WO2014050328A1 - 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法 - Google Patents

空隙配置構造体及びその製造方法、並びに測定装置及び測定方法 Download PDF

Info

Publication number
WO2014050328A1
WO2014050328A1 PCT/JP2013/071637 JP2013071637W WO2014050328A1 WO 2014050328 A1 WO2014050328 A1 WO 2014050328A1 JP 2013071637 W JP2013071637 W JP 2013071637W WO 2014050328 A1 WO2014050328 A1 WO 2014050328A1
Authority
WO
WIPO (PCT)
Prior art keywords
support base
gap
arrangement structure
main surface
void
Prior art date
Application number
PCT/JP2013/071637
Other languages
English (en)
French (fr)
Inventor
近藤 孝志
誠治 神波
鉄三 原
勝之 鈴木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014538265A priority Critical patent/JP6024756B2/ja
Priority to EP13841765.4A priority patent/EP2902770A1/en
Priority to CN201380046840.5A priority patent/CN104603599A/zh
Priority to KR20157007763A priority patent/KR20150046301A/ko
Publication of WO2014050328A1 publication Critical patent/WO2014050328A1/ja
Priority to US14/668,562 priority patent/US9329125B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0339Holders for solids, powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4709Backscatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • the present invention relates to a void arrangement structure for measuring an object to be measured by irradiating electromagnetic waves to the void arrangement structure to which the object to be measured is applied, a manufacturing method thereof, and a measurement using the void arrangement structure.
  • the present invention relates to an apparatus and a measurement method.
  • Patent Document 1 a method of irradiating an electromagnetic wave to measure the characteristics of a substance to be measured is known.
  • An example of this type of method is disclosed in Patent Document 1 below.
  • positioned is prepared.
  • the gap arrangement structure is irradiated with electromagnetic waves from a direction orthogonal to the gap.
  • a substance to be measured is placed in the void arrangement structure and irradiated with electromagnetic waves.
  • the characteristic of the substance to be measured is measured by the difference between the transmittance of the electromagnetic wave when the substance to be measured is not arranged and the transmittance of the electromagnetic wave when the substance to be measured is arranged.
  • Patent Document 1 describes that in addition to the transmittance of the electromagnetic wave, reflection of the electromagnetic wave or the like may be used.
  • the measurement sensitivity is increased by reducing the size of the gap portion in the gap arrangement structure or by reducing the thickness of the gap arrangement structure, that is, the dimension perpendicular to the gap portion. obtain.
  • the thickness of the void arrangement structure is reduced, the strength decreases. As a result, when measuring the substance to be measured, the void-arranged structure is easily bent. Further, when the void arrangement structure is washed before or after the measurement, the void arrangement structure is liable to be damaged.
  • An object of the present invention is to provide a void-arranged structure that has high mechanical strength and is less likely to be bent or broken during handling, a method for manufacturing the same, and a measuring apparatus and measurement method using the void-arranged structure. .
  • the void-arranged structure of the present invention is used to measure the characteristics of an object to be measured by irradiation with electromagnetic waves.
  • the gap arrangement structure according to the present invention includes a gap arrangement plate and a support base material.
  • positioning plate has a 1st main surface and a 2nd main surface facing the 1st main surface.
  • a plurality of gaps are provided so as to penetrate from the first main surface toward the second main surface.
  • the support base material is laminated on at least one main surface of the first main surface and the second main surface of the gap arrangement plate.
  • the support base has an opening or a notch that exposes at least one void.
  • the gap portion of the gap arrangement plate constitutes the support base material or the gap arrangement plate. Is buried by.
  • the support base includes first and second support bases, and the first and second support bases include at least one of the above-described support bases. It arrange
  • the first support base material and the second support base material are provided so as to intersect each other.
  • a plurality of the first support base materials and a plurality of the second support base materials are provided, and the plurality of first support base materials and the plurality of first support base materials are provided.
  • the second support base material so as to have at least one opening facing the gap.
  • the plurality of first support base materials and the plurality of second support base materials intersect in a direction orthogonal to each other, thereby forming a rectangular opening.
  • the first support base material and the second support base material cross each other in an oblique direction.
  • a corner portion where the first support base material and the second support base material intersect each other is curved.
  • the second support base material is provided so as to surround the first support base material.
  • the first gap arrangement structure has an annular shape
  • the second support substrate has an annular shape having an inner dimension larger than that of the first support substrate.
  • the support member has a center portion and first and second ends located on both sides of the center portion.
  • the thickness of the second end portion is thicker than the thickness of the central portion.
  • the cross-sectional shape along the direction connecting the first and second end portions of the support member and along the thickness direction of the support member is an arch shape. It is.
  • gap arrangement structure which concerns on this invention is a method of obtaining the space
  • the support base is formed by a plating method, and at least one gap in which a part of the support base is covered by the support base during plating
  • the support base material is formed so as to enter into the part.
  • the measuring device measures the characteristics of the electromagnetic wave transmitted through the gap arrangement structure, the gap arrangement structure configured according to the invention, the electromagnetic wave irradiation device that irradiates the gap arrangement structure with electromagnetic waves. Changes in electromagnetic wave characteristics due to the presence of an object to be measured that is provided with an electromagnetic wave detection unit and is arranged on the first or second main surface of the gap arrangement structure or spaced from the first or second main surface. The object to be measured is detected based on the above.
  • the measurement method includes a step of irradiating a gap arrangement structure configured according to the present invention with electromagnetic waves, detecting the electromagnetic waves transmitted through the gap arrangement structure, and obtaining a reference value, and the gap arrangement structure.
  • the support base material is laminated on at least one main surface of the first main surface and the second main surface of the void arrangement plate.
  • the mechanical strength of can be effectively increased. Therefore, it is difficult for the void-arranged structure to be bent or damaged during handling.
  • FIG. 1 is a schematic perspective view showing the appearance of a gap arrangement plate of a gap arrangement structure according to an embodiment of the present invention.
  • FIG. 2A is an enlarged front view showing a main part of the void arrangement structure according to one embodiment of the present invention, and
  • FIG. 2B is an enlarged view of a part of the void arrangement structure according to this embodiment.
  • FIG. FIG. 3A is a front view of the gap arrangement structure according to one embodiment of the present invention, and FIG. 3B is a first and second support in the gap arrangement structure according to one embodiment of the present invention. It is a typical front view which shows a member.
  • FIG. 3A is a front view of the gap arrangement structure according to one embodiment of the present invention
  • FIG. 3B is a first and second support in the gap arrangement structure according to one embodiment of the present invention. It is a typical front view which shows a member.
  • FIG. 1 is a schematic perspective view showing the appearance of a gap arrangement plate of a gap arrangement structure according to an embodiment of the
  • FIG. 4 shows the relationship between the transmittance and frequency of electromagnetic waves measured using the void-arranged structure according to one embodiment of the present invention, where the solid line indicates the absence of the substance to be measured and the broken line indicates the substance to be measured. The result when is present.
  • FIG. 5 shows the relationship between the transmittance of electromagnetic waves and the frequency when the gap arrangement structure according to an embodiment of the present invention is used, and the broken line does not have the first and second support members of the comparative example.
  • FIG. 6 is a schematic front view for explaining a void arrangement structure according to another embodiment of the present invention.
  • FIG. 7A and FIG. 7B are views for explaining a void arrangement structure according to still another embodiment of the present invention, and
  • FIG. 7A is a front view of the void arrangement structure.
  • FIG. 7 (b) is a schematic front view showing the first and second support members.
  • FIG. 8A to FIG. 8C are front views showing modifications of the shape of the gap.
  • FIG. 9 is a front view showing still another example of the shape of the gap.
  • FIG. 10 is a plan view showing a first modification of the support base material.
  • FIG. 11 is a front view which shows the space
  • FIG. 12 is a schematic front view showing a void arrangement structure provided with a support base material according to a third modification.
  • FIG. 13: is a typical front view which shows the space
  • FIG. 14 is a schematic front view showing a gap arrangement structure provided with a support base material according to a fifth modification.
  • FIG. 15: is a typical front view which shows the space
  • FIG. 16: is typical sectional drawing of the space
  • FIG. 17 is a partially cutaway enlarged cross-sectional view showing a modification in which a part of the support base material enters the gap.
  • FIG. 18 is a schematic configuration diagram for explaining a measuring apparatus using the void arrangement structure according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a gap arrangement plate used in a gap arrangement structure according to the first embodiment of the present invention.
  • the gap arrangement plate 2 has a rectangular plate shape.
  • a plurality of gap portions 2c are arranged in a matrix.
  • the gap arrangement plate 2 has a first main surface 2a and a second main surface 2b opposite to the first main surface 2a.
  • the plurality of gaps 2c penetrate from the first main surface 2a toward the second main surface 2b.
  • positioning plate 2 is expanded and shown.
  • a plurality of gaps 2c are provided more. That is, the space
  • the main part of the gap arrangement plate 2 is shown in front view in FIG.
  • the shape of the first main surface 2a side of the gap arrangement plate 2 shown in FIG. 3A also constitutes a part of the gap arrangement plate 2 of the present embodiment.
  • the gap arrangement plate 2 is further connected in the direction opposite to the x direction and the y direction in FIG.
  • the gap 2c has a square shape in the present embodiment. However, as will be described later, the shape of the gap 2c can be appropriately modified.
  • the gap arrangement plate 2 is preferably a low-resistance material, and examples thereof include metals and semiconductors. More preferably, it is a metal, such as gold, silver, copper, iron, nickel, tungsten, and various alloys.
  • the vertical direction in FIG. 1 of the gap arrangement plate 2 is the x-axis direction
  • the lateral direction is the y-axis direction
  • the thickness direction of the gap arrangement plate 2 is the z-axis direction.
  • the present embodiment is characterized in that a plurality of first support base materials 3 and a plurality of second support base materials 4 shown in FIG. 2A are provided on the second main surface 2b of the gap arrangement plate. And are laminated.
  • FIG.2 (b) the part to which the 1st support base material 3 is affixed is expanded and shown with sectional drawing.
  • the gap arrangement plate 2 when the gap arrangement plate 2 is viewed from the first main surface 2a, that is, when viewed from the front, the gap portions 2c are arranged in a matrix as described above.
  • the plurality of first support base materials 3 extend in the x direction
  • the second support base material 4 extends in the y direction.
  • the plurality of first support base materials 3 and the plurality of support base materials 4 intersect so as to be orthogonal to each other, and are integrated at the intersection. Therefore, as shown in FIG. 3 (b), in a portion surrounded by a pair of first supporting bases 3, 3 extending in parallel and a pair of second supporting bases 4, 4 extending in parallel, A square opening 5 is formed.
  • a plurality of square openings 5 are arranged in a matrix, thereby forming a lattice-shaped support base.
  • the first support base 3 and the second support base 4 with which the support base is integrated are configured.
  • the shape of the support substrate is not particularly limited as long as it has an opening or a notch that exposes at least one void.
  • it may be formed by punching a sheet or film-like member like a support base 31 shown in a plan view in FIG. That is, a plurality of openings 32 are formed by punching.
  • the support base material 31 is stacked on one main surface of the gap arrangement plate 2, at least one gap is exposed in one opening 32. That is, the opening part 32 is provided so that at least one space
  • the support base 31 having the opening 32 can be regarded as the structure having the first and second support bases described above. That is, the portions that are located on both sides of the opening 32 and that extend in parallel to each other are the first support base material 31a, and the other pair of support base material portions that extend in parallel to each other serve as the second support base material 31b. It can also be thought of as comprising.
  • the opening 32 is provided, but a notch opened on one side may be provided instead of the opening 32.
  • the lattice-like support base material portion is attached to and integrated with the second main surface 2b of the gap arrangement plate 2 described above.
  • This affixing can be achieved by a method using an adhesive, forming a film on the second main surface 2b of the gap arrangement plate 2 by a deposition method, or the like.
  • the material constituting the first and second support bases 3 and 4 is not particularly limited, and a low-resistance substance is preferable, and examples thereof include metals and semiconductors. More preferably, it is a metal, such as gold, silver, copper, iron, nickel, tungsten, and various alloys.
  • the first and second support bases 3 and 4 are bonded to the second main surface 2b of the gap arrangement plate 2. Accordingly, as shown in FIG. 2A, among the plurality of gaps 2c provided in the gap arrangement plate 2, some of the gaps 2c are formed by the first support base 3 or the second support base. It is closed by the material 4.
  • the first and second support bases are arranged such that two gaps 2c are positioned in the width direction of the first support base material 3 and in the width direction of the second support base material 4, respectively.
  • the width direction dimensions of the materials 3 and 4 are selected. But the width direction dimension of the 1st, 2nd support base materials 3 and 4 is not limited to this.
  • a part of one gap 2 c may be closed by the first support base 3, and the remaining part may be positioned in the opening 5. That is, the edge of the 1st support base material 3 may be provided in the position which divides
  • a plurality of gaps 2 c are located in the opening 5.
  • a plurality of gaps 2 c are located between the first support base 3 and the second support base 4.
  • the first support base 3 and the second support base 4 are orthogonal to each other between the first support base 3 and the second support base 4.
  • a mode in which a gap 2c is disposed between the two adjacent sides is also included.
  • the configuration in which the gap is disposed between the first support substrate and the second support substrate is such that the first support substrate and the second support substrate face each other. And it is not restricted to the form where the space
  • first and second support bases 3 and 4 are provided on the second main surface 2b side.
  • first and second support bases 3 and 4 are the first It may be provided on the main surface 2a side.
  • the support base materials 3 and 4 may be provided in both the 1st main surface 2a and the 2nd main surface 2b.
  • the first and second support bases 3 and 4 are made of nickel in this embodiment.
  • the 1st, 2nd support base materials 3 and 4 are not restricted to nickel, A low resistance substance is preferable and should just be a metal and a semiconductor.
  • it is a metal, such as gold, silver, copper, iron, nickel, tungsten, and various alloys.
  • positioning plate 2 can be reinforced by forming the 1st, 2nd support base materials 3 and 4 with these rigid materials. Therefore, even when the gap-arranged structure 1 is thin, it is difficult to bend, and damage during handling such as cleaning is unlikely to occur.
  • FIG. 18 is a schematic configuration diagram of a measuring apparatus using the gap arrangement structure according to the present embodiment.
  • the present measuring apparatus includes an irradiation unit 21 that irradiates an electromagnetic wave and a detection unit 22 for detecting the electromagnetic wave scattered by the gap arrangement structure 1. Moreover, it has the irradiation control part 23 which controls operation
  • FIG. A display unit 25 that displays the analysis result is connected to the analysis processing unit 24.
  • the “scattering” means a broad concept including transmission as a form of forward scattering and reflection as a form of backscattering as described above. Preferably it is transmission or reflection. More preferably, transmission in the 0th order direction or reflection in the 0th order direction.
  • the electromagnetic wave is irradiated from the irradiation unit 21 to the gap arrangement structure 1 under the control of the irradiation control unit 23.
  • the electromagnetic wave transmitted through the gap arrangement structure 1 is detected by the detection unit 22.
  • the detected electromagnetic wave is converted into an electrical signal and supplied to the analysis processing unit 24.
  • the frequency characteristic of the transmittance is displayed on the display unit 25.
  • positioning plate 2 diameter 6mm diameter x thickness 1.2micrometer.
  • Material Nickel.
  • Shape of the gap 2c square in front view, dimensions are 1.8 ⁇ m ⁇ 1.8 ⁇ m.
  • interval between the cavity parts 2c and 2c is 2.6 micrometers.
  • the support base materials 3 and 4 used nickel as a material.
  • the width was 5.2 ⁇ m and the thickness was 5 ⁇ m.
  • the lattice interval A shown in FIG. 3B, that is, the distance between the centers of the supporting base materials 3, 3 and 4, 4 was set to 108 ⁇ m.
  • Such a support base material was provided on the second main surface 2b side of the gap arrangement plate 2.
  • the transmittance-frequency characteristic of the electromagnetic wave of the void-arranged structure 1 was measured by irradiating an electromagnetic wave pulse having a frequency near 50 THz. As a result, a result indicated by a broken line in FIG. 4 was obtained.
  • 2 ⁇ l of pure water was applied as a substance to be measured on the first main surface 2a of the void arrangement structure 1.
  • the imparted pure water straddled the plurality of gaps 2c, exceeded the first support base material 3, and reached the adjacent opening 5.
  • the gap arrangement structure 1 to which the substance to be measured was attached was irradiated with an electromagnetic wave pulse including a frequency in the vicinity of 50 THz and measured again. As a result, a result indicated by a solid line in FIG. 4 was obtained.
  • the transmittance decreases when the substance to be measured exists. Accordingly, it is possible to detect the amount, physical properties, etc. of the substance to be measured based on the rate of decrease in transmittance at the peak value of transmittance or the rate of decrease in transmittance at other frequency positions.
  • the void arrangement structures of the following Examples 1 to 3 provided with the first and second support bases 3 and 4 and the void arrangement structures of the comparative examples were prepared.
  • Example 1 A void-arranged structure obtained as a result shown by the solid line in FIG.
  • Example 2 Same as Example 1 except that the lattice spacing of the supporting substrate was changed to 180 ⁇ m.
  • Example 3 A void arrangement structure of Example 3 was prepared in the same manner as Example 1 except that the lattice spacing of the supporting base material was changed to 360 ⁇ m.
  • the first and second support base materials are not provided. Therefore, only the gap arrangement plate is used as a comparative example.
  • Examples 1 to 3 are shown by a solid line, a one-dot chain line, and a two-dot chain line in FIG.
  • the result of the comparative example is shown by a broken line in FIG.
  • the object to be measured is not necessarily attached to the first main surface or the second main surface of the void arrangement structure. That is, in the measurement apparatus and measurement method of the present invention, the detection substance may be arranged with a gap from the first main surface or the second main surface.
  • the gap in this case refers to a gap that allows the electromagnetic field to be affected by the presence of the measurement object when the object to be measured is arranged with a gap.
  • the characteristics of the sheet-like object can be measured according to the present invention.
  • the substance to be measured can be analyzed with high accuracy when the support base material is provided but not when the support base material is provided.
  • Example 4 The following void arrangement structure was produced.
  • the dimension of the gap arrangement plate 2 diameter 6 mm ⁇ thickness 0.6 ⁇ m.
  • Material: Nickel Shape of the gap 2c; square in front view, dimensions are 1.8 ⁇ m ⁇ 1.8 ⁇ m. Spacing between gaps 2c and 2c 2.6 ⁇ m.
  • the support base material 3 used nickel as a material.
  • the width was 5.2 ⁇ m and the thickness was 5 ⁇ m.
  • the lattice interval A shown in FIG. 3B, that is, the distance between the centers of the supporting base materials 3 and 3 was 44.2 ⁇ m.
  • Such a support base material was provided on the second main surface 2b side of the gap arrangement plate 2.
  • the electromagnetic wave transmittance-frequency characteristics of the void-arranged structure 1 were measured by irradiating an electromagnetic wave pulse containing a frequency of 50 THz. Next, 10 ⁇ L of an aqueous protein solution whose concentration was adjusted so that the adhesion amount per 1 mm 2 of the void-arranged structure was 20 ng and 40 ng was dropped on the first main surface 2a of the void-arranged structure 1 as a measurement object. The gap arrangement structure 1 to which the object to be measured was attached was irradiated with an electromagnetic wave pulse having a frequency of 50 THz and measured again. Then, the shift amount of the peak frequency of the transmittance before and after attaching the object to be measured was calculated. The calculation results are shown in Table 1 below.
  • Comparative Example 2 The same measurement and calculation as in Example 4 were performed except that the support base material was not provided on the second main surface 2b side of the gap arrangement plate 2. The calculation results are shown in Table 1 below.
  • FIG. 6 is a schematic front view showing another embodiment of the void arrangement structure of the present invention.
  • the gap arrangement structure 11 of the present embodiment the gap arrangement plate 2 is the same as that in the first embodiment. The difference is that the first support base 3A and the second support base 4A have an annular shape.
  • the first supporting substrate 3A has an annular shape, that is, a donut shape.
  • the second support base 4A has an annular shape with a larger inner diameter than the first support base 3A. In other words, the second support base 4A is provided so as to surround the first support base 3A.
  • a plurality of gaps 2c are provided between the first support base 3A and the second support base 4A. Therefore, the gap
  • positioning plate 2 can be reinforced with 1st, 2nd support base material 3A, 4A similarly to 1st Embodiment. Therefore, during handling, the void-arranged structure 11 is unlikely to be bent or damaged.
  • one or more third annular support bases having different diameters may be added.
  • FIG. 7A and FIG. 7B are views for explaining a gap arrangement structure according to still another embodiment of the present invention
  • FIG. 7A is a front view of the gap arrangement structure
  • FIG. 7B is a schematic front view showing the first and second support bases 3 and 4 on the second main surface side through the gap arrangement plate of the gap arrangement structure.
  • a plurality of stripe-shaped first support base materials 3B and a plurality of stripe-like second support base materials 4B are alternately arranged on the second surface of the gap arrangement plate 12. Is arranged.
  • the length direction of the stripe-shaped first support substrate 3B and the stripe-shaped second support substrate 4B is the x direction.
  • the first support base material 3B and the second support base material 4B are opposed to each other.
  • the plurality of stripe-shaped first and second support base materials 3B and 4B may be arranged so that at least one gap portion 2c exists therebetween.
  • the shape of the first and second support base materials in the present invention is not particularly limited, and may be a loop shape such as an annular shape, or a linear shape such as a stripe shape. Also good. In addition, an appropriate shape such as a rectangle, a triangle, or a trapezoid can be used.
  • the 1st support base material 42 and the 2nd support base material 43 may cross
  • the first support substrate 42 has a strip shape.
  • the second support substrate 43 also has a strip shape. In the part where the first and second support base materials 42 and 43 intersect, both are integrated. That is, the thickness of the intersecting portion is equal to the thickness of the first and second support base materials 42 and 43.
  • the void arrangement plate 46 has an annular outer peripheral portion 46a and a void arrangement portion 46b surrounded by the outer peripheral portion 46a has a mesh shape, and a large number of void portions 46c.
  • Have The support base 47 has a triangular shape and is stacked on the gap arrangement portion 46b.
  • the gap arrangement structure 51 shown in FIG. A triangular first support base material 47 and a triangular second support base material 48 are laminated on the air gap arrangement portion 46 b of the air gap arrangement plate 46.
  • the intersecting portion of the first and second support bases 47 and 48 is equal to the thickness of the first and second support bases 47 and 48, that is, the first and second support bases at the crossing portion. 47 and 48 are not laminated, but are connected and integrated.
  • the support base material 56 having a portion extending radially from the center of the gap arrangement portion 46 b is laminated on the gap arrangement portion 46 b of the gap arrangement plate 46.
  • the shape of the support base material can be appropriately changed.
  • the first support substrate and the second support substrate have portions that intersect in an oblique direction, such as the first support substrate 47 and the second support substrate 48 of FIG. It may be.
  • the first support base 62 and the second support base 63 intersect with each other on the first main surface 2 a of the gap arrangement plate 2. Is provided. However, also in this intersecting portion, the thickness of the intersecting portion is the same as that of the first and second support base materials 62 and 63. That is, the first and second support base materials 62 and 63 are integrated so as to have a substantially cross shape shown in FIG.
  • the outer peripheral edges of the intersecting corners are curved. That is, the corner portion where the first support base material 62 and the second support base material 63 intersect is rounded so as to have the curved portion 64.
  • the corners of the intersection may be rounded. In that case, when force is applied from both sides so as to sandwich the intersecting portion, the applied force can be effectively dispersed. Therefore, the mechanical strength can be increased. Therefore, in order to obtain the same mechanical strength, the number of supporting substrates can be reduced. Alternatively, the thickness and width of the support substrate can be reduced.
  • FIG. 16 is a schematic cross-sectional view showing a void-arranged structure provided with a support base material according to a seventh modification.
  • the gap arrangement portion 73 is integrated with the support frame 72.
  • a first support base material 74 a is laminated on one surface of the gap arrangement portion 73.
  • the 2nd support base material 74b is laminated
  • the second support base material 74b has an opening 74d.
  • the third support substrate 74c has an opening 74e.
  • the opening 74e is larger than the opening 74d. Further, the centers of the openings 74d and e coincide with the center of the support base 74a.
  • the laminated structure of the support base materials 74a to 74c It is made thinner than the thickness of the first end which is the end and the thickness of the second end opposite to the first end. In other words, it has a substantially arched shape when viewed in cross section. Therefore, the force applied to the central portion can be distributed to the first end portion and the second end portion side by this arch type structure. Therefore, the mechanical strength can be increased. Therefore, in order to obtain the same mechanical strength, the thickness and width of the support substrate can be reduced. In addition, the number of supporting base materials can be reduced.
  • FIG. 17 is a partially cutaway enlarged cross-sectional view of a void-arranged structure for explaining still another modified example of the support base material.
  • a gap arrangement plate 2 similar to that of the first embodiment is prepared.
  • the gap arrangement plate 2 has the first main surface 2a and the second main surface 2b.
  • the support base material 4X is laminated on the first main surface 2a.
  • the support base 4X is made of metal and is formed by a plating method. More specifically, the space
  • a part of the support base material 4X enters the gap 2c. That is, the filling portion 4X1 entering the gap portion 2c is provided. Therefore, the support base 4X is firmly adhered to the gap arrangement plate 2. That is, due to the anchor effect of the filling portion 4X1, the adhesion strength of the support base 4X to the gap arrangement plate 2 can be effectively increased.
  • the gap arrangement plate may be prepared so as to be a plane in which the gap is filled in advance in the region where the support base material of the gap arrangement plate is formed.
  • a supporting base material may be formed on the gap arrangement plate in a portion that becomes a plane in which the gap is filled.
  • the gap portion of the gap arrangement plate may be filled with the constituent material of the support base as shown in FIG. 17, or may be filled with the material constituting the gap arrangement plate itself.
  • the contact area between the support base and the gap arrangement plate can be increased in the same manner as the modification shown in FIG. it can. Accordingly, the adhesion strength can be increased. However, in the modification shown in FIG. 17, the adhesion strength can be further increased by the anchor effect of the filling portion 4X1.
  • the support base 4X is not limited to the plating method as described above, and may be formed by other film formation methods such as vapor deposition and sputtering. However, it is preferable to prepare the gap arrangement plate 2 as described above, and then form the support base 4X on one main surface of the gap arrangement plate 2 by plating. Thereby, it is possible to form a support substrate having excellent adhesion strength.
  • the shape of the gap 2c is not limited to a square as in the above embodiment, but is a rectangular shape shown in FIG. 8A, a circle shown in FIG. 8B, and an isosceles trapezoid shown in FIG. It can be set as an appropriate shape.
  • the shape is not limited to an isotropic shape such as a square or a circle, but may be a shape such as the rectangle or the trapezoid.
  • the flat gap arrangement plate used in the present invention is, for example, a structure in which at least one gap portion penetrating in a direction perpendicular to the main surface is periodically arranged in at least one direction on the main surface. If it is. However, all of the gaps may be periodically arranged, and within a range that does not impair the effects of the present invention, some of the gaps are periodically arranged and other gaps are non-periodically. It may be arranged.
  • the gap arrangement plate 2 is preferably a quasi-periodic structure or a periodic structure.
  • a quasi-periodic structure is a structure that does not have translational symmetry but is maintained in order.
  • Examples of the quasi-periodic structure include a Fibonacci structure as a one-dimensional quasi-periodic structure and a Penrose structure as a two-dimensional quasi-periodic structure.
  • a periodic structure is a structure having spatial symmetry as represented by translational symmetry, and a one-dimensional periodic structure, a two-dimensional periodic structure, or a three-dimensional periodic structure according to the symmetry dimension. Classified into the body.
  • Examples of the one-dimensional periodic structure include a wire grid structure and a one-dimensional diffraction grating.
  • Examples of the two-dimensional periodic structure include a mesh filter and a two-dimensional diffraction grating. Among these periodic structures, a two-dimensional periodic structure is preferably used.
  • the size of the gap 2c in the gap arrangement plate 2 may be appropriately designed according to the measurement method, the material characteristics of the flat gap arrangement structure, the frequency of the electromagnetic wave to be used, and the like.
  • the average thickness of the gap arrangement plate 2 is appropriately designed according to the measurement method, the material characteristics of the flat gap arrangement structure, the frequency of the electromagnetic wave to be used, and the range is generalized. Although it is difficult to do, when detecting electromagnetic waves scattered forward, it is preferable that the wavelength be several times or less the wavelength of the electromagnetic waves used for measurement. If the average thickness is larger than this range, the intensity of electromagnetic waves scattered forward becomes weak and it may be difficult to detect a signal.
  • the overall size of the gap arrangement structure 1 is not particularly limited, but is determined according to the area of the beam spot of the irradiated electromagnetic wave.
  • the method for attaching the object to be measured to the void arrangement structure 1 is not particularly limited. You may form a chemical bond etc. between the surface of the space
  • a host substance that binds a measurement object to the surface of the void arrangement structure 1 may be attached to the surface of the void arrangement structure 1 in advance.
  • a host substance and an analyte include an antigen and an antibody, a sugar chain and a protein, a lipid and a protein, a ligand and a protein, and the like.
  • At least a part of the surface of the gap arrangement plate 2 has conductivity. It is desirable that at least a part of the surface is made of such a material exhibiting conductivity, that is, a conductor. Such a conductor is not particularly limited, and an appropriate metal or semiconductor can be used.
  • Support base material 31a ... 1st support base material 31b ... 2nd support base material 32 ... Opening part 41 ... Space

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 機械的強度が高く、取扱いに際しての湾曲や破損が生じ難い、空隙配置構造体を提供する。 電磁波の照射により、被測定物の特性を測定するのに用いられる空隙配置構造体であって、第1の主面2aと、第1の主面2aと対向する第2の主面2bとを有し、第1の主面2aから第2の主面2bに向かって貫通している複数の空隙部2cが空隙配置プレート2に設けられており、該空隙配置プレート2の第1の主面2a及び第2の主面2bの内少なくとも一方の主面に、少なくとも1つの空隙部2cを露出させる開口部もしくは切り欠き部を有するように支持基材3,4が積層されている、空隙配置構造体1。

Description

空隙配置構造体及びその製造方法、並びに測定装置及び測定方法
 本発明は、被測定物が付与された空隙配置構造体に電磁波を照射することにより、被測定物を測定するための空隙配置構造体及びその製造方法、並びに該空隙配置構造体を用いた測定装置及び測定方法に関する。
 従来、被測定物質の特性を測定するために電磁波を照射する方法が知られている。この種の方法の一例が下記の特許文献1に開示されている。特許文献1では、多数の空隙部が配置されている空隙配置構造体を用意する。この空隙配置構造体に、空隙部と直交する方向から電磁波を照射する。次に、空隙配置構造体に被測定物質を配置し電磁波を照射する。被測定物質が配置されていない場合の電磁波の透過率と、被測定物質が配置されている場合の電磁波の透過率との差により被測定物質の特性を測定する。特許文献1では、上記電磁波の透過率の他、電磁波の反射等を用いてもよい旨が記載されている。
特開2007-10366号公報
 特許文献1に記載の測定方法では、空隙配置構造体における空隙部の大きさを小さくしたり、空隙配置構造体の厚みすなわち空隙部に直交する方向の寸法を小さくしたことにより、測定感度を高め得る。
 しかしながら、空隙配置構造体の厚みを薄くすると、強度が低下する。その結果、被測定物質を測定するに際し、空隙配置構造体が湾曲しやすくなる。また、測定前や測定終了後に、空隙配置構造体を洗浄する場合、空隙配置構造体が破損しやすくなるという問題もあった。
 本発明の目的は、機械的強度が高く、取扱いに際しての湾曲や破損が生じ難い空隙配置構造体及びその製造方法、並びに該空隙配置構造体を用いた測定装置及び測定方法を提供することにある。
 本発明の空隙配置構造体は、電磁波の照射により被測定物の特性を測定するのに用いられる。本発明に係る空隙配置構造体は、空隙配置プレートと、支持基材とを備える。空隙配置プレートは、第1の主面と、第1の主面と対向する第2の主面とを有する。第1の主面から第2の主面に向かって貫通するように複数の空隙部が設けられている。支持基材は、空隙配置プレートの第1の主面及び第2の主面の内の少なくとも一方の主面に積層されている。支持基材は、少なくとも1つの空隙部を露出させる開口部もしくは切り欠き部を有する。
 本発明に係る空隙配置構造体のある特定の局面では、前記支持基材が設けられている部分において、前記空隙配置プレートの前記空隙部が、前記支持基材または前記空隙配置プレートを構成する材質によって埋められている。
 本発明に係る空隙配置構造体の他の特定の局面では、上記支持基材が、第1,第2の支持基材を有し、第1,第2の支持基材は、少なくとも1つの前記空隙部を挟むように配置されている。
 本発明に係る空隙配置構造体のさらに他の特定の局面では、前記第1の支持基材と前記第2の支持基材とが交差するように設けられている。
 本発明に係る空隙配置構造体の他の特定の局面では、前記第1の支持基材及び前記第2の支持基材がそれぞれ複数設けられており、複数の第1の支持基材と、複数の第2の支持基材とが少なくとも1つの前記空隙部が臨む開口を有するように交差している。好ましくは、複数の第1の支持基材と、複数の第2の支持基材とが直交する方向に交差しており、それによって矩形の開口が形成されている。
 本発明に係る空隙配置構造体の別の特定の局面では、前記第1の支持基材と前記第2の支持基材とが斜め方向に交差している。
 本発明に係る空隙配置構造体のさらに他の特定の局面では、前記第1の支持基材と、前記第2の支持基材とが交差している部分の角部が曲線状である。
 本発明に係る空隙配置構造体の他の特定の局面では、前記第1の支持基材の周囲を囲むように前記第2の支持基材が設けられている。このような形状としては例えば、前記第1の空隙配置構造体が環状の形状を有し、前記第2の支持基材が、前記第1の支持基材よりも内寸の大きな環状の形状を有する構造が挙げられる。
 本発明に係る空隙配置構造体のさらに他の特定の局面では、前記支持部材が中央部と中央部の両側に位置している第1,第2の端部とを有し、該第1,第2の端部の厚みが中央部の厚みよりも厚くされている。
 本発明に係る空隙配置構造体の別の特定の局面では、前記支持部材の第1及び第2の端部を結ぶ方向に沿い、かつ該支持部材の厚み方向に沿う断面形状がアーチ型の形状である。
 本発明に係る空隙配置構造体の製造方法は、本発明に従って構成されている空隙配置構造体を得る方法であり、下記の各工程を備える。
 前記複数の空隙部を有する前記空隙配置プレートを用意する工程。
 前記空隙配置プレートの少なくとも一方の主面において、少なくとも1つの前記空隙部を露出させる開口部もしくは切欠部を有するように支持基材を形成する工程。
 本発明に係る空隙配置構造体の製造方法のある特定の局面では、前記支持基材をめっき法により形成し、めっきに際し前記支持基材の一部が該支持基材により覆われる少なくとも1つの空隙部内に入り込むように前記支持基材を形成する。
 本発明に係る測定装置は、本発明に従って構成されている空隙配置構造体と、前記空隙配置構造体に電磁波を照射する電磁波照射装置と、前記空隙配置構造体を透過した電磁波の特性を測定する電磁波検出部と備え、前記空隙配置構造体の第1もしくは第2の主面上または第1もしくは第2の主面と隙間を隔てて配置されている被測定物の存在による電磁波の特性の変化に基づき被測定物を検出する。
 本発明に係る測定方法は、本発明に従って構成されている空隙配置構造体に、電磁波を照射し、該空隙配置構造体を透過した電磁波を検出し、基準値を得る工程と、前記空隙配置構造体の第1もしくは第2の主面上または第1もしくは第2の主面と隙間を隔てて配置されている被測定物を配置し、電磁波を照射し、透過してきた電磁波を検出する測定工程と、前記測定工程により得られた電磁波と、前記基準値を得る工程により得られた電磁波の基準値との差に基づき、被測定物の特性を検出する検出工程とを備える。
 本発明に係る空隙配置構造体によれば、空隙配置プレートの第1の主面及び第2の主面の内少なくとも一方の主面に、支持基材が積層されているため、空隙配置構造体の機械的強度を効果的に高めることができる。よって、取扱いに際し空隙配置構造体の湾曲や破損が生じ難い。
図1は、本発明の一実施形態に係る空隙配置構造体の空隙配置プレートの外観を示す略図的斜視図である。 図2(a)は本発明の一実施形態に係る空隙配置構造体の要部を示す拡大正面図であり、図2(b)は、本実施形態の空隙配置構造体の一部を拡大して示す断面図である。 図3(a)は本発明の一実施形態に係る空隙配置構造体の正面図であり、図3(b)は本発明の一実施形態に係る空隙配置構造体における第1,第2の支持部材を示す模式的正面図である。 図4は、本発明の一実施形態に係る空隙配置構造体を用いて測定された電磁波の透過率と周波数との関係を示し、実線が被測定物質が存在しない場合を、破線が被測定物質が存在している場合の結果を示す。 図5は、本発明の一実施形態に係る空隙配置構造体を用いた場合の電磁波の透過率と周波数との関係を示し、破線が比較例の第1,第2の支持部材を有しない空隙配置構造体を用いた場合の結果を、実線が支持部材の格子間隔108μm、一点鎖線が支持部材の格子間隔180μm、二点鎖線が支持部材の格子間隔360μmとなるように格子状の第1,第2の支持部材を設けた場合の結果を示す。 図6は、本発明の他の実施形態に係る空隙配置構造体を説明するための模式的正面図である。 図7(a)及び図7(b)は本発明のさらに他の実施形態に係る空隙配置構造体を説明するための図であり、図7(a)は空隙配置構造体の正面図、図7(b)は第1,第2の支持部材を示す模式的正面図である。 図8(a)~図8(c)は空隙部の形状の変形例を示す各正面図である。 図9は、空隙部の形状のさらに他の例を示す正面図である。 図10は、支持基材の第1の変形例を示す平面図である。 図11は、第2の変形例に係る支持基材が備えられた空隙配置構造体を示す正面図である。 図12は、第3の変形例に係る支持基材が備えられた空隙配置構造体を示す模式的正面図である。 図13は、第4の変形例に係る支持基材が備えられた空隙配置構造体を示す模式的正面図である。 図14は、第5の変形例に係る支持基材が備えられた空隙配置構造体を示す模式的正面図である。 図15は、第6の変形例に係る支持基材が備えられた空隙配置構造体を示す模式的正面図である。 図16は、第7の変形例に係る支持基材が備えられた空隙配置構造体の模式的断面図である。 図17は、支持基材の一部が空隙に入り込んでいる変形例を示す部分切欠拡大断面図である。 図18は、本発明の一実施形態に係る空隙配置構造体を用いた測定装置を説明するための概略構成図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の第1の実施形態に係る空隙配置構造体に用いられる空隙配置プレートの略図的斜視図である。空隙配置プレート2は、本実施形態では、矩形板状の形状を有する。空隙配置プレート2には、複数の空隙部2cがマトリクス状に配置されている。
 空隙配置プレート2は、第1の主面2aと、第1の主面2aと反対側の第2の主面2bとを有する。複数の空隙部2cは、第1の主面2aから第2の主面2bに向かって貫通している。なお、図1では、空隙配置プレート2の一つのコーナー部近傍部分が拡大して示されている。実際には、空隙配置プレート2では、複数の空隙部2cはより多く設けられている。すなわち、図1に示されている部分から断線で示されている部分に、さらに空隙配置プレート2が延ばされている。
 空隙配置プレート2の要部を図3(a)に正面図で示す。なお、図3(a)に示す空隙配置プレート2の第1の主面2a側の形状もまた、本実施形態の空隙配置プレート2の一部を構成しているものであり、本実施形態では空隙配置プレート2は、図3(a)におけるx方向と逆方向及びy方向にさらに連ねられている。
 空隙部2cは、本実施形態では正方形の形状とされている。もっとも、後述するように、空隙部2cの形状は適宜変形することができる。
 上記空隙配置プレート2は、本実施形態では低抵抗の物質が好ましく、金属や半導体が挙げられる。さらに好ましくは金属であり、金、銀、銅、鉄、ニッケル、タングステン、種々の合金などである。
 いま、図1のx,y及びzで示すように、空隙配置プレート2の図1の上下方向をx軸方向、横方向をy軸方向、空隙配置プレート2の厚み方向をz軸方向とする。
 また、本実施形態の特徴は、上記空隙配置プレートの第2の主面2b上に、図2(a)に示す複数の第1の支持基材3と、複数の第2の支持基材4とが積層されていることにある。なお、図2(b)に、第1の支持基材3が貼り付けられている部分を拡大して断面図で示す。
 図3(a)に示すように、空隙配置プレート2を第1の主面2aから視た場合、すなわち正面視した場合、空隙部2cが上述したようにマトリクス状に配置されている。そして、図3(b)に示すように、複数の第1の支持基材3は、上記x方向に延びており、第2の支持基材4は、上記y方向に延びている。
 本実施形態では、複数の第1の支持基材3と複数の支持基材4とが互いに直交するように交差しており、交差部において一体化されている。従って、図3(b)に示すように、一対の平行に延びる第1の支持基材3,3と、一対の平行に延びる第2の支持基材4,4とに囲まれた部分に、正方形の開口部5が形成されている。本実施形態では、正方形の複数の開口部5がマトリクス状に配置されており、それによって格子状の支持基材部が構成されている。
 本実施形態では、上記のように、支持基材が一体化されている上記第1の支持基材3と、第2の支持基材4とを有するように構成されていた。もっとも、本発明においては、支持基材は、少なくとも1つの空隙部を露出させる開口部もしくは切り欠き部を有する限り、その形状は特に限定されるものではない。例えば、図10に平面図で示す支持基材31のように、シートもしくはフィルム状の部材を打ち抜くことにより形成されたものであってもよい。すなわち、打ち抜きにより複数の開口部32が形成されている。支持基材31を空隙配置プレート2の一方主面に積層した場合、1つの開口部32に、少なくとも1つの空隙部が露出される。すなわち、少なくとも1つの空隙部が臨むように、開口部32が設けられている。
 なお、上記開口部32を有する支持基材31は、前述した第1,第2の支持基材を有する構造と捉えることも可能である。すなわち、開口部32の両側に位置しており、互いに平行に延びる部分が第1の支持基材31aであり、互いに平行に延びる他の対の支持基材部分が第2の支持基材31bを構成していると考えることもできる。
 なお、図10では、開口部32が設けられていたが、一方側に開いた切り欠き部が開口部32の代わりに設けられていてもよい。
 上記格子状の支持基材部が、前述した空隙配置プレート2の第2の主面2bに貼り付けられて一体化されている。この貼り付けについては、接着剤を用いる方法、第1,第2の支持基材を空隙配置プレート2の第2の主面2b上において堆積法により成膜すること等により達成し得る。
 第1,第2の支持基材3,4の構成する材料については特に限定されず、低抵抗の物質が好ましく、金属や半導体が挙げられる。さらに好ましくは金属であり、金、銀、銅、鉄、ニッケル、タングステン、種々の合金などである。
 上記のように、空隙配置プレート2の第2の主面2bに第1,第2の支持基材3,4が張り合わされている。従って、図2(a)に示すように、空隙配置プレート2に設けられていた複数の空隙部2cのうち、一部の空隙部2cは、第1の支持基材3または第2の支持基材4により閉成されている。本実施形態では、第1の支持基材3の幅方向及び第2の支持基材4の幅方向において、それぞれ、2個の空隙部2cが位置するように、第1,第2の支持基材3,4の幅方向寸法が選ばれている。もっとも、第1,第2の支持基材3,4の幅方向寸法は、これに限定されるものではない。ただ、第1の支持基材3により、一つの空隙部2cの一部が閉成され、残りの部分が開口部5に位置していてもよい。すなわち、第1の支持基材3の端縁は空隙部2cを分割する位置に設けられていてもよい。第2の支持基材4についても同様である。
 また、本実施形態では、上記開口部5内に複数の空隙部2cが位置している。言い換えれば、第1の支持基材3と第2の支持基材4との間に複数の空隙部2cが位置している。この第1の支持基材3と第2の支持基材4との間とは図2(a)に示すように、第1の支持基材3と第2の支持基材4とが直交する方向、すなわち矩形の隣り合う2辺を構成している場合、該隣り合う2辺間に空隙部2cが配置されている態様も含む。
 本発明においては、第1の支持基材と第2の支持基材との間に空隙部が配置されている構成は、第1の支持基材と第2の支持基材とが対向しており、対向し合っている第1の支持基材と第2の支持基材との間に空隙部2cが位置している形態に限られるものではない。すなわち、複数の空隙部が第1の支持基材と第2の支持基材との間に位置する全ての形態を含むものとする。
 また、本実施形態では、第2の主面2b側に第1,第2の支持基材3,4が設けられていたが、第1,第2の支持基材3,4は、第1の主面2a側に設けられていてもよい。また、第1の主面2aと第2の主面2bの双方に支持基材3,4が設けられていてもよい。
 また、第1の主面2a上に設けられている第1,第2の支持基材3,4と、第2の主面2b側に設けられている支持基材の形状を異ならせてもよい。
 上記第1,第2の支持基材3,4は、本実施形態ではニッケルからなる。もっとも、第1,第2の支持基材3,4は、ニッケルに限らず、低抵抗の物質が好ましく、金属や半導体であれば良い。好ましくは金属であり、金、銀、銅、鉄、ニッケル、タングステン、種々の合金などである。いずれにしても、これらの剛性材料により第1,第2の支持基材3,4を形成することにより、空隙配置プレート2を補強することができる。従って、空隙配置構造体1の厚みを薄くした場合であっても、湾曲が生じ難く、また洗浄などの取扱いに際しての破損も生じ難い。
 次に、本実施形態の空隙配置構造体1において、上記第1,第2の支持基材3,4が設けられていたとしても、被測定物質を高精度に検出し得ることを示す。
 図18は、本実施形態の空隙配置構造体を用いた測定装置の概略構成図である。
 本測定装置は、電磁波を照射する照射部21と、空隙配置構造体1で散乱した電磁波を検出するための検出部22とを備える。また、照射部21の動作を制御する照射制御部23と、検出部22の検出結果を処理する解析処理部24とを有する。解析処理部24には、解析結果を表示する表示部25が接続されている。
 なお、上記「散乱」とは、前述したように、前方散乱の一形態である透過や、後方散乱の一形態である反射などを含む広義の概念を意味する。好ましくは透過あるいは反射である。より好ましくは、0次方向の透過や0次方向の反射である。
 なお、一般的に、回折格子の格子間隔をd(本明細書では空隙部の間隔)、入射角をi、回折角をθ、波長をλとしたとき、回折格子によって回折されたスペクトルは、
  d(sin i -sin θ)=nλ …式(1)
と表すことができる。上記「0次方向」の0次とは、上記式(1)のnが0の場合を指す。dおよびλは0となり得ないため、n=0が成立するのは、sin i- sin θ=0の場合のみである。従って、上記「0次方向」とは、入射角と回折角が等しいとき、つまり電磁波の進行方向が変わらないような方向を意味する。
 本実施形態の測定方法では、照射制御部23により制御され、照射部21から空隙配置構造体1に電磁波が照射される。空隙配置構造体1で透過した電磁波が検出部22で検出される。検出部22において、検出された電磁波が、電気信号に変換され、解析処理部24に与えられる。そして、表示部25において、透過率の周波数特性が表示される。
 上記空隙配置構造体1により、被測定物質を測定する工程の一例を図4を参照して説明する。
 以下の空隙配置構造体を作製した。
 空隙配置プレート2の寸法=直径6mmの円形×厚み1.2μm。材料:ニッケル。
 空隙部2cの形状:正面視正方形、寸法は1.8μm×1.8μm。空隙部2c,2c間の間隔は2.6μm。
 また、支持基材3、4は、材料としてニッケルを用いた。幅は5.2μm、厚みは5μmとした。図3(b)に示す格子間隔A、すなわち支持基材3,3および4、4の中心間距離を108μmとした。このような支持基材を、空隙配置プレート2の第2の主面2b側に設けた。
 上記空隙配置構造体1の電磁波の透過率-周波数特性を50THz近傍の周波数を含む電磁波パルスを照射し測定した。その結果、図4に破線で示す結果が得られた。次に、被測定物質として純水を上記空隙配置構造体1の第1の主面2a上に2μl量付与した。付与された純水は、複数の空隙部2cに跨り、かつ第1の支持基材3を超え、隣の開口部5に至っていた。このようにして、被測定物質が付着された空隙配置構造体1に、50THz近傍の周波数を含む電磁波パルスを照射し、再度測定した。その結果、図4に実線で示す結果が得られた。
 従って、図4から明らかなように、被測定物質が存在すると、透過率が減少する。従って、この透過率のピーク値における透過率の減少の割合、あるいは他の周波数位置における透過率の減少割合に基づき被測定物質の量や物性等を検出することができる。次に、上記第1,第2の支持基材3,4が設けられている以下の実施例1~実施例3の空隙配置構造体と、比較例の空隙配置構造体を用意した。
 実施例1:図4の実線で示す結果が得られた空隙配置構造体を実施例1とした。
 実施例2:支持基材の格子間隔を180μmに変更したことを除いては、実施例1と同様とした。
 実施例3:支持基材の格子間隔を360μmに変更したことを除いては、実施例1と同様として実施例3の空隙配置構造体を用意した。
 比較のために上記第1,第2の支持基材が設けられていない、従って、上記空隙配置プレートのみを比較例とした。
 上記実施例1~3の結果を、図5に実線、一点鎖線及び二点鎖線で示す。また比較例の結果を図5に破線で示す。
 図5から明らかなように、上記支持基材3,4を設けてなる実施例1~3においては、比較例に比べ、透過率の値は減少するものの、比較例と同様の形の透過率-周波数特性の得られることがわかる。よって、実施例2,3においても、図4の場合と同様に、被測定物質が空隙配置構造体1に付着された場合、透過率の減少割合に基づき、あるいは透過率のピークの周波数位置のシフトの程度に基づき、被測定物の特性を検出し得ることがわかる。
 なお、被測定物は空隙配置構造体の第1の主面または第2の主面上に付着させる必要は必ずしもない。すなわち、本発明の測定装置及び測定方法においては、検出物質は、第1の主面もしくは第2の主面と隙間を隔てて配置されていてもよい。この場合の隙間とは、被測定物を隙間を隔てて配置した場合に測定物の存在により電磁界が影響を受け得る程度の隙間をいうものとする。例えば、被測定物として、電磁界を変化させるシート状物を空隙配置構造体と微小な隙間を隔てて配置した場合に、該シート状物の特性を本発明に従って測定することができる。
 次に、支持基材を設けた場合が、支持基材を設けられていない場合に対して、被測定物質を高精度に分析し得ることを示す。
 実施例4;以下の空隙配置構造体を作製した。
 空隙配置プレート2の寸法=直径6mm×厚み0.6μm。材料;ニッケル
 空隙部2cの形状;正面視正方形、寸法は1.8μm×1.8μm。空隙部2c、2c間の間隔=2.6μm。
 また、支持基材3は、材料としてニッケルを用いた。幅は5.2μm、厚みは5μmとした。図3(b)に示す格子間隔A、すなわち支持基材3、3の中心間距離を44.2μmとした。このような支持基材を、空隙配置プレート2の第2の主面2b側に設けた。
 上記空隙配置構造体1の電磁波の透過率-周波数特性を50THzの周波数を含む電磁波パルスを照射し、測定した。次に被測定物として空隙配置構造体1mmあたりの付着量が20ngおよび40ngとなるように濃度調整したタンパク質の水溶液を上記空隙配置構造体1の第1の主面2a上に10μL滴下した。被測定物が付着された空隙配置構造体1に、50THzの周波数を含む電磁波パルスを照射し、再度測定した。そして、被測定物を付着させる前後での透過率のピークの周波数のシフト量を算出した。算出結果を下記の表1に示す。
 比較例2;空隙配置プレート2の第2の主面2b側に支持基材を設けないこと以外は、実施例4と同様の測定、算出を実施した。算出結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例4では比較例2に比べて、透過率のピークの周波数のシフト量が大きく、分析の精度が高められていることがわかる。これは、支持基材を設けたことにより、空隙配置構造体への被測定物滴下量を大きくすることができ、それによって、測定感度が向上したためと考えられる。
 上記実施形態では複数の第1の支持基材3と複数の第2の支持基材4とが直交し、正方形の複数の開口部5がマトリクス状に配置されていた。図6は、本発明の空隙配置構造体の他の実施形態を示す模式的正面図である。本実施形態の空隙配置構造体11では、空隙配置プレート2は第1の実施形態と同様とされている。異なるところは、第1の支持基材3Aと第2の支持基材4Aとが円環状の形状を有していることにある。
 すなわち、第1の支持基材3Aが円環状すなわちドーナツ状の形状を有している。この第1の支持基材3Aよりも第2の支持基材4Aは大きな内径の円環状の形状を有している。言い換えれば、第2の支持基材4Aが第1の支持基材3Aを囲むように設けられている。
 本実施形態においても、第1の支持基材3Aと第2の支持基材4Aとの間に複数の空隙部2cが設けられている。従って、第1の実施形態と同様に、空隙配置プレート2を第1,第2の支持基材3A,4Aにより補強することができる。よって、取扱いに際して、空隙配置構造体11の湾曲や破損が生じ難い。
 なお、図6において、さらに径が異なる1以上の第3の円環状の支持基材を追加してもよい。
 図7(a)及び図7(b)は本発明のさらに他の実施形態に係る空隙配置構造体を説明するための図であり、図7(a)は空隙配置構造体の正面図であり、図7(b)は空隙配置構造体の空隙配置プレートを透かして第2の主面側の第1,第2の支持基材3,4を示す模式的正面図である。
 本実施形態の空隙配置構造体11では、空隙配置プレート12の第2の表面において、複数のストライプ状の第1の支持基材3Bと複数のストライプ状の第2の支持基材4Bとが交互に配置されている。ストライプ状の第1の支持基材3Bと、ストライプ状の第2の支持基材4Bとの長さ方向は上記x方向である。そして、y方向において、第1の支持基材3Bと第2の支持基材4Bとが対向している。このように、ストライプ状の複数の第1,第2の支持基材3B,4Bを間に少なくとも1つの空隙部2cが存在するように配置してもよい。
 上記のように、本発明における第1,第2の支持基材の形状は特に限定されず、環状などのループ状の形状であってもよく、ストライプ状のような直線状の形状であってもよい。加えて、矩形、三角形、台形等の適宜の形状とすることができる。
 図11~図15を参照して、支持基材の第2~第6の変形例を説明する。
 図11に示す空隙配置構造体41では、空隙配置プレート2の第1の主面2a上において、第1の支持基材42と第2の支持基材43とが交差するように設けられている。第1の支持基材42は、帯状の形状を有している。第2の支持基材43も帯状の形状を有している。第1,第2の支持基材42,43が交差している部分では、両者は一体化されている。すなわち、交差部分の厚みは、第1,第2の支持基材42,43の厚みと同等である。
 図12に示す空隙配置構造体45では、空隙配置プレート46が、円環状の外周部46aと、外周部46aに囲まれた空隙配置部46bがメッシュ状の形状を有し、多数の空隙部46cを有する。支持基材47は、三角形の形状を有し、上記空隙配置部46bに積層されている。
 図13に示す空隙配置構造体51も、空隙配置プレート46を有する。この空隙配置プレート46の空隙配置部46bに、三角形状の第1の支持基材47と三角形状の第2の支持基材48とが積層されている。ここでは、第1,第2の支持基材47,48の交差部分は、第1,第2の支持基材47,48の厚みと等しく、すなわち交差部において第1,第2の支持基材47,48は積層されておらず、連ねられて一体化されている。
 図14に示す空隙配置構造体55では、空隙配置プレート46の空隙配置部46bに、空隙配置部46bの中心から放射状に延びる部分を有する支持基材56が積層されている。
 図11~図14に示した第2~第5の変形例のように、支持基材の形状は適宜変形することができる。また、第1の支持基材と第2の支持基材は、例えば図13の第1の支持基材47と第2の支持基材48のように斜め方向に交差している部分を有していてもよい。
 図15に示す空隙配置構造体61では、空隙配置プレート2の第1の主面2a上に、第1の支持基材62と第2の支持基材63とが直交する方向に交差するように設けられている。もっとも、この交差部分においても、交差部分の厚みは、第1,第2の支持基材62,63と同じとされている。すなわち、図15に示す略十字状の形状を有するように第1,第2の支持基材62,63が一体化されている。
 第6の変形例では、この交差している角部の外周縁が曲線状とされていることにある。すなわち、第1の支持基材62と第2の支持基材63とが交差している部分の角部が、曲線状部分64を有するように丸められている。このように、交差部分の角部が丸められていてもよい。その場合には、交差部を挟むように両側から力が加わった場合、加わった力を効果的に分散させることができる。従って、機械的強度を高めることができる。よって、同じ機械的強度を得るには、支持基材の数を少なくすることができる。あるいは、支持基材の厚みや幅を小さくすることができる。
 図16は、第7の変形例に係る支持基材を備えた空隙配置構造体を示す模式的断面図である。この空隙配置構造体71では、支持枠72に、空隙配置部73が一体化されている。この空隙配置部73の一方面に第1の支持基材74aが積層されている。そして、第1の支持基材74aの下面に第2の支持基材74bが、第2の支持基材74bの下面に第3の支持基材74cが積層されている。すなわち、第1~第3の支持基材74a~74cが積層され、一体化されて、一つの支持基材が構成されている。
 第2の支持基材74bは、開口74dを有する。第3の支持基材74cは、開口74eを有する。開口74eは開口74dよりも大きい。また、開口74d,eの中心は、支持基材74aの中心と一致されている。
 従って、図16に示すように、支持基材74aの中心を通り、かつ支持基材74aの長さ方向に延びる断面において、支持基材74a~74cの積層構造は、中心部分の厚みが、一方端である第1の端部と、第1の端部と反対側の第2の端部の厚みに比べて薄くされている。言い換えれば、断面視した場合、略アーチ状の形状を有している。よって、中央部分に加わった力を、このアーチ型の構造により第1の端部及び第2の端部側に分散させることができる。従って、機械的強度を高めることができる。よって、同じ機械的強度を得るには、支持基材の厚みや幅を小さくすることができる。また、支持基材の数を少なくしたりすることも可能となる。
 図17は、支持基材のさらに他の変形例を説明するための空隙配置構造体の部分切欠拡大断面図である。
 本変形例では、第1の実施形態と同様の空隙配置プレート2を用意する。空隙配置プレート2は、前述したように、第1の主面2aと第2の主面2bとを有する。この空隙配置構造体81では第1の主面2aに、支持基材4Xが積層されている。もっとも、支持基材4Xは金属からなり、めっき法により成膜されている。より具体的には、第1の主面2aが上側となるように空隙配置プレート2を配置し、めっき法により支持基材4Xを形成する。その結果、支持基材4Xの一部が空隙部2c内に入り込む。すなわち、空隙部2cに入り込んでいる充填部分4X1が設けられる。そのため、支持基材4Xは、空隙配置プレート2と強固に密着する。すなわち、充填部分4X1のアンカー効果により、支持基材4Xの空隙配置プレート2に対する密着強度を効果的に高めることができる。
 また、さらに他の変形例として、空隙配置プレートの支持基材が形成される領域において、予め空隙部が埋められている平面となるように空隙配置プレートを用意してもよい。その場合には、この空隙が埋められた平面となる部分において、空隙配置プレート上に支持基材を形成すればよい。言い換えれば、空隙配置プレートの空隙部が、図17に示したように支持基材の構成材料によって埋められていてもよく、あるいは空隙配置プレート自体を構成する材料によって埋められていてもよい。
 上記のように空隙部が空隙配置プレートを構成する材料により埋められている構成においても、支持基材と空隙配置プレートとの接触面積を、図17に示した変形例と同様に大きくすることができる。従って、密着強度を高めることができる。もっとも、図17に示した変形例では、充填部分4X1のアンカー効果により、密着強度をより一層高めることができる。
 なお、支持基材4Xは、上記のようなめっき法に限らず、蒸着、スパッタリング等の他の成膜方法により形成されてもよい。もっとも、好ましくは、上記のように、空隙配置プレート2を用意し、しかる後、めっき法により空隙配置プレート2の一方の主面に支持基材4Xを形成することが望ましい。それによって、密着強度に優れた支持基材を形成することができる。
 また、空隙部2cの形状についても、上記実施形態のように正方形に限らず、図8(a)に示す矩形形状、図8(b)に示す円形、図8(c)に示す等脚台形などの適宜の形状とすることができる。さらに、正方形や円形のような等方性の形状に限らず、上記矩形や台形等の形状であってもよい。さらに、図9に示す空隙部2c1のように、矩形の空隙部の一辺からより小さな矩形の突出部2c2が連ねられている形状であってもよい。
 なお、本発明において用いられる平板状の空隙配置プレートは、例えば、その主面に垂直な方向に貫通した少なくとも1つの空隙部が上記主面上の少なくとも一方向に周期的に配置された構造体であればよい。ただし、空隙部は、その全てが周期的に配置されていてもよく、本発明の効果を損なわない範囲で、一部の空隙部が周期的に配置され、他の空隙部が非周期的に配置されていてもよい。
 空隙配置プレート2は、好ましくは準周期構造体や周期構造体である。準周期構造体とは、並進対称性は持たないが配列には秩序性が保たれている構造体のことである。準周期構造体としては、例えば、1次元準周期構造体としてフィボナッチ構造、2次元準周期構造体としてペンローズ構造が挙げられる。周期構造体とは、並進対称性に代表される様な空間対称性を持つ構造体のことであり、その対称の次元に応じて1次元周期構造体、2次元周期構造体、3次元周期構造体に分類される。1次元周期構造体は、例えば、ワイヤーグリッド構造、1次元回折格子などが挙げられる。2次元周期構造体は、例えば、メッシュフィルタ、2次元回折格子などが挙げられる。これらの周期構造体のうちでも、2次元周期構造体が好適に用いられる。
 また、空隙配置プレート2における空隙部2cの寸法は、測定方法や、平板状の空隙配置構造体の材質特性、使用する電磁波の周波数等に応じて適宜設計すればよい。
 また、空隙配置プレート2の平均的な厚みは、測定方法や、平板状の空隙配置構造体の材質特性、使用する電磁波の周波数等に応じて適宜設計されるものであり、その範囲を一般化するのは難しいが、前方散乱した電磁波を検出する場合、測定に用いる電磁波の波長の数倍以下であることが好ましい。平均的な厚みがこの範囲よりも大きくなると、前方散乱する電磁波の強度が弱くなって信号を検出することが難しくなる場合がある。
 空隙配置構造体1の全体の寸法は、特に制限されないが、照射される電磁波のビームスポットの面積に応じて決定される。
 なお、空隙配置構造体1に被測定物を付着させる方法は特に限定されない。空隙配置構造体1の表面と被測定物との間で化学結合などを形成させてもよい。あるいは、被測定物が粘着性等を有する場合は、該粘着性を利用して空隙配置構造体1の表面に被測定物を粘着させ、付着させてもよい。
 また、予め空隙配置構造体1の表面に被測定物が結合されるホスト物質を空隙配置構造体1の表面に付着させておいてもよい。このようなホスト物質と被測定物の組み合わせとしては、例えば、抗原と抗体、糖鎖とタンパク質、脂質とタンパク質、リガンドとタンパク質などが挙げられる。
 なお、上記空隙配置プレート2の少なくとも一部の表面は導電性を有することが望ましい。このような導電性を発現する材料、すなわち導体により少なくとも一部の表面が構成されていることが望ましい。このような導体としては特に限定されず、適宜の金属や半導体を用いることができる。
1…空隙配置構造体
2…空隙配置プレート
2a…第1の主面
2b…第2の主面
2c…空隙部
2c1…空隙部
2c2…突出部
3,4…第1,第2の支持基材
3A,4A…第1,第2の支持基材
3B,4B…第1,第2の支持基材
4X…支持基材
4X1…充填部分
11…空隙配置構造体
12…空隙配置プレート
21…照射部
22…検出部
23…照射制御部
24…解析処理部
25…表示部
31…支持基材
31a…第1の支持基材
31b…第2の支持基材
32…開口部
41…空隙配置構造体
42,43…第1,第2の支持基材
45…空隙配置構造体
46…空隙配置プレート
46a…外周部
46b…空隙配置部
46c…空隙部
47,48…第1,第2の支持基材
51…空隙配置構造体
55…空隙配置構造体
56…支持基材
61…空隙配置構造体
62,63…第1,第2の支持基材
64…曲線状部分
71…空隙配置構造体
72…支持枠
73…空隙配置部
74a~74c…第1~第3の支持基材
74d,74e…開口
81…空隙配置構造体

Claims (16)

  1.  電磁波の照射により被測定物の特性を測定するのに用いられる空隙配置構造体であって、
     第1の主面と、第1の主面と対向する第2の主面とを有し、第1の主面から第2の主面に向かって貫通している複数の空隙部を有する空隙配置プレートと、
     前記空隙配置プレートの第1の主面及び第2の主面の内の少なくとも一方の主面に積層されており、少なくとも1つの前記空隙部を露出させる開口部もしくは切り欠き部が設けられている支持基材とを備える、空隙配置構造体。
  2.  前記支持基材が設けられている部分において、前記空隙配置プレートの前記空隙部が、前記支持基材または前記空隙配置プレートを構成する材質によって埋められている、請求項1に記載の空隙配置構造体。
  3.  前記支持基材は、少なくとも1つの前記空隙部を挟むように配置された第1,第2の支持基材を有する、請求項1または2に記載の空隙配置構造体。
  4.  前記第1の支持基材と前記第2の支持基材とが交差するように設けられている、請求項3に記載の空隙配置構造体。
  5.  前記第1の支持基材及び前記第2の支持基材がそれぞれ複数設けられており、複数の第1の支持基材と、複数の第2の支持基材とが少なくとも1つの前記空隙部が臨む開口を有するように交差している、請求項4に記載の空隙配置構造体。
  6.  前記複数の第1の支持基材と、前記複数の第2の支持基材とが直交する方向に交差しており、矩形の開口が形成されている、請求項4に記載の空隙配置構造体。
  7.  前記第1の支持基材と前記第2の支持基材とが斜め方向に交差している、請求項4または5に記載の空隙配置構造体。
  8.  前記第1の支持基材と、前記第2の支持基材とが交差している部分の角部が曲線状である、請求項4~7のいずれか1項に記載の空隙配置構造体。
  9.  前記第1の支持基材の周囲を囲むように前記第2の支持基材が設けられている、請求項3に記載の空隙配置構造体。
  10.  前記第1の空隙配置構造体が環状の形状を有し、前記第2の支持基材が、前記第1の支持基材よりも内寸の大きな環状の形状を有する、請求項9に記載の空隙配置構造体。
  11.  前記支持部材が中央部と中央部の両側に位置している第1,第2の端部とを有し、該第1,第2の端部の厚みが中央部の厚みよりも厚くされている、請求項1~10のいずれか1項に記載の空隙配置構造体。
  12.  前記支持部材の第1及び第2の端部を結ぶ方向に沿い、かつ該支持部材の厚み方向に沿う断面形状がアーチ型の形状である、請求項11に記載の空隙配置構造体。
  13.  請求項1~12のいずれか1項に記載の空隙配置構造体の製造方法であって、
     前記複数の空隙部を有する前記空隙配置プレートを用意する工程と、
     前記空隙配置プレートの少なくとも一方の主面において、少なくとも1つの前記空隙部を露出させる開口部もしくは切欠部を有するように支持基材を形成する工程とを備える、空隙配置構造体の製造方法。
  14.  前記支持基材をめっき法により形成し、めっきに際し前記支持基材の一部が該支持基材により覆われる少なくとも1つの空隙部内に入り込むように前記支持基材を形成する、請求項13に記載の空隙配置構造体の製造方法。
  15.  請求項1~12のいずれか1項に記載の空隙配置構造体と、
     前記空隙配置構造体に電磁波を照射する電磁波照射装置と、
     前記空隙配置構造体を透過した電磁波の特性を測定する電磁波検出部と備え、前記空隙配置構造体の第1もしくは第2の主面上または第1もしくは第2の主面と隙間を隔てて配置されている被測定物の存在による電磁波の特性の変化に基づき被測定物を検出する、測定装置。
  16.  請求項1~12のいずれか1項に記載の空隙配置構造体に、電磁波を照射し、該空隙配置構造体を透過した電磁波を検出し、基準値を得る工程と、
     前記空隙配置構造体の前記第1もしくは第2の主面上または第1もしくは第2の主面と隙間を隔てて配置されている被測定物を配置し、電磁波を照射し、透過してきた電磁波を検出する測定工程と、
     前記測定工程により得られた電磁波と、前記基準値を得る工程により得られた電磁波の基準値との差に基づき、被測定物の特性を検出する検出工程とを備える、測定方法。
PCT/JP2013/071637 2012-09-27 2013-08-09 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法 WO2014050328A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014538265A JP6024756B2 (ja) 2012-09-27 2013-08-09 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法
EP13841765.4A EP2902770A1 (en) 2012-09-27 2013-08-09 Production method for perforated structural body, measurement device, and measurement method
CN201380046840.5A CN104603599A (zh) 2012-09-27 2013-08-09 空隙配置结构体以及其制造方法、和测定装置以及测定方法
KR20157007763A KR20150046301A (ko) 2012-09-27 2013-08-09 틈새 배치 구조체 및 그 제조방법, 및 측정장치 및 측정방법
US14/668,562 US9329125B2 (en) 2012-09-27 2015-03-25 Perforated-structure body, manufacturing method therefor, and measurement apparatus and measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214400 2012-09-27
JP2012-214400 2012-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/668,562 Continuation US9329125B2 (en) 2012-09-27 2015-03-25 Perforated-structure body, manufacturing method therefor, and measurement apparatus and measurement method

Publications (1)

Publication Number Publication Date
WO2014050328A1 true WO2014050328A1 (ja) 2014-04-03

Family

ID=50387742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071637 WO2014050328A1 (ja) 2012-09-27 2013-08-09 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法

Country Status (6)

Country Link
US (1) US9329125B2 (ja)
EP (1) EP2902770A1 (ja)
JP (2) JP6024756B2 (ja)
KR (1) KR20150046301A (ja)
CN (1) CN104603599A (ja)
WO (1) WO2014050328A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117541A1 (ja) * 2015-01-22 2016-07-28 株式会社村田製作所 空隙配置構造体およびその製造方法
WO2017141609A1 (ja) * 2016-02-15 2017-08-24 株式会社村田製作所 濾過フィルタ及び濾過フィルタデバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603599A (zh) * 2012-09-27 2015-05-06 株式会社村田制作所 空隙配置结构体以及其制造方法、和测定装置以及测定方法
WO2018042944A1 (ja) * 2016-08-30 2018-03-08 株式会社村田製作所 濾過フィルター、濾過装置およびそれを用いた濾過方法
JP6863484B2 (ja) * 2017-12-28 2021-04-21 株式会社村田製作所 分離回収システム及び分離回収方法
US10957512B1 (en) * 2019-09-25 2021-03-23 Applied Materials, Inc. Method and device for a carrier proximity mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010366A (ja) 2005-06-28 2007-01-18 Advantest Corp 一体型構造体、測定装置、方法およびプログラム
JP2010236868A (ja) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd 生体由来試料固定用シート及びその製造方法
WO2011048992A1 (ja) * 2009-10-19 2011-04-28 株式会社村田製作所 被測定物の特性を測定するための測定装置および測定方法
WO2011070817A1 (ja) * 2009-12-09 2011-06-16 株式会社村田製作所 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555820Y2 (ja) * 1976-09-08 1980-12-24
JPH01121738A (ja) * 1987-11-05 1989-05-15 Hitachi Electron Eng Co Ltd 表面検査装置用シート吸着テーブル
US5519218A (en) * 1993-08-04 1996-05-21 Chang; On Kok Sample holder for spectroscopy
JP2007147355A (ja) * 2005-11-25 2007-06-14 Toppan Printing Co Ltd 赤外分光分析用加圧セル
JP2007299907A (ja) * 2006-04-28 2007-11-15 Nitto Denko Corp 電磁波を伝導又は吸収する特性を有する構造体
CN104603599A (zh) * 2012-09-27 2015-05-06 株式会社村田制作所 空隙配置结构体以及其制造方法、和测定装置以及测定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010366A (ja) 2005-06-28 2007-01-18 Advantest Corp 一体型構造体、測定装置、方法およびプログラム
JP2010236868A (ja) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd 生体由来試料固定用シート及びその製造方法
WO2011048992A1 (ja) * 2009-10-19 2011-04-28 株式会社村田製作所 被測定物の特性を測定するための測定装置および測定方法
WO2011070817A1 (ja) * 2009-12-09 2011-06-16 株式会社村田製作所 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117541A1 (ja) * 2015-01-22 2016-07-28 株式会社村田製作所 空隙配置構造体およびその製造方法
JP2017213564A (ja) * 2015-01-22 2017-12-07 株式会社村田製作所 空隙配置構造体およびその製造方法
US11041787B2 (en) 2015-01-22 2021-06-22 Murata Manufacturing Co., Ltd. Aperture array and production method therefor
WO2017141609A1 (ja) * 2016-02-15 2017-08-24 株式会社村田製作所 濾過フィルタ及び濾過フィルタデバイス
US11052337B2 (en) 2016-02-15 2021-07-06 Murata Manufacturing Co., Ltd. Filtration filter and filtration filter device

Also Published As

Publication number Publication date
JP2016122021A (ja) 2016-07-07
US9329125B2 (en) 2016-05-03
KR20150046301A (ko) 2015-04-29
US20150198527A1 (en) 2015-07-16
JP6024756B2 (ja) 2016-11-16
CN104603599A (zh) 2015-05-06
JPWO2014050328A1 (ja) 2016-08-22
EP2902770A1 (en) 2015-08-05
JP6172319B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6172319B2 (ja) 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法
JP5565215B2 (ja) センサーチップ、センサーカートリッジ及び分析装置
JP5621394B2 (ja) センサーチップ、センサーカートリッジ及び分析装置
JP4905454B2 (ja) ワイヤーグリッド用金属板、ワイヤーグリッド、およびワイヤーグリッド用金属板の製造方法
US11041787B2 (en) Aperture array and production method therefor
JP5605372B2 (ja) 空隙配置構造体が保持された分光測定用デバイス、それに用いられる枠部材、および、分光器
JP6365299B2 (ja) 回折格子および回折格子の製造方法、格子ユニットならびにx線撮像装置
JP5626740B1 (ja) ワイヤーグリッド装置
US20130062524A1 (en) Method of measuring characteristics of specimen, and aperture array structure and measuring device used in same
JP2015121639A (ja) 格子湾曲方法、湾曲型格子およびx線撮像装置
WO2016117486A1 (ja) 多孔質構造体およびその製造方法
JP6544504B2 (ja) 分析装置及び電子機器
JP6017123B2 (ja) 電気信号を通すプローブ、これを用いた電気的接続装置、及びプローブの製造方法
WO2014077029A1 (ja) 液滴の定量方法及び測定装置
WO2014132714A1 (ja) 空隙配置構造体及び測定方法
JP7059545B2 (ja) 構造体の製造方法、および構造体
JP2018106048A (ja) 構造体および構造体を用いた回折格子
JP2012196189A (ja) 細胞検出装置
WO2014148140A1 (ja) 検出用構造体
WO2015008618A1 (ja) 空隙配置構造体及びその製造方法並びに測定用デバイス
KR20110055466A (ko) 센서 칩, 센서 카트리지 및 분석 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013841765

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014538265

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157007763

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE