 23 extend from the direction opposite to the forming direction. In this case, the cleaning liquid 93 flows from the (n-1) th supply channels 21, 22, and 23 toward the bead holding unit 410. At this time, the liquid surfaces 93A, 93B, and 93C of the cleaning liquid 93 flowing into the nth supply flow paths 22, 23, and 24 are respectively supplied to the first supply wall surfaces 221, 231, Crosses 241. Therefore, compared with the case where the inlet virtual lines 228, 238, 248 do not intersect the first supply wall surfaces 221, 231, 241, the cleaning liquid 93 flows from the nth supply flow path 22, 23, 24 to the bead holding unit 410 side. hard. Therefore, when the cleaning liquid 93 flows from the nth supply flow path 22, 23, 24 to the bead holding unit 410 side, the possibility that the cleaning liquid 93 is insufficient can be reduced. Therefore, possibility that inspection accuracy will fall can be reduced.

また、図10、図12〜図14に示すように、供給流路200を通った洗浄液93は、供給流路200が延びる方向と直交する方向に遠心力Xが作用した場合に、出口仮想線219,229,239,249に沿ってビーズ保持部410側に流れる。出口壁面214,224,234,244は出口仮想線219,229,239,249よりも受け部20側に傾斜している。このため、出口壁面214,224,234,244が出口仮想線219,229,239,249よりも受け部20側とは反対側の右側に傾斜している場合に比べて、供給流路200からビーズ保持部410側に流れる洗浄液93が、出口壁面214,224,234,244を伝い難い。このため、洗浄液93が出口壁面214,224,234を伝って、形成方向側の供給流路200に流入し、洗浄液93が逆流する可能性を低減できる。よって、洗浄液93が不足することなく、より確実にビーズ31を洗浄できる。故に、検査精度が低下する可能性を低減できる。   Further, as shown in FIGS. 10 and 12 to 14, the cleaning liquid 93 that has passed through the supply flow path 200 has a virtual exit line when a centrifugal force X acts in a direction orthogonal to the direction in which the supply flow path 200 extends. It flows to the bead holding part 410 side along 219,229,239,249. The outlet wall surfaces 214, 224, 234, and 244 are inclined to the receiving portion 20 side from the outlet virtual lines 219, 229, 239, and 249. For this reason, compared with the case where the outlet wall surfaces 214, 224, 234, 244 are inclined to the right side opposite to the receiving portion 20 side from the outlet virtual lines 219, 229, 239, 249, from the supply flow path 200. It is difficult for the cleaning liquid 93 flowing to the bead holding unit 410 side to travel along the outlet wall surfaces 214, 224, 234, and 244. Therefore, it is possible to reduce the possibility that the cleaning liquid 93 flows along the outlet wall surfaces 214, 224, and 234 and flows into the supply flow path 200 on the forming direction side, and the cleaning liquid 93 flows backward. Therefore, the beads 31 can be more reliably washed without running out of the washing solution 93. Therefore, possibility that inspection accuracy will fall can be reduced.

また、第一供給壁面221,231,241が、夫々、出口仮想線219,229,239と交差する場合に比べて、n−1番目の供給流路21,22,23から出口仮想線219,229,239に沿って流れる洗浄液93が、n番目の供給流路22,23,24における第一供給壁面221,231,241に当たり難い。このため、n番目の供給流路22,23,24における第一供給壁面221,231,241を洗浄液93が流れて逆流する可能性を低減できる。よって、洗浄液93が不足することなく、より確実にビーズ31を洗浄できる。故に、検査精度が低下する可能性を低減できる。   Moreover, compared with the case where the 1st supply wall surface 221,231,241 cross | intersects the exit virtual lines 219,229,239, respectively, the exit virtual line 219, n from the n-1th supply flow path 21,22,23. The cleaning liquid 93 flowing along the 229 and 239 hardly hits the first supply wall surfaces 221, 231, and 241 in the n-th supply flow paths 22, 23, and 24. For this reason, it is possible to reduce the possibility that the cleaning liquid 93 flows back through the first supply wall surfaces 221, 231, 241 in the nth supply flow paths 22, 23, 24. Therefore, the beads 31 can be more reliably washed without running out of the washing solution 93. Therefore, possibility that inspection accuracy will fall can be reduced.

上記実施形態において、角度R23は本発明の第一角度の一例である。角度R2は本発明の第二角度の一例である。角度R20は本発明の第三角度の一例である。角度R3は本発明の第四角度の一例である。角度R24は本発明の第五角度の一例である。角度R21は本発明の第六角度の一例である。角度R1は本発明の第七角度の一例である。角度R22は本発明の第八角度の一例である。測定溶液921は本発明の反応液の一例である。   In the said embodiment, angle R23 is an example of the 1st angle of this invention. The angle R2 is an example of the second angle of the present invention. The angle R20 is an example of the third angle of the present invention. The angle R3 is an example of the fourth angle of the present invention. The angle R24 is an example of the fifth angle of the present invention. The angle R21 is an example of the hexagonal degree according to the present invention. The angle R1 is an example of the seventh angle of the present invention. The angle R22 is an example of the eighth angle of the present invention. The measurement solution 921 is an example of the reaction solution of the present invention.

尚、本発明は上記の実施形態に限定されるものではなく、種々の変更が可能である。例えば、第一供給壁面221,231,241が、夫々、出口仮想線219,229,239と交差してもよい。出口壁面214,224,234,244が出口仮想線219,229,239,249よりも受け部20側とは反対側の右側に傾斜してもよい。角度R22が角度R1以上であってもよい。角度R21が角度R1以下でもよい。角度R20が角度R3以下でもよい。角度R23が角度R2以上でもよい。   In addition, this invention is not limited to said embodiment, A various change is possible. For example, the first supply wall surfaces 221, 231, and 241 may intersect the exit virtual lines 219, 229, and 239, respectively. The outlet wall surfaces 214, 224, 234, and 244 may be inclined to the right side opposite to the receiving portion 20 side with respect to the outlet virtual lines 219, 229, 239, and 249. The angle R22 may be greater than or equal to the angle R1. The angle R21 may be equal to or less than the angle R1. The angle R20 may be equal to or less than the angle R3. The angle R23 may be greater than or equal to the angle R2.

また、基質溶液92が呈色反応する基質溶液である場合、反応停止液91は検査チップ2に配置されなくてもよい。この場合、検査チップ2に反応停止液注入部310が設けられなくてもよい。また、検査液体94に酵素標識抗体が含まれていたが、検査液体94に酵素標識抗体を含ませず、酵素標識抗体を含む標識検体液を使用してもよい。この場合、洗浄液注入部350と検査液体注入部370との間に、標識検体液を注入する標識検体液注入部を設けてもよい。また、図8(R)及び図8(S)に示すように、測定部430において基質溶液92に反応停止液91が混合されていたが、測定部430よりも上流側で混合される構成にしてもよい。   Further, when the substrate solution 92 is a substrate solution that undergoes a color reaction, the reaction stop solution 91 may not be disposed on the test chip 2. In this case, the reaction stop liquid injection part 310 may not be provided in the inspection chip 2. In addition, although the enzyme-labeled antibody is contained in the test liquid 94, the test liquid 94 may not include the enzyme-labeled antibody, and a labeled specimen solution containing the enzyme-labeled antibody may be used. In this case, a labeled specimen liquid injection section for injecting a labeled specimen liquid may be provided between the cleaning liquid injection section 350 and the test liquid injection section 370. Further, as shown in FIGS. 8R and 8S, the reaction stop solution 91 is mixed with the substrate solution 92 in the measurement unit 430. However, the reaction stop solution 91 is mixed upstream of the measurement unit 430. May be.

また、角度R24が角度R23以下でもよい。図5〜図8に示すように、洗浄液93は、供給流路200から多段階にビーズ保持部410に流れ、取り出し流路412を通って多段階に測定部430に流れ、廃液流路面431を通って多段階に廃液部440に流れる。この過程で、洗浄液93によって、測定部430が多段階に洗浄される。角度R24が角度R23以下である場合、測定部430を洗浄した洗浄液93が廃液部440に流れるのと同時、又は、流れた後に、取り出し流路412から洗浄液93が流出する。このため、角度R24が角度R23より大きい場合に比べて、測定部430において、各段階の洗浄液93が混ざる可能性を低減できる。よって、測定部430において各段階の洗浄液93が混ざる場合に比べて、測定部430が洗浄され易くなり、検査精度が低下する可能性を低減できる。   Further, the angle R24 may be equal to or less than the angle R23. As shown in FIG. 5 to FIG. 8, the cleaning liquid 93 flows from the supply channel 200 to the bead holding unit 410 in multiple stages, passes through the extraction channel 412 and flows to the measurement unit 430 in multiple stages, and passes through the waste liquid channel surface 431. It passes through the waste liquid section 440 in multiple stages. In this process, the measuring unit 430 is cleaned in multiple stages by the cleaning liquid 93. When the angle R <b> 24 is equal to or less than the angle R <b> 23, the cleaning liquid 93 flows out from the take-out flow path 412 at the same time or after the cleaning liquid 93 that has cleaned the measuring unit 430 flows into the waste liquid section 440. For this reason, compared with the case where the angle R24 is larger than the angle R23, the possibility that the cleaning liquid 93 in each stage is mixed in the measurement unit 430 can be reduced. Therefore, compared with the case where the cleaning liquid 93 in each stage is mixed in the measurement unit 430, the measurement unit 430 is easily cleaned, and the possibility that the inspection accuracy is lowered can be reduced.

また、第二動作は、供給流路200が延びる方向に垂直な方向に遠心力を作用させる動作に限定されない。CPU101は、n回目の第二動作を行う場合に、遠心力を作用させる方向と形成方向とがなす角度が、n番目の供給流路が延びる方向に垂直な方向と形成方向とがなす角度以上、且つ、n+1番目の供給流路が延びる方向に垂直な方向と形成方向とがなす角度より小さい範囲になる方向に、遠心力を作用させてもよい。例えば、図6(F)は、1回目の第二動作を行った場合の検査チップ2と遠心力Xとの状態を示している。方向701は、1番目の供給流路21が延びる方向に垂直な方向である。尚、方向701は、図6(F)に示す遠心力Xの方向と平行である。方向702は、2番目の供給流路22が延びる方向に垂直な方向である。尚、方向702は、図6(H)に示す遠心力Xの方向と平行である。1回目の第二動作を行う場合、方向701と形成方向とがなす角度R31以上、且つ、方向702と形成方向とがなす角度R32より小さい範囲となる方向に、遠心力Xが作用されればよい。この場合、供給流路21から供給部400に洗浄液93が移動するが、供給流路22〜24からは移動しない。本変形例の場合においても、形成方向側の反対方向側の供給流路から順番に洗浄液をビーズ保持部に供給することができる。よって、遠心力の作用を停止することなくビーズを多段階洗浄することができる。故に、遠心力の作用が停止されて試薬が拡散することがなく、検査精度が低下する可能性を低減できる。   Further, the second operation is not limited to an operation in which a centrifugal force is applied in a direction perpendicular to the direction in which the supply flow path 200 extends. When the CPU 101 performs the n-th second operation, the angle formed by the direction in which the centrifugal force is applied and the forming direction are equal to or larger than the angle formed by the direction perpendicular to the direction in which the nth supply channel extends and the forming direction. In addition, the centrifugal force may be applied in a direction that is smaller than the angle formed by the direction perpendicular to the direction in which the (n + 1) th supply channel extends and the forming direction. For example, FIG. 6F shows the state of the test chip 2 and the centrifugal force X when the second operation is performed for the first time. The direction 701 is a direction perpendicular to the direction in which the first supply channel 21 extends. The direction 701 is parallel to the direction of the centrifugal force X shown in FIG. The direction 702 is a direction perpendicular to the direction in which the second supply channel 22 extends. The direction 702 is parallel to the direction of the centrifugal force X shown in FIG. When the second operation is performed for the first time, if the centrifugal force X is applied in a direction that is greater than or equal to an angle R31 formed by the direction 701 and the forming direction and smaller than an angle R32 formed by the direction 702 and the forming direction. Good. In this case, the cleaning liquid 93 moves from the supply channel 21 to the supply unit 400, but does not move from the supply channels 22 to 24. Also in the case of the present modification, the cleaning liquid can be supplied to the bead holding unit in order from the supply channel on the opposite side to the formation direction. Therefore, the beads can be washed in multiple stages without stopping the action of the centrifugal force. Therefore, the action of the centrifugal force is stopped, the reagent does not diffuse, and the possibility that the inspection accuracy is lowered can be reduced.

1 検査装置
2 検査チップ
3 検査システム
9 試薬
21,22,23,24,200 供給流路
31 ビーズ
41 第一案内面
42 第二案内面
92 基質溶液
93,931,932,933,934 洗浄液
94 検査液体
95,951 ビーズ分散液
211,221,231,241 第一供給壁面
212,222,232,242 第二供給壁面
213,223,233,243 入口端部
213,223,233,243 第一端部
214,224,234,244 出口壁面
215,225,235,245 出口端部
219,229,239,249 出口仮想線
228,238,248 入口仮想線
330 基質溶液注入部
350 洗浄液注入部
370 検査液体注入部
371 形成面
390 余剰部
410 ビーズ保持部
411 第一端部
412 取り出し流路
421 第二端部
430 測定部
431 廃液流路面
440 廃液部
DESCRIPTION OF SYMBOLS 1 Inspection apparatus 2 Inspection chip 3 Inspection system 9 Reagent 21,22,23,24,200 Supply flow path 31 Bead 41 First guide surface 42 Second guide surface 92 Substrate solution 93,931,932,933,934 Cleaning solution 94 Inspection Liquid 95, 951 Bead dispersion 211, 221, 231, 241 First supply wall surface 212, 222, 232, 242 Second supply wall surface 213, 223, 233, 243 Inlet end 213, 223, 233, 243 First end 214, 224, 234, 244 Outlet wall surfaces 215, 225, 235, 245 Outlet end portions 219, 229, 239, 249 Outlet virtual lines 228, 238, 248 Inlet virtual line 330 Substrate solution injection unit 350 Cleaning liquid injection unit 370 Inspection liquid injection Part 371 formation surface 390 surplus part 410 bead holding part 411 first end part 412 take-out flow path 421 Second end 430 Measuring unit 431 Waste liquid flow path surface 440 Waste liquid part

Claims (10)

酵素反応のための基質溶液が注入される基質溶液注入部と、
前記基質溶液注入部よりも下流に配置され、洗浄液が注入される洗浄液注入部と、
前記洗浄液注入部よりも下流に配置され、検査対象物質を含む検査液体が注入される検査液体注入部と、
前記検査液体注入部よりも下流に配置され、前記基質溶液注入部に注入された前記基質溶液と、前記洗浄液注入部に注入された前記洗浄液と、前記検査液体注入部に注入された前記検査液体とが流入する受け部と、
前記受け部よりも下流に配置され、抗原抗体反応のためのビーズが保持されるビーズ保持部と、
前記ビーズ保持部よりも下流に配置され、前記検査液体と前記ビーズとに反応した前記基質溶液を含む反応液が測定される測定部と、
前記測定部よりも下流に配置された廃液部と
を備え、
前記基質溶液注入部、前記洗浄液注入部、前記検査液体注入部、前記受け部、及び前記測定部は同じ形成方向に凹む形状であり、
前記受け部は、前記ビーズ保持部に繋がり、前記形成方向に並んだ複数の供給流路を備え、
前記複数の供給流路は、前記形成方向側の前記供給流路ほど、前記形成方向に対して大きな角度で延びることを特徴とする検査チップ。
A substrate solution injection part into which a substrate solution for an enzyme reaction is injected;
A cleaning liquid injection unit disposed downstream of the substrate solution injection unit and into which a cleaning liquid is injected;
A test liquid injection part that is arranged downstream of the cleaning liquid injection part and into which a test liquid containing a test target substance is injected,
The substrate solution disposed downstream of the inspection liquid injection unit and injected into the substrate solution injection unit, the cleaning liquid injected into the cleaning liquid injection unit, and the inspection liquid injected into the inspection liquid injection unit And a receiving part into which
A bead holding portion that is arranged downstream of the receiving portion and holds beads for antigen-antibody reaction;
A measurement unit that is arranged downstream of the bead holding unit and that measures a reaction solution containing the substrate solution that has reacted with the test liquid and the beads;
A waste liquid part disposed downstream of the measurement part,
The substrate solution injection part, the cleaning liquid injection part, the inspection liquid injection part, the receiving part, and the measurement part are recessed in the same forming direction,
The receiving portion is connected to the bead holding portion, and includes a plurality of supply channels arranged in the forming direction,
The inspection chip, wherein the plurality of supply channels extend at a larger angle with respect to the formation direction as the supply channel on the formation direction side.
前記ビーズ保持部は、前記形成方向側に、前記測定部に繋がる取り出し流路を備え、
前記取り出し流路が延びる方向と前記形成方向とがなす第一角度は、前記複数の供給流路のうち、前記形成方向の反対方向側から2番目の前記供給流路が延びる方向と前記形成方向とがなす第二角度より小さいことを特徴とする請求項1に記載の検査チップ。
The bead holding unit includes a take-out flow channel connected to the measurement unit on the formation direction side,
The first angle formed by the direction in which the take-out flow channel extends and the formation direction is the direction in which the second supply flow channel extends from the opposite side of the formation direction and the formation direction among the plurality of supply flow channels. The inspection chip according to claim 1, wherein the inspection chip is smaller than a second angle formed by.
前記検査液体注入部を形成する面のうち、前記受け部に繋がる流路を形成する形成面が延びる方向と前記形成方向とがなす第三角度は、前記複数の供給流路のうち、前記形成方向側から2番目の前記供給流路が延びる方向と前記形成方向とがなす第四角度より大きいことを特徴とする請求項2に記載の検査チップ。   A third angle formed by a direction in which a forming surface that forms a flow channel connected to the receiving portion and a forming direction among the surfaces that form the test liquid injection portion is formed is the formation angle of the plurality of supply flow channels. The inspection chip according to claim 2, wherein the inspection chip is larger than a fourth angle formed by a direction in which the second supply channel extends from a direction side and the forming direction. 前記測定部を形成する面のうち、前記廃液部に繋がる流路を形成する廃液流路面が延びる方向と前記形成方向とがなす第五角度は、前記第一角度以下であることを特徴とする請求項2又は3に記載の検査チップ。   A fifth angle formed by a direction in which a waste liquid flow channel surface that forms a flow channel connected to the waste liquid portion extends and the formation direction among the surfaces forming the measurement unit is equal to or less than the first angle. The inspection chip according to claim 2 or 3. 前記受け部に対して前記供給流路側の反対側に設けられた余剰部と、
前記検査液体注入部と前記受け部との間に設けられ、前記受け部に繋がる面である第一案内面と、
前記受け部から前記余剰部側に延びる第二案内面と、
前記第一案内面における前記受け部側の第一端部と、
前記第二案内面における前記受け部側の第二端部と
を備え、
前記第二端部から前記第一端部に向かう方向と前記形成方向とがなす第六角度は、前記形成方向の反対方向側の1番目の前記供給流路が延びる方向と前記形成方向とがなす第七角度より大きいことを特徴とする請求項1から4のいずれかに記載の検査チップ。
An excess portion provided on the opposite side of the supply flow channel side with respect to the receiving portion;
A first guide surface which is provided between the test liquid injection part and the receiving part and is connected to the receiving part;
A second guide surface extending from the receiving part toward the surplus part,
A first end portion on the receiving portion side of the first guide surface;
A second end portion on the receiving portion side of the second guide surface,
The hexagonal degree formed by the direction from the second end portion toward the first end portion and the forming direction is determined by the direction in which the first supply channel on the opposite side of the forming direction extends and the forming direction. The inspection chip according to claim 1, wherein the inspection chip is larger than a seventh angle formed.
前記第一案内面と前記形成方向とがなす第八角度は、前記第七角度より小さいことを特徴とする請求項5に記載の検査チップ。   The inspection chip according to claim 5, wherein an eighth angle formed by the first guide surface and the forming direction is smaller than the seventh angle. 前記複数の供給流路の夫々は、
前記形成方向側の第一供給壁面と、
前記形成方向の反対方向側の第二供給壁面と
を備え、
前記複数の供給流路のうち、前記形成方向の反対方向側からn番目の前記供給流路の前記第二供給壁面における上流側の入口端部から、前記形成方向の反対方向側からn−1番目の前記供給流路が延びる方向と平行に引いた入口仮想線は、n番目の前記供給流路における前記第一供給壁面と交差することを特徴とする請求項1から6のいずれかに記載の検査チップ。
Each of the plurality of supply channels is
A first supply wall surface on the forming direction side;
A second supply wall surface on the opposite side of the forming direction,
Among the plurality of supply channels, from the inlet end on the upstream side of the second supply wall surface of the nth supply channel from the direction opposite to the formation direction, n−1 from the direction opposite to the formation direction. The inlet imaginary line drawn in parallel with the direction in which the th supply flow channel extends intersects the first supply wall surface in the n th supply flow channel. Inspection chip.
前記第一供給壁面における下流側の出口端部に接続された出口壁面を備え、
前記出口壁面は、前記出口端部から前記供給流路が延びる方向と直交する方向に引いた出口仮想線よりも、前記受け部側に傾斜することを特徴とする請求項7に記載の検査チップ。
An outlet wall connected to the downstream outlet end of the first supply wall;
The inspection chip according to claim 7, wherein the outlet wall surface is inclined toward the receiving portion with respect to an outlet imaginary line drawn from the outlet end portion in a direction orthogonal to a direction in which the supply flow path extends. .
前記形成方向の反対方向側からn番目の前記供給流路における前記第一供給壁面は、n−1番目の前記供給流路における前記出口端部から引いた前記出口仮想線より前記受け部側に位置することを特徴とする請求項8に記載の検査チップ。   The first supply wall surface in the nth supply channel from the opposite side of the forming direction is closer to the receiving unit than the virtual imaginary line drawn from the outlet end in the (n-1) th supply channel. The inspection chip according to claim 8, wherein the inspection chip is located. 検査チップと、前記検査チップを所定の第一軸を中心に回転させることにより前記検査チップに遠心力を作用させ、且つ、前記第一軸とは異なる第二軸を中心に前記検査チップを回転させることにより前記遠心力の方向を変化させる検査装置とから構成される検査システムであって、
前記検査チップは、
酵素反応のための基質溶液が注入される基質溶液注入部と、
前記基質溶液注入部よりも下流に配置され、洗浄液が注入される洗浄液注入部と、
前記洗浄液注入部よりも下流に配置され、検査対象物質を含む検査液体が注入される検査液体注入部と、
前記検査液体注入部よりも下流に配置され、前記基質溶液注入部に注入された前記基質溶液と、前記洗浄液注入部に注入された前記洗浄液と、前記検査液体注入部に注入された前記検査液体とが流入する受け部と、
前記受け部よりも下流に配置され、抗原抗体反応のためのビーズが保持されるビーズ保持部と、
前記ビーズ保持部よりも下流に配置され、前記検査液体と前記ビーズとに反応した前記基質溶液を含む反応液が測定される測定部と、
前記測定部よりも下流に配置された廃液部と
を備え、
前記基質溶液注入部、前記洗浄液注入部、前記検査液体注入部、前記受け部、及び前記測定部は同じ形成方向に凹む形状であり、
前記受け部は、前記ビーズ保持部に繋がり、前記形成方向に並んだ複数の供給流路を備え、
前記複数の供給流路は、前記形成方向側の前記供給流路ほど、前記形成方向に対して大きな角度で延び、
前記検査装置は、
前記受け部から前記ビーズ保持部へ、前記複数の供給流路のいずれかを介して前記洗浄液を供給する場合に、前記形成方向に向けて前記検査チップに前記遠心力を作用させる第一動作と、前記形成方向とは異なる方向に向けて前記検査チップに前記遠心力を作用させる第二動作とを繰り返し実行する作用手段を備え、
前記作用手段は、n回目の前記第二動作を行う場合に、前記遠心力を作用させる方向と前記形成方向とがなす角度が、前記形成方向の反対方向側からn番目の前記供給流路が延びる方向に垂直な方向と前記形成方向とがなす角度以上、且つ、n+1番目の前記供給流路が延びる方向に垂直な方向と前記形成方向とがなす角度より小さい範囲になる方向に、前記遠心力を作用させることを特徴とする検査システム。
A centrifugal force is applied to the inspection chip by rotating the inspection chip and the inspection chip about a predetermined first axis, and the inspection chip is rotated about a second axis different from the first axis. An inspection system comprising an inspection device that changes the direction of the centrifugal force by allowing
The inspection chip is
A substrate solution injection part into which a substrate solution for an enzyme reaction is injected;
A cleaning liquid injection unit disposed downstream of the substrate solution injection unit and into which a cleaning liquid is injected;
A test liquid injection part that is arranged downstream of the cleaning liquid injection part and into which a test liquid containing a test target substance is injected,
The substrate solution disposed downstream of the inspection liquid injection unit and injected into the substrate solution injection unit, the cleaning liquid injected into the cleaning liquid injection unit, and the inspection liquid injected into the inspection liquid injection unit And a receiving part into which
A bead holding portion that is arranged downstream of the receiving portion and holds beads for antigen-antibody reaction;
A measurement unit that is arranged downstream of the bead holding unit and that measures a reaction solution containing the substrate solution that has reacted with the test liquid and the beads;
A waste liquid part disposed downstream of the measurement part,
The substrate solution injection part, the cleaning liquid injection part, the inspection liquid injection part, the receiving part, and the measurement part are recessed in the same forming direction,
The receiving portion is connected to the bead holding portion, and includes a plurality of supply channels arranged in the forming direction,
The plurality of supply channels extend at a larger angle with respect to the formation direction as the supply channel on the formation direction side,
The inspection device includes:
A first operation for applying the centrifugal force to the test chip in the forming direction when supplying the cleaning liquid from the receiving unit to the bead holding unit via any of the plurality of supply channels; An action means for repeatedly executing a second operation for causing the centrifugal force to act on the test chip in a direction different from the formation direction;
When the second operation of the n-th time is performed, the action means is configured such that an angle formed by the direction in which the centrifugal force is applied and the formation direction is the nth supply channel from the opposite side of the formation direction. The centrifuge is in a direction that is equal to or larger than an angle formed by the direction perpendicular to the extending direction and the forming direction and smaller than an angle formed by the direction perpendicular to the extending direction of the (n + 1) th supply channel and the forming direction. Inspection system characterized by applying force.
JP2014074677A 2014-03-31 2014-03-31 Inspection chip and inspection system Expired - Fee Related JP5910657B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014074677A JP5910657B2 (en) 2014-03-31 2014-03-31 Inspection chip and inspection system
PCT/JP2015/060103 WO2015152229A1 (en) 2014-03-31 2015-03-31 Detection chip and detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014074677A JP5910657B2 (en) 2014-03-31 2014-03-31 Inspection chip and inspection system

Publications (2)

Publication Number Publication Date
JP2015195750A JP2015195750A (en) 2015-11-09
JP5910657B2 true JP5910657B2 (en) 2016-04-27

Family

ID=54240549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014074677A Expired - Fee Related JP5910657B2 (en) 2014-03-31 2014-03-31 Inspection chip and inspection system

Country Status (2)

Country Link
JP (1) JP5910657B2 (en)
WO (1) WO2015152229A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423200B2 (en) * 2009-07-21 2014-02-19 東レ株式会社 Analysis chip and sample analysis method
JP2012242278A (en) * 2011-05-20 2012-12-10 Rohm Co Ltd Test reagent used for microchip
JP5459265B2 (en) * 2011-05-30 2014-04-02 ブラザー工業株式会社 Inspection target receptacle, liquid mixing system including the inspection target receptacle, and liquid mixing method using the liquid mixing system
JP5565398B2 (en) * 2011-09-30 2014-08-06 ブラザー工業株式会社 Inspection target

Also Published As

Publication number Publication date
JP2015195750A (en) 2015-11-09
WO2015152229A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5910658B2 (en) Inspection chip
JP2014106207A (en) Inspection chip
JP5958238B2 (en) Inspection chip and inspection device
JP2014167390A (en) Inspection chip and inspection system
WO2014061635A1 (en) Inspection device, inspection system, inspection method, and computer program
WO2015080193A1 (en) Inspection chip
JP5910657B2 (en) Inspection chip and inspection system
JP5958452B2 (en) Inspection chip
JP6160647B2 (en) Inspection chip
JP5958331B2 (en) Inspection chip and inspection system
JP5958451B2 (en) Inspection chip, liquid feeding method, and liquid feeding program
WO2014103864A1 (en) Inspection chip
JP5915686B2 (en) Inspection chip
JP6477395B2 (en) Inspection method and inspection system
WO2014061636A1 (en) Inspection chip
JP5971082B2 (en) Inspection chip
JP2016194448A (en) Inspection chip
JP5939148B2 (en) Inspection chip and inspection system
JP5975055B2 (en) Inspection chip
JP5958249B2 (en) Inspection chip and inspection device
JP2017032382A (en) Inspection chip, inspection system, and inspection method
JP2015105888A (en) Inspection device, inspection method, and inspection program
JP2015105886A (en) Inspection device
WO2014133126A1 (en) Test chip
JP2014119319A (en) Inspection chip and inspection system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees