WO2014050426A1 - 液晶組成物およびその製造方法ならびにフィルム - Google Patents

液晶組成物およびその製造方法ならびにフィルム Download PDF

Info

Publication number
WO2014050426A1
WO2014050426A1 PCT/JP2013/073284 JP2013073284W WO2014050426A1 WO 2014050426 A1 WO2014050426 A1 WO 2014050426A1 JP 2013073284 W JP2013073284 W JP 2013073284W WO 2014050426 A1 WO2014050426 A1 WO 2014050426A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
general formula
crystal composition
film
Prior art date
Application number
PCT/JP2013/073284
Other languages
English (en)
French (fr)
Inventor
峻也 加藤
拓史 松山
吉川 将
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157006710A priority Critical patent/KR101707348B1/ko
Priority to CN201380049208.6A priority patent/CN104662127B/zh
Publication of WO2014050426A1 publication Critical patent/WO2014050426A1/ja
Priority to US14/661,771 priority patent/US9464228B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/56Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/88Hydrazones having also the other nitrogen atom doubly-bound to a carbon atom, e.g. azines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/28Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3444Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3475Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing at least three nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • C09K2019/044Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect the specific unit being a perfluoro chain used as an end group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2035Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph

Definitions

  • the present invention relates to a liquid crystal composition useful for various uses including materials for various optical members such as an optically anisotropic film and a heat shielding film, a method for producing the same, and a film using the liquid crystal composition.
  • the polymerizable liquid crystal used for the production of the optically anisotropic film often has a problem that it is crystallized in a coating process or a process after drying.
  • crystallization can be suppressed by mixing the target polymerizable liquid crystal with another polymerizable liquid crystal.
  • a composition in which a (meth) acrylate compound having two (meth) acryloyl groups at the end of a molecule is used in combination with another polymerizable liquid crystal compound, or a (meth) acryloyl group and an alkyl during the production of a polymerizable liquid crystal is used in combination with another polymerizable liquid crystal compound, or a (meth) acryloyl group and an alkyl during the production of a polymerizable liquid crystal.
  • An example in which crystallization is suppressed by using a composition prepared as a random mixture having groups at both ends of the molecule is known, but the effect of suppressing crystallization is not sufficient.
  • Patent Document 1 includes two or more kinds of polymerizable liquid crystals using a compound having a hydroxyl group or a derivative thereof and a nucleophilic compound having a non-carboxyl group-based leaving group and a polymerizable group.
  • a method for synthesizing a liquid crystal mixture is described, and it is described that a liquid crystal composition having high liquid crystal properties can be produced in a short time and at a low cost.
  • Patent Document 2 describes a method for producing a composition containing two or more kinds of polymerizable liquid crystals by reacting a compound having a hydroxyl group with a compound having a carboxyl group derivative and a polymerizable group.
  • Patent Document 1 or 2 was not satisfactory economically or in performance of the produced composition. Furthermore, the method described in Patent Document 1 describes only one type of synthesis method (a method in which a core is first formed and a side chain is attached), and polymerization in a range in which the side chain and core are bound in a limited manner. This is a method that can only produce a mixed composition of crystalline liquid crystals. Patent Document 2 also discloses a method for producing a liquid crystal composition by simultaneously synthesizing a monofunctional polymerizable liquid crystal having only one polymerizable group and a bifunctional polymerizable liquid crystal having two polymerizable groups. Was not listed. Also, no method for producing such a liquid crystal composition has been suggested.
  • the problem to be solved by the present invention is to provide a method for producing a liquid crystal composition having high crystallization inhibiting ability, solubility and liquid crystallinity at a time by using two or more different carboxylic acids as a raw material. It is.
  • the present invention which is means for solving the above problems, is as follows. [1] By reacting a compound represented by the following general formula (III) with a carboxylic acid represented by the following general formula (IV) and a carboxylic acid represented by the following general formula (V), the following general formula A method for producing a liquid crystal composition, comprising simultaneously obtaining a liquid crystal compound represented by (I) and a liquid crystal compound represented by the following general formula (II).
  • Sp 1 represents a divalent aliphatic group which has 1-3 carbon atoms which may 12 have a substituent, two or more CH 2 that is not one of the CH 2 or adjacent in the aliphatic groups, -O It may be substituted with —, —S—, —OCO—, —COO— or —OCOO—.
  • T 1 represents a 1,4-phenylene group.
  • T 2 represents a divalent group having a single bond or a cyclic structure.
  • a 1 represents —COO—, —CONR 1 — (R 1 represents a hydrogen atom or a methyl group) or —COS—.
  • a 2 and A 3 each independently represents —OCO—, —NR 1 CO— (R 1 represents a hydrogen atom or a methyl group) or —SCO—.
  • B represents a divalent group having a cyclic structure which may have a substituent.
  • X represents a hydrogen atom, a branched or linear alkyl group having 1 to 12 carbon atoms, a branched or linear alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyano group, a halogen atom, a nitro group, an acetyl group.
  • R is an alkyl group having 1 to 12 carbon atoms
  • R is an alkyl group having 1 to 12 carbon atoms
  • N-acetylamide group acryloylamino group, N, N-dimethylamino group, N-maleimide group, Methacryloylamino group, allyloxy group, N-alkyloxycarbamoyl group having 1 to 4 carbon atoms, allyloxycarbamoyl group, N- (2-methacryloyloxyethyl) carbamoyloxy group, N- (2-acryloyloxy)
  • Y 1 and Y 2 each independently represent O, NR 1 (R 1 represents a hydrogen atom or a methyl group) or S.
  • X is a hydrogen atom, a branched or linear alkyl group having 1 to 12 carbon atoms, Alternatively, it is preferably a linear alkoxy group having 1 to 12 carbon atoms, phenyl group, cyano group, halogen atom, nitro group, acetyl group or vinyl group.
  • the method for producing a liquid crystal composition according to [1] or [2] further comprises mixing the carboxylic acid represented by the general formula (IV) and the carboxylic acid represented by the general formula (V) with a mixed acid anhydride.
  • the compound represented by the general formula (III) in the presence of a base after the activation step is represented by the activated general formula (IV). It is preferable to react with the carboxylic acid represented by the general formula (V).
  • the method for producing a liquid crystal composition according to any one of [1] to [3] includes a preparation ratio of the carboxylic acid represented by the general formula (IV) and the carboxylic acid represented by the general formula (V). Is preferably in the range of 75:25 to 99: 1 in molar ratio.
  • the production ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) is The molar ratio is preferably in the range of 50:50 to 98: 2.
  • the method for producing a liquid crystal composition according to any one of [1] to [5] includes a compound represented by general formula (I) and a compound represented by general formula (II) in the liquid crystal composition. Is preferably in the range of 50:50 to 95: 5 by mass ratio.
  • B is preferably any one of the linking groups included in the following linking group group (VI).
  • R 2 to R 10 are each independently a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, a branched or straight chain group having 1 to 4 carbon atoms. Represents an alkoxy group, a halogen atom, or an alkoxycarbonyl group having 1 to 3 carbon atoms.
  • T 2 is preferably any one of the linking groups included in the following linking group group (VII).
  • B is preferably any one of the linking groups included in the following linking group group (VIII).
  • X is a branched or straight chain alkyl group having 1 to 4 carbon atoms, a straight chain carbon number 1 or It is preferable to represent an alkoxy group of 2 or a phenyl group.
  • Y 1 and Y 2 are O, A 1 is —COO—, and A 2 and A 3 are — OCO- is preferred.
  • the film according to [13] is preferably formed by fixing the cholesteric alignment of the liquid crystal compound in the optically anisotropic layer.
  • the film according to [14] preferably exhibits selective reflection characteristics.
  • the film according to [14] or [15] preferably exhibits selective reflection characteristics in an infrared wavelength region.
  • the film according to [13] is preferably formed by fixing the homogeneous orientation of the liquid crystal compound in the optically anisotropic layer.
  • the film according to [13] is preferably formed by fixing the homeotropic alignment of the liquid crystal compound in the optically anisotropic layer.
  • a polarizing plate comprising the film according to [17] or [18] and a polarizing film.
  • a liquid crystal display device comprising the polarizing plate according to [19].
  • the present invention it is possible to provide a method for producing a liquid crystal composition having high crystallization inhibiting ability, solubility and liquid crystallinity at once by using two or more different carboxylic acids as one kind of raw materials.
  • FIG. 2 is an X-ray diffraction spectrum of a liquid crystal composition of Example 1 and a liquid crystal composition of Comparative Example 1.
  • FIG. 2 is an X-ray diffraction spectrum of the liquid crystal composition of Example 6 and the liquid crystal composition of Comparative Example 2.
  • FIG. 2 is an X-ray diffraction spectrum of the liquid crystal composition of Example 6 and the liquid crystal composition of Comparative Example 2.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the method for producing a liquid crystal composition of the present invention comprises a compound represented by the following general formula (III), a carboxylic acid represented by the following general formula (IV) and a carboxylic acid represented by the following general formula (V):
  • a method for producing a liquid crystal composition wherein a liquid crystal compound represented by the following general formula (I) and a liquid crystal compound represented by the following general formula (II) are simultaneously obtained by reacting.
  • Sp 1 represents an optionally substituted divalent aliphatic group having 3 to 12 carbon atoms.
  • T 1 optionally substituted with -OCOO- 1 , 4-phenylene
  • T 2 represents a single bond or a divalent group having a cyclic structure
  • a 1 represents —COO—
  • —CONR 1 — R 1 represents a hydrogen atom or a methyl group
  • a 2 and A 3 each independently represents —OCO—
  • —NR 1 CO— R 1 represents a hydrogen atom or a methyl group
  • B represents a substituent.
  • X represents a hydrogen atom, a branched or straight-chain alkyl group having 1 to 12 carbon atoms.
  • Y 1 and Y 2 each independently represent O, NR 1 (R 1 represents a hydrogen atom or a methyl group) or S.
  • -A 4 -T 4 -Sp 2 -P 2 formula (VI) In the formula (VI), P 2 represents a polymerizable group or a hydrogen atom, and A 4 , T 4 , and Sp 2 are each independently synonymous with A 2 , T 2 , and Sp 1.
  • a liquid crystal composition having high crystallization inhibiting ability, solubility and liquid crystallinity is produced at a time using two or more different carboxylic acids as one kind of raw materials.
  • a method can be provided.
  • the production method of the liquid crystal composition of the present invention is not particularly limited in the synthesis order, and may be a synthesis order other than the above synthesis scheme.
  • the addition order of the carboxylic acid represented by the general formula (IV) and the carboxylic acid represented by the general formula (V) is not particularly limited.
  • the carboxylic acid represented by the general formula (IV) and the carboxylic acid represented by the general formula (V) are further led to a mixed acid anhydride or an acid halide.
  • the compound represented by the general formula (III) in the presence of a base after the activation step is activated, and the activated carboxylic acid represented by the general formula (IV) and It is preferable to react with the carboxylic acid represented by the general formula (V).
  • an activator used for the said activation process Methanesulfonyl chloride, toluenesulfonyl chloride, etc. can be used.
  • a tertiary amine for example, a triethylamine, diisopropylethylamine), an inorganic salt, etc. can be used.
  • the activation step is preferably performed under ice cooling. It is preferable to add the compound represented by the general formula (III) after the activation step from the viewpoint of preventing the compound represented by the general formula (III) from being adversely affected by the activator.
  • the compound represented by the general formula (III) in the presence of a base after the activation step is represented by the activated carboxylic acid represented by the general formula (IV) and the general formula (V).
  • the carboxylic acid is preferably added under ice cooling.
  • HY 1 -BY 2 H General formula (III)
  • B represents a divalent group having a cyclic structure which may have a substituent.
  • Y 1 and Y 2 each independently represent O, NR 1 (R 1 represents a hydrogen atom or a methyl group) or S.
  • R 2 to R 10 are each independently a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, a branched or straight chain alkoxy group having 1 to 4 carbon atoms. Represents a group, a halogen atom, or an alkoxycarbonyl group having 1 to 3 carbon atoms.
  • R 2 to R 10 are each independently more preferably a hydrogen atom, a branched or linear alkyl group having 1 to 4 carbon atoms, and a hydrogen atom, a linear alkyl group having 1 or 2 carbon atoms. It is particularly preferred that The B is more preferably any one of the linking groups included in the following linking group group (VIII).
  • Y 1 and Y 2 each independently represent O, NR 1 (R 1 represents a hydrogen atom or a methyl group) or S, and more preferably O.
  • a carboxylic acid represented by the following general formula (IV) is used as a kind of raw material.
  • P 1 -Sp 1 -T 1 -COOH Formula (IV) P 1 represents a polymerizable group.
  • Sp 1 represents a divalent aliphatic group which has 1-3 carbon atoms which may 12 have a substituent, two or more CH 2 that is not one of the CH 2 or adjacent in the aliphatic groups, -O It may be substituted with —, —S—, —OCO—, —COO— or —OCOO—.
  • T 1 represents a 1,4-phenylene group.
  • P 1 represents a polymerizable group, and the polymerizable group is not particularly limited. For details and a preferable range of the polymerizable group, see [0161] to [0171] of JP-A No. 2002-129162. Can do.
  • P 1 is preferably an ethylenically unsaturated double bond group, more preferably a methacryloyl group or an acryloyl group, and particularly preferably an acryloyl group.
  • the Sp 1 represents a divalent aliphatic group which has carbon atoms 3 be ⁇ 12 have a substituent, two or more CH 2 that is not one of the CH 2 or adjacent in the aliphatic group, - It may be substituted with O—, —S—, —OCO—, —COO— or —OCOO—.
  • Sp 1 represents an optionally substituted divalent alkylene group having 3 to 12 carbon atoms, more preferably an alkylene group having 3 to 8 carbon atoms, and still more preferably an alkylene group having 3 to 6 carbon atoms.
  • a non-adjacent methylene group in the alkylene may be substituted with —O—.
  • the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred.
  • T 2 represents a divalent group having a single bond or a cyclic structure.
  • X represents a hydrogen atom, a branched or linear alkyl group having 1 to 12 carbon atoms, a branched or linear alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyano group, a halogen atom, a nitro group, an acetyl group.
  • Vinyl group, formyl group, —OC ( ⁇ O) R (R is an alkyl group having 1 to 12 carbon atoms), N-acetylamide group, acryloylamino group, N, N-dimethylamino group, N-maleimide group, methacryloyl Amino group, allyloxy group, N-alkyloxycarbamoyl group having 1 to 4 carbon atoms, allyloxycarbamoyl group, N- (2-methacryloyloxyethyl) carbamoyloxy group, N- (2-acryloyloxyethyl) ) A carbamoyloxy group or a structure represented by the following formula (VI).
  • T 2 represents a single bond or a divalent group having a cyclic structure, and is preferably a single bond or a divalent group having a divalent aromatic hydrocarbon group or a divalent heterocyclic group.
  • the aromatic hydrocarbon group is more preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and more preferably 6 to 14 carbon atoms. 10 is more preferable, and 6 is even more preferable.
  • the divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocycle is preferably an aromatic heterocycle.
  • the aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent aromatic hydrocarbon group or divalent heterocyclic group may further have a divalent linking group.
  • the divalent linking group is preferably an alkenyl group having 2 to 4 carbon atoms, and more preferably an alkenyl group having 2 carbon atoms.
  • T 2 is any one of the linking groups included in the following linking group group (VII).
  • X is a hydrogen atom, branched or straight chain alkyl group having 1 to 12 carbon atoms, branched or straight chain alkoxy group having 1 to 12 carbon atoms, phenyl group, cyano group, halogen atom, nitro group, acetyl group Group or vinyl group, preferably a hydrogen atom, a branched or linear alkyl group having 1 to 4 carbon atoms, a linear alkoxy group having 1 or 2 carbon atoms, or a phenyl group, branched or It represents a linear alkyl group having 1 to 4 carbon atoms, a linear alkoxy group having 1 or 2 carbon atoms, or a phenyl group, so that a linear alkyl group having 1 to 4 carbon atoms, phenyl Particularly preferred is a group.
  • X is a formyl group, acetoxy group, N-acetylamide group, acryloylamino group, N, N-dimethylamino group, N-maleimide group, methacryloylamino group, allyloxy group, or alkyl group having 1 to 4 carbon atoms.
  • N-alkyloxycarbamoyl group, allyloxycarbamoyl group, N- (2-methacryloyloxyethyl) carbamoyloxy group, N- (2-acryloyloxyethyl) carbamoyloxy group or the above formula (VI) Represents the structure.
  • an acryloylamino group, a methacryloylamino group, an allyloxy group, an allyloxycarbamoyl group, or a structure represented by the formula (VI) is preferable, and an acryloylamino group, a methacryloylamino group, or a formula (VI)
  • the structure is more preferred.
  • P 2 represents a polymerizable group or a hydrogen atom, and is preferably a polymerizable group.
  • a preferable range of the polymerizable group is the same as P 1 described above.
  • a 4 , T 4 and Sp 2 are each independently synonymous with the above A 2 , T 2 and Sp 1 , and preferred ranges are also the same.
  • P 2 is a methacryloyl group or an acryloyl group
  • Sp 2 is a divalent branched alkylene having 1 to 12 carbon atoms
  • one CH 2 in the alkylene group or two or more non-adjacent CH 2 may be substituted with —O—, —OCO—, —COO— or —OCOO—
  • T 4 is a 1,4-phenylene group
  • a 4 is -OCO-.
  • the charging ratio of the carboxylic acid represented by the general formula (IV) and the carboxylic acid represented by the general formula (V) is 75 to 25 to 99 in molar ratio.
  • the range of 1 is preferable, the range of 77:33 to 95: 5 is more preferable, and the range of 80:20 to 90:10 is particularly preferable.
  • the method for producing a liquid crystal composition of the present invention is characterized in that a liquid crystal compound represented by the following general formula (I) and a liquid crystal compound represented by the following general formula (II) are simultaneously obtained.
  • P 1 -Sp 1 -T 1 -A 1 -B-A 2 -T 1 -Sp 1 -P 1 formula (I) P 1 -Sp 1 -T 1 -A 1 -B-A 3 -T 2 -X general formula (II)
  • P 1 represents a polymerizable group.
  • Sp 1 represents a divalent aliphatic group which has 1-3 carbon atoms which may 12 have a substituent, two or more CH 2 that is not one of the CH 2 or adjacent in the aliphatic groups, -O It may be substituted with —, —S—, —OCO—, —COO— or —OCOO—.
  • T 1 represents a 1,4-phenylene group.
  • T 2 represents a divalent group having a single bond or a cyclic structure.
  • a 1 represents —COO—, —CONR 1 — (R 1 represents a hydrogen atom or a methyl group) or —COS—.
  • a 2 and A 3 each independently represents —OCO—, —NR 1 CO— (R 1 represents a hydrogen atom or a methyl group) or —SCO—.
  • B represents a divalent group having a cyclic structure which may have a substituent.
  • X represents a hydrogen atom, a branched or linear alkyl group having 1 to 12 carbon atoms, a branched or linear alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyano group, a halogen atom, a nitro group, an acetyl group.
  • a 1 represents —COO—, —CONR 1 — (R 1 represents a hydrogen atom or a methyl group) or —COS—, and more preferably —COO—. preferable.
  • a 2 and A 3 each independently represent —OCO—, —NR 1 CO— (R 1 represents a hydrogen atom or a methyl group) or —SCO—, -OCO- is more preferable.
  • it is particularly preferable that the A 1 is —COO— and the A 2 and A 3 are —OCO—.
  • the production ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) is 50:50 to 98: 2 in terms of molar ratio.
  • a range of 60:40 to 96: 4 is more preferable, and a range of 70:30 to 94: 6 is particularly preferable.
  • the composition ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) in the liquid crystal composition is 50:50 by mass ratio. Is preferably in the range of 60:40 to 95: 5, more preferably in the range of 70:30 to 92: 8.
  • the liquid crystal composition of the present invention is manufactured by the method for manufacturing a liquid crystal composition of the present invention.
  • Such a liquid crystal composition has a liquid crystal structure different from that of a liquid crystal composition that is not manufactured by the method for manufacturing a liquid crystal composition of the present invention, and as a result, has high solubility and crystallization suppression ability.
  • the nematic-Iso phase transition temperature of the liquid crystal composition of the present invention is preferably 80 to 160 ° C., more preferably 90 to 150 ° C.
  • the film of the present invention is a film having a fixed optical orientation of the liquid crystal compound in the liquid crystal composition of the present invention (for example, horizontal alignment, vertical alignment, cholesteric alignment, hybrid alignment, etc.) and exhibiting optical anisotropy.
  • the optically anisotropic layer formed by fixing the orientation of the liquid crystal compound in the liquid crystal composition of the present invention may have two or more layers.
  • the film is used as an optical compensation film, a half-wave film, a quarter-wave film, a retardation film for liquid crystal display devices such as a TN mode and an IPS mode, and a reflection using selective reflection of cholesteric orientation. Available for film.
  • the film of the present invention can be used as a reflective film.
  • the film of the present invention is preferably a film formed by fixing the cholesteric alignment of the liquid crystal compound in the liquid crystal composition of the present invention.
  • the liquid crystal composition of the present invention is used for, for example, a reflective film using selective reflection of cholesteric alignment
  • the liquid crystal composition is a polymerizable liquid crystal, as well as a solvent, a compound containing an asymmetric carbon atom, Or a polymerization initiator (after-mentioned) and other additives (for example, cellulose ester) can be included.
  • Optically active compound (chiral agent):
  • the liquid crystal composition may exhibit a cholesteric liquid crystal phase, and for that purpose, it preferably contains an optically active compound.
  • the rod-like liquid crystal compound is a molecule having an illegitimate carbon atom
  • a cholesteric liquid crystal phase may be stably formed without adding an optically active compound.
  • the above optically active compounds are known in various chiral agents (for example, liquid crystal device handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989). Description).
  • the optically active compound generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the optically active compound (chiral agent) may have a polymerizable group.
  • the optically active compound has a polymerizable group and the rod-like liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-like liquid crystal compound by a polymerization reaction of the polymerizable optically active compound and the polymerizable rod-like liquid crystal compound.
  • a polymer having a repeating unit and a repeating unit derived from an optically active compound can be formed.
  • the polymerizable group possessed by the polymerizable optically active compound is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound.
  • the polymerizable group of the optically active compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • the optically active compound may be a liquid crystal compound.
  • the optically active compound in the liquid crystal composition is preferably 1 to 30 mol% with respect to the liquid crystal compound used in combination. A smaller amount of the optically active compound is preferred because it often does not affect liquid crystallinity. Therefore, the optically active compound used as the chiral agent is preferably a compound having a strong twisting power so that a twisted orientation with a desired helical pitch can be achieved even with a small amount. Examples of such a chiral agent exhibiting a strong twisting force include those described in JP-A-2003-287623, which can be preferably used in the present invention.
  • organic solvent As the solvent for the liquid crystal composition, an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • liquid crystal composition of the present invention when used for an optical compensation film of a liquid crystal display device, in addition to a polymerizable initiator (described later) and the above-described solvent, an alignment controller, a surfactant, a fluorine-based polymer, and the like. Can be included.
  • the alignment control agent in the present invention is, for example, added to the coating liquid of the liquid crystal composition of the present invention, and is unevenly distributed on the surface of the liquid crystal composition layer after coating, that is, on the air interface side. It represents a compound (air interface alignment agent) that can control the alignment of the liquid crystal composition. Alternatively, it represents a compound that can control the orientation of the liquid crystal composition on the substrate interface side by being unevenly distributed at the interface between the layer of the liquid crystal composition and the substrate after coating, for example, an onium salt.
  • the orientation control agent on the air interface side for example, a low molecular orientation control agent or a high molecular orientation control agent can be used.
  • Examples of the low molecular orientation control agent include those described in paragraphs 0009 to 0083 of JP-A-2002-20363, paragraphs 0111 to 0120 of JP-A-2006-10662, and paragraph 0021 of JP-A-2012-211306. ⁇ 0029 can be taken into account, the contents of which are incorporated herein.
  • Examples of the polymer orientation control agent may include the description in paragraphs 0021 to 0057 of JP-A No. 2004-198511 and paragraphs 0121 to 0167 of JP-A No. 2006-106662. Is incorporated herein.
  • the amount of the alignment control agent used is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the solid content of the coating liquid of the liquid crystal composition of the present invention.
  • the liquid crystal compound of the present invention can be in a homogeneous alignment state aligned in parallel with the surface of the layer.
  • an onium salt or the like is used as an alignment controller on the substrate interface side, homeotropic alignment at the interface of the liquid crystal compound can be promoted.
  • the onium salt acting as the vertical alignment agent for example, the description in paragraphs 0052 to 0108 of JP-A-2006-106662 can be referred to, and the contents thereof are incorporated in the present specification.
  • the amount of the onium salt used is preferably 0.01 to 10% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating liquid of the liquid crystal composition of the present invention.
  • surfactant examples include conventionally known compounds, and fluorine compounds are particularly preferable.
  • the surfactant for example, the compounds described in paragraphs 0028 to 0056 of JP-A No. 2001-330725 and the compounds described in paragraphs 0199 to 0207 of JP-A No. 2006-106662 can be referred to. Incorporated in the description.
  • the amount of the surfactant used is preferably 0.01 to 10% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating liquid of the liquid crystal composition of the present invention.
  • the reflective film of the present invention can be formed by forming the liquid crystal composition of the present invention by a method such as coating.
  • a composition containing at least the liquid crystal composition of the present invention is applied to the surface of the support or the surface of the alignment film formed thereon, and the liquid crystal composition is in a desired alignment state. And is preferably cured by polymerization to fix the alignment state of the liquid crystal composition.
  • the liquid crystal composition can be applied by a known method (eg, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method, bar coating method, spin coating method).
  • the liquid crystalline molecules are preferably fixed while maintaining the alignment state.
  • the immobilization is preferably carried out by a polymerization reaction of a polymerizable group introduced into the liquid crystalline molecule.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos.
  • the amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution.
  • Light irradiation for polymerization of discotic liquid crystalline molecules is preferably performed using ultraviolet rays.
  • the irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be performed under heating conditions.
  • the thickness of the optically anisotropic layer made of the liquid crystal composition is preferably 0.1 to 50 ⁇ m, and more preferably 0.5 to 30 ⁇ m. In particular, when selective reflectivity is used in a film in which the cholesteric alignment of the liquid crystal compound is fixed, the thickness is more preferably 1 to 30 ⁇ m, and most preferably 2 to 20 ⁇ m.
  • the total coating amount of the compound represented by the above general formula (I) and the compound represented by the above general formula (II) in the liquid crystal layer (the coating amount of the liquid crystal alignment accelerator) is 0.1 to 500 mg / m 2.
  • the thickness of the optical anisotropic layer is 0.1 to 50 ⁇ m. It is preferably 0.5 to 30 ⁇ m.
  • the alignment film is an organic compound (eg, ⁇ -tricosane) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). Acid, dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. An alignment film formed by a polymer rubbing treatment is particularly preferable. The rubbing treatment is carried out by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth.
  • an organic compound eg, ⁇ -tricosane
  • LB film Langmuir-Blodgett method
  • the type of polymer used for the alignment film is determined according to the alignment (particularly the average tilt angle) of the liquid crystal molecules.
  • a polymer that does not decrease the surface energy of the alignment film ordinary alignment film polymer
  • a polymer that lowers the surface energy of the alignment film is used.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 1 ⁇ m.
  • the liquid crystal layer may be transferred onto the transparent support.
  • the liquid crystalline molecules fixed in the alignment state can maintain the alignment state even without the alignment film. In the case of orientation with an average inclination angle of less than 5 °, rubbing treatment is unnecessary and an orientation film is unnecessary.
  • an alignment film (described in JP-A-9-152509) forming a chemical bond with the liquid crystalline molecules at the interface may be used.
  • an alignment film is used for the purpose of improving adhesion, rubbing treatment need not be performed.
  • the liquid crystal layer formed on the transparent support can also function as an alignment film for the liquid crystal layer provided thereon.
  • the film of the present invention and the optically anisotropic element having the film of the present invention may have a transparent support.
  • a transparent support a glass plate or a polymer film, preferably a polymer film is used. That the support is transparent means that the light transmittance is 80% or more.
  • an optically isotropic polymer film is used as the transparent support.
  • the optical isotropy preferably has an in-plane retardation (Re) of less than 10 nm, more preferably less than 5 nm.
  • the retardation (Rth) in the thickness direction is preferably less than 10 nm, and more preferably less than 5 nm.
  • the film of the present invention is formed by fixing the cholesteric liquid crystal phase of the liquid crystal composition of the present invention, and preferably exhibits selective reflection characteristics, and more preferably exhibits selective reflection characteristics in the infrared wavelength region. Details of the light reflecting layer formed by fixing the cholesteric liquid crystal phase are described in the methods described in JP 2011-107178 A and JP 2011-018037 A, and can be preferably used in the present invention.
  • the film of the present invention is also preferably a laminate comprising a plurality of layers formed by fixing the cholesteric liquid crystal phase of the liquid crystal composition of the present invention. Since the liquid crystal composition of the present invention has good lamination properties, such a laminate can be easily formed.
  • the film of the present invention can also be used as an optical compensation film.
  • the optical properties of the optically anisotropic layer in the optical compensation film are determined according to the optical properties of the liquid crystal cell, specifically, the display mode.
  • the liquid crystal composition of the present invention is used, optically anisotropic layers having various optical properties corresponding to various display modes of the liquid crystal cell can be produced.
  • the optically anisotropic layer for a TN mode liquid crystal cell can be referred to the descriptions in JP-A-6-214116, US Pat. No. 5,583,679, US Pat. No. 5,646,703 and German Patent Publication 3911620A1, and the contents thereof are described in the present specification.
  • the VA mode liquid crystal cell optical anisotropic layer can be referred to for the VA mode liquid crystal cell optical anisotropic layer, and the contents thereof are incorporated in the present specification.
  • it can be suitably used as an optically anisotropic layer for an IPS mode liquid crystal cell.
  • a film having an optically anisotropic layer obtained by homogeneously aligning the liquid crystal compound of the present invention can be used as an A plate.
  • the A plate means a uniaxial birefringent layer in which the refractive index of the slow axis is larger than the refractive index in the thickness direction.
  • the film of the present invention is an A plate
  • compensation can be performed in a single layer by an optically anisotropic layer having an in-plane retardation (Re) at 550 nm of 200 nm to 350 nm.
  • a film having an optically anisotropic layer in which the liquid crystal compound of the present invention is homeotropically oriented can be used as a positive C plate, and can be used in combination with a biaxial film or the like.
  • the positive C plate means a uniaxial birefringent layer whose refractive index in the thickness direction is larger than the in-plane refractive index.
  • the in-plane retardation (Re) at 550 nm is -10 nm to 10 nm, and the thickness direction retardation is 550 nm.
  • (Rth) is preferably from ⁇ 250 to ⁇ 50 nm.
  • the present invention also relates to a polarizing plate having at least a film (optical compensation film) having the optically anisotropic layer and a polarizing film.
  • the optically anisotropic layer can be used as a protective film in a polarizing plate having a polarizing film and a protective film disposed on at least one side thereof.
  • the said optically anisotropic layer can also be used as one protective film.
  • the polarizing film include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film.
  • the iodine-based polarizing film and the dye-based polarizing film can be generally produced using a polyvinyl alcohol film.
  • the thickness of the polarizing film is not particularly limited, but the thinner the polarizing film, the thinner the polarizing plate and the liquid crystal display device incorporating the polarizing film can be made. From this viewpoint, the thickness of the polarizing film is preferably 10 ⁇ m or less.
  • the lower limit value of the thickness of the polarizing film is 0.7 ⁇ m or more, substantially 1 ⁇ m or more, and generally 3 ⁇ m or more because the optical path in the polarizing film needs to be larger than the wavelength of light. Thickness is preferred.
  • the present invention also relates to a liquid crystal display device having the polarizing plate.
  • the alignment mode of the liquid crystal display device is not particularly limited, and for example, a liquid crystal display device using a TN mode, an IPS mode, an FLC mode, an OCB mode, a HAN mode, or a VA mode may be used.
  • a liquid crystal display device using the VA mode the description in paragraphs 0109 to 0129 of JP-A-2005-128503 can be referred to, and the contents thereof are incorporated in the present specification.
  • the description in paragraphs 0027 to 0050 of JP-A-2006-106662 can be referred to, and the contents thereof are incorporated in the present specification.
  • the above-described A plate or C plate can be used.
  • the optically anisotropic layer may be incorporated in a liquid crystal display device in the state of a polarizing plate bonded to a polarizing film. Further, the optically anisotropic layer alone or a laminate with another retardation layer may be incorporated as a viewing angle compensation film. Other retardation layers to be combined can be selected according to the alignment mode of the liquid crystal cell that is the object of viewing angle compensation.
  • the optically anisotropic layer may be disposed between the liquid crystal cell and the viewing side polarizing film, or may be disposed between the liquid crystal cell and the backlight side polarizing film.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at a wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured by making light having a wavelength of ⁇ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). In selecting the measurement wavelength ⁇ nm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the above-mentioned Re ( ⁇ ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (in the absence of the slow axis, any in-plane
  • the light is incident at a wavelength of ⁇ nm from the inclined direction in steps of 10 degrees from the normal direction to 50 degrees on one side with respect to the film normal direction of the rotation axis of KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed average refractive index, and the input film thickness value.
  • Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction
  • nx represents a refractive index in the slow axis direction in the plane
  • ny is a direction orthogonal to nx in the plane
  • Nz represents the refractive index in the direction orthogonal to nx and ny.
  • d is the film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the above-mentioned Re ( ⁇ )
  • the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) from ⁇ 50 degrees to +50 degrees with respect to the film normal
  • the light of wavelength ⁇ nm is incident from each inclined direction in 10 degree steps and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
  • Example 1 Compound (IV-1) (21 g, 80 mmol) and compound (V-1) (1.3 g, 8.9 mmol) were mixed with ethyl acetate (24 mL), tetrahydrofuran (22 mL) and triethylamine (13 mL). The resulting solution was slowly added dropwise to a solution of methanesulfonyl chloride (10 g, 89 mmol) in ethyl acetate under ice cooling. At this time, the charging ratio of compound (IV-1) to compound (V-1) was 90:10 in molar ratio.
  • Examples 2 to 13 Compounds represented by general formula (III), compounds represented by general formula (IV) and types of compounds represented by general formula (V), and compounds represented by general formula (IV) and general formula ( V) A liquid crystal composition containing the compound represented by the general formula (I) and the compound represented by the general formula (II) in the same experimental procedure as in Example 1 except that the preparation ratio of the compound represented by V) was changed. Synthesis of the product, measurement of the ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) in the obtained liquid crystal composition, and the general formula in the obtained liquid crystal composition The composition ratio of the compound represented by the formula (I) and the compound represented by the general formula (II) was measured. The obtained results are shown in Table 1 below.
  • the nematic-Iso phase transition temperature of this liquid crystal composition was 140 ° C.
  • the production ratio and composition ratio of compound (I-1) and compound (II-53) were determined by analyzing separately synthesized standard samples of compound (I-1) and compound (II-53) by HPLC. Calculation was performed using a calibration curve obtained from the ratio.
  • the compound represented by the general formula (I) and the general formula (II) are the same as in Example 84 except that the charging ratio of the compound represented by the formula (V) is changed as shown in the following table. Synthesis of a liquid crystal composition containing the compound to be produced, measurement of the production ratio of the compound represented by general formula (I) and the compound represented by general formula (II) in the obtained liquid crystal composition, and The composition ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) in the liquid crystal composition was measured. The obtained results are shown in Table 2 below.
  • Compound (II-4) was obtained by the same synthesis method as the synthesis of compound (II-1) of Comparative Example 1 except that compound (V-4) was used instead of compound (V-1). 8.6 g of compound (I-1), 1.4 g of compound (II-4) and 20 g of methyl ethyl ketone were mixed at 25 ° C. The obtained liquid crystal composition was used as the liquid crystal composition of Comparative Example 2.
  • Solubility test 1 10 g of the liquid crystal composition produced in Example 1 and 20 g of methyl ethyl ketone were mixed at 25 ° C. All solids were completely dissolved within 2 minutes and showed good solubility. On the other hand, it was visually confirmed that the solution 2 minutes after the preparation of the liquid crystal composition of Comparative Example 1 had a slight amount of undissolved solid. After that, it was confirmed that all the solids after 5 minutes were completely dissolved.
  • the X-ray diffraction spectrum of the liquid crystalline composition of Example 1 was an X-ray diffraction spectrum different from that of Comparative Example 1.
  • Example 1 As a result of the above tests, it was found that the liquid crystal composition obtained in Example 1 had a different crystal structure from the solid obtained by mixing the two liquid crystal compounds used in Comparative Example 1.
  • Example 6 As shown in FIG. 2, the X-ray diffraction spectrum of the liquid crystalline composition of Example 6 was different from that of Comparative Example 2.
  • Example 6 the liquid crystal composition obtained in Example 6 was found to have a different crystal structure from the solid obtained by mixing the two liquid crystal compounds used in Comparative Example 2.
  • Example 16 ⁇ Preparation of polymerizable composition> Using the composition of Example 1, a liquid crystal composition coating liquid (A) having the following composition was prepared.
  • Composition of Example 1 100 parts by mass MEK 233 parts by mass
  • Example 16 was manufactured using the obtained liquid crystalline composition.
  • a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied to the cleaned glass substrate by a spin coating method, dried and then baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film.
  • the liquid crystalline composition coating solution (A) was applied on the rubbing-treated surface of the alignment film of the substrate by a spin coating method at room temperature and allowed to stand at room temperature for 30 minutes.
  • Example 16 to 26 and Comparative Examples 3 to 7 A liquid crystalline composition coating solution was prepared by the same method as in Example 16 except that the composition described in Table 3 below was used instead of the composition of Example 1, and the crystal precipitation rate was measured. . The results were as shown in Table 3 below.
  • the crystal precipitation is defined as 3 when the crystal precipitation area on the coated film is 0 to 20%, 2 when 20 to 50%, and 1 when it is higher.
  • Example 96 ⁇ Preparation of polymerizable composition> Using the composition of Example 84, a liquid crystalline composition coating liquid (A) having the following composition was prepared.
  • Composition of Example 84 100 parts by weight MEK 233 parts by weight
  • Example 97 to 107 The point which used the composition described in following Table 4 instead of the composition of Example 1 was changed, the liquid crystalline composition coating liquid was prepared by the same method as Example 1, and the crystal precipitation rate was measured. . The results were as shown in Table 4 below.
  • the crystal precipitation is defined as 3 when the crystal precipitation area on the coated film is 0 to 20%, 2 when 20 to 50%, and 1 when it is higher.
  • liquid crystal compositions obtained in each of the examples also have an ability to inhibit crystallization, compared with liquid crystal compositions using conventional polymerizable liquid crystal compounds. I found it excellent.
  • Example 51 ⁇ Creation of selective reflection film>
  • a liquid crystal composition coating liquid (B) was prepared using the composition of Example 6 according to the following method.
  • Composition of Example 6 100 parts by mass chiral agent Palicolor LC756 (manufactured by BASF) 3 parts by mass air interface alignment agent (X1-1) 0.04 parts by mass polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by mass solvent chloroform 300 Parts by mass
  • the selective reflection film was obtained by fixing the orientation by irradiating with light for 10 seconds using a high pressure mercury lamp from which the short wavelength component of UV was removed. During the period after application and before heating, no crystal deposition was observed in the coating film. When the obtained selective reflection film was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the film was uniformly aligned. Further, when the transmission spectrum of this film was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu Corporation, there was a selective reflection peak in the infrared region.
  • Examples 52 to 61 A liquid crystal composition coating solution was prepared in the same manner as in Example 51 except that the compositions of Examples 1 to 5 and Examples 7 to 11 were used instead of the composition of Example 6. did. Using these coating solutions, selective reflection films were formed in the same manner as in Example 51. All of these selective reflection films showed good orientation. Further, when the transmission spectrum was measured with a spectrophotometer UV-3100PC, there was a selective reflection peak in the infrared region.
  • Examples 108 to 119 A liquid crystal composition coating solution was prepared in the same manner as in Example 51 except that the compositions of Examples 84 to 95 were used instead of the composition of Example 6. Using these coating solutions, selective reflection films were formed in the same manner as in Example 51. All of these selective reflection films showed good orientation. Further, when the transmission spectrum was measured with a spectrophotometer UV-3100PC, there was a selective reflection peak in the infrared region.
  • Example 62 ⁇ Creation of optical compensation film (1)> Using the composition of Example 1, a liquid crystal composition coating liquid (C) was prepared according to the following method. Composition of Example 1 100 parts by weight polymerization initiator IRGACURE 819 (manufactured by BASF) 3 parts by weight air interface alignment agent (X1-2) 0.1 part by weight Solvent methyl ethyl ketone 400 parts by weight
  • a polyimide alignment film SE-130 manufactured by Nissan Chemical Industries, Ltd. was applied to the cleaned glass substrate by a spin coating method, dried and then baked at 250 ° C. for 1 hour. This was rubbed to produce a substrate with an alignment film.
  • a liquid crystal composition coating liquid (C) is applied to the substrate surface by spin coating at room temperature, and subjected to orientation aging at 60 ° C. for 1 minute, and then a high pressure mercury lamp from which UV short wavelength components are removed at room temperature is used. For 10 seconds to fix the orientation and form an optical compensation film. In addition, precipitation of the crystal
  • Example 63 to 72 A liquid crystal composition coating solution was prepared in the same manner as in Example 62 except that the compositions of Examples 2 to 11 were used instead of the composition of Example 1. Using these coating solutions, optical compensation films were respectively formed in the same manner as in Example 62. When the obtained optical compensation film was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the film was uniformly aligned. Moreover, the measured value and film thickness of Re at 550 nm of the optical compensation film were as follows.
  • Example 120 to 131 A liquid crystal composition coating solution was prepared in the same manner as in Example 62 except that the compositions of Examples 84 to 95 were used instead of the composition of Example 1. Using these coating solutions, optical compensation films were respectively formed in the same manner as in Example 62. When the obtained optical compensation film was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the film was uniformly aligned. Moreover, the measured value and film thickness of Re at 550 nm of the optical compensation film were as follows.
  • Example 73 ⁇ Creation of optical compensation film (2)> Using the composition of Example 1, a liquid crystal composition coating liquid (D) was prepared according to the following method.
  • Composition of Example 1 100 parts by mass polymerization initiator IRGACURE907 (manufactured by BASF) 3 parts by mass sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass air interface alignment agent (X1-3) 11 parts by mass Onium salt (X1-4) 1.5 parts by mass Solvent Methyl ethyl ketone 300 parts by mass
  • composition of alignment film coating solution Modified polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight
  • a liquid crystal composition coating solution (D) was applied to the substrate surface by spin coating at room temperature, and subjected to orientation aging at 60 ° C. for 1 minute, and then a high-pressure mercury lamp from which UV short wavelength components were removed at 50 ° C. It was irradiated with light for 10 seconds to fix the orientation and form an optical compensation film. In addition, precipitation of the crystal
  • Example 74 to 83 A liquid crystal composition coating solution was prepared in the same manner as in Example 73 except that the compositions of Examples 2 to 11 were used instead of the composition of Example 1. Using these coating solutions, optical compensation films were respectively formed in the same manner as in Example 73. When the obtained optical compensation film was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the film was uniformly aligned. Moreover, the measured value and film thickness of Rth at 550 nm of the optical compensation film were as follows.
  • Examples 132 to 143 A liquid crystal composition coating solution was prepared in the same manner as in Example 73 except that the compositions of Examples 84 to 95 were used instead of the composition of Example 1. Using these coating solutions, optical compensation films were respectively formed in the same manner as in Example 73. When the obtained optical compensation film was observed with a polarizing microscope, it was confirmed that there was no alignment defect and the film was uniformly aligned. Moreover, the measured value and film thickness of Rth at 550 nm of the optical compensation film were as follows.

Abstract

 異なる2種以上のカルボン酸を原料の一種として用いて、結晶化抑止能、溶解性および液晶性が高い液晶組成物を一挙に製造する方法の提供。 式(III)で表される化合物を、式(IV)で表されるカルボン酸おおよびよび式(V)で表されるカルボン酸と反応させることにより、式(I)で表される液晶化合物および式(II)で表される液晶化合物を同時に得る液晶組成物の製造方法(P1は重合性基;Sp1は炭素数3~12の2価の脂肪族基等。T1は1,4-フェニレン基;T2は単結合、環状構造を有する二価の基;A1は-COO-等;A2、A3は-OCO-等;Bは環状構造を有する二価の基;Xは水素原子、炭素数1~12のアルキル基等;Y1、Y2はO、NR1、S;R1は水素原子、メチル基)。 式(I)P1-Sp1-T1-A1-B-A2-T1-Sp1-P1;式(II)P1-Sp1-T1-A1-B-A3-T2-X;式(III)HY1-B-Y2H;式(IV)P1-Sp1-T1-COOH;式(V)X-T2-COOH

Description

液晶組成物およびその製造方法ならびにフィルム
 本発明は、光学異方性フィルム、遮熱フィルム等の種々の光学部材の材料をはじめとする、様々な用途に有用な液晶組成物およびその製造方法ならびに液晶組成物を用いたフィルムに関する。
 光学異方性膜の作成に用いられる重合性液晶は、しばしば塗布工程や乾燥後の工程で結晶化することが問題となっている。
 これに対し、目的の重合性液晶に対して、他の重合性液晶と混合することで、結晶化を抑制できることが知られている。例えばこれまでに、(メタ)アクリロイル基を分子の末端に2つ有する(メタ)アクリレート化合物を他の重合性液晶化合物と併用した組成物や、重合性液晶の製造時に(メタ)アクリロイル基とアルキル基を分子の両末端に有するランダム混合物として調製した組成物を用いることで結晶化を抑制した例が知られているが、結晶化抑制効果は十分ではなかった。
 また、2種以上の重合性液晶を含む液晶組成物を製造する方法として、2種類以上の原料を用いて2種以上の重合性液晶を含む液晶組成物を一挙に製造する方法は報告されている。例えば、特許文献1には、ヒドロキシル基またはその誘導体を有する化合物と、非カルボキシル基系の脱離基および重合性基を有する求核性の化合物を用いて、2種以上の重合性液晶を含む液晶混合物を合成する方法が記載されており、短時間かつ低コストで液晶性が高い液晶組成物を製造できると記載されている。特許文献2には、ヒドロキシル基などを有する化合物と、カルボキシル基誘導体および重合性基を有する化合物を反応させて2種以上の重合性液晶を含む組成物を製造する方法が記載されている。
特表2001-521538号公報 国際公開WO96/04351号公報
 特許文献1または2に記載の方法は、経済的に、または、製造した組成物の性能的に満足できるものではなかった。さらに、特許文献1に記載の方法は、合成法は1種類(コアを先につくり、側鎖をつける方法)のみが記載されており、側鎖とコアの結合様式が限られた範囲の重合性液晶の混合組成物しか作れない方法であった。また、特許文献2にも、重合性基を1つのみ有する単官能の重合性液晶と重合性基を2つ有する2官能の重合性液晶とを一挙に合成して液晶組成物を製造する方法は記載されていなかった。また、そのような液晶組成物を製造する方法は示唆されていなかった。
 本発明が解決しようとする課題は、異なる2種以上のカルボン酸を原料の一種として用いて、結晶化抑止能、溶解性および液晶性が高い液晶組成物を一挙に製造する方法を提供することである。
 上記課題を解決するために本発明者が鋭意検討したところ、特定の構造を有し、かつ、異なる2種以上のカルボン酸(重合性基を有するものと有さないもの)と、特定の構造を有し、かつ、ヒドロキノンなどを原料に用いて反応させることで、結晶化抑止能、溶解性および液晶性が高い液晶組成物を一挙に製造することができることを見出すに至った。
 上記課題を解決するための手段である本発明は以下のとおりである。
[1] 下記一般式(III)で表される化合物を、下記一般式(IV)で表されるカルボン酸および下記一般式(V)で表されるカルボン酸と反応させることにより、下記一般式(I)で表される液晶化合物および下記一般式(II)で表される液晶化合物を同時に得ることを特徴とする液晶組成物の製造方法。
1-Sp1-T1-A1-B-A2-T1-Sp1-P1    一般式(I)
1-Sp1-T1-A1-B-A3-T2-X        一般式(II)
HY1-B-Y2H                  一般式(III)
1-Sp1-T1-COOH              一般式(IV)
X-T2-COOH                  一般式(V)
(一般式(I)~(V)中、
1は重合性基を表す。
Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。
1は1,4-フェニレン基を表す。
2は単結合または環状構造を有する二価の基を表す。
1は-COO-、-CONR1-(R1は水素原子またはメチル基を表す)または-COS-を表す。
2およびA3はそれぞれ独立して-OCO-、-NR1CO-(R1は水素原子またはメチル基を表す)または-SCO-を表す。
Bは置換基を有していてもよい環状構造を有する二価の基を表す。
Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基、ビニル基、ホルミル基、-OC(=O)R(Rは炭素数1~12のアルキル基)、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または下記式(V-I)で表される構造を表す。
1およびY2はそれぞれ独立してO、NR1(R1は水素原子またはメチル基を表す)またはSを表す。)
-A4-T4-Sp2-P2    式(V-I)
(式(V-I)中、P2は重合性基または水素原子を表し、A4、T4、Sp2はそれぞれ独立してA2、T2、Sp1と同義である。)
[2] [1]に記載の液晶組成物の製造方法は、一般式(I)~(V)中、Xが、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基またはビニル基を表すことが好ましい。
[3] [1]または[2]に記載の液晶組成物の製造方法は、さらに一般式(IV)で表されるカルボン酸および一般式(V)で表されるカルボン酸を、混合酸無水物または酸ハロゲン化物に導くことによって活性化する工程を含み、活性化工程の後に塩基の存在下にて一般式(III)で表される化合物を、活性化された一般式(IV)で表されるカルボン酸および一般式(V)で表されるカルボン酸と反応させることが好ましい。
[4] [1]~[3]のいずれかに記載の液晶組成物の製造方法は、一般式(IV)で表されるカルボン酸と一般式(V)で表されるカルボン酸の仕込み比が、モル比で75対25から99対1の範囲であることが好ましい。
[5] [1]~[4]のいずれかに記載の液晶組成物の製造方法は、一般式(I)で表される化合物と一般式(II)で表される化合物の生成比が、モル比で50対50から98対2の範囲であることが好ましい。
[6] [1]~[5]のいずれかに記載の液晶組成物の製造方法は、液晶組成物中における一般式(I)で表される化合物と一般式(II)で表される化合物の組成比が、質量比で50対50から95対5の範囲であることが好ましい。
[7] [1]~[6]のいずれかに記載の液晶組成物の製造方法は、Bが、下記連結基群(VI)に含まれる連結基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(連結基群(VI)中、R2~R10はそれぞれ独立して、水素原子、分岐または直鎖状の炭素数1~4のアルキル基、分岐または直鎖状の炭素数1~4のアルコキシ基、ハロゲン原子、あるいは、炭素数1~3のアルコキシカルボニル基を表す。)
[8] [1]~[7]のいずれかに記載の液晶組成物の製造方法は、T2が、下記連結基群(VII)に含まれる連結基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
[9] [1]~[8]のいずれかに記載の液晶組成物の製造方法は、Bが、下記連結基群(VIII)に含まれる連結基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
[10] [1]~[9]のいずれかに記載の液晶組成物の製造方法は、Xが、分岐または直鎖状の炭素数1~4のアルキル基、直鎖状の炭素数1または2のアルコキシ基、あるいは、フェニル基を表すことが好ましい。
[11] [1]~[10]のいずれかに記載の液晶組成物の製造方法は、Y1およびY2がOであり、A1が-COO-であり、A2およびA3が-OCO-であることが好ましい。
[12] [1]~[11]のいずれかに記載の液晶組成物の製造方法で製造された液晶組成物。
[13] [12]に記載の液晶組成物中の液晶化合物の配向を固定してなる光学異方性層を有するフィルム。
[14] [13]に記載のフィルムは、光学異方性層が液晶化合物のコレステリック配向を固定してなることが好ましい。
[15] [14]に記載のフィルムは、選択反射特性を示すことが好ましい。
[16] [14]または[15]に記載のフィルムは、赤外線波長域に選択反射特性を示すことが好ましい。
[17] [13]に記載のフィルムは、光学異方性層が液晶化合物のホモジニアス配向を固定してなることが好ましい。
[18] [13]に記載のフィルムは、光学異方性層が液晶化合物のホメオトロピック配向を固定してなることが好ましい。
[19] [17]または[18]に記載のフィルムと、偏光膜とを含む偏光板。
[20] [19]に記載の偏光板を含む液晶表示装置。
 本発明によれば、異なる2種以上のカルボン酸を原料の一種として用いて、結晶化抑止能、溶解性および液晶性が高い液晶組成物を一挙に製造する方法を提供することができる。
実施例1の液晶性組成物と比較例1の液晶性組成物のX線回折スペクトルである。 実施例6の液晶性組成物と比較例2の液晶性組成物のX線回折スペクトルである。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[液晶組成物の製造方法]
 本発明の液晶組成物の製造方法は、下記一般式(III)で表される化合物を、下記一般式(IV)で表されるカルボン酸および下記一般式(V)で表されるカルボン酸と反応させることにより、下記一般式(I)で表される液晶化合物および下記一般式(II)で表される液晶化合物を同時に得ることを特徴とする液晶組成物の製造方法。
1-Sp1-T1-A1-B-A2-T1-Sp1-P1    一般式(I)
1-Sp1-T1-A1-B-A3-T2-X        一般式(II)
HY1-B-Y2H                   一般式(III)
1-Sp1-T1-COOH              一般式(IV)
X-T2-COOH                  一般式(V)
(一般式(I)~(V)中、P1は重合性基を表す。Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。T1は1,4-フェニレン基を表す。T2は単結合または環状構造を有する二価の基を表す。A1は-COO-、-CONR1-(R1は水素原子またはメチル基を表す)または-COS-を表す。A2およびA3はそれぞれ独立して-OCO-、-NR1CO-(R1は水素原子またはメチル基を表す)または-SCO-を表す。Bは置換基を有していてもよい環状構造を有する二価の基を表す。Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基、ビニル基、ホルミル基、-OC(=O)R(Rは炭素数1~12のアルキル基)、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または下記式(V-I)で表される構造を表す。Y1およびY2はそれぞれ独立してO、NR1(R1は水素原子またはメチル基を表す)またはSを示す。)
-A4-T4-Sp2-P2    式(V-I)
(式(V-I)中、P2は重合性基または水素原子を表し、A4、T4、Sp2はそれぞれ独立して上記A2、T2、Sp1と同義である。)
 このような構成により、本発明の製造方法によれば、異なる2種以上のカルボン酸を原料の一種として用いて、結晶化抑止能、溶解性および液晶性が高い液晶組成物を一挙に製造する方法を提供することができる。
<合成スキーム・合成順序・反応条件>
 上記一般式(I)で表される液晶化合物および上記一般式(II)で表される液晶化合物を「同時に」得るとは、両方の液晶化合物が同じタイミングで合成されることに限定されるものではなく、上記一般式(III)で表される化合物を上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸と反応させることによりワンポットで得ることを意味する。
 以下に本発明の液晶組成物の製造方法の合成スキームの例を示す。なお、本明細書中、化合物(I)~(V)は、それぞれ上記一般式(I)~(V)で表される化合物を表す。
合成スキーム
Figure JPOXMLDOC01-appb-C000007
 本発明の液晶組成物の製造方法は、合成順序に特に制限はなく、上記合成スキーム以外の合成順序であってもよい。
 上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸の添加順序は特に制限はない。
 本発明の液晶組成物の製造方法は、さらに上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸を、混合酸無水物または酸ハロゲン化物に導くことによって活性化する工程を含み、上記活性化工程の後に塩基の存在下にて上記一般式(III)で表される化合物を、活性化された上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸と反応させることが好ましい。
 上記活性化工程に用いる活性化剤としては特に制限はないが、メタンスルホニルクロリドやトルエンスルホニルクロリドなどを用いることができる。上記塩基としては、特に制限はなく、3級アミン(例えば、トリエチルアミン、ジイソプロピルエチルアミン)、無機塩などを用いることができる。上記活性化工程は、氷冷下で行うことが好ましい。
 上記活性化工程の後に上記一般式(III)で表される化合物を添加することが、上記一般式(III)で表される化合物が活性化剤によって悪影響を受けないようにする観点から好ましい。上記活性化工程の後に塩基の存在下にて上記一般式(III)で表される化合物を、活性化された上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸に対して氷冷下で添加することが好ましい。上記一般式(III)で表される化合物を、活性化された上記一般式(IV)で表されるカルボン酸および上記一般式(V)で表されるカルボン酸と反応させるときの条件については特に制限はないが、0~30℃であることが好ましく、10~25℃であることがより好ましい。
<一般式(III)で表される化合物>
 本発明の液晶組成物の製造方法は、下記一般式(III)で表される化合物を原料の一種として用いる。
HY1-B-Y2H                  一般式(III)
 一般式(III)中、Bは置換基を有していてもよい環状構造を有する二価の基を表す。Y1およびY2はそれぞれ独立してO、NR1(R1は水素原子またはメチル基を表す)またはSを示す。
 Bは置換基を有していてもよい環状構造を有する二価の基を表し、下記連結基群(VI)に含まれる連結基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 連結基群(VI)中、R2~R10はそれぞれ独立して、水素原子、分岐または直鎖状の炭素数1~4のアルキル基、分岐または直鎖状の炭素数1~4のアルコキシ基、ハロゲン原子、あるいは、炭素数1~3のアルコキシカルボニル基を表す。
 R2~R10はそれぞれ独立して、水素原子、分岐または直鎖状の炭素数1~4のアルキル基であることがより好ましく、水素原子、直鎖状の炭素数1または2のアルキル基であることが特に好ましい。
 上記Bは、下記連結基群(VIII)に含まれる連結基のいずれかであることがより特に好ましい。
Figure JPOXMLDOC01-appb-C000009
 Y1およびY2はそれぞれ独立して、O、NR1(R1は水素原子またはメチル基を表す)またはSを表し、Oであることがより好ましい。
 以下に一般式(III)で表される化合物の例を示すが、本発明は以下の例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
<一般式(IV)で表されるカルボン酸>
 本発明の液晶組成物の製造方法は、下記一般式(IV)で表されるカルボン酸を原料の一種として用いる。
1-Sp1-T1-COOH               一般式(IV)
 上記一般式(IV)中、P1は重合性基を表す。Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。T1は1,4-フェニレン基を表す。
 上記P1は重合性基を表し、重合性基としては特に制限はなく、重合性基の詳細や好ましい範囲については、特開2002-129162号公報の[0161]~[0171]を参照することができる。上記P1はエチレン性不飽和二重結合基であることが好ましく、メタクリロイル基またはアクリロイル基であることがより好ましく、アクリロイル基であることが特に好ましい。
 上記Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。
 Sp1は置換基を有していてもよい炭素数3~12の2価のアルキレン基を表し、より好ましくは炭素数3~8のアルキレン基であり、さらに好ましくは炭素数3~6のアルキレン基であり、アルキレン中の隣接しないメチレン基は-O-で置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。
 以下に一般式(IV)で表されるカルボン酸の例を示すが、本発明は以下の例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
<一般式(V)で表されるカルボン酸>
 本発明の液晶組成物の製造方法は、下記一般式(V)で表されるカルボン酸を原料の一種として用いる。
X-T2-COOH                   一般式(V)
 上記一般式(V)中、T2は単結合または環状構造を有する二価の基を表す。Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基ビニル基、ホルミル基、-OC(=O)R(Rは炭素数1~12のアルキル基)、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または下記式(V-I)で表される構造を表す。
-A4-T4-Sp2-P2    式(V-I)
(式(V-I)中、P2は重合性基または水素原子を表し、A4、T4、Sp2はそれぞれ独立して上記A2、T2、Sp1と同義である。)
 上記T2は単結合または環状構造を有する二価の基を表し、単結合または二価の芳香族炭化水素基もしくは二価の複素環基を有する二価の基であることが好ましく、二価の芳香族炭化水素基または二価の複素環基であることがより好ましい
 上記芳香族炭化水素基の炭素数は6~22であることが好ましく、6~14であることがより好ましく、6~10であることがさらに好ましく、6であることがさらにより好ましい。上記二価の芳香族炭化水素気の炭素数が6である場合は、メタ位またはパラ位に結合手を有することが好ましく、パラ位に結合手を有することが特に好ましい。
 上記二価の複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。
 上記二価の芳香族炭化水素基もしくは二価の複素環基は、さらに二価の連結基を有していてもよい。上記二価の連結基としては、炭素数2~4のアルケニル基であることが好ましく、炭素数2のアルケニル基であることがより好ましい。
 本発明の液晶組成物の製造方法は、上記T2が、下記連結基群(VII)に含まれる連結基のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基またはビニル基を表し、水素原子、分岐または直鎖状の炭素数1~4のアルキル基、直鎖状の炭素数1または2のアルコキシ基、あるいは、フェニル基を表すことが好ましく、分岐または直鎖状の炭素数1~4のアルキル基、直鎖状の炭素数1または2のアルコキシ基、あるいは、フェニル基を表すことがより、直鎖状の炭素数1~4のアルキル基、フェニル基であることが特に好ましい。
 また上記Xは、ホルミル基、アセトキシ基、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または上記式(V-I)で表される構造を表す。
 中でも、アクリロイルアミノ基、メタクリロイルアミノ基、アリルオキシ基、アリルオキシカルバモイル基、または式(V-I)で表される構造が好ましく、アクリロイルアミノ基、メタクリロイルアミノ基、または式(V-I)で表される構造がより好ましい。
 式(V-I)について、P2は重合性基または水素原子を表し、重合性基であることが好ましい。好ましい重合性基の範囲は前述のP1と同義である。A4、T4、Sp2はそれぞれ独立して上記A2、T2、Sp1と同義であり、好ましい範囲も同様である。
 式(V-I)として特に好ましくは、上記P2がメタクリロイル基またはアクリロイル基であり、Sp2が炭素数1~12の2価の分岐のないアルキレンであり、アルキレン基中の1つのCH2または隣接していない2以上のCH2が、-O-、-OCO-、-COO-または-OCOO-で置換されていてもよく、T4が1,4-フェニレン基であり、A4が-OCO-である。
 以下に一般式(V)で表されるカルボン酸の例を示すが、本発明は以下の例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明の液晶組成物の製造方法は、上記一般式(IV)で表されるカルボン酸と上記一般式(V)で表されるカルボン酸の仕込み比が、モル比で75対25から99対1の範囲であることが好ましく、77対33から95対5の範囲であることがより好ましく、80対20から90対10の範囲であることが特に好ましい。
<一般式(I)で表される液晶化合物および一般式(II)で表される化合物>
 本発明の液晶組成物の製造方法は、下記一般式(I)で表される液晶化合物および下記一般式(II)で表される液晶化合物を同時に得ることを特徴とする。
1-Sp1-T1-A1-B-A2-T1-Sp1-P1    一般式(I)
1-Sp1-T1-A1-B-A3-T2-X        一般式(II)
 上記一般式(I)および(II)中、P1は重合性基を表す。Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。T1は1,4-フェニレン基を表す。T2は単結合または環状構造を有する二価の基を表す。A1は-COO-、-CONR1-(R1は水素原子またはメチル基を表す)または-COS-を表す。A2およびA3はそれぞれ独立して-OCO-、-NR1CO-(R1は水素原子またはメチル基を表す)または-SCO-を表す。Bは置換基を有していてもよい環状構造を有する二価の基を表す。
 Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基、ビニル基、ホルミル基、-OC(=O)R(Rは炭素数1~12のアルキル基)、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または上記式(V-I)で表される構造を表す。
 上記一般式(I)および(II)中、P1、Sp1、T2、BおよびXの好ましい範囲は、上記一般式(III)~(V)におけるP1、Sp1、T2、BおよびXの好ましい範囲と同様である。
 上記一般式(I)および(II)中、A1は-COO-、-CONR1-(R1は水素原子またはメチル基を表す)または-COS-を表し、-COO-であることがより好ましい。
 上記一般式(I)および(II)中、A2およびA3はそれぞれ独立して-OCO-、-NR1CO-(R1は水素原子またはメチル基を表す)または-SCO-を表し、-OCO-であることがより好ましい。
 上記一般式(I)および(II)中、上記A1が-COO-であり、かつ、上記A2およびA3が-OCO-であることが特に好ましい。
 以下に、上記一般式(I)で表される化合物の具体例を示すが、本発明は以下の例によって限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 以下に、上記一般式(II)で表される化合物の具体例を示すが、本発明は以下の例によって限定的されるものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
<液晶組成物の組成>
 本発明の液晶組成物の製造方法は、上記一般式(I)で表される化合物と上記一般式(II)で表される化合物の生成比が、モル比で50対50から98対2の範囲であることが好ましく、60対40から96対4の範囲であることがより好ましく、70対30から94対6の範囲であることが特に好ましい。
 本発明の液晶組成物の製造方法は、液晶組成物中における上記一般式(I)で表される化合物と上記一般式(II)で表される化合物の組成比が、質量比で50対50から95対5の範囲であることが好ましく、60対40から95対5の範囲であることがより好ましく、70対30から92対8の範囲であることが特に好ましい。
[液晶組成物]
 本発明の液晶組成物は、本発明の液晶組成物の製造方法で製造されたことを特徴とする。このような液晶組成物は、本発明の液晶組成物の製造方法で製造されていない液晶組成物とは、液晶構造が異なり、その結果、溶解性や結晶化抑制能が高い。
 本発明の液晶組成物のネマチック-Iso相転移温度は80~160℃であることが好ましく、90~150℃であることがより好ましい。
[フィルムの構成]
 本発明のフィルムは、本発明の液晶組成物中の液晶化合物の配向(例えば、水平配向、垂直配向、コレステリック配向、ハイブリッド配向等)を固定してなり、光学異方性を示すフィルムである。このとき、本発明の液晶組成物中の液晶化合物の配向を固定してなる光学異方性層は2層以上有していてもよい。当該フィルムは、例えばTNモード、IPSモードなどの液晶表示装置の光学補償フィルムや1/2波長フィルム、1/4波長フィルム、位相差フィルムとしての利用、さらにはコレステリック配向の選択反射を利用した反射フィルムに利用できる。
(反射フィルム)
 本発明のフィルムは、反射フィルムとして使用することができる。本発明のフィルムとして好ましくは、本発明の液晶組成物中の液晶化合物のコレステリック配向を固定してなるフィルムである。
(他の添加剤)
 本発明の液晶組成物を、例えば、コレステリック配向の選択反射を利用した反射フィルムに利用する場合、液晶組成物は、重合性液晶の他、必要に応じて溶媒、不斉炭素原子を含む化合物、あるいは重合性開始剤(後述)や他の添加剤(例えば、セルロースエステル)を含むことができる。
光学活性化合物(キラル剤):
 上記液晶組成物は、コレステリック液晶相を示すものであってもよく、そのためには、光学活性化合物を含有しているのが好ましい。但し、上記棒状液晶化合物が不正炭素原子を有する分子である場合には、光学活性化合物を添加しなくても、コレステリック液晶相を安定的に形成可能である場合もある。上記光学活性化合物は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989に記載)から選択することができる。光学活性化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。光学活性化合物(キラル剤)は、重合性基を有していてもよい。光学活性化合物が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性光学活性化合物と重合性棒状液晶合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、光学活性化合物から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性光学活性化合物が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、光学活性化合物の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、光学活性化合物は、液晶化合物であってもよい。
 上記液晶組成物中の光学活性化合物は、併用される液晶化合物に対して、1~30モル%であることが好ましい。光学活性化合物の使用量は、より少なくした方が液晶性に影響を及ぼさないことが多いため好まれる。従って、キラル剤として用いられる光学活性化合物は、少量でも所望の螺旋ピッチの捩れ配向を達成可能なように、強い捩り力のある化合物が好ましい。この様な、強い捩れ力を示すキラル剤としては、例えば、特開2003-287623号公報に記載のキラル剤が挙げられ、本発明に好ましく用いることができる。
(溶媒)
 液晶組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
 また、本発明の液晶組成物を、液晶表示装置の光学補償フィルムに利用する場合、重合性開始剤(後述)、上述した溶媒の他に、配向制御剤、界面活性剤、フッ素系ポリマー等を含むことができる。
(配向制御剤)
 本発明における配向制御剤とは、例えば、本発明の液晶組成物の塗布液に添加され、塗布後に液晶組成物の層の表面、つまり、空気界面側に偏在することによって、空気界面側での液晶組成物の配向を制御することができる化合物(空気界面配向剤)を表す。もしくは、塗布後に液晶組成物の層と基板との界面に偏在することによって、基板界面側での液晶組成物の配向を制御することができる化合物、例えばオニウム塩を表す。
 空気界面側の配向制御剤としては、例えば、低分子の配向制御剤や高分子の配向制御剤を用いることができる。低分子の配向制御剤としては、例えば、特開2002-20363号公報の段落0009~0083の記載や、特開2006-106662号公報の段落0111~0120、特開2012-211306号公報の段落0021~0029を参酌することができ、この内容は本願明細書に組み込まれる。また、高分子の配向制御剤としては、例えば、特開2004-198511号公報の段落0021~0057の記載や、特開2006-106662号公報の段落0121~0167を参酌することができ、この内容は本願明細書に組み込まれる。
 配向制御剤の使用量は、本発明の液晶組成物の塗布液の固形分の0.01~10質量%であることが好ましく、0.05~5質量%であることがさらに好ましい。
 この様な配向制御剤や配向膜を用いることで本発明の液晶化合物は層の表面と並行に配向したホモジニアス配向状態とすることができる。
 また、基板界面側での配向制御剤としてオニウム塩等を用いると液晶化合物の界面におけるホメオトロピック配向を促進させることができる。この垂直配向剤として作用するオニウム塩としては、例えば、特開2006-106662号公報の段落0052~0108の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 オニウム塩の使用量は、本発明の液晶組成物の塗布液の固形分の0.01~10質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。
(界面活性剤)
 界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。界面活性剤としては、例えば、特開2001-330725号公報の段落0028~0056に記載の化合物および特開2006-106662号公報の段落0199~0207に記載の化合物を参酌でき、これらの内容は本願明細書に組み込まれる。
 界面活性剤の使用量は、本発明の液晶組成物の塗布液の固形分の0.01~10質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。
(光学補償フィルム用途のその他の添加剤)
 光学補償フィルム用途のその他の添加剤としては、例えば、特開2005-97377号公報の段落0099~0101に記載の化合物を参酌でき、この内容は本願明細書に組み込まれる。
 本発明の液晶組成物を塗布等の方法により製膜することにより本発明の反射フィルムを形成することができる。本発明のフィルムの作成方法としては、本発明の液晶組成物を少なくとも含有する組成物を、支持体の表面またはその上に形成された配向膜表面に塗布し、液晶組成物を所望の配向状態とし、重合により硬化させ、液晶組成物の配向状態を固定して形成することが好ましい。
 液晶組成物の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法、スピンコート法)により実施できる。液晶性分子は、配向状態を維持して固定することが好ましい。固定化は、液晶性分子に導入した重合性基の重合反応により実施することが好ましい。
 重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
 光重合開始剤の例には、α-カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書記載)、オキサジアゾール化合物(米国特許4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)が含まれる。
 光重合開始剤の使用量は、塗布液の固形分の0.01~20質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。ディスコィック液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2であることが好ましく、100~800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
 液晶組成物からなる光学異方性層の厚さは、0.1~50μmであることが好ましく、0.5~30μmであることがさらに好ましい。
 特に、液晶化合物のコレステリック配向を固定してなるフィルムにおいて選択反射性を利用する場合は、1~30μmであることがさらに好ましく、2~20μmであることが最も好ましい。液晶層中の上記一般式(I)で表される化合物と上記一般式(II)で表される化合物の合計塗布量(液晶配向促進剤の塗布量)は、0.1~500mg/m2であることが好ましく、0.5~450mg/m2であることがより好ましく、0.75~400mg/m2であることがさらに好ましく、1.0~350mg/m2であることが最も好ましい。
 一方、光学補償フィルム(例えば、ホモジニアス配向状態を固定したA-プレートやホメオトロピック配向状態を固定したC-プレート)として用いる場合、光学異方性層の厚さは、0.1~50μmであることが好ましく、0.5~30μmであることがさらに好ましい。
 上記配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。ポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、ポリマー層の表面を、紙や布で一定方向に、数回こすることにより実施する。配向膜に使用するポリマーの種類は、液晶性分子の配向(特に平均傾斜角)に応じて決定する。液晶性分子を水平(平均傾斜角:0~50゜)に配向させるためには、配向膜の表面エネルギーを低下させないポリマー(通常の配向膜用ポリマー)を用いる。液晶性分子を垂直(平均傾斜角:50~90゜)に配向させるためには、配向膜の表面エネルギーを低下させるポリマーを用いる。配向膜の表面エネルギーを低下させるためには、ポリマーの側鎖に炭素数が10~100の炭化水素基を導入することが好ましい。
 具体的なポリマーの種類については、様々な表示モードに対応する液晶性分子を用いた光学補償シートについての文献に記載がある。
 配向膜の厚さは、0.01~5μmであることが好ましく、0.05~1μmであることがさらに好ましい。なお、配向膜を用いて、光学異方性層の液晶性分子を配向させてから、液晶層を透明支持体上に転写してもよい。配向状態で固定された液晶性分子は、配向膜がなくても配向状態を維持することができる。また、平均傾斜角が5゜未満の配向の場合は、ラビング処理をする必要はなく、配向膜も不要である。ただし、液晶性分子と透明支持体との密着性を改善する目的で、界面で液晶性分子と化学結合を形成する配向膜(特開平9-152509号公報記載)を用いてもよい。密着性改善の目的で配向膜を使用する場合は、ラビング処理を実施しなくてもよい。二種類の液晶層を透明支持体の同じ側に設ける場合、透明支持体上に形成した液晶層を、その上に設ける液晶層の配向膜として機能させることも可能である。
 本発明のフィルムや本発明のフィルムを有する光学異方性素子は、透明支持体を有していてもよい。透明支持体として、ガラス板またはポリマーフィルム、好ましくはポリマーフィルムが用いられる。支持体が透明であるとは、光透過率が80%以上であることを意味する。透明支持体として、一般には、光学等方性のポリマーフィルムが用いられている。光学等方性とは、具体的には、面内レターデーション(Re)が10nm未満であることが好ましく、5nm未満であることがさらに好ましい。また、光学等方性透明支持体では、厚み方向のレターデーション(Rth)も、10nm未満であることが好ましく、5nm未満であることがさらに好ましい。
(選択反射特性)
 本発明のフィルムは、本発明の液晶組成物のコレステリック液晶相を固定してなり、選択反射特性を示すことが好ましく、赤外線波長領域に選択反射特性を示すことがより好ましい。コレステリック液晶相を固定してなる光反射層については、特開2011-107178号公報および特開2011-018037号公報に記載の方法に詳細が記載されており、本発明でも好ましく用いることができる。
(積層体)
 本発明のフィルムは、本発明の液晶組成物のコレステリック液晶相を固定してなる層を複数積層してなる積層体とすることも好ましい。本発明の液晶組成物は積層性も良好であるため、このような積層体を容易に形成することができる。
(光学補償フィルム)
 本発明のフィルムは、光学補償フィルムとしても使用することができる。
 本発明のフィルムを光学補償フィルムとして使用する場合、光学補償フィルムにおける上記光学異方性層の光学的性質は、液晶セルの光学的性質、具体的には表示モードの違いに応じて決定する。本発明の液晶組成物を用いると、液晶セルの様々な表示モードに対応する様々な光学的性質を有する光学異方性層を製造することができる。
 例えば、TNモードの液晶セル用光学異方性層は、特開平6-214116号公報、米国特許5583679号、米国特許5646703号およびドイツ特許公報3911620A1号の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、IPSモードまたはFLCモードの液晶セル用光学異方性層は、特開平9-292522号公報および特開平10-54982号公報の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、OCBモードまたはHANモードの液晶セル用光学異方性層は、米国特許5805253号および国際特許出願WO96/37804号の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、STNモードの液晶セル用光学異方性層は、特開平9 -26572号公報の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、VAモードの液晶セル用光学異方性層は、特許第2866372号公報の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 特に、本発明では、IPSモードの液晶セル用光学異方性層として好適に用いることができる。
 例えば、本発明の液晶化合物をホモジニアス配向させた光学異方性層を有するフィルムは、Aプレートとして使用することができる。ここで、Aプレートとは、遅相軸の屈折率が厚さ方向の屈折率より大きい1軸性の複屈折層のことを意味する。本発明のフィルムがAプレートである場合、550nmにおける面内の位相差(Re)が200nm~350nmとした光学異方性層により単層で補償を行うことができる。
 また、本発明の液晶化合物をホメオトロピック配向させた光学異方性層を有するフィルムは、正のCプレートとして使用することができ、2軸フィルム等と組み合わせて用いることができる。ここで、正のCプレートとは、厚さ方向の屈折率が面内の屈折率よりも大きい1軸性の複屈折層のことを意味する。本発明のフィルムが正のCプレートである場合、組合せる2軸フィルムの光学特性によるが、例えば、550nmにおける面内の位相差(Re)が-10nm~10nm、550nmにおける厚さ方向の位相差(Rth)が-250~-50nmであることがそれぞれ好ましい。
[偏光板]
 本発明は、上記光学異方性層を有するフィルム(光学補償フィルム)と、偏光膜とを少なくとも有する偏光板にも関する。上記光学異方性層は、偏光膜とその少なくとも一方の側に配置された保護フィルムとを有する偏光板において、その保護フィルムとして使用することができる。
 また、偏光板の構成として、偏光膜の両面に保護フィルムを配置する形態においては、上記光学異方性層は、一方の保護フィルムとして用いることもできる。
 偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造することができる。
 偏光膜の厚みについては、特に制限はないが、偏光膜の厚みが薄いほうが、偏光板およびそれを組み込む液晶表示装置をさらに薄型化することができる。この観点では、偏光膜の厚みは10μm以下であるのが好ましい。偏光膜の膜厚の下限値は、偏光膜内での光路が光の波長より大きいことが必要であるため、0.7μm以上、実質的には1μm以上であり、一般的には、3μmより厚いことが好ましい。
[液晶表示装置]
 本発明は、上記偏光板を有する液晶表示装置にも関する。液晶表示装置の配向モードについては、特に制限はなく、例えば、TNモード、IPSモード、FLCモード、OCBモード、HANモード、VAモードを利用した液晶表示装置であってもよい。例えば、VAモードを利用した液晶表示装置については、特開2005-128503号公報の段落0109~0129の記載を参酌でき、この内容は本願明細書に組み込まれる。また、IPSモードを利用した液晶表示装置については、特開2006-106662号公報の段落0027~0050の記載を参酌でき、この内容は本願明細書に組み込まれる。
 本発明の液晶表示装置には、例えば、上述したAプレートやCプレートを用いることができる。
 上記光学異方性層は、偏光膜と貼合した偏光板の状態で液晶表示装置に組み込まれていてもよい。また、上記光学異方性層単独で、もしくは他の位相差層との積層体として、視野角補償フィルムとして組み込まれていてもよい。組み合わせる他の位相差層は、視野角補償の対象である液晶セルの配向モード等に応じて選択することができる。
 上記光学異方性層は、液晶セルと視認側偏光膜との間に配置されても、液晶セルとバックライト側偏光膜との間に配置されていてもよい。
 なお、本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定するができる。
 測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は上記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
 尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の式(1)および式(2)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000025
 式(2)
 Rth={(nx+ny)/2 - nz} × d
 上記式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわし、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。dは膜厚である。
 測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は上記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して-50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
 上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学補償フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学補償フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
 なお、本明細書では、特に付記がない限りは屈折率の測定波長は550nmとする。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
 化合物(IV-1)(21g、80mmol)と、化合物(V-1)(1.3g、8.9mmol)を、酢酸エチル(24mL)、テトラヒドロフラン(22mL)およびトリエチルアミン(13mL)と混合した。得られた溶液を、メタンスルホニルクロリド(10g、89mmol)の酢酸エチル溶液に氷冷下でゆっくりと滴下した。このとき、化合物(IV-1)と化合物(V-1)の仕込み比はモル比で90対10であった。
 次に、氷冷下で1時間攪拌し、化合物(III-1)の酢酸エチル溶液を氷冷下で滴下し、次いでトリエチルアミン(14mL)を氷冷下でゆっくりと滴下した。
 その後、反応温度を20℃にて2時間攪拌し、水(60g)を加えて有機層を抽出し、さらに2%塩酸水溶液、10%食塩水の順に有機層を洗浄した。
 この有機層の一部をサンプリングしてHPLC測定を行い、その面積比から化合物(I-1)と化合物(II-1)の生成比を見積もったところ、生成比はモル比で82対18であった。得られた結果を下記表1に記載した。
 次に、有機層を吸引ろ過したのちに、メタノール/水を加えて結晶を析出させ、生じた結晶をろ過して、化合物(I-1)と化合物(II-1)を含む液晶組成物を得た。(収量 21.6g)
 得られた液晶組成物をサンプリングしてHPLC測定を行い、その面積比から化合物(I-1)と化合物(II-1)の組成比を見積もったところ、組成比は質量比で89対11であった。得られた結果を下記表1に記載した。
 この液晶組成物のネマチックーIso相転移温度は115℃であった。
 なお、化合物(I-1)と化合物(II-1)の生成比および組成比は、別途合成した化合物(I-1)と化合物(II-1)の標準サンプルをHPLCにて分析し、面積比から求めた検量線を用いて算出した。
[実施例2~13]
 一般式(III)で表される化合物、一般式(IV)で表される化合物および一般式(V)で表される化合物の種類、ならびに一般式(IV)で表される化合物および一般式(V)で表される化合物の仕込み比を変えた以外は実施例1と同様の実験操作で、一般式(I)で表される化合物および一般式(II)で表される化合物を含む液晶組成物の合成、得られた液晶組成物中の一般式(I)で表される化合物および一般式(II)で表される化合物の生成比の測定、ならびに、得られた液晶組成物中の一般式(I)で表される化合物および一般式(II)で表される化合物の組成比の測定を行った。
 得られた結果を下記表1に示した。
Figure JPOXMLDOC01-appb-T000026
[実施例84]
カルボン酸(V-29)の合成
 メタンスルホニルクロリド(33.0mmol、2.6mL)のテトラヒドロフラン(THF)溶液(17mL)にヒドロキノンモノメチルエーテル(37mg)を加え、内温を-5℃まで冷却した。そこに、化合物(IV-1)(31.5mmol、8.33g)とジイソプロピルエチルアミン(33.0mmol、5.75mL)のTHF溶液(16mL)を内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、ジイソプロピルエチルアミン(33.0mmol、5.75mL)、p-ヒドロキシベンズアルデヒドのTHF溶液(20mL)、4-ジメチルアミノピリジン(DMAP)(スパチュラ一杯)を加えた。その後、室温で4時間撹拌した。メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、アセトニトリル(67mL)の溶液とした後、これに、亜塩素酸ナトリウム(42.0mmol、3.80g)の水溶液(2mL)、リン酸二水素ナトリウム二水和物(6.0mmol、0.94g)の水溶液(8.2mL)、過酸化水素水(4.0mL)を加え、室温で12時間撹拌した。1N 塩酸水溶液を100mL加えた後に、ろ過した。残渣をメタノールで少量のアセトニトリルで洗浄することにより、カルボン酸(V-29)を得た。このカルボン酸(V-29)は、上述した一般式(V)で表される化合物の例示化合物(V-29)である。
液晶組成物の合成
 化合物(IV-1)(54g、204mmol)と、化合物(V-29)(6.8g、17.7mmol)を、酢酸エチル(50mL)、THF(45mL)およびジイソプロピルエチルアミン(41.8mL)と混合した。得られた溶液を、メタンスルホニルクロリド(25.5g、223mmol)の酢酸エチル溶液に氷冷下でゆっくりと滴下した。このとき、化合物(IV-1)と化合物(V-1)の仕込み比はモル比で92対8であった。
 次に、氷冷下で1時間攪拌し、化合物(III-1)(13.5g、109mmol)の酢酸エチル溶液を氷冷下で滴下し、さらにN-メチルイミダゾール(0.5g)を加えた後、トリエチルアミン(33.7mL)を氷冷下でゆっくりと滴下した。
 その後、反応温度を20℃にて2時間攪拌し、水(140mL)を加えて有機層を抽出し、さらに2%塩酸水溶液、10%食塩水の順に有機層を洗浄した。
 この有機層の一部をサンプリングしてHPLC測定を行い、その面積比から化合物(I-1)と化合物(II-53)の生成比を見積もったところ、生成比はモル比で88対12であった。得られた結果を下記表2に記載した。
 次に、有機層を吸引ろ過したのちに、メタノール/水を加えて結晶を析出させ、生じた結晶をろ過して、化合物(I-1)と化合物(II-53)を含む液晶組成物を得た。(収量 60g)
 得られた液晶組成物をサンプリングしてHPLC測定を行い、その面積比から化合物(I-1)と化合物(II-53)の組成比を見積もったところ、組成比は質量比で87対113であった。得られた結果を下記表2に記載した。
 この液晶組成物のネマチックーIso相転移温度は140℃であった。
 なお、化合物(I-1)と化合物(II-53)の生成比および組成比は、別途合成した化合物(I-1)と化合物(II-53)の標準サンプルをHPLCにて分析し、面積比から求めた検量線を用いて算出した。
 また、一般式(III)で表される化合物、一般式(IV)で表される化合物および一般式(V)で表される化合物の種類、ならびに一般式(IV)で表される化合物および一般式(V)で表される化合物の仕込み比を下記表のように変えた以外は実施例84と同様の実験操作で、一般式(I)で表される化合物および一般式(II)で表される化合物を含む液晶組成物の合成、得られた液晶組成物中の一般式(I)で表される化合物および一般式(II)で表される化合物の生成比の測定、ならびに、得られた液晶組成物中の一般式(I)で表される化合物および一般式(II)で表される化合物の組成比の測定を行った。
 得られた結果を下記表2に示した。
Figure JPOXMLDOC01-appb-T000027
[比較例1]
 化合物(II-1)を、以下のスキームに従って合成した。
Figure JPOXMLDOC01-appb-C000028
 メタンスルホニルクロリド(10.22g)のTHF溶液(20mL)にBHT(37mg)を加え、内温を-5℃まで冷却した。そこに、化合物(IV-1)(31.5mmol、8.33g)とジイソプロピルエチルアミン(17.6mL)のTHF溶液(50mL)を内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、ジイソプロピルエチルアミン(16.7mL)、化合物(III-1)のTHF溶液(20mL)、DMAP(スパチュラ一杯)を加えた。その後、室温で4時間撹拌した。メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、シリカゲルを用いたカラムクロマトグラフィーにより生成し化合物(VI-1)を得た。
 メタンスルホニルクロリド(3.5g)のTHF溶液(10mL)にBHT(3mg)を加え、内温を-5℃まで冷却した。そこに、化合物(V-1)(4.4g)とジイソプロピルエチルアミン(4.7mL)のTHF溶液(20mL)を内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、ジイソプロピルエチルアミン(4.7mL)、化合物(VI-1)(10g)のTHF溶液(20mL)、DMAP(スパチュラ一杯)を加えた。その後、室温で2時間撹拌した。メタノール(50mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、化合物(II-1)の粗生成物を得た。シリカゲルを用いたカラムクロマトグラフィーによる生成を行い、化合物(II-1)を59%の収率で得た。
 化合物(I-1)8.9gと、化合物(II-1)1.1gと、メチルエチルケトン20gを25℃で混合した。得られた液晶組成物を比較例1の液晶組成物とした。
[比較例2]
 化合物(V-1)の代わりに化合物(V-4)を用いる以外は比較例1の化合物(II-1)の合成と同じ合成法により、化合物(II-4)を得た。
 化合物(I-1)8.6gと、化合物(II-4)1.4gと、メチルエチルケトン20gを25℃で混合した。得られた液晶組成物を比較例2の液晶組成物とした。
<溶解性試験>
(溶解性試験1)
 実施例1で製造した液晶組成物10gとメチルエチルケトン20gを25℃で混合した。2分以内にすべての固体が完溶し、良好な溶解性を示した。
 一方、比較例1の液晶組成物を調製した直後から2分後の溶液は、若干の溶け残りの固体があることを目視で確認した。なお、その後、5分後のすべての固体が完溶することを確認した。
(溶解性試験2)
 実施例6で合成した液晶組成物10gとメチルエチルケトン20gを25℃で混合した。5分以内に完溶し、良好な溶解性であった。
 一方、比較例2の液晶組成物を調製した直後から5分後の溶液は若干の溶け残りの結晶があることを目視で確認した。
(その他の溶解性試験)
 その他の実施例2~5および7~12で製造した液晶組成物についても同様に溶解性試験を行うと、溶解性が向上したことがわかった。
<粉末X線回折試験>
(X線回折試験1)
 実施例1で得られた液晶組成物と、比較例1で用いた2種類の液晶化合物を十分に混合した固体について、リガク社製 RINT2000を用いて、測定範囲が2Θ=5°~55°、入射X線がCuKα線にてそれぞれ粉末X線回折測定を行った。
 図1に示すように、実施例1の液晶性組成物のX線回折スペクトルは、比較例1の液晶性組成物とは異なるX線回折スペクトルであった。
 以上の試験を行った結果、実施例1で得られた液晶組成物は、比較例1で用いた2種類の液晶化合物を混合した固体とは結晶構造が異なっていることがわかった。
(X線回折試験2)
 実施例6で得られた液晶組成物と、比較例2で用いた2種類の液晶化合物を十分に混合した固体について、X線回折試験1と同様の方法でそれぞれ粉末X線回折測定を行った。
 図2に示すように、実施例6の液晶性組成物のX線回折スペクトルは、比較例2の液晶性組成物とは異なるX線回折スペクトルであった。
 以上の試験を行った結果、実施例6で得られた液晶組成物は、比較例2で用いた2種類の液晶化合物を混合した固体とは結晶構造が異なっていることがわかった。
[実施例16]
<重合性組成物の調製>
 実施例1の組成物を用いて、下記組成の液晶性組成物塗布液(A)を調製した。
実施例1の組成物                    100質量部
MEK                         233質量部
<塗布サンプルの作成>
 次に、得られた液晶性組成物を用いて実施例16のフィルムを製造した。
 洗浄したガラス基板上に日産化学社製ポリイミド配向膜SE-130をスピンコート法により塗布し、乾燥後に250℃で1時間焼成した。これをラビング処理して配向膜付き基板を作製した。この基板の配向膜のラビング処理面上に、液晶性組成物塗布液(A)をスピンコート法により室温で塗布し、室温で30分静置した。
(結晶析出抑制の評価)
 偏光顕微鏡を用いて、得られた実施例16の塗布膜の液晶膜表面の任意の領域について、結晶析出率を目視で測定したところ、10%であった。
[実施例16~26および比較例3~7]
 実施例1の組成物の代わりに下記表3に記載される組成物を用いた点を変更して、実施例16と同じ方法により液晶性組成物塗布液を調製し、結晶析出率を測定した。結果は、下記表3に示すとおりであった。
Figure JPOXMLDOC01-appb-T000029
 上記表3中、結晶析出性は、目視の塗布膜上の結晶析出面積が0~20%は3、20~50%は2、それ以上は1とした。
[実施例96]
<重合性組成物の調製>
 実施例84の組成物を用いて、下記組成の液晶性組成物塗布液(A)を調製した。
 実施例84の組成物                  100質量部
 MEK                        233質量部
(結晶析出抑制の評価)
 偏光顕微鏡を用いて、得られた実施例96の塗布膜の液晶膜表面の任意の領域について、結晶析出率を目視で測定したところ、5%であった。
[実施例97~107]
 実施例1の組成物の代わりに下記表4に記載される組成物を用いた点を変更して、実施例1と同じ方法により液晶性組成物塗布液を調製し、結晶析出率を測定した。結果は、下記表4に示すとおりであった。
Figure JPOXMLDOC01-appb-T000030
 上記表4中、結晶析出性は、目視の塗布膜上の結晶析出面積が0~20%は3、20~50%は2、それ以上は1とした。
Figure JPOXMLDOC01-appb-C000031
 実施例16~26および比較例3~7の結果から、各実施例で得られた液晶組成物は、従来の重合性液晶化合物を用いた液晶組成物と比較して、結晶化抑止能にも優れることがわかった。
[実施例51]
<選択反射膜の作成>
 実施例6の組成物を用いて、下記の方法にしたがって、液晶性組成物塗布液(B)を調製した。
実施例6の組成物                    100質量部
キラル剤Paliocolor LC756 (BASF社製) 3質量部
空気界面配向剤(X1-1)              0.04質量部
重合開始剤IRGACURE819(BASF社製)      3質量部
溶媒 クロロホルム                   300質量部
Figure JPOXMLDOC01-appb-C000032
 実施例16と同様にして製作した配向膜付き基板の配向膜表面に液晶性組成物塗布液(B)をスピンコート法により室温で塗布し、120℃で3分間配向熟成を行った後に、室温でUVの短波長成分を除去した高圧水銀ランプを用いて10秒間光照射して配向を固定し選択反射膜を得た。塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 得られた選択反射膜を偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることを確認した。さらにこの膜を島津社製の分光光度計UV-3100PCで透過スペクトルを測定したところ赤外領域に選択反射ピークがあった。
[実施例52~61]
 実施例6の組成物の代わりに実施例1~実施例5および実施例7~実施例11の組成物を用いた以外は、実施例51と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例51と同様にして選択反射膜をそれぞれ形成した。これらの選択反射膜はいずれも良好な配向性を示した。また、分光光度計UV-3100PCで透過スペクトルを測定したところ赤外領域に選択反射ピークがあった。
[実施例108~119]
 実施例6の組成物の代わりに実施例84~実施例95の組成物を用いた以外は、実施例51と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例51と同様にして選択反射膜をそれぞれ形成した。これらの選択反射膜はいずれも良好な配向性を示した。また、分光光度計UV-3100PCで透過スペクトルを測定したところ赤外領域に選択反射ピークがあった。
[実施例62]
<光学補償フィルムの作成(1)>
 実施例1の組成物を用いて、下記の方法にしたがって、液晶性組成物塗布液(C)を調製した。
実施例1の組成物                    100質量部
重合開始剤IRGACURE819(BASF社製)      3質量部
空気界面配向剤(X1-2)               0.1質量部
溶媒 メチルエチルケトン                400質量部
Figure JPOXMLDOC01-appb-C000033
 洗浄したガラス基板上に日産化学社製ポリイミド配向膜SE-130をスピンコート法により塗布し、乾燥後に250℃で1時間焼成した。これをラビング処理して配向膜付き基板を作製した。この基板表面に液晶性組成物塗布液(C)をスピンコート法により室温で塗布し、60℃で1分間配向熟成を行った後に、室温でUVの短波長成分を除去した高圧水銀ランプを用いて10秒間光照射して配向を固定し光学補償フィルムを形成した。なお、塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 得られた光学補償フィルムを偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることを確認した。
 次に、AXOMETRICS社のAxoScan(ミュラーマトリクス・ポラリメータ)を用いて得られた光学補償フィルムのレターデーション(Re)を測定したところ、550nmにおけるRe(550)は156.2nmであった。
 [実施例63~72]
 実施例1の組成物の代わりに実施例2~実施例11の組成物を用いた以外は、実施例62と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例62と同様にして光学補償フィルムをそれぞれ形成した。得られた光学補償フィルムをそれぞれ偏光顕微鏡で観察したところ、配向欠陥が無く均一に配向していることを確認した。また、光学補償フィルムの550nmにおけるReの測定値および膜厚は以下のとおりであった。
Figure JPOXMLDOC01-appb-T000034
 [実施例120~131]
 実施例1の組成物の代わりに実施例84~実施例95の組成物を用いた以外は、実施例62と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例62と同様にして光学補償フィルムをそれぞれ形成した。得られた光学補償フィルムをそれぞれ偏光顕微鏡で観察したところ、配向欠陥が無く均一に配向していることを確認した。また、光学補償フィルムの550nmにおけるReの測定値および膜厚は以下のとおりであった。
Figure JPOXMLDOC01-appb-T000035
[実施例73]
<光学補償フィルムの作成(2)>
 実施例1の組成物を用いて、下記の方法にしたがって、液晶性組成物塗布液(D)を調製した。
実施例1の組成物                    100質量部
重合開始剤IRGACURE907(BASF社製)      3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
空気界面配向剤(X1-3)              0.11質量部
オニウム塩(X1-4)                 1.5質量部
溶媒 メチルエチルケトン                300質量部
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
配向膜塗布液の組成
 下記の変性ポリビニルアルコール       10質量部
 水                                 371質量部
 メタノール                         119質量部
 グルタルアルデヒド                 0.5質量部
Figure JPOXMLDOC01-appb-C000038
 洗浄したガラス基板上に上記の配向膜塗布液をワイヤーバーコーターで20ml/m2塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜付き基板を作製した。この基板表面に液晶性組成物塗布液(D)をスピンコート法により室温で塗布し、60℃で1分間配向熟成を行った後に、50℃でUVの短波長成分を除去した高圧水銀ランプを用いて10秒間光照射して配向を固定し光学補償フィルムを形成した。なお、塗布後に加熱するまでの間に、塗布膜に結晶の析出は見られなかった。
 得られた光学補償フィルムを偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることを確認した。
 次に、AXOMETRICS社のAxoScan(ミュラーマトリクス・ポラリメータ)を用いて得られた光学補償フィルムのRthを測定したところ、550nmにおけるRthは-123.1nmであった。
[実施例74~83]
 実施例1の組成物の代わりに実施例2~実施例11の組成物を用いた以外は、実施例73と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例73と同様にして光学補償フィルムをそれぞれ形成した。得られた光学補償フィルムをそれぞれ偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることを確認した。また、光学補償フィルムの550nmにおけるRthの測定値および膜厚は以下のとおりであった。
Figure JPOXMLDOC01-appb-T000039
 [実施例132~143]
 実施例1の組成物の代わりに実施例84~実施例95の組成物を用いた以外は、実施例73と同様にして、液晶性組成物塗布液をそれぞれ調製した。これらの塗布液をそれぞれ用いて、実施例73と同様にして光学補償フィルムをそれぞれ形成した。得られた光学補償フィルムをそれぞれ偏光顕微鏡で観察したところ配向欠陥が無く均一に配向していることを確認した。また、光学補償フィルムの550nmにおけるRthの測定値および膜厚は以下のとおりであった。
Figure JPOXMLDOC01-appb-T000040

Claims (20)

  1.  下記一般式(III)で表される化合物を、
     下記一般式(IV)で表されるカルボン酸および下記一般式(V)で表されるカルボン酸と反応させることにより、
     下記一般式(I)で表される液晶化合物および下記一般式(II)で表される液晶化合物を同時に得ることを特徴とする液晶組成物の製造方法。
    1-Sp1-T1-A1-B-A2-T1-Sp1-P1 一般式(I)
    1-Sp1-T1-A1-B-A3-T2-X     一般式(II)
    HY1-B-Y2H               一般式(III)
    1-Sp1-T1-COOH           一般式(IV)
    X-T2-COOH               一般式(V)
    (一般式(I)~(V)中、
    1は重合性基を表す。
    Sp1は置換基を有していてもよい炭素数3~12の2価の脂肪族基を表し、脂肪族基中の1つのCH2または隣接していない2以上のCH2は、-O-、-S-、-OCO-、-COO-または-OCOO-で置換されていてもよい。
    1は1,4-フェニレン基を表す。
    2は単結合または環状構造を有する二価の基を表す。
    1は-COO-、-CONR1-(R1は水素原子またはメチル基を表す)または-COS-を表す。
    2およびA3はそれぞれ独立して-OCO-、-NR1CO-(R1は水素原子またはメチル基を表す)または-SCO-を表す。
    Bは置換基を有していてもよい環状構造を有する二価の基を表す。
    Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基、ビニル基、ホルミル基、-OC(=O)R(Rは炭素数1~12のアルキル基)、N-アセチルアミド基、アクリロイルアミノ基、N,N-ジメチルアミノ基、N-マレイミド基、メタクリロイルアミノ基、アリルオキシ基、アルキル基の炭素数が1~4であるN-アルキルオキシカルバモイル基、アリルオキシカルバモイル基、N-(2-メタクリロイルオキシエチル)カルバモイルオキシ基、N-(2-アクリロイルオキシエチル)カルバモイルオキシ基または下記式(V-I)で表される構造を表す。
    1およびY2はそれぞれ独立してO、NR1(R1は水素原子またはメチル基を表す)またはSを表す。)
    -A4-T4-Sp2-P2    式(V-I)
    (式(V-I)中、P2は重合性基または水素原子を表し、A4、T4、Sp2はそれぞれ独立して前記A2、T2、Sp1と同義である。)
  2. (一般式(I)~(V)中、Xは、水素原子、分岐または直鎖状の炭素数1~12のアルキル基、分岐または直鎖状の炭素数1~12のアルコキシ基、フェニル基、シアノ基、ハロゲン原子、ニトロ基、アセチル基またはビニル基を表す、請求項1に記載の液晶組成物の製造方法。
  3.  さらに前記一般式(IV)で表されるカルボン酸および前記一般式(V)で表されるカルボン酸を、混合酸無水物または酸ハロゲン化物に導くことによって活性化する工程を含み、
     前記活性化工程の後に塩基の存在下にて前記一般式(III)で表される化合物を、活性化された前記一般式(IV)で表されるカルボン酸および前記一般式(V)で表されるカルボン酸と反応させる請求項1または2に記載の液晶組成物の製造方法。
  4.  前記一般式(IV)で表されるカルボン酸と前記一般式(V)で表されるカルボン酸の仕込み比が、モル比で75対25から99対1の範囲である請求項1~3のいずれか1項に記載の液晶組成物の製造方法。
  5.  前記一般式(I)で表される化合物と前記一般式(II)で表される化合物の生成比が、モル比で50対50から98対2の範囲である請求項1~4のいずれか一項に記載の液晶組成物の製造方法。
  6.  液晶組成物中における前記一般式(I)で表される化合物と前記一般式(II)で表される化合物の組成比が、質量比で50対50から95対5の範囲である請求項1~5のいずれか一項に記載の液晶組成物の製造方法。
  7.  前記Bが、下記連結基群(VI)に含まれる連結基のいずれかである請求項1~6のいずれか一項に記載の液晶組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (連結基群(VI)中、R2~R10はそれぞれ独立して、水素原子、分岐または直鎖状の炭素数1~4のアルキル基、分岐または直鎖状の炭素数1~4のアルコキシ基、ハロゲン原子、あるいは、炭素数1~3のアルコキシカルボニル基を表す。)
  8.  前記T2が、下記連結基群(VII)に含まれる連結基のいずれかである請求項1~7のいずれか一項に記載の液晶組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  9.  前記Bが、下記連結基群(VIII)に含まれる連結基のいずれかである請求項1~8のいずれか一項に記載の液晶組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
  10.  前記Xが、分岐または直鎖状の炭素数1~4のアルキル基、直鎖状の炭素数1または2のアルコキシ基、あるいは、フェニル基を表す請求項1~9のいずれか一項に記載の液晶組成物の製造方法。
  11.  前記Y1およびY2がOであり、
     前記A1が-COO-であり、
     前記A2およびA3が-OCO-である請求項1~10のいずれか一項に記載の液晶組成物の製造方法。
  12.  請求項1~11のいずれか一項に記載の液晶組成物の製造方法で製造された液晶組成物。
  13.  請求項12に記載の液晶組成物中の前記液晶化合物の配向を固定してなる光学異方性層を有するフィルム。
  14.  前記光学異方性層が前記液晶化合物のコレステリック配向を固定してなる請求項13に記載のフィルム。
  15.  選択反射特性を示すことを特徴とする請求項14に記載のフィルム。
  16.  赤外線波長域に選択反射特性を示すことを特徴とする請求項14または15に記載のフィルム。
  17.  前記光学異方性層が前記液晶化合物のホモジニアス配向を固定してなる、請求項13に記載のフィルム。
  18.  前記光学異方性層が前記液晶化合物のホメオトロピック配向を固定してなる、請求項13に記載のフィルム。
  19. 請求項17または18に記載のフィルムと、偏光膜とを含む偏光板。
  20. 請求項19に記載の偏光板を含む液晶表示装置。
PCT/JP2013/073284 2012-09-25 2013-08-30 液晶組成物およびその製造方法ならびにフィルム WO2014050426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157006710A KR101707348B1 (ko) 2012-09-25 2013-08-30 액정 조성물 및 그 제조 방법 그리고 필름
CN201380049208.6A CN104662127B (zh) 2012-09-25 2013-08-30 液晶组合物及其制造方法、膜、偏光板以及液晶显示装置
US14/661,771 US9464228B2 (en) 2012-09-25 2015-03-18 Liquid crystal composition, method for manufacturing the same, and film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012210376 2012-09-25
JP2012-210376 2012-09-25
JP2013-051318 2013-03-14
JP2013051318 2013-03-14
JP2013172608A JP5816232B2 (ja) 2012-09-25 2013-08-22 液晶組成物およびその製造方法ならびにフィルム
JP2013-172608 2013-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/661,771 Continuation US9464228B2 (en) 2012-09-25 2015-03-18 Liquid crystal composition, method for manufacturing the same, and film

Publications (1)

Publication Number Publication Date
WO2014050426A1 true WO2014050426A1 (ja) 2014-04-03

Family

ID=50387835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073284 WO2014050426A1 (ja) 2012-09-25 2013-08-30 液晶組成物およびその製造方法ならびにフィルム

Country Status (6)

Country Link
US (1) US9464228B2 (ja)
JP (1) JP5816232B2 (ja)
KR (1) KR101707348B1 (ja)
CN (1) CN104662127B (ja)
TW (1) TWI585192B (ja)
WO (1) WO2014050426A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015803A1 (de) * 2014-07-28 2016-02-04 Merck Patent Gmbh Flüssigkristalline medien mit homöotroper ausrichtung
WO2019127649A1 (zh) * 2017-12-28 2019-07-04 深圳市华星光电技术有限公司 自取向液晶辅助剂、自取向液晶混合物及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341401B2 (ja) * 2013-05-29 2018-06-13 Dic株式会社 重合性組成物溶液、および、それを用いた光学異方体
US20170145312A1 (en) * 2015-11-25 2017-05-25 Sumitomo Chemical Company, Limited Liquid crystal composition
JP6639446B2 (ja) * 2016-07-28 2020-02-05 富士フイルム株式会社 液晶混合物の製造方法
CN110678788B (zh) * 2017-03-28 2022-01-04 夏普株式会社 液晶显示装置、液晶显示装置的制造方法、及相位差层形成用单体
US11760934B2 (en) * 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
KR102424752B1 (ko) * 2018-02-14 2022-07-22 후지필름 가부시키가이샤 중합성 액정 조성물, 중합성 액정 조성물의 제조 방법, 광학 이방성막, 광학 필름, 편광판 및 화상 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370366A (en) * 1980-08-23 1983-01-25 Ciba-Geigy Corporation Process for the production of an ester mixture, emulsions containing this mixture, and the application thereof
WO1996004351A1 (de) * 1994-08-05 1996-02-15 Basf Aktiengesellschaft Verfahren zur herstellung flüssigkristalliner mischungen
WO1997000600A2 (de) * 1995-09-01 1997-01-09 Basf Aktiengesellschaft Polymerisierbare flüssigkristalline verbindungen
WO1998047979A1 (de) * 1997-04-22 1998-10-29 Basf Aktiengesellschaft Verfahren zur herstellung polymerisierbarer flüssigkristalliner verbindungen
JP2001019661A (ja) * 1999-07-07 2001-01-23 Nippon Shokubai Co Ltd エステル化物の製造方法およびポリカルボン酸系重合体の製造方法
WO2003006570A2 (en) * 2001-07-09 2003-01-23 Southwest Research Institute Novel mesogens and methods for their synthesis and use
JP2005206579A (ja) * 2003-12-25 2005-08-04 Chisso Corp 液晶性(メタ)アクリレート誘導体およびそれらを含む組成物
JP2011213614A (ja) * 2010-03-31 2011-10-27 Dic Corp 重合性液晶組成物、及び、それを用いたコレステリック反射フィルム、反射型偏光板
WO2013035733A1 (ja) * 2011-09-08 2013-03-14 富士フイルム株式会社 重合性液晶化合物、重合性組成物、高分子材料、及びフィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69932272T2 (de) * 1998-03-05 2007-07-12 Rockwell International Corp., Thousand Oaks Optische Verzögerungsschicht
US7157124B2 (en) 2003-01-06 2007-01-02 Chisso Petrochemical Corporation Polymerizable compounds and their polymers
JP4576832B2 (ja) * 2003-01-06 2010-11-10 チッソ株式会社 重合性化合物およびその重合体
JP4846724B2 (ja) * 2004-09-06 2011-12-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性液晶材料
JP5098355B2 (ja) * 2006-02-17 2012-12-12 Dic株式会社 重合性液晶組成物
JP2010083947A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 液晶組成物及び位相差膜
JP5797148B2 (ja) * 2011-09-12 2015-10-21 富士フイルム株式会社 コレステリック液晶性混合物、フィルム、選択反射板、積層体および合わせガラス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370366A (en) * 1980-08-23 1983-01-25 Ciba-Geigy Corporation Process for the production of an ester mixture, emulsions containing this mixture, and the application thereof
WO1996004351A1 (de) * 1994-08-05 1996-02-15 Basf Aktiengesellschaft Verfahren zur herstellung flüssigkristalliner mischungen
WO1997000600A2 (de) * 1995-09-01 1997-01-09 Basf Aktiengesellschaft Polymerisierbare flüssigkristalline verbindungen
WO1998047979A1 (de) * 1997-04-22 1998-10-29 Basf Aktiengesellschaft Verfahren zur herstellung polymerisierbarer flüssigkristalliner verbindungen
JP2001019661A (ja) * 1999-07-07 2001-01-23 Nippon Shokubai Co Ltd エステル化物の製造方法およびポリカルボン酸系重合体の製造方法
WO2003006570A2 (en) * 2001-07-09 2003-01-23 Southwest Research Institute Novel mesogens and methods for their synthesis and use
JP2005206579A (ja) * 2003-12-25 2005-08-04 Chisso Corp 液晶性(メタ)アクリレート誘導体およびそれらを含む組成物
JP2011213614A (ja) * 2010-03-31 2011-10-27 Dic Corp 重合性液晶組成物、及び、それを用いたコレステリック反射フィルム、反射型偏光板
WO2013035733A1 (ja) * 2011-09-08 2013-03-14 富士フイルム株式会社 重合性液晶化合物、重合性組成物、高分子材料、及びフィルム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015803A1 (de) * 2014-07-28 2016-02-04 Merck Patent Gmbh Flüssigkristalline medien mit homöotroper ausrichtung
KR20170040291A (ko) * 2014-07-28 2017-04-12 메르크 파텐트 게엠베하 호메오트로픽 정렬을 갖는 액정 매질
JP2017523289A (ja) * 2014-07-28 2017-08-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung ホメオトロピック配向を有する液晶媒体
US10294426B2 (en) 2014-07-28 2019-05-21 Merck Patent Gmbh Liquid crystalline media having homeotropic alignment
KR102452385B1 (ko) 2014-07-28 2022-10-07 메르크 파텐트 게엠베하 호메오트로픽 정렬을 갖는 액정 매질
WO2019127649A1 (zh) * 2017-12-28 2019-07-04 深圳市华星光电技术有限公司 自取向液晶辅助剂、自取向液晶混合物及其应用

Also Published As

Publication number Publication date
JP5816232B2 (ja) 2015-11-18
KR101707348B1 (ko) 2017-02-15
JP2014198813A (ja) 2014-10-23
TW201412955A (zh) 2014-04-01
US9464228B2 (en) 2016-10-11
KR20150045479A (ko) 2015-04-28
TWI585192B (zh) 2017-06-01
US20150191652A1 (en) 2015-07-09
CN104662127A (zh) 2015-05-27
CN104662127B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5905419B2 (ja) 重合性液晶化合物、液晶組成物、高分子材料とその製造方法、フィルム、偏光板および液晶表示装置
JP5816232B2 (ja) 液晶組成物およびその製造方法ならびにフィルム
US7534475B2 (en) Liquid crystal compound comprising two condensed and substituted rings
JP6363566B2 (ja) 光学異方性層とその製造方法、積層体、偏光板、表示装置、液晶化合物とその製造方法、カルボン酸化合物
TWI461412B (zh) 光學薄膜、相位差板、橢圓偏光板、液晶顯示裝置以及化合物
JP5797132B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
JP5786000B2 (ja) 重合性液晶化合物、液晶組成物、高分子材料の製造方法とその製造方法およびフィルム
JP2013071945A (ja) 重合性液晶組成物および光学異方性フィルム
JP5798066B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
JP5852469B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
JP4424979B2 (ja) 化合物、位相差板、及び光学異方性層の形成方法
JP5889031B2 (ja) 重合性液晶組成物、高分子材料とその製造方法及びフィルム
US20050181144A1 (en) Optically anisotropic element comprising discotic compound
EP4144820A1 (en) Compound, liquid crystal composition, cured product and film
JP3996292B2 (ja) 液晶表示装置およびその製造方法
JP2006259212A (ja) 位相差板、その製造方法ならびにそれを用いた偏光板及び画像表示装置
JP5804814B2 (ja) 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム
JP2004300420A (ja) 液晶組成物、重合物、位相差板、及び楕円偏光板
JP6511407B2 (ja) 重合性化合物、重合性組成物、およびフィルム
JP5824432B2 (ja) 光学活性化合物、液晶組成物および光学フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380049208.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006710

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841452

Country of ref document: EP

Kind code of ref document: A1