WO2014050327A1 - 液晶表示装置およびその駆動方法 - Google Patents

液晶表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2014050327A1
WO2014050327A1 PCT/JP2013/071615 JP2013071615W WO2014050327A1 WO 2014050327 A1 WO2014050327 A1 WO 2014050327A1 JP 2013071615 W JP2013071615 W JP 2013071615W WO 2014050327 A1 WO2014050327 A1 WO 2014050327A1
Authority
WO
WIPO (PCT)
Prior art keywords
refresh
image data
liquid crystal
frame
display device
Prior art date
Application number
PCT/JP2013/071615
Other languages
English (en)
French (fr)
Inventor
琢矢 曽根
田中 紀行
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014538264A priority Critical patent/JP6099659B2/ja
Priority to CN201380050235.5A priority patent/CN104662596B/zh
Priority to US14/431,819 priority patent/US9818375B2/en
Publication of WO2014050327A1 publication Critical patent/WO2014050327A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0435Change or adaptation of the frame rate of the video stream
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/02Networking aspects
    • G09G2370/022Centralised management of display operation, e.g. in a server instead of locally
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a liquid crystal display device and a driving method thereof, and more particularly to a liquid crystal display device that displays an image by pause driving and a driving method thereof.
  • a liquid crystal display device mounted as a display device in such an electronic device is required to have low power consumption.
  • a scanning period is provided in which scanning lines are scanned to refresh the screen, and then all the scanning lines are set in a non-scanning state to pause refreshing.
  • pause driving There is a driving method called “pause driving” in which (non-refresh period) is provided.
  • pause driving a driving method in which (non-refresh period) is provided.
  • pause driving a control signal or the like is not given to the scanning line driving circuit and / or the signal line driving circuit during the idle period. Accordingly, the operation of the scanning line driving circuit and / or the signal line driving circuit can be stopped, so that the power consumption of the liquid crystal display device can be reduced.
  • Such pause driving is also called “low frequency driving” or “intermittent driving”.
  • Japanese Laid-Open Patent Publication No. 2004-78124 discloses that power consumption during a pause period is reduced by stopping the operation of a clock signal generation circuit that generates a clock signal for taking a data signal into a signal line. is doing.
  • the power consumption can be reduced as the number of frames in the sleep period increases. For example, if the refresh rate is 1 Hz, the number of refresh frames is 1 frame and the number of non-refresh frames is 59 frames, so that power consumption can be significantly reduced. However, for the reason described later, there arises a problem that an afterimage is visually recognized in 2 seconds from the start of the first refresh to the end of the third refresh. In this way, if the refresh rate is lowered, the number of times the screen is refreshed per unit time is reduced, so that an afterimage is visually recognized for a long time.
  • Each pixel formation portion is provided with a thin film transistor (Thin Film Transistor: hereinafter referred to as “TFT”) functioning as a switching element.
  • TFT Thin Film Transistor
  • the source terminal of the TFT is electrically connected to the signal line
  • the gate terminal is electrically connected to the scanning line
  • the drain terminal is electrically connected to the pixel electrode.
  • the pixel electrode forms a liquid crystal capacitance with a common electrode provided in common for all pixels.
  • ⁇ and the liquid crystal capacitance Clc are anisotropic, and the values differ depending on the alignment direction of the liquid crystal molecules.
  • the alignment direction of the liquid crystal molecules cannot change following the applied voltage within the writing period, and therefore changes after the writing period ends.
  • the liquid crystal applied voltage changes with the change of the liquid crystal capacitance after the end of the writing period, so that the desired liquid crystal transmittance is not reached in one refresh.
  • FIG. 17 is an example of a timing chart showing normal driving in a conventional liquid crystal display device.
  • a positive voltage and a negative voltage for performing white display are alternately applied to the liquid crystal capacitance for each scanning period.
  • the liquid crystal molecules are aligned so as to approach the direction corresponding to the applied voltage.
  • the liquid crystal capacity does not reach the capacity necessary for white display (the one-dot chain line in the figure)
  • the applied voltage does not reach the voltage Va necessary for white display.
  • Even when a negative voltage is applied to the liquid crystal capacitor during the second scanning period the liquid crystal molecules are aligned so as to approach the direction corresponding to the applied voltage.
  • the liquid crystal capacity does not reach the capacity necessary for white display, and the applied voltage does not reach the voltage Va.
  • the liquid crystal capacitor reaches the capacity necessary for white display (the dashed line in the figure), and the applied voltage also reaches the voltage Va necessary for white display. To reach. For this reason, a voltage difference as shown in FIG.
  • FIG. 18 is an example of a timing chart showing a first pause drive in a conventional liquid crystal display device.
  • the scanning period is provided for only one frame period.
  • a negative voltage is applied to the liquid crystal capacitor in order to perform white display, and then a rest period occurs.
  • the liquid crystal molecules are aligned so as to approach the direction corresponding to the voltage applied during the scanning period.
  • the alignment direction of the liquid crystal molecules cannot change following the applied voltage within the writing period, the change in the liquid crystal capacitance is delayed compared to the change in the applied voltage. For this reason, the liquid crystal capacity at the end of the writing period cannot reach the capacity necessary for white display (the chain line in the figure).
  • the voltage applied to the liquid crystal capacitor does not reach the voltage Va necessary for white display and can only rise to a voltage Vb lower than that. Thereby, a difference arises between these voltages Va and Vb. This voltage difference causes the afterimage to be visually recognized on the screen.
  • an object of the present invention is to provide a liquid crystal display device and a driving method thereof that can prevent afterimages that are visually recognized during rest driving while suppressing power consumption.
  • a first aspect of the present invention is a liquid crystal display device that performs pause driving at a predetermined refresh rate, A display unit including a plurality of pixel formation units; A drive unit for driving the display unit; A display control unit that controls the drive unit based on data received from the outside, When the image data included in the data is updated, the display control unit performs refresh once using the updated image data, and then pauses refresh for a pause period determined according to the refresh rate of the image data. And refreshing at least once using the same image data as the updated image data after the end of the pause period.
  • the number of refreshes performed after the end of the pause period is two.
  • the two refreshes performed after the end of the pause period are performed continuously.
  • the two refreshes performed after the elapse of the pause period are performed with a period during which the refresh is paused.
  • the predetermined refresh rate is switched irregularly, and if the refresh rate is changed, the length of the suspension period is changed accordingly.
  • the predetermined refresh rate is switched irregularly, and the length of the pause period is constant even when the refresh rate is changed.
  • the display control unit performs control for AC driving, A plurality of positive frames composed of a refresh frame for refreshing with a positive polarity and a non-refresh frame for maintaining a positive polarity, and a plurality of negative frames consisting of a refresh frame for performing a refresh with a negative polarity and a non-refresh frame for maintaining a negative polarity.
  • a plurality of positive frames composed of a refresh frame for refreshing with a positive polarity and a non-refresh frame for maintaining a positive polarity
  • a plurality of negative frames consisting of a refresh frame for performing a refresh with a negative polarity and a non-refresh frame for maintaining a negative polarity.
  • the display control unit receives new data including image data for updating the screen of the display unit when refreshing or refreshing is paused, the refreshing or refreshing pause is stopped.
  • the image data included in the new data is refreshed once, then the refresh is paused for the pause period determined according to the refresh rate of the image data, and the update is performed after the pause period ends.
  • the refresh is performed at least once using the same image data as the image data.
  • a ninth aspect of the present invention is the eighth aspect of the present invention,
  • the display control unit pauses refresh performed after the pause period ends when image data included in the data received from the outside is not updated.
  • a tenth aspect of the present invention is the eighth aspect of the present invention,
  • the display control unit includes a frame memory that stores image data included in the data for one frame;
  • the display control unit performs refresh once using the image data read from the frame memory when the updated image data is not received from the outside, and pauses the refresh performed after the end of the pause period.
  • the control terminal is connected to the scanning line in the display unit, the first conduction terminal is connected to the signal line in the display unit, and a voltage corresponding to an image to be displayed is to be applied. It includes a thin film transistor in which a second conduction terminal is connected to a pixel electrode in the unit and a channel layer is formed of an oxide semiconductor.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the oxide semiconductor is characterized by being InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
  • a thirteenth aspect of the present invention includes a display unit including a plurality of pixel formation units, a drive unit that drives the display unit, and a display control unit that controls the drive unit based on data received from the outside,
  • a driving method of a liquid crystal display device that performs pause driving at a predetermined refresh rate, When the image data included in the data is updated, performing a refresh once using the updated image data; Pausing refreshing for a pause period determined according to the refresh rate of the image data; And a step of performing at least one refresh using the same image data as the updated image data after the end of the pause period.
  • refresh is performed once using the updated image data, and then only a pause period determined according to the refresh rate of the image data. Pause refresh. Then, refresh is performed at least once using the same image data as the image data updated after the end of the pause period.
  • refresh since refresh can be performed a plurality of times in a short time after receiving the updated image data, the direction of the liquid crystal molecules can be aligned in a direction corresponding to the applied voltage in a short time. As a result, it is possible to reduce the power consumption of the liquid crystal display device and make it impossible to visually recognize the afterimage during pause driving caused by the anisotropy of the liquid crystal dielectric constant.
  • refreshing can be performed three times in total using the updated image data, so that the direction of the liquid crystal molecules can be aligned in a direction corresponding to the applied voltage.
  • the afterimage resulting from the anisotropy of the liquid crystal dielectric constant can be made invisible.
  • the two refreshes performed after the pause period are continuously performed, a total of three refreshes performed using the updated image data can be completed in a short time. .
  • the afterimage during pause driving caused by the anisotropy of the liquid crystal dielectric constant can be made invisible.
  • the two refreshes performed after the suspension period elapses are performed with a period during which the refresh is suspended.
  • the refresh rate of the image data is 10 Hz
  • the refresh performed once after the elapse of the suspension period is performed, so that the power consumption of the liquid crystal display device can be reduced.
  • the refresh rate during pause driving is switched irregularly, and the length of the pause period is changed accordingly.
  • the length of the pause period is changed accordingly.
  • the length of the pause period is constant even if the refresh rate during pause driving is switched irregularly. In this case, it is only necessary to provide one register for storing the length of the suspension period, so that the manufacturing cost of the liquid crystal display device can be reduced.
  • the liquid crystal layer of the pixel forming portion is AC driven by alternately providing the positive frame and the negative frame at substantially the same ratio. Thereby, deterioration of the liquid crystal layer can be suppressed.
  • the refresh or refresh performed so far is received. This is because the pause is stopped and the first refresh is performed using new image data.
  • the image data is updated, the screen of the display unit is immediately refreshed, and the updated image can be displayed.
  • the afterimage when the same image data as the image data transmitted immediately before is transmitted from the host, the afterimage is not visually recognized even if the number of refreshes is reduced. Thereby, the power consumption of a liquid crystal display device can be reduced.
  • the afterimage is not visually recognized even if the number of refreshes is reduced. Thereby, the power consumption of a liquid crystal display device can be reduced.
  • a thin film transistor in which a channel layer is formed of an oxide semiconductor is used as the thin film transistor in the pixel formation portion.
  • the voltage written in the pixel formation portion is held for a long time, so that a reduction in display quality of the liquid crystal display device can be suppressed even when the refresh rate is low.
  • the effect according to the ninth aspect of the present invention can be reliably achieved by using InGaZnOx as the oxide semiconductor forming the channel layer.
  • FIG. 5 is a diagram showing the relationship between the refresh rate and the number of non-refresh frames when the refresh rate of image data is 15 Hz.
  • 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a display control circuit corresponding to video mode RAM through, included in the liquid crystal display device shown in FIG. 4.
  • FIG. 5 is a block diagram showing a configuration of a display control circuit corresponding to video mode RAM through, included in the liquid crystal display device shown in FIG. 4.
  • FIG. 5 is a block diagram showing a configuration of a display control circuit corresponding to video mode RAM capture included in the liquid crystal display device shown in FIG. 4.
  • FIG. 5 is a block diagram showing a configuration of a display control circuit corresponding to a command mode RAM write included in the liquid crystal display device shown in FIG. 4. It is a figure for demonstrating the operation
  • FIG. 16 is a diagram for explaining an operation in a pause drive of the liquid crystal display device according to the first modification of the second embodiment shown in FIG. 11. It is a figure for demonstrating the operation
  • FIG. 16 is a diagram for explaining an operation in pause driving of the liquid crystal display device according to the first modification example of the third embodiment shown in FIG. 14.
  • FIG. 18 is a diagram for explaining an operation in a pause drive of a liquid crystal display device according to a second modification of the third embodiment shown in FIG. 14. It is an example of the timing chart which shows the normal drive in the conventional liquid crystal display device. It is an example of the timing chart which shows the 1st pause drive in the conventional liquid crystal display device.
  • FIG. 1 is a diagram for explaining a refresh operation of the liquid crystal display device when the image data is updated at 30 Hz
  • FIG. 2 is a refresh operation of the liquid crystal display device when the image data is updated at 20 Hz. It is a figure for demonstrating operation
  • the display control circuit uses the updated image data to perform the first refresh in the first frame so that the afterimage due to the anisotropy of the liquid crystal dielectric constant cannot be visually recognized.
  • the third refresh is performed in the third frame, the next updated image data is transmitted from the host.
  • the display control circuit performs the first refresh using the updated image data without performing the third refresh in the third frame, and further performs the second refresh in the fourth frame using the same image data. Perform a refresh. However, if the third refresh is performed in the fifth frame, further updated image data is transmitted from the host. Therefore, the display control circuit performs the first refresh using the updated image data without performing the third refresh in the fifth frame, and the second refresh using the same image data in the sixth frame. I do.
  • refresh is performed using image data transmitted from the host in odd-numbered frames, and refresh is performed using the same image data as the previous odd-numbered frame in even-numbered frames.
  • the image data is updated every other frame, the refreshed image is displayed on the display unit of the liquid crystal display device. That is, although the host is operating at 30 Hz, the liquid crystal display device is operating at 60 Hz. Therefore, this driving method cannot reduce the power consumption of the liquid crystal display device.
  • every time image data is updated refreshing is performed only twice, so that some afterimage remains.
  • the image data is updated at a high refresh rate of 30 Hz, there is no concern about the afterimage.
  • the image data is updated every two frames.
  • the display control circuit uses the updated image data to perform the first refresh in the first frame so that the afterimage due to the anisotropy of the liquid crystal dielectric constant cannot be visually recognized.
  • the second and third refreshes are performed using the same image data.
  • the second and third refreshes are performed in the second and third frames where the refresh was scheduled to be paused.
  • the display control circuit performs the first refresh in the fourth frame using the updated image data, and then performs the second and third refreshes using the same image data.
  • the second and third refreshes are performed in the fifth and sixth frames where the refresh was scheduled to be paused.
  • the first refresh is performed when the image data is transmitted, and the second and third refreshes are repeated continuously.
  • the image data is updated every two frames
  • the refreshed image is displayed on the display unit of the liquid crystal display device. That is, even though the host operates at 20 Hz, the liquid crystal display device operates at 60 Hz. Therefore, this driving method cannot reduce the power consumption of the liquid crystal display device.
  • every time the image data is updated refreshing is performed three times, so that an afterimage is not visually recognized.
  • FIGS. 3A to 3C are diagrams showing the relationship between the refresh rate of the image data and the number of non-refresh frames, and more specifically, FIG. 3A shows the refresh rate of the image data.
  • FIG. 3B is a diagram showing the relationship between the refresh rate when the frequency is 30 Hz and the number of non-refresh frames, and FIG. 3B shows the relationship between the refresh rate when the image data refresh rate is 20 Hz and the number of non-refresh frames.
  • FIG. 3C is a diagram showing the relationship between the refresh rate when the image data refresh rate is 15 Hz and the number of non-refresh frames.
  • Ref_int when there are k non-refresh frames for which refresh is suspended between two refresh frames, Ref_int is set to k (k is an integer of 1 or more).
  • a period during which refresh determined by Ref_int is paused is also referred to as a pause period.
  • the auto-refresh function means that even if refresh is performed using the same image data as the previous refresh or non-refresh is scheduled, updated image data can be sent from the host.
  • This function is a function that is performed from the first refresh again using the updated image.
  • Ref_int when refreshing is performed to display an image corresponding to image data having a refresh rate of 20 Hz, if Ref_int is set to 3, the first refresh is performed in the first frame, The refresh is paused at the second and third frames. Further, when the refresh is to be paused even in the fourth frame, the next updated image data is transmitted, so the refresh is performed by the auto refresh function. Refresh is paused in the fifth and sixth frames, but in the seventh frame, as in the case of the fourth frame, updated image data is transmitted, so refresh is performed. In the same manner, refresh is performed every third frame, and refresh is paused in the next two frames. In this way, the same result as when Ref_int is set to 2 although Ref_int is set to 3 is obtained. When Ref_int is set to 4 or more, the same result as above is obtained.
  • the number of non-refresh frames is determined according to the refresh rate of the image data.
  • Ref_int is small. Therefore, in each embodiment described below, it is assumed that Ref_int is 2 unless otherwise specified.
  • FIG. 4 is a block diagram showing a configuration of the liquid crystal display device 2 according to the first embodiment of the present invention.
  • the liquid crystal display device 2 includes a liquid crystal display panel 10 and a backlight unit 30.
  • the liquid crystal display panel 10 is provided with an FPC (Flexible Printed Circuit) 20 for connection to the outside.
  • FPC Flexible Printed Circuit
  • a display unit 100, a display control circuit 200, a signal line driving circuit 300, and a scanning line driving circuit 400 are provided on the liquid crystal display panel 10.
  • a display unit 100, a display control circuit 200, a signal line driving circuit 300, and a scanning line driving circuit 400 are provided on the liquid crystal display panel 10.
  • both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be provided in the display control circuit 200.
  • both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be formed integrally with the display unit 100.
  • a host 1 (system) mainly composed of a CPU is provided outside the liquid crystal display device 2.
  • the display unit 100 includes a plurality (m) of signal lines SL1 to SLm, a plurality (n) of scanning lines GL1 to GLn, and the m signal lines SL1 to SLm and n scanning lines.
  • a plurality of (m ⁇ n) pixel forming portions 110 provided corresponding to the respective intersections with GL1 to GLn are formed.
  • m and n are both integers of 1 or more.
  • signal lines SL1 to SLm are not distinguished, these are simply referred to as “signal lines SL”
  • the n scanning lines GL1 to GLn are not distinguished, these are simply referred to as “scanning lines GL”. .
  • the m ⁇ n pixel forming portions 110 are formed in a matrix.
  • a gate terminal as a control terminal is connected to the scanning line GL passing through the corresponding intersection, and a source terminal as a first conduction terminal is connected to the signal line SL passing through the intersection.
  • a liquid crystal capacitor Ccl formed by the pixel electrode 112 and the common electrode 113 constitutes a pixel capacitor.
  • the pixel capacitor is constituted by a liquid crystal capacitor Ccl and an auxiliary capacitor.
  • the description will be made assuming that the pixel capacitor is composed of only the liquid crystal capacitor Ccl.
  • the TFT 111 for example, a TFT using an oxide semiconductor for a channel layer (hereinafter referred to as “oxide TFT”) is used. More specifically, the channel layer of the TFT 12 is formed of InGaZnOx containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
  • IGZO-TFT a TFT using InGaZnOx as a channel layer. Since the IGZO-TFT has a very small off-leakage current compared to a silicon-based TFT using polycrystalline silicon, amorphous silicon, or the like as a channel layer, the signal voltage written in the liquid crystal capacitor Ccl is held for a long time. . For this reason, even when the refresh rate is low, it is possible to suppress a decrease in display quality.
  • oxide semiconductors other than InGaZnOx for example, indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead ( A similar effect can be obtained even when an oxide semiconductor containing at least one of Pb) is used for the channel layer.
  • an oxide TFT is used as the TFT 111, and a silicon TFT such as polycrystalline silicon or amorphous silicon may be used instead.
  • the display control circuit 200 is typically realized by an LSI (Large Scale Integration).
  • the display control circuit 200 receives data DAT including image data from the host 1 via the FPC 20, and generates and outputs a signal line control signal SCT, a scanning line control signal GCT, and a common potential Vcom in response thereto. .
  • the signal line control signal SCT is given to the signal line driving circuit 300.
  • the scanning line control signal GCT is supplied to the scanning line driving circuit 400.
  • the common potential Vcom is supplied to the common electrode 113.
  • transmission / reception of data DAT between the host 1 and the display control circuit 200 is performed through an interface compliant with the DSI (Display Serial Interface) standard proposed by MIPI (Mobile Industry Processor Interface) Alliance. Is called.
  • DSI Display Serial Interface
  • MIPI Mobile Industry Processor Interface
  • the signal line driving circuit 300 generates and outputs a driving image signal to be applied to the signal line SL in accordance with the signal line control signal SCT.
  • the signal line control signal SCT includes, for example, a digital image signal corresponding to RGB data RGBD, a source start pulse signal, a source clock signal, and a latch strobe signal.
  • the signal line driver circuit 300 operates a shift register, a sampling latch circuit, and the like (not shown) therein according to the source start pulse signal, the source clock signal, and the latch strobe signal, and the digital line obtained based on the digital image signal
  • a driving image signal is generated by converting the signal into an analog signal by a DA converter circuit (not shown).
  • the scanning line driving circuit 400 repeats the application of the active scanning signal to the scanning line GL in a predetermined cycle in accordance with the scanning line control signal GCT.
  • the scanning line control signal GCT includes, for example, a gate clock signal and a gate start pulse signal.
  • the scanning line driving circuit 400 operates a shift register (not shown) and the like to generate a scanning signal.
  • the backlight unit 30 is provided on the back side of the liquid crystal display panel 10 and irradiates the back light of the liquid crystal display panel 10 with backlight light.
  • the backlight unit 30 typically includes a plurality of LEDs (Light Emitting Diode).
  • the backlight unit 30 may be controlled by the display control circuit 200, or may be controlled by other methods.
  • the backlight unit 30 does not need to be provided.
  • the driving image signal is applied to the signal line SL
  • the scanning signal is applied to the scanning line GL
  • the backlight unit 30 is driven, so that it corresponds to the image data transmitted from the host 1.
  • the screen is displayed on the display unit 100 of the liquid crystal display panel 10.
  • the configuration of the display control circuit 200 will be described in three modes.
  • a video mode is used and no RAM (Random Access Memory) is provided.
  • video mode RAM through a mode in which a video mode is used and a RAM is provided.
  • video mode RAM capture a mode in which a command mode is used and a RAM is provided.
  • this third mode is referred to as “command mode RAM write”. Since the present invention is not limited to an interface conforming to the DSI standard, the configuration of the display control circuit 200 is not limited to these three types of modes.
  • FIG. 5 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “video mode RAM through display control circuit 200”) corresponding to the video mode RAM through, which is included in the liquid crystal display device 2 shown in FIG. is there.
  • the display control circuit 200 includes an interface unit 210, a command register 220, an NVM (Non-volatile memory) 221, a timing generator 230, an OSC (Oscillator) 231, a latch circuit 240, A built-in power supply circuit 250, a signal line control signal output unit 260, and a scanning line control signal output unit 270 are provided.
  • the interface unit 210 includes a DSI receiving unit 211. Note that as described above, both or one of the signal line driver circuit 300 and the scan line driver circuit 400 may be provided in the display control circuit 200.
  • the DSI receiving unit 211 in the interface unit 210 conforms to the DSI standard.
  • the data DAT in the video mode includes RGB data RGBDin that is image data, a vertical synchronization signal VSYNC that is a synchronization signal, a horizontal synchronization signal HSYNC, a data enable signal DE, a clock signal CLK, and command data CM.
  • the command data CM includes data related to various controls.
  • the DSI receiving unit 211 When receiving the data DAT from the host 1, the DSI receiving unit 211 transmits the RGB data RGBDin included in the data DAT to the latch circuit 240, and the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, and the clock signal CLK is transmitted to the timing generator 230, and command data CM is transmitted to the command register 220.
  • the command data CM may be transmitted from the host 1 to the command register 220 via an interface compliant with the I2C (Inter Integrated Circuit) standard or the SPI (Serial Peripheral Interface) standard.
  • the interface unit 210 includes a receiving unit compliant with the I2C standard or the SPI standard.
  • the command register 220 holds command data CM.
  • the NVM 221 holds setting data SET for various controls.
  • the command register 220 reads the setting data SET held in the NVM 221.
  • the setting data SET can be updated according to the command data CM transmitted from the host 1.
  • Ref_int set according to the refresh rate of the image data is included in the setting data SET and is stored in a register 222 provided in the command register 220.
  • the command register 220 generates a timing control signal TS for refreshing the screen of the display unit 100 based on the data including Ref_int stored in the register 222 and transmits the timing control signal TS to the timing generator 230.
  • the voltage setting signal VS is transmitted to the built-in power supply circuit 250. In FIG. 5, only one register 222 is shown. However, since Ref_int is stored in the register 222, if the number of Ref_int to be set increases, the number of registers 222 needs to be increased accordingly.
  • the timing generator 230 is based on the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, the clock signal CLK, the timing control signal TS, and the built-in clock signal ICK generated by the OSC 231. Control signals for controlling the signal line control signal output unit 260 and the scanning line control signal output unit 270 are transmitted.
  • the timing generator 230 performs timing control with respect to the vertical synchronization signal VSYNC, the horizontal synchronization signal HSYNC, the data enable signal DE, and the clock signal CLK in order to request the host 1 to transmit the data DAT when refreshing.
  • a request signal REQ generated based on the signal TS and the internal clock signal ICK generated by the OSC 231 is transmitted to the host 1. Note that the OSC 231 is not essential in the video mode RAM through display control circuit 200.
  • the host 1 When the host 1 receives the request signal REQ, the host 1 transmits data DAT to the display control circuit 200. In this way, when refreshing, necessary data DAT is transmitted from the host 1 in response to the request signal REQ, and the screen is refreshed based on the transmitted data DAT.
  • the latch circuit 240 transmits the RGB data RGBDout included in the data DAT transmitted from the host 1 to the signal line control signal output unit 260 line by line based on the control of the timing generator 230. In this way, the screen can be refreshed as many times as necessary.
  • the built-in power supply circuit 250 uses a power supply voltage supplied from the host 1 and a voltage setting signal VS supplied from the command register 220 to be used by the signal line control signal output unit 260 and the scanning line control signal output unit 270. And generates and outputs a common potential Vcom.
  • the signal line control signal output unit 260 generates the signal line control signal SCT based on the RGB data RGBDout from the latch circuit 240, the control signal from the timing generator 230, and the power supply voltage from the built-in power supply circuit 250. Is transmitted to the signal line driver circuit 300.
  • the scanning line control signal output unit 270 generates the scanning line control signal GCT based on the control signal from the timing generator 230 and the power supply voltage from the built-in power supply circuit 250, and transmits this to the scanning line drive circuit 400.
  • FIG. 6 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “video mode RAM capture display control circuit 200”) corresponding to video mode RAM capture included in the liquid crystal display device 2 shown in FIG. is there. As shown in FIG. 6, the video mode RAM capture display control circuit 200 is obtained by adding a frame memory (RAM) 280 to the video mode RAM through display control circuit 200 described above.
  • a display control circuit 200 hereinafter referred to as “video mode RAM capture display control circuit 200”
  • the video mode RAM capture display control circuit 200 is obtained by adding a frame memory (RAM) 280 to the video mode RAM through display control circuit 200 described above.
  • RAM frame memory
  • the RGB data RGBDin is directly transmitted from the DSI receiving unit 211 to the latch circuit 240.
  • the RGB data RGBDin transmitted from the DSI receiver 211 is held in the frame memory 280.
  • the RGB data RGBDm held in the frame memory 280 is read to the latch circuit 240 in accordance with the control signal generated by the timing generator 230.
  • the timing generator 230 transmits a vertical synchronization output signal VSOUT to the host 1 instead of the request signal REQ.
  • the vertical synchronization output signal VSOUT is a signal that controls the transmission timing of the data DAT from the host 1 so that the writing timing of the RGB data RGBDin to the frame memory 280 and the reading timing of the RGB data RGBDm from the frame memory 280 do not overlap.
  • Other configurations and operations of the display control circuit 200 for video mode RAM capture are the same as those in the display control circuit 200 for video mode RAM through, and a description thereof will be omitted.
  • the OSC 231 is not essential in the display control circuit 200 for video mode RAM capture.
  • the timing generator 230 when the timing generator 230 receives the timing control signal TS for refreshing the screen of the display unit 100 from the command register 220, the timing generator 230 transmits the control signal to the frame memory 280. As a result, the RGB data RGBDm held in the frame memory 280 is read to the latch circuit 240 in accordance with the control signal received from the timing generator 230.
  • the frame memory 280 can hold the RGB data RGBDmo. Therefore, when refreshing the screen, it is not necessary to transmit data DAT from the host 1 to the display control circuit 200, and the timing generator 230 transmits a control signal to the frame memory 280 according to the number of times of refresh. In this way, by displaying the same image as the image currently displayed on the display unit 100, the screen can be refreshed as many times as necessary.
  • FIG. 7 is a block diagram showing a configuration of a display control circuit 200 (hereinafter referred to as “command mode RAM light display control circuit 200”) corresponding to the command mode RAM write included in the liquid crystal display device 2 shown in FIG. is there.
  • the command mode RAM write display control circuit 200 has the same configuration as the above-described video mode RAM capture display control circuit 200, but the type of data included in the data DAT is different.
  • the data DAT in the command mode includes command data CM, and does not include RGB data RGBDin, vertical synchronization signal VSYNC, horizontal synchronization signal HSYNC, data enable signal DE, and clock signal CLK.
  • the command data CM in the command mode includes data relating to images and data relating to various timings.
  • the command register 220 transmits a RAM write signal RGBDmi corresponding to data related to an image in the command data CM to the frame memory 280.
  • the RAM write signal RAMW corresponds to the RGB data RGBDin.
  • the timing generator 230 does not receive the vertical synchronization signal VSYNC and the horizontal synchronization signal HSYNC, the internal vertical synchronization signal IVSYNC and the internal horizontal synchronization signal corresponding to the internal clock signal ICK and the timing control signal TS based on the built-in clock signal ICK and the timing control signal TS.
  • IHSYNC is generated internally.
  • the timing generator 230 controls the latch circuit 240, the signal line control signal output unit 260, and the scanning line control signal output unit 270 based on the internal vertical synchronization signal IVSYNC and the internal horizontal synchronization signal IHSYNC. Further, the timing generator 230 transmits a transmission control signal TE corresponding to the vertical synchronization output signal VSOUT to the host 1.
  • the operations of the command register 220, the timing generator 230, and the frame memory 280 when refreshing the screen are the same as the operations of the display control circuit 200 of the video mode RAM capture, and the description thereof is omitted.
  • the pause driving means that when the image data (RGB data RGBD) updated from the host 1 is given, the screen refresh is paused after a frame for refreshing the screen (hereinafter referred to as “refresh frame”).
  • This is a driving in which frames (hereinafter referred to as “non-refresh frames”) are provided and these refresh frames and non-refresh frames are alternately repeated by a predetermined number of frames.
  • non-refresh frames frames
  • each rectangular box in each figure to be described later indicates one frame, “R” is attached to the refresh frame, and “N” is attached to the non-refresh frame. is doing.
  • a driving image signal is supplied from the signal line driving circuit 300 to the signal lines SL1 to SLm in response to a signal line control signal SCT including a digital image signal corresponding to RGB data RGBD, and for the scanning line.
  • the scanning lines GL1 to GLn are sequentially selected by the scanning line driving circuit 400 in accordance with the control signal GCT.
  • the TFT 111 corresponding to the selected scanning line GL is turned on, and the voltage of the driving image signal is written into the liquid crystal capacitor Ccl. In this way, the screen is refreshed. Thereafter, the TFT 111 is turned off, and the voltage written in the liquid crystal capacitor Ccl is held until the next screen refresh.
  • the above-mentioned screen refresh is suspended. More specifically, since the supply of the scanning line control signal GCT to the scanning line driving circuit 400 is stopped or the scanning line control signal GCT becomes a fixed potential, the operation of the scanning line driving circuit 400 is stopped. The scanning lines GL1 to GLn are not scanned. As a result, the driving image signal is not written in the liquid crystal capacitor Ccl in the non-refresh frame. However, since the driving image signal written immediately before is held in the liquid crystal capacitor Ccl, the screen refreshed in the immediately preceding refresh frame is continuously displayed. Further, in the non-refresh frame, the operation of the signal line driver circuit 300 is stopped, for example, by stopping the supply of the signal line control signal SCT to the signal line driver circuit 300. In this manner, in the non-refresh frame, the scan line driver circuit 400 and the signal line driver circuit 300 stop operating, so that power consumption can be reduced. Note that the signal line driver circuit 300 may be operated.
  • the same Refresh for writing the voltage of the driving image signal corresponding to the RGB data RGBD into the liquid crystal capacitor Ccl is performed three times.
  • the liquid crystal display device 2 is described as performing refresh three times when the updated RGB data RGBD is transmitted from the host 1, but may be performed four or more times. By performing the refresh four or more times, the liquid crystal molecules can be reliably aligned in the direction corresponding to the applied voltage, so that the afterimage can be prevented from being visually recognized more reliably.
  • the number of non-reframe frames provided between the first refresh performed when the image data is updated and the second refresh performed thereafter is determined by Ref_int, and Ref_int is a register 222 provided in the command register 220.
  • Ref_int is a register 222 provided in the command register 220.
  • FIG. 8 is a diagram for explaining the operation in the pause driving of the liquid crystal display device 2 according to the present embodiment.
  • the liquid crystal display device 2 is a display device having an auto refresh function.
  • Ref_int is set to 2.
  • the first refresh is performed using this image data, and the refresh is suspended in the second and third frames based on Ref_int.
  • the second and third refreshes are continuously performed using the same image data as the image data used for the first refresh. Thereafter, refresh is suspended from the sixth frame to the twelfth frame.
  • the first refresh is performed using this image data, and the refresh is suspended in the 14th and 15th frames based on Ref_int.
  • the second and third refreshes are continuously performed using the same image data as the image data used for the first refresh in the 16th and 17th frames. Thereafter, the refresh is suspended from the 18th frame to the 24th frame.
  • the first refresh is performed using this image data, and the refresh is paused for the next two frame periods based on Ref_int. Then, the second and third refreshes are continuously performed, and the refresh is paused until the next updated image data is transmitted.
  • FIG. 9 is a diagram for explaining the operation in the pause drive of the liquid crystal display device 2 according to the first modification of the present embodiment.
  • the first modification as shown in FIG. 9, when updated image data is transmitted, the first refresh is performed using this image data, and refresh is performed for the next three frame periods based on Ref_int. To pause. Then, the second and third refreshes are continuously performed, and the refresh is paused until the next updated image data is transmitted. Also in this case, the refresh can be performed three times in a short time. Note that if Ref_int is made too large, an afterimage becomes visible, and Ref_int needs to be adjusted accordingly.
  • FIG. 10 is a diagram for explaining the operation in the pause drive of the liquid crystal display device 2 according to the second modification of the present embodiment.
  • the second modification as shown in FIG. 10, when the refresh rate of the image data is 10 Hz, the first refresh is performed using the image data updated in the first frame, and the second and third frames are performed. To pause refresh. The second refresh is performed in the fourth frame, and the refresh is paused in the fifth and sixth frames.
  • the third refresh is performed in the seventh frame, the next updated image data is transmitted. Therefore, the third refresh is stopped and the first refresh is performed using the updated image data. In this manner, since refresh is performed only twice each time image data is updated, the power consumption of the liquid crystal display device 2 can be reduced. It should be noted that the provision of a pause period for two frames between the second refresh and the third refresh can be similarly applied to refreshing image data with a refresh rate of 15 Hz or higher.
  • FIG. 11 is a diagram for explaining the operation in the pause drive of the liquid crystal display device 2 according to the second embodiment of the present invention. Since the present embodiment is the same as the first embodiment except for the operation in the rest drive, the block diagram showing the configuration of the liquid crystal display device 2 and the configuration of the display control circuit 200 included in the liquid crystal display device 2 respectively. And their explanation is omitted.
  • the updated image data is transmitted from the host 1 at a constant frame rate (for example, 5 Hz).
  • the refresh rate of the image data may be switched after the pause driving is started. In this embodiment, it is assumed that it is known in advance when this refresh rate is switched.
  • the refresh rate of image data is 15 Hz when transmitted for the first time and the second time, but is switched to 5 Hz when transmitted for the third time and thereafter.
  • Ref_int is set to 2 corresponding to 15 Hz.
  • Ref_int is set to 0 corresponding to 5 Hz.
  • the third refresh scheduled to be performed in the fifth frame is stopped, and the first refresh is performed using the updated image data.
  • refresh is paused at the sixth and seventh frames.
  • the second refresh is performed in the eighth frame and the third refresh is performed in the ninth frame, the next updated image data is transmitted. Therefore, the third refresh, which was scheduled to be performed in the ninth frame, is stopped, and the first refresh is performed using the updated image data.
  • Ref_int is reset to 0. Based on the re-set Ref_int, the second and third refreshes are performed in the tenth and eleventh frames, respectively. Then, the refresh is paused from the 12th frame to the 20th frame.
  • the refresh rate of the transmitted image data is 5 Hz, which is the same as the refresh rate of the 9th frame image data. Therefore, the first refresh is performed using this image data without changing Ref_int.
  • the second and third refreshes are performed in the 22nd and 23rd frames, respectively. Then, the refresh is paused from the 24th frame to the 32nd frame. Similarly, since the updated image data is transmitted at 5 Hz, the rest drive is performed without changing Ref_int.
  • the refresh rate of the image data is switched from 15 Hz to 5 Hz after the refresh is performed a predetermined number of times using the image data having the refresh rate of 15 Hz.
  • the change of the refresh rate is not limited to this.
  • the refresh rate may be changed from 30 Hz to 1 Hz, and conversely when the frequency is switched from 5 Hz to 15 Hz or from 1 Hz to 30 Hz. Applicable.
  • FIG. 12 is a diagram for explaining an operation in the pause driving of the liquid crystal display device 2 according to the first modification of the present embodiment.
  • the refresh rate of the image data is 15 Hz when it is transmitted for the first time and the second time, but is switched to 5 Hz when it is transmitted for the third time. .
  • the display control circuit 200 cannot determine whether the refresh rate of the image data is 15 Hz or 5 Hz.
  • the refresh rate of the transmitted image data is switched from 15 Hz to 5 Hz.
  • the display control circuit 200 cannot recognize that the refresh rate is switched. Therefore, Ref_int at this time remains 2.
  • the refresh rate is switched to 5 Hz, the next updated image data is transmitted not in the 13th frame but in the 21st frame.
  • the refresh is performed using the updated image data in the ninth frame, and the refresh is paused in the tenth and eleventh frames.
  • the second and third refreshes are performed in the twelfth and thirteenth frames, and the refresh is paused from the fourteenth frame to the twentieth frame.
  • the display control circuit 200 recognizes that the update cycle has been switched to 5 Hz, and changes the setting of Ref_int to 0. Therefore, the first refresh is performed in the 21st frame, and the second and third refreshes are performed in the 22nd and 23rd frames, respectively. Then, the refresh is paused from the 24th frame to the 32nd frame. Similarly, since the updated image data is transmitted at 5 Hz, Ref_int remains 0.
  • the refresh rate of the image data may be sequentially switched between a plurality of refresh rates such as 30 Hz, 15 Hz, 10 Hz, and 5 Hz.
  • FIG. 13 is a diagram for explaining the operation in the pause drive of the liquid crystal display device 2 according to the second modification of the present embodiment.
  • Ref_int is always set to 2 without being changed accordingly.
  • only one register 222 needs to be provided in the command register 220 to store Ref_int, so that the manufacturing cost of the display control circuit 200 can be reduced.
  • it is preferable to set any one of 1 to 3 as Ref_int it is preferable to set any one of 1 to 3 as Ref_int, but the present invention is not limited to this. .
  • FIG. 14 is a diagram for explaining the operation in the pause drive of the liquid crystal display device 2 according to the third embodiment of the present invention. Since the present embodiment is the same as the first embodiment except for the operation in the rest drive, the block diagram showing the configuration of the liquid crystal display device 2 and the configuration of the display control circuit 200 included in the liquid crystal display device 2 respectively. And their explanation is omitted.
  • polarity inversion driving (AC driving) is performed in order to suppress deterioration of the liquid crystal layer.
  • the polarity of the voltage applied at the time of refreshing performed in the relevant frame is shown below each refresh frame and non-refresh frame shown in FIG. Specifically, “+” indicates that the voltage applied to the pixel electrode 112 is higher than the voltage applied to the common electrode 113. “ ⁇ ” Indicates that the voltage applied to the pixel electrode 112 is lower than the voltage applied to the common electrode 113.
  • a refresh frame in which refresh is performed by applying a higher voltage to the pixel electrode 112 than the common electrode 113 is referred to as a “positive refresh frame”, and a voltage lower than the common electrode 113 is applied to the pixel electrode 112.
  • a refresh frame for performing refresh is referred to as a “negative refresh frame”.
  • the updated image data is transmitted from the host 1 at 5 Hz, and Ref_int is 2.
  • the first refresh is performed. Since this refresh is a positive refresh, the first frame is a positive refresh frame. Since Ref_int is set to 2, refresh is paused in the second and third frames. However, since the same positive voltage is maintained as in the first refresh, the second and third frames are also positive non-refresh frames.
  • a second refresh is performed in the fourth frame. Since the polarity is inverted every time refresh is performed, this refresh is a negative polarity refresh. Further, the third refresh is performed in the fifth frame. This refresh is a positive polarity refresh.
  • the sixth to twelfth frames are also positive non-refresh frames.
  • the number of positive frames from the first frame to the twelfth frame is 11 frames, and the number of negative frames is 1 frame.
  • the fourth refresh is performed. Since this refresh is a negative polarity refresh, the 13th frame is a negative polarity refresh frame. Since Ref_int is set to 2, refresh is paused in the 14th and 15th frames. However, since the same negative voltage as that in the first refresh is maintained, the fourteenth and fifteenth frames also become negative non-refresh frames.
  • the fifth refresh is performed in the 16th frame. Since the polarity is inverted every time refresh is performed, this refresh is a positive refresh. Further, the sixth refresh is performed in the 17th frame. This refresh is a negative polarity refresh. Thereafter, refresh is paused in each frame from the 18th frame to the 24th frame.
  • the 18th to 24th frames also become negative non-refresh frames.
  • the number of positive frames from the 13th frame to the 24th frame is 1 frame, and the number of negative frames is 11 frames.
  • the number of positive frames and the number of negative frames from the first frame to the 24th frame are both 12 frames. In this way, refresh is performed such that the number of positive frames and the number of negative frames are the same.
  • the refresh rate is 5 Hz.
  • the number of positive frames and the number of negative frames are different. Refreshing can be performed so that the ratio is the same.
  • the same effects as in the case of the first embodiment can be obtained, and the number of frames of the positive frame and the number of frames of the negative frame can be set to the same ratio.
  • the time during which a voltage in a specific direction is applied to the liquid crystal layer is not lengthened, and deterioration of the liquid crystal layer can be suppressed.
  • FIG. 15 is a diagram for explaining the operation in the pause drive of the liquid crystal display device according to the first modification of the present embodiment.
  • image data transmitted from the host 1 is image A data
  • image data transmitted in the thirteenth frame is image B data.
  • the seventh refresh is performed in the 25th frame. Since this refresh is a positive refresh, the 25th frame becomes a positive refresh frame. Since Ref_int is set to 2, refresh is suspended in the 26th and 27th frames. However, since the same positive voltage is maintained as in the seventh refresh, the 26th and 27th frames are also positive non-refresh frames.
  • the data of the image C is transmitted. Therefore, refresh and non-refresh are performed from the 37th frame to the 48th frame, as in the case of the 13th frame to the 24th frame.
  • the afterimage is not visually recognized even if the number of refreshes is reduced. Thereby, the power consumption of the liquid crystal display device 2 can be reduced.
  • the liquid crystal display device including the video mode RAM capture display control circuit 200 shown in FIG. 6 or the command mode RAM light display control circuit 200 shown in FIG. Can be stored in the frame memory 280. Therefore, refreshing can be performed by reading out the image data stored in the frame memory 280 even if no image data is transmitted from the host 1.
  • FIG. 16 is a diagram for explaining the operation in the pause driving of the liquid crystal display device according to the second modification of the present embodiment.
  • image data is transmitted only in the first frame.
  • the image data stored in the frame memory 280 in the first frame is read and refreshed.
  • the image data read from the frame memory 280 is the same data as the image data transmitted in the first frame, refreshing is performed in each of the 13th frame, the 25th frame, and the 37th frame.
  • the afterimage is not visually recognized. For this reason, after refreshing in each frame, it is not necessary to perform refreshing twice more.
  • the positive polarity refresh is performed only once, and then the positive polarity non-refresh continues 11 times.
  • the negative polarity refresh is performed only once, and then the negative polarity non-refresh continues 11 times.
  • the afterimage is not visually recognized even if the number of refreshes is reduced. Thereby, the power consumption of the liquid crystal display device 2 can be reduced.
  • the polarity is inverted every frame has been described, but the method of inverting the polarity is not limited to this.
  • the polarity may be inverted every two frames or every three frames. .
  • the present invention can be applied to a liquid crystal display device that displays an image by pause driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Multimedia (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 消費電力を抑制しつつ、休止駆動中に視認される残像を早期に視認できなくすることができる液晶表示装置およびその駆動方法を提供する。更新された画像データが送信されてくると、この画像データを用いて1回目のリフレッシュを行い、Ref_intに基づいて次の2フレーム期間だけリフレッシュを休止する。そして、2回目および3回目のリフレッシュを連続して行い、次の更新された画像データが送信されてくるまでリフレッシュを休止することを繰り返す。この場合、更新された画像データを受信してから短期間にリフレッシュを3回行うことができるので、液晶分子の方向を印加電圧に対応する方向に短時間で配向させて、残像を視認できなくすることができる。

Description

液晶表示装置およびその駆動方法
 本発明は、液晶表示装置およびその駆動方法に関し、特に、休止駆動によって画像を表示する液晶表示装置およびその駆動方法に関する。
 近年、小型で軽量の電子機器の開発が活発に行われている。このような電子機器に表示装置として搭載される液晶表示装置は低消費電力であることが求められている。液晶表示装置の消費電力を低減する駆動方法の1つとして、走査線を走査して画面のリフレッシュを行う走査期間を設け、次に全ての走査線を非走査状態にしてリフレッシュを休止する休止期間(ノンリフレッシュ期間)を設ける「休止駆動」と呼ばれる駆動方法がある。この駆動方法では、休止期間に、走査線駆動回路および/または信号線駆動回路に制御用の信号などを与えない。これにより、走査線駆動回路および/または信号線駆動回路の動作を休止させることができるので、液晶表示装置の低消費電力化を図ることができる。このような休止駆動は「低周波駆動」または「間欠駆動」とも呼ばれる。
 例えば、日本の特開2004-78124号公報は、データ信号を信号線に取り込むためのクロック信号を生成するクロック信号生成回路の動作を停止させることにより、休止期間における消費電力を低減することを開示している。
日本の特開2004-78124号公報
 休止駆動では、休止期間のフレーム数を増やせば増やすほど消費電力を低減することができる。例えばリフレッシュレートを1Hzにすれば、リフレッシュフレームのフレーム数が1フレーム、ノンリフレッシュフレームのフレーム数が59フレームになり、消費電力を大幅に低減することができる。しかし、後述する理由により、1回目のリフレッシュを開始してから3回目のリフレッシュが終了するまでの2秒間に残像が視認されるという問題が生じる。このように、リフレッシュレートを低くすれば、単位時間あたりに画面をリフレッシュする回数が少なくなるので、残像が長く視認されるようになる。
 休止駆動時にこのような残像が視認される理由を説明する。まず、液晶表示装置の表示部に含まれる画素形成部の構成について説明する。各画素形成部には、スイッチング素子として機能する薄膜トランジスタ(Thin Film Transistor:以下「TFT」という)が設けられている。TFTのソース端子は信号線に、ゲート端子は走査線に、ドレイン端子は画素電極にそれぞれ電気的に接続されている。画素電極は、すべての画素に共通的に設けられた共通電極との間で液晶容量を形成している。信号線からTFTを介して、画像データに応じた信号電圧(駆動用画像信号)が液晶容量に書き込まれれば、信号電圧に対応する方向に液晶分子が配向し、液晶表示装置は画像データによって表される画像を表示する。
 この液晶容量は、液晶誘電率をε、画素電極と共通電極との相対面積をS、画素電極と共通電極との距離をdとしたとき、次式で表される。
   Clc=ε×S/d
液晶誘電率εや液晶容量Clcには異方性があり、液晶分子の配向方向によってその値が異なる。液晶分子の配向方向は、書き込み期間内に印加電圧に追従して変化しきれないので、書き込み期間の終了後にも変化する。このように、書き込み期間終了後の液晶容量の変化に伴い、液晶印加電圧が変化するので、1回のリフレッシュでは所望の液晶透過率に到達しない。
 図17は、従来の液晶表示装置における通常駆動を示すタイミングチャートの一例である。図17に示すように、走査期間ごとに、白表示を行うための正極性の電圧と負極性の電圧を液晶容量に交互に印加する。1回目の走査期間に、正極性の電圧を液晶容量に印加すると、液晶分子は印加電圧に対応する方向に近づくように配向する。しかし、液晶容量は白表示に必要な容量(図中の一点鎖線)に到達しないので、印加電圧は白表示に必要な電圧Vaに到達しない。2回目の走査期間に、負極性の電圧を液晶容量に印加する場合も、液晶分子は印加電圧に対応する方向に近づくように配向する。しかし、液晶容量は白表示に必要な容量に到達せず、印加電圧も電圧Vaに到達しない。3回目の走査期間に、正極性の電圧を液晶容量に印加すると、液晶容量は白表示に必要な容量(図中の1点鎖線)に到達し、印加電圧も白表示に必要な電圧Vaに到達する。このため、後述する図18に示すような電圧差は生じす、残像は視認されない。
 次に、従来の休止駆動について説明する。図18は、従来の液晶表示装置における第1の休止駆動を示すタイミングチャートの一例である。図18に示すように、走査期間が1フレーム期間だけ設けられている。この走査期間に、白表示を行うために負極性の電圧が液晶容量に印加され、その後は休止期間になる。液晶分子は、走査期間に印加された電圧に対応する方向に近づくように配向する。しかし、液晶分子の配向方向は、書き込み期間内に印加電圧に追従して変化しきれないので、液晶容量の変化は印加電圧の変化に比べて遅れる。このため、書き込み期間が終了したときの液晶容量は、白表示に必要な容量(図中の一点鎖線)に到達することができない。その結果、液晶容量の印加電圧は白表示に必要な電圧Vaに到達せず、それよりも低い電圧Vbまでしか上昇することができない。これにより、これらの電圧VaとVbとの間に差が生じる。この電圧差が画面上で残像が視認される原因になる。
 そこで、本発明は、消費電力を抑制しつつ、休止駆動中に視認される残像を早期に視認できなくすることができる液晶表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、所定のリフレッシュレートで休止駆動を行う液晶表示装置であって、
 複数の画素形成部を含む表示部と、
 前記表示部を駆動する駆動部と、
 外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、
 前記表示制御部は、前記データに含まれる画像データが更新されたとき、更新された画像データを用いてリフレッシュを1回行い、次に画像データのリフレッシュレートに応じて決まる休止期間だけリフレッシュを休止し、前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記休止期間の終了後に行うリフレッシュの回数は2回であることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記休止期間の終了後に行う2回のリフレッシュは連続して行うことを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記休止期間の経過後に行う2回のリフレッシュは、リフレッシュを休止する期間を間に挟んで行うことを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記所定のリフレッシュレートは不定期で切り替えられ、前記リフレッシュレートが変更されれば、それに応じて前記休止期間の長さも変更されることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記所定のリフレッシュレートは不定期で切り替えられ、前記リフレッシュレートが変更されても前記休止期間の長さは一定であることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記表示制御部は、交流駆動のための制御を行い、
 正極性でリフレッシュを行うリフレッシュフレームおよび正極性を維持するノンリフレッシュフレームからなる複数の正極性フレームと、負極性でリフレッシュを行うリフレッシュフレームおよび負極性を維持するノンリフレッシュフレームからなる複数の負極性フレームとを略同じ割合で交互に設けることを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記表示制御部は、リフレッシュを行っているときまたはリフレッシュを休止しているときに、前記表示部の画面を更新する画像データを含む新たなデータを外部から受け取れば、リフレッシュまたはリフレッシュの休止を中止し、前記新たなデータに含まれる画像データを用いたリフレッシュを1回行い、次に画像データのリフレッシュレートに応じて決まる前記休止期間だけリフレッシュを休止し、前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うことを特徴とする。
 本発明の第9の局面は、本発明の第8の局面において、
 前記表示制御部は、外部から受け取った前記データに含まれる画像データが更新されていないとき、前記休止期間の終了後に行うリフレッシュを休止することを特徴とする。
 本発明の第10の局面は、本発明の第8の局面において、
 前記表示制御部は、前記データに含まれる画像データを1フレーム分だけ記憶するフレームメモリを含み、
 前記表示制御部は、前記更新された画像データを外部から受け取らなかったとき、前記フレームメモリから読み出した画像データを用いてリフレッシュを1回行い、前記休止期間の終了後に行うリフレッシュを休止することを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記画素形成部は、前記表示部内の走査線に制御端子が接続され、前記表示部内の信号線に第1導通端子が接続され、表示すべき画像に応じた電圧が印加されるべき、前記表示部内の画素電極に第2導通端子が接続され、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記酸化物半導体は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(О)を主成分とするInGaZnOxであることを特徴とする。
 本発明の第13の局面は、複数の画素形成部を含む表示部と、前記表示部を駆動する駆動部と、外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、所定のリフレッシュレートで休止駆動を行う液晶表示装置の駆動方法であって、
 前記データに含まれる画像データが更新されたとき、更新された画像データを用いてリフレッシュを1回行うステップと、
 画像データのリフレッシュレートに応じて決まる休止期間だけリフレッシュを休止するステップと、
 前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うステップとを備えることを特徴とする。
 本発明の第1の局面によれば、外部から受け取る画像データが更新されたとき、更新された画像データを用いてリフレッシュを1回行い、次に画像データのリフレッシュレートに応じて決まる休止期間だけリフレッシュを休止する。そして、休止期間の終了後に更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行う。これにより、更新された画像データを受信してから短期間にリフレッシュを複数回行うことができるので、液晶分子の方向を印加電圧に対応する方向に短時間で配向させることができる。その結果、液晶表示装置の消費電力を低減しつつ、液晶誘電率の異方性に起因する休止駆動中の残像を視認できなくすることができる。
 本発明の第2の局面によれば、更新された画像データを用いてリフレッシュを全部で3回行うことができるので、液晶分子の方向を印加電圧に対応した方向に配向させることができる。これにより、液晶誘電率の異方性に起因する残像を視認できなくすることができる。
 本発明の第3の局面によれば、休止期間後に行う2回のリフレッシュを連続して行うので、更新された画像データを用いて行う全部で3回のリフレッシュを短時間で終わらせることができる。これにより、液晶誘電率の異方性に起因する休止駆動中の残像を見えなくすることができる。
 本発明の第4の局面によれば、休止期間の経過後に行う2回のリフレッシュは、リフレッシュを休止する期間を間に挟んで行う。これにより、画像データのリフレッシュレートが10Hzの場合には、休止期間の経過後に行うリフレッシュが1回になるので、液晶表示装置の消費電力を低減することができる。
 本発明の第5の局面によれば、休止駆動中のリフレッシュレートが不定期で切り替えられ、それに応じて休止期間の長さも変更される。このように、休止期間の長さを設定し直すことによって、リフレッシュレートによらずに、休止駆動中の残像を確実に視認されないようにすることができる。
 本発明の第6の局面によれば、休止駆動中のリフレッシュレートが不定期で切り替えられても、休止期間の長さは一定である。この場合、休止期間の長さを格納するためのレジスタを1個だけ設ければ良いので、液晶表示装置の製造コストを低減することができる。
 本発明の第7の局面によれば、正極性フレームと負極性フレームとを略同じ割合で交互に設けることにより、画素形成部の液晶層が交流駆動される。これにより、液晶層の劣化を抑制することが可能になる。
 本発明の第8の局面によれば、リフレッシュを行っているとき、またはリフレッシュを休止しているときに、外部から新たな画像データを受け取った場合には、それまで行っていたリフレッシュまたはリフレッシュの休止を中止し、新たな画像データを用いて1回目のリフレッシュを行うことから行う。これにより、画像データが更新されたとき、表示部の画面もただちにリフレッシュされ、更新された画像を表示することが可能になる。
 本発明の第9の局面によれば、直前に送信されてきた画像データと同じ画像データがホストから送信されてきた場合には、リフレッシュの回数を減らしても残像は視認されない。これにより、液晶表示装置の消費電力を低減することができる。
 本発明の第10の局面によれば、フレームメモリから読み出した画像データを用いてリフレッシュを行う場合には、リフレッシュの回数を減らしても残像は視認されない。これにより、液晶表示装置の消費電力を低減することができる。
 本発明の第11の局面によれば、画素形成部内の薄膜トランジスタとしてチャネル層が酸化物半導体により形成された薄膜トランジスタが用いられる。これにより、画素形成部に書き込まれた電圧が長時間にわたり保持されるので、リフレッシュレートが低い場合でも液晶表示装置の表示品位の低下を抑制することができる。
 本発明の第12の局面によれば、チャネル層を形成する酸化物半導体としてInGaZnOxを用いることにより、本発明の第9の局面による効果を確実に達成することができる。
 本発明の第13の局面によれば、本発明の第1の局面による効果と同様の効果を奏する。
第1の基礎検討において、画像データが30Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図である。 第1の基礎検討において、画像データが20Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図である。 第2の基礎検討において、画像データのリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、より詳細には、(a)は画像データのリフレッシュレートが30Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、(b)は画像データのリフレッシュレートが20Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、(c)は画像データのリフレッシュレートが15Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図である。 本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。 図4に示す液晶表示装置に含まれる、ビデオモードRAMスルーに対応した表示制御回路の構成を示すブロック図である。 図4に示す液晶表示装置に含まれる、ビデオモードRAMキャプチャーに対応した表示制御回路の構成を示すブロック図である。 図4に示す液晶表示装置に含まれる、コマンドモードRAMライトに対応した表示制御回路の構成を示すブロック図である。 本発明の第1の実施形態に係る液晶表示装置の休止駆動における動作を説明するための図である。 図8に示す第1の実施形態の第1の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 図8に示す第1の実施形態の第2の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 本発明の第2の実施形態に係る液晶表示装置の休止駆動における動作を説明するための図である。 図11に示す第2の実施形態の第1の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 図11に示す第2の実施形態の第2の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 本発明の第3の実施形態に係る液晶表示装置の休止駆動における動作を説明するための図である。 図14に示す第3の実施形態の第1の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 図14に示す第3の実施形態の第2の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。 従来の液晶表示装置における通常駆動を示すタイミングチャートの一例である。 従来の液晶表示装置における第1の休止駆動を示すタイミングチャートの一例である。
<1.基礎検討>
<1.1 第1の基礎検討>
 図1は、画像データが30Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図であり、図2は、画像データが20Hzで更新されているときの液晶表示装置のリフレッシュ動作を説明するための図である。
 まず、図1を参照して、30Hzで更新された画像データがホストから送信されてくる場合について説明する。この場合、画像データは1フレームおきに更新されている。表示制御回路は、このような画像データを受信すると、液晶誘電率の異方性に起因する残像を視認できないようにするために、更新された画像データを用いて第1フレームで1回目のリフレッシュを行った後に、さらに同じ画像データを用いて第2および第3フレームでリフレッシュを行うことにより、合計3回のリフレッシュを行うことが好ましい。そこで、リフレッシュを休止する予定であった第2フレームで2回目のリフレッシュを行う。しかし、第3フレームで3回目のリフレッシュを行おうとすると、ホストから次の更新された画像データが送信されてくる。
 そこで、表示制御回路は、第3フレームで、3回目のリフレッシュを行うことなく、更新された画像データを用いて1回目のリフレッシュを行い、さらに同じ画像データを用いて第4フレームで2回目のリフレッシュを行う。しかし、第5フレームで3回目のリフレッシュを行おうとすると、ホストからさらに更新された画像データが送信されてくる。そこで、表示制御回路は、第5フレームで、3回目のリフレッシュを行うことなく、更新された画像データを用いて1回目のリフレッシュを行い、第6フレームで同じ画像データを用いて2回目のリフレッシュを行う。
 以下、同様にして、奇数番目のフレームではホストから送信されてきた画像データを用いてリフレッシュを行い、偶数番目のフレームでは、直前の奇数番目のフレームと同じ画像データを用いてリフレッシュを行う。その結果、画像データは1フレームおきに更新されているにもかかわらず、液晶表示装置の表示部には、すべてのフレームでリフレッシュされた画像が表示される。つまり、ホストは30Hzで動作しているにもかかわらず、液晶表示装置は60Hzで動作していることになるので、この駆動方法は液晶表示装置の消費電力を低減することができない。この場合、画像データが更新されるごとに、リフレッシュを2回しか行っていないので、多少残像が残る。しかし、画像データは30Hzと高いリフレッシュレートで更新されているので、その残像が気になるようなことはない。
 次に、図2を参照して、ホストから20Hzで更新された画像データが送信されてくる場合について説明する。この場合、画像データは2フレームおきに更新されている。表示制御回路は、このような画像データを受信すると、液晶誘電率の異方性に起因する残像を視認できないようにするために、更新された画像データを用いて第1フレームで1回目のリフレッシュを行った後に、さらに同じ画像データを用いて2回目および3回目のリフレッシュを行う。2回目および3回目のリフレッシュは、リフレッシュを休止する予定であった第2および第3フレームで行う。
 3回目のリフレッシュが終了したときに、ホストから次の更新された画像データが送信されてくる。そこで、表示制御回路は、更新された画像データを用いて、第4フレームで1回目のリフレッシュを行った後に、さらに同じ画像データを用いて2回目および3回目のリフレッシュを行う。2回目および3回目のリフレッシュは、リフレッシュを休止する予定であった第5および第6フレームで行う。
 以下、同様にして、画像データが送信されてきたときに1回目のリフレッシュを行い、さらに連続して2回目および3回目のリフレッシュを行うことを繰り返す。その結果、画像データは2フレームおきに更新されているにもかかわらず、液晶表示装置の表示部には、すべてのフレームでリフレッシュされた画像が表示される。つまり、ホストは20Hzで動作しているにもかかわらず、液晶表示装置は60Hzで動作していることになるので、この駆動方法では液晶表示装置の消費電力を低減することができない。この場合、画像データが更新されるごとに、リフレッシュを3回行うので、残像は視認されない。
 このようにして、30Hzまたは20Hzで更新される画像データを用いて、リフレッシュを2回または3回行うことにより、液晶誘電率の異方性に起因する残像を軽減したり、視認できないようにしたりすることはできるが、いずれの場合も液晶表示装置の消費電力を低減することはできない。
<1.2 第2の基礎検討>
 図3(a)から図3(c)は、画像データのリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、より詳細には、図3(a)は画像データのリフレッシュレートが30Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、図3(b)は画像データのリフレッシュレートが20Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図であり、図3(c)は画像データのリフレッシュレートが15Hzの場合のリフレッシュレートとノンリフレッシュフレームのフレーム数との関係を示す図である。なお、以下の説明において、2つのリフレッシュフレームの間に、リフレッシュを休止するノンリフレッシュフレームをkフレーム分だけ設ける場合、Ref_intをk(kは1以上の整数)に設定するという。また、Ref_intによって決まるリフレッシュを休止する期間を休止期間ともいう。
 図3(a)に示すように、リフレッシュレートが30Hzの画像データに応じた画像を表示するためにリフレッシュを行う場合、Ref_intを2に設定すると、第1フレームで1回目のリフレッシュを行い、第2フレームでリフレッシュを休止する。さらに第3フレームでもリフレッシュを休止しようとすると、次の更新された画像データが送信されてくる。そこで、オートリフレッシュ機能によりリフレッシュを行う。第4フレームではリフレッシュを休止するが、第5フレームでは、第3フレームの場合と同様に、更新された画像データが送信されてくるのでリフレッシュを行う。以下同様にして、奇数番目のフレームでリフレッシュを行い、偶数番目のフレームでリフレッシュを休止する。このように、Ref_intを2に設定しているにもかかわらず、Ref_intを1に設定した場合と同じ結果になる。Ref_intを3以上に設定した場合も上記の場合と同じ結果になる。
 なお、オートリフレッシュ機能とは、直前のリフレッシュと同じ画像データを用いてリフレッシュを行ったり、ノンリフレッシュを行なったりする予定であっても、更新された画像データがホストから送信されてくれば、それらの動作を中止し、更新された画像を用いて再び1回目のリフレッシュから行う機能をいう。オートリフレッシュを行うことにより、画像データが更新されたとき、表示部の画面もただちにリフレッシュされ、更新された画像を表示することが可能になる。
 図3(b)に示すように、リフレッシュレートが20Hzの画像データに応じた画像を表示するためにリフレッシュを行う場合、Ref_intを3に設定すると、第1フレームで1回目のリフレッシュを行い、第2および第3フレームでリフレッシュを休止する。さらに第4フレームでもリフレッシュを休止しようとすると、次の更新された画像データが送信されてくるので、オートリフレッシュ機能によりリフレッシュを行う。第5および第6フレームではリフレッシュを休止するが、第7フレームでは、第4フレームの場合と同様に、更新された画像データが送信されてくるのでリフレッシュを行う。以下同様にして、3フレームおきにリフレッシュを行い、その直後の2フレームでリフレッシュを休止する。このように、Ref_intを3に設定しているにもかかわらず、Ref_intを2に設定した場合と同じ結果になる。Ref_intを4以上に設定した場合も上記の場合と同じ結果になる。
 図3(c)に示すように、15Hzで更新される画像データに応じた画像を表示するためにリフレッシュを行う場合、Ref_intを4に設定すると、第1フレームで1回目のリフレッシュを行い、第2から第4フレームでリフレッシュを休止する。さらに第5フレームでもリフレッシュを休止しようとすると、次の更新された画像データが送信されてくるので、オートリフレッシュ機能によりリフレッシュを行う。第6フレームから第8フレームではリフレッシュを休止するが、第9フレームでは、第5フレームの場合と同様に、更新された画像データが送信されてくるのでリフレッシュを行う。以下同様にして、4フレームおきにリフレッシュを行い、その直後の3フレームでリフレッシュを休止する。このように、Ref_intを4に設定しているにもかかわらず、Ref_intを3に設定した場合と同じ結果になる。Ref_intを5以上に設定した場合も上記の場合と同じ結果になる。
 このように、所定の周期で更新される画像データを用いて休止駆動するために、ノンリフレッシュフレームを設ける場合、ノンリフレッシュフレームのフレーム数は画像データのリフレッシュレートに応じて決まることがわかる。特に、液晶誘電率の異方性に起因する残像を視認できなくするためのリフレッシュは短期間に行うことが必要であるので、Ref_intは小さい方が好ましい。そこで、以下に説明する各実施形態では、特に説明しない限り、Ref_intは2であるとして説明する。
<2.第1の実施形態>
<2.1 液晶表示装置の構成および動作概要>
 図4は、本発明の第1の実施形態に係る液晶表示装置2の構成を示すブロック図である。図4に示すように、液晶表示装置2は、液晶表示パネル10、およびバックライトユニット30を備えている。液晶表示パネル10には、外部との接続用のFPC(Flexible Printed Circuit)20が設けられている。また、液晶表示パネル10上には、表示部100、表示制御回路200、信号線駆動回路300、および走査線駆動回路400が設けられている。なお、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方は表示制御回路200内に設けられていても良い。また、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方は表示部100と一体的に形成されていても良い。液晶表示装置2の外部には、主としてCPUにより構成されるホスト1(システム)が設けられている。
 表示部100には、複数本(m本)の信号線SL1~SLmと、複数本(n本)の走査線GL1~GLnと、これらのm本の信号線SL1~SLmとn本の走査線GL1~GLnとの交差点のそれぞれに対応して設けられた複数個(m×n個)の画素形成部110とが形成されている。ここで、mおよびnはいずれも1以上の整数である。以下、m本の信号線SL1~SLmを区別しない場合にはこれらを単に「信号線SL」といい、n本の走査線GL1~GLnを区別しない場合にはこれらを単に「走査線GL」という。m×n個の画素形成部110はマトリクス状に形成されている。各画素形成部110は、対応する交差点を通過する走査線GLに制御端子としてのゲート端子が接続されると共に、当該交差点を通過する信号線SLに第1導通端子としてのソース端子が接続されたTFT111と、当該TFT111の第2導通端子としてのドレイン端子に接続された画素電極112と、m×n個の画素形成部110に共通的に設けられた共通電極113と、画素電極112と共通電極113との間に挟持され、複数個の画素形成部110に共通的に設けられた液晶層とにより構成される。画素電極112と共通電極113により形成される液晶容量Cclは、画素容量を構成する。なお、典型的には、画素容量に確実に電圧を保持すべく液晶容量Cclに並列に補助容量が設けられる。このため、画素容量は液晶容量Cclおよび補助容量により構成される。しかし、本明細書では、画素容量は液晶容量Cclのみにより構成されるとして説明する。
 TFT111としては、例えば酸化物半導体をチャネル層に用いたTFT(以下「酸化物TFT」という。)が用いられる。より詳細には、TFT12のチャネル層は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、および酸素(O)を主成分とするInGaZnOxにより形成されている。以下では、InGaZnOxをチャネル層に用いたTFTのことを「IGZO-TFT」という。IGZO-TFTは、多結晶シリコンや非晶質シリコンなどをチャネル層に用いたシリコン系のTFTに比べてオフリーク電流が非常に小さいので、液晶容量Cclに書き込まれた信号電圧は長期間保持される。このため、リフレッシュレートが低い場合でも表示品位の低下を抑制することができる。
 なお、InGaZnOx以外の酸化物半導体として、例えばインジウム、ガリウム、亜鉛、銅(Cu)、シリコン(Si)、錫(Sn)、アルミニウム(Al)、カルシウム(Ca)、ゲルマニウム(Ge)、および鉛(Pb)のうち少なくとも1つを含む酸化物半導体をチャネル層に用いた場合でも同様の効果が得られる。また、TFT111として酸化物TFTを用いるのは一例であり、これに代えて多結晶シリコンや非晶質シリコンなどのシリコン系のTFTを用いても良い。
 表示制御回路200は、典型的にはLSI(Large Scale Integration)によって実現される。表示制御回路200は、FPC20を介してホスト1から画像データを含むデータDATを受信し、これに応じて信号線用制御信号SCT、走査線用制御信号GCT、および共通電位Vcomを生成し出力する。信号線用制御信号SCTは信号線駆動回路300に与えられる。走査線用制御信号GCTは走査線駆動回路400に与えられる。共通電位Vcomは共通電極113に与えられる。本実施形態では、ホスト1と表示制御回路200との間におけるデータDATの送受信は、MIPI(Mobile Industry Processor Interface)Allianceによって提案された、DSI(Display Serial Interface)規格に準拠したインターフェースを介して行われる。このDSI規格に準拠したインターフェースによれば、データ伝送を高速で行うことができる。本実施形態では、DSI規格に準拠したインターフェースのビデオモードまたはコマンドモードを用いる。
 信号線駆動回路300は、信号線用制御信号SCTに応じて、信号線SLに与えるべき駆動用画像信号を生成し出力する。信号線用制御信号SCTには、例えばRGBデータRGBDに対応するデジタル画像信号、ソーススタートパルス信号、ソースクロック信号、およびラッチストローブ信号などが含まれる。信号線駆動回路300は、ソーススタートパルス信号、ソースクロック信号、およびラッチストローブ信号に応じて、その内部の図示しないシフトレジスタおよびサンプリングラッチ回路などを動作させ、デジタル画像信号に基づいて得られたデジタル信号を図示しないDA変換回路でアナログ信号に変換することにより駆動用画像信号を生成する。
 走査線駆動回路400は、走査線用制御信号GCTに応じて、アクティブな走査信号の走査線GLへの印加を所定周期で繰り返す。走査線用制御信号GCTには、例えばゲートクロック信号およびゲートスタートパルス信号が含まれる。走査線駆動回路400は、ゲートクロック信号およびゲートスタートパルス信号に応じて、その内部の図示しないシフトレジスタなどを動作させ、走査信号を生成する。
 バックライトユニット30は、液晶表示パネル10の背面側に設けられ、液晶表示パネル10の背面にバックライト光を照射する。バックライトユニット30は、典型的には複数のLED(Light Emitting Diode)を含んでいる。バックライトユニット30は、表示制御回路200により制御されるものであっても良いし、その他の方法により制御されるものであっても良い。なお、液晶表示パネル10が反射型である場合には、バックライトユニット30は設ける必要がない。
 以上のようにして、信号線SLに駆動用画像信号が印加され、走査線GLに走査信号が印加され、バックライトユニット30が駆動されることにより、ホスト1から送信された画像データに応じた画面が液晶表示パネル10の表示部100に表示される。
<2.2 表示制御回路の構成>
 次に、表示制御回路200の構成を、3つの態様に分けて説明する。第1の態様は、ビデオモードを用い、かつRAM(Random Access Memory)を設けない態様である。以下では、このような第1の態様のことを「ビデオモードRAMスルー」という。第2の態様は、ビデオモードを用い、かつRAMを設ける態様である。以下では、このような第2の態様のことを「ビデオモードRAMキャプチャー」という。第3の態様は、コマンドモードを用い、かつRAMを設ける態様である。以下では、このような第3の態様のことを「コマンドモードRAMライト」という。なお、本発明はDSI規格に準拠したインターフェースに限定されるものではないので、表示制御回路200の構成は、これら3種類の態様に限定されるものではない。
<2.2.1 ビデオモードRAMスルー>
 図5は、図4に示す液晶表示装置2に含まれる、ビデオモードRAMスルーに対応した表示制御回路200(以下「ビデオモードRAMスルーの表示制御回路200」という。)の構成を示すブロック図である。図5に示すように、表示制御回路200は、インターフェース部210、コマンドレジスタ220、NVM(Non-volatile memory:不揮発性メモリ)221、タイミングジェネレータ230、OSC(Oscillator:発振器)231、ラッチ回路240、内蔵電源回路250、信号線用制御信号出力部260、および、走査線用制御信号出力部270を備えている。インターフェース部210にはDSI受信部211が含まれている。なお、上述のように、信号線駆動回路300および走査線駆動回路400の双方またはいずれか一方が表示制御回路200内に設けられていても良い。
 インターフェース部210内のDSI受信部211はDSI規格に準拠している。ビデオモードにおけるデータDATには、画像データであるRGBデータRGBDinと、同期信号である垂直同期信号VSYNC、水平同期信号HSYNC、データイネーブル信号DE、およびクロック信号CLKと、コマンドデータCMとが含まれている。コマンドデータCMには、各種制御に関するデータが含まれている。DSI受信部211は、ホスト1からデータDATを受信すると、当該データDATに含まれるRGBデータRGBDinをラッチ回路240に送信し、垂直同期信号VSYNC、水平同期信号HSYNC、データイネーブル信号DE、およびクロック信号CLKをタイミングジェネレータ230に送信し、コマンドデータCMをコマンドレジスタ220に送信する。なお、コマンドデータCMは、I2C(Inter Integrated Circuit)規格またはSPI(Serial Peripheral Interface)規格に準拠したインターフェースを介してホスト1からコマンドレジスタ220に送信されても良い。この場合、インターフェース部210にはI2C規格またはSPI規格に準拠した受信部が含まれる。
 コマンドレジスタ220はコマンドデータCMを保持する。NVM221には各種制御用の設定データSETが保持されている。コマンドレジスタ220は、NVM221に保持された設定データSETを読み出す。また、ホスト1から送信されたコマンドデータCMに応じて設定データSETを更新することもできる。画像データのリフレッシュレートに応じて設定されるRef_intは、設定データSETに含まれ、コマンドレジスタ220内に設けられたレジスタ222に格納される。コマンドレジスタ220は、レジスタ222に格納された、Ref_intを含むデータに基づいて、表示部100の画面をリフレッシュするためのタイミング制御信号TSを生成し、これをタイミングジェネレータ230に送信する。また、電圧設定信号VSを内蔵電源回路250に送信する。なお、図5には、レジスタ222が1個だけ記載されている。しかし、Ref_intはレジスタ222に格納されるので、設定するRef_intの数が増えればそれに応じてレジスタ222の個数も増やす必要がある。
 タイミングジェネレータ230は、垂直同期信号VSYNC、水平同期信号HSYNC、データイネーブル信号DE、およびクロック信号CLKと、タイミング制御信号TSと、OSC231で生成される内蔵クロック信号ICKとに基づいて、ラッチ回路240、信号線用制御信号出力部260、および走査線用制御信号出力部270を制御する制御信号を送信する。
 また、タイミングジェネレータ230は、リフレッシュを行うとき、ホスト1に対してデータDATの送信を要求するために、垂直同期信号VSYNC、水平同期信号HSYNC、データイネーブル信号DE、およびクロック信号CLKと、タイミング制御信号TSと、OSC231で生成される内蔵クロック信号ICKとに基づいて生成したリクエスト信号REQをホスト1に送信する。なお、ビデオモードRAMスルーの表示制御回路200ではOSC231は必須でない。
 ホスト1はリクエスト信号REQを受信すると、データDATを表示制御回路200に送信する。このようして、リフレッシュを行う際には、リクエスト信号REQに応じてホスト1から必要なデータDATがその都度送信され、送信されたデータDATに基づいて画面のリフレッシュが行われる。
 ラッチ回路240は、タイミングジェネレータ230の制御に基づいて、ホスト1から送信されたデータDATに含まれるRGBデータRGBDoutを1ライン分ずつ、信号線用制御信号出力部260に送信する。このようにして、画面のリフレッシュを必要な回数だけ行うことができる。
 内蔵電源回路250は、ホスト1から与えられる電源およびコマンドレジスタ220から与えられる電圧設定信号VSに基づいて、信号線用制御信号出力部260および走査線用制御信号出力部270で用いるための電源電圧および共通電位Vcomを生成し出力する。
 信号線用制御信号出力部260は、ラッチ回路240からのRGBデータRGBDоut、タイミングジェネレータ230からの制御信号、および内蔵電源回路250からの電源電圧に基づいて信号線用制御信号SCTを生成し、これを信号線駆動回路300に送信する。
 走査線用制御信号出力部270は、タイミングジェネレータ230からの制御信号および内蔵電源回路250からの電源電圧に基づいて走査線用制御信号GCTを生成し、これを走査線駆動回路400に送信する。
<2.2.2 ビデオモードRAMキャプチャー>
 図6は、図4に示す液晶表示装置2に含まれる、ビデオモードRAMキャプチャーに対応した表示制御回路200(以下「ビデオモードRAMキャプチャーの表示制御回路200」という。)の構成を示すブロック図である。ビデオモードRAMキャプチャーの表示制御回路200は、図6に示すように、上述のビデオモードRAMスルーの表示制御回路200にフレームメモリ(RAM)280を追加したものである。
 ビデオモードRAMスルーの表示制御回路200では、DSI受信部211からラッチ回路240にRGBデータRGBDinが直接送信される。しかし、ビデオモードRAMキャプチャーの表示制御回路200では、DSI受信部211から送信されるRGBデータRGBDinはフレームメモリ280に保持される。そして、フレームメモリ280に保持されたRGBデータRGBDmоは、タイミングジェネレータ230で生成される制御信号に応じてラッチ回路240に読み出される。また、タイミングジェネレータ230は、上記リクエスト信号REQに代えて垂直同期出力信号VSOUTをホスト1に送信する。垂直同期出力信号VSOUTは、フレームメモリ280へのRGBデータRGBDinの書き込みタイミングとフレームメモリ280からのRGBデータRGBDmоの読み出しタイミングが重複しないようにホスト1からのデータDATの送信タイミングを制御する信号である。ビデオモードRAMキャプチャーの表示制御回路200のその他の構成および動作は、ビデオモードRAMスルーの表示制御回路200におけるものと同様であるので、その説明を省略する。なお、ビデオモードRAMキャプチャーの表示制御回路200ではOSC231は必須でない。
 また、タイミングジェネレータ230は、コマンドレジスタ220から表示部100の画面をリフレッシュするためのタイミング制御信号TSを受信すれば、制御信号をフレームメモリ280に送信する。これにより、フレームメモリ280に保持されているRGBデータRGBDmоは、タイミングジェネレータ230から受信した制御信号に応じてラッチ回路240に読み出される。
 ビデオモードRAMキャプチャーの表示制御回路200では、フレームメモリ280にRGBデータRGBDmоを保持することができる。このため、画面をリフレッシュする場合には、ホスト1から表示制御回路200にデータDATを送信する必要はなく、リフレッシュを行う回数に応じて、タイミングジェネレータ230がフレームメモリ280に制御信号を送信する。このようにして、表示部100に現在表示されている画像と同じ画像を表示することにより、画面のリフレッシュを必要な回数だけ行うことができる。
<2.2.3 コマンドモードRAMライト>
 図7は、図4に示す液晶表示装置2に含まれる、コマンドモードRAMライトに対応した表示制御回路200(以下「コマンドモードRAMライトの表示制御回路200」という。)の構成を示すブロック図である。コマンドモードRAMライトの表示制御回路200は、図7に示すように、上述のデオモードRAMキャプチャーの表示制御回路200と同様の構成であるが、データDATに含まれるデータの種類が異なる。
 コマンドモードにおけるデータDATには、コマンドデータCMが含まれ、RGBデータRGBDin、垂直同期信号VSYNC、水平同期信号HSYNC、データイネーブル信号DE、およびクロック信号CLKは含まれない。ただし、コマンドモードにおけるコマンドデータCMには、画像に関するデータおよび各種タイミングに関するデータが含まれている。コマンドレジスタ220は、コマンドデータCMのうちの、画像に関するデータに相当するRAMライト信号RGBDmiをフレームメモリ280に送信する。このRAMライト信号RAMWは、上記RGBデータRGBDinに相当する。また、コマンドモードでは、タイミングジェネレータ230は垂直同期信号VSYNCおよび水平同期信号HSYNCを受信しないので、内蔵クロック信号ICKおよびタイミング制御信号TSに基づいてそれらに相当する内部垂直同期信号IVSYNCおよび内部水平同期信号IHSYNCを内部で生成する。タイミングジェネレータ230は、これらの内部垂直同期信号IVSYNCおよび内部水平同期信号IHSYNCに基づいてラッチ回路240、信号線用制御信号出力部260、および走査線用制御信号出力部270を制御する。また、タイミングジェネレータ230は、上記垂直同期出力信号VSOUTに相当する送信制御信号TEをホスト1に送信する。
 なお、画面をリフレッシュする際のコマンドレジスタ220、タイミングジェネレータ230、およびフレームメモリ280の動作は、ビデオモードRAMキャプチャーの表示制御回路200の動作と同じであるので、それらの説明を省略する。
<2.3 動作の概要>
 本明細書において休止駆動とは、ホスト1から更新された画像データ(RGBデータRGBD)が与えられたとき、画面をリフレッシュするフレーム(以下「リフレッシュフレーム」という)の後に、画面のリフレッシュを休止するフレーム(以下「ノンリフレッシュフレーム」という)を設け、これらのリフレッシュフレームとノンリフレッシュフレームをそれぞれ所定のフレーム数ずつ交互に繰り返す駆動をいう。例えば前述した図1および図2に示す場合と同様に、後述する各図における各矩形ボックスは1フレームを示し、リフレッシュフレームには「R」を付し、ノンリフレッシュフレームには「N」を付している。
 リフレッシュフレームでは、上述のように画面のリフレッシュが行われる。より詳細には、RGBデータRGBDに対応するデジタル画像信号を含む信号線用制御信号SCTに応じて信号線駆動回路300から信号線SL1~SLmに駆動用画像信号が供給されると共に、走査線用制御信号GCTに応じて走査線駆動回路400により走査線GL1~GLnが順に選択される。選択された走査線GLに対応したTFT111がオン状態になって液晶容量Cclに駆動用画像信号の電圧が書き込まれる。このようにして、画面がリフレッシュされる。その後、TFT111がオフ状態になり、液晶容量Cclに書き込まれた電圧は、次に画面がリフレッシュされるまで保持される。
 ノンリフレッシュフレームでは、上述の画面のリフレッシュが休止される。より詳細には、走査線用制御信号GCTの走査線駆動回路400への供給が停止するかまたは走査線用制御信号GCTが固定電位となることにより、走査線駆動回路400の動作が停止するので、走査線GL1~GLnの走査は行われない。その結果、ノンリフレッシュフレームでは液晶容量Cclに駆動用画像信号は書き込まれない。ただし、液晶容量Cclには直前に書き込まれた駆動用画像信号が保持されているので、直前のリフレッシュフレームでリフレッシュされた画面が引き続き表示される。また、ノンリフレッシュフレームでは、信号線用制御信号SCTの信号線駆動回路300への供給を停止するなどして、信号線駆動回路300の動作が停止する。このように、ノンリフレッシュフレームでは、走査線駆動回路400および信号線駆動回路300は動作を停止するので、消費電力を低減することができる。なお、信号線駆動回路300は動作させるようにしても良い。
 休止駆動中に、液晶誘電率の異方性に起因する残像が視認されることを防止するために、更新されたRGBデータRGBDがホスト1から液晶表示装置2に送信されてきたとき、同一のRGBデータRGBDに対応する駆動用画像信号の電圧を液晶容量Cclに書き込むリフレッシュを3回行う。リフレッシュを3回行うことにより、液晶分子の方向を印加電圧に対応した方向に配向させることができる。なお、本明細書では、更新されたRGBデータRGBDがホスト1から送信されてきたとき、液晶表示装置2はリフレッシュを3回行うとして説明するが、4回以上行っても良い。リフレッシュを4回以上行うことにより、液晶分子を印加電圧に対応する方向により確実に配向させることができるので、より確実に残像が視認されないようにすることができる。
 また、画像データが更新された時に行う1回目のリフレッシュと、その後に行う2回目のリフレッシュとの間に設けるノンリフレームのフレーム数はRef_intによって決まり、Ref_intはコマンドレジスタ220内に設けられたレジスタ222に格納されている。コマンドレジスタ220は、表示部100の画面をリフレッシュするためのタイミング制御信号TSを生成するときには、Ref_intをレジスタ222から読み出して生成したタイミング制御信号TSをタイミングジェネレータ230に送信する。
<2.4 休止駆動における動作>
 図8は、本実施形態に係る液晶表示装置2の休止駆動における動作を説明するための図である。液晶表示装置2はオートリフレッシュ機能を備えた表示装置である。また、本実施形態では、Ref_intを2に設定する。
 まず、第1フレームにおいて、更新された画像データが送信されてくるので、この画像データを用いて1回目のリフレッシュを行い、Ref_intに基づいて第2および第3フレームでリフレッシュを休止する。次に、第4および第5フレームで、1回目のリフレッシュに用いた画像データと同じ画像データを用いて2回目および3回目のリフレッシュを連続して行う。その後、第6フレームから第12フレームまでリフレッシュを休止する。
 第13フレームにおいて、更新された画像データが送信されてくるので、この画像データを用いて1回目のリフレッシュを行い、Ref_intに基づいて第14および第15フレームでリフレッシュを休止する。次に、第16および第17フレームで1回目のリフレッシュに用いた画像データと同じ画像データを用いて2回目および3回目のリフレッシュを連続して行う。その後、第18フレームから第24フレームまでリフレッシュを休止する。
 同様にして、更新された画像データが送信されてくると、この画像データを用いて1回目のリフレッシュを行い、Ref_intに基づいて次の2フレーム期間だけリフレッシュを休止する。そして、2回目および3回目のリフレッシュを連続して行い、次の更新された画像データが送信されてくるまでリフレッシュを休止することを繰り返す。
<2.5 効果>
 本実施形態によれば、更新された画像データを受信してから短期間にリフレッシュを3回行うことができるので、液晶分子の方向を印加電圧に対応する方向に短時間で配向させることができる。これにより、液晶表示装置2の消費電力を低減しつつ、液晶誘電率の異方性に起因する残像を視認できなくすることができる。
<2.6 変形例>
<2.6.1 第1の変形例>
 上記実施形態では、Ref_intとして2を設定した。しかし、Ref_intは2に限定されず、1であってもよく、また3以上の整数であってもよい。第1の変形例は、上記本実施形態においてRef_intだけを3に設定する場合である。図9は、本実施形態の第1の変形例に係る液晶表示装置2の休止駆動における動作を説明するための図である。第1の変形例では、図9に示すように、更新された画像データが送信されてくると、この画像データを用いて1回目のリフレッシュを行い、Ref_intに基づいて次の3フレーム期間だけリフレッシュを休止する。そして、2回目および3回目のリフレッシュを連続して行い、次の更新された画像データが送信されてくるまでリフレッシュを休止することを繰り返す。この場合も、短期間にリフレッシュを3回行うことができる。なお、Ref_intを大きくしすぎれば残像が視認されるようになるので、Ref_intを適宜調整する必要がある。
<2.6.2 第2の変形例>
 上記実施形態および第1の変形例では、2番目のリフレッシュと3番目のリフレッシュを連続して行うとした。しかし、これらのリフレッシュは必ずしも連続的に行う必要はなく、それらの間に休止期間を設けてもよい。例えば、2番目のリフレッシュと3番目のリフレッシュとの間にも、2フレーム期間分の休止期間を設けてもよい。図10は、本実施形態の第2の変形例に係る液晶表示装置2の休止駆動における動作を説明するための図である。第2の変形例では、図10に示すように、画像データのリフレッシュレートが10Hzである場合、第1フレームで更新された画像データを用いて1回目のリフレッシュを行い、第2および第3フレームでリフレッシュを休止する。第4フレームで2回目のリフレッシュを行い、第5および第6フレームでリフレッシュを休止する。次に、第7フレームで3回目のリフレッシュを行おうとすると、次の更新された画像データが送信されてくる。そこで、3回目のリフレッシュを中止し、更新された画像データを用いて1回目のリフレッシュを行う。このように、画像データが更新されるごとに、リフレッシュを2回しか行わないので、液晶表示装置2の消費電力を低減することができる。なお、2番目のリフレッシュと3番目のリフレッシュとの間にも、2フレーム分の休止期間を設けることは、リフレッシュレートが15Hz以上の画像データをリフレッシュする場合にも同様に適用することができる。
<3.第2の実施形態>
 図11は、本発明の第2の実施形態に係る液晶表示装置2の休止駆動における動作を説明するための図である。なお、本実施形態は、休止駆動における動作を除き上記第1の実施形態と同様であるので、液晶表示装置2の構成および液晶表示装置2に含まれる表示制御回路200の構成をそれぞれ示すブロック図およびそれらの説明を省略する。
<3.1 休止駆動における動作>
 上記第1の実施形態では、更新された画像データはホスト1から一定のフレームレート(例えば5Hz)で送信されてくる。しかし、画像データのリフレッシュレートは、休止駆動を開始してから切り替わってもよい。本実施形態では、このリフレッシュレートがいつから切り替わるかが予めわかっているとする。
 図11に示すように、例えば、画像データのリフレッシュレートが、1回目および2回目に送信されてきたときには15Hzであるが、3回目およびそれ以後に送信されてくるときには5Hzに切り替わることが予めわかっているとする。そこで、1回目および2回目に送信されてくる画像データをリフレッシュするために、15Hzに対応してRef_intを2に設定する。また、3回目以降に送信されてくる画像データをリフレッシュするために、5Hzに対応してRef_intを0に設定する。
 この場合、Ref_intは2であるので、第1フレームで1回目のリフレッシュを行い、第2および第3フレームでリフレッシュを休止する。第4フレームで2回目のリフレッシュを行い、さらに第5フレームで3回目のリフレッシュを行おうとすると、次の更新された画像データが送信されてくる。
 そこで、第5フレームで行う予定であった3回目のリフレッシュを中止し、更新された画像データを用いて1回目のリフレッシュを行う。そして、第6および第7フレームでリフレッシュを休止する。第8フレームで2回目のリフレッシュを行い、さらに第9フレームで3回目のリフレッシュを行おうとすると、次の更新された画像データが送信されてくる。そこで、第9フレームで行う予定であった3回目のリフレッシュを中止し、更新された画像データを用いて1回目のリフレッシュを行う。
 第9フレームにおいて送信されてくる画像データのリフレッシュレートが5Hzに変更されていることが予めわかっているので、Ref_intを0に設定し直す。設定し直したRef_intに基づいて、第10および第11フレームで2回目および3回目のリフレッシュをそれぞれ行う。そして、第12フレームから第20フレームまでリフレッシュを休止する。
 第21フレームにおいて、送信されてくる画像データのリフレッシュレートは、第9フレームの画像データのリフレッシュレートと同じ5Hzであるので、Ref_intを変更することなく、この画像データを用いて1回目のリフレッシュを行い、さらに第22および第23フレームで2回目および3回目のリフレッシュをそれぞれ行う。そして、第24フレームから第32フレームまでリフレッシュを休止する。以下、同様にして、更新された画像データが5Hzで送信されてくるので、Ref_intを変更することなく休止駆動を行う。
 なお、上記実施形態では、リフレッシュレートが15Hzの画像データを用いてリフレッシュを所定回数行った後に、画像データのリフレッシュレートが15Hzから5Hzに切り替わる場合について説明した。しかし、リフレッシュレートの変更はこれに限定されず、例えば30Hzから1Hzに変更される場合であってもよく、また逆に5Hzから15Hzに切り替わったり、1Hzから30Hzに切り替わったりする場合にも同様に適用できる。
<3.2 効果>
 本実施形態によれば、画像データのリフレッシュレートが休止駆動中に切り替わることが予めわかっているので、それに合わせてRef_intを設定し直す。これにより、ホスト1から送信されてきた画像データのリフレッシュレートが休止駆動中に切り替わる場合にも、液晶表示装置2の消費電力を低減しつつ、休止駆動中に残像が視認されないようにすることができる。
<3.3 変形例>
 上記実施形態では、画像データのリフレッシュレートの切り替わるタイミングが予めわかっていたので、それに合わせてRef_intの設定を変更した。しかし、画像データのリフレッシュレートが切り替わるタイミングは予めわかっておらず、突然切り替わる場合であってもよい。
<3.3.1 第1の変形例>
 図12は、本実施形態の第1の変形例に係る液晶表示装置2の休止駆動における動作を説明するための図である。第1の変形例では、図12に示すように、画像データのリフレッシュレートが、1回目および2回目に送信されてきたときには15Hzであるが、3回目に送信されてきたときには5Hzに切り替わっている。しかし、5Hzに切り替わった時点では、表示制御回路200は、画像データのリフレッシュレートが15Hzであるのか、それとも5Hzに切り替わったのかを判断することができない。
 更新された画像データが15Hzで送信されてきた場合における休止駆動は図11に示す場合と同じであるので、第1フレームから第8フレームまでの説明を省略し、第9フレームでの動作から説明する。第9フレームにおいて、送信されてきた画像データのリフレッシュレートは15Hzから5Hzに切り替わっているが、この時点では、表示制御回路200はリフレッシュレートが切り替わっていることを認識できない。このため、このときのRef_intは2のままである。しかし、リフレッシュレートが5Hzに切り替わっているので、次の更新された画像データが送信されてくるのは、第13フレームではなく、第21フレームである。その結果、第9フレームで、更新された画像データを用いてリフレッシュを行い、第10および第11フレームでリフレッシュを休止する。次に、第12および第13フレームで2回目および3回目のリフレッシュを行い、第14フレームから第20フレームまでリフレッシュを休止する。
 第21フレームで、更新された画像を受信することにより、表示制御回路200は更新周期が5Hzに切り替わったことを認識し、Ref_intの設定を0に変更する。したがって、第21フレームで1回目のリフレッシュを行い、第22および第23フレームで2回目および3回目のリフレッシュをそれぞれ行う。そして、第24フレームから第32フレームまでリフレッシュを休止する。以下、同様にして、更新された画像データが5Hzで送信されてくるので、Ref_intは0のままである。
 このように、画像データのリフレッシュレートが切り替わることが予めわかっていない場合には、表示制御回路200は、切り替わった直後にそのことを認識できないので、Ref_intはそれに合わせて直ちに変更されることはない。しかし、次に同じリフレッシュレートで画像データが送信されてくれば、それに合わせてRef_intは設定し直される。このため、Ref_intを設定し直すタイミングは、リフレッシュレートが切り替わるタイミングよりも遅れる。しかし、ホスト1から送信されてくる画像データのリフレッシュレートが突然切り替わる場合にも、Ref_intを設定し直すことによって、リフレッシュレートによらず、休止駆動中の残像を確実に視認されないようにすることができる。
<3.3.2 第2の変形例>
 画像データのリフレッシュレートが、例えば30Hz、15Hz、10Hz、5Hzなどのように複数のリフレッシュレートの間で次々に切り替わってもよい。図13は、本実施形態の第2の変形例に係る液晶表示装置2の休止駆動における動作を説明するための図である。第2の変形例では、図13に示すように、リフレッシュレートが30Hzから順に切り替わっても、Ref_intを、それに応じて変更することなく、常に2になるように設定しておく。これにより、Ref_intを格納するためにコマンドレジスタ220内にレジスタ222を1個だけ設ければ良いので、表示制御回路200の製造コストを低減することができる。なお、合計3回のリフレッシュを早期に行うことによって残像を視認されないようにするためには、Ref_intとして1~3のいずれか1つを設定することが好ましいが、これに限定されることはない。
<4.第3の実施形態>
 図14は、本発明の第3の実施形態に係る液晶表示装置2の休止駆動における動作を説明するための図である。なお、本実施形態は、休止駆動における動作を除き上記第1の実施形態と同様であるので、液晶表示装置2の構成および液晶表示装置2に含まれる表示制御回路200の構成をそれぞれ示すブロック図およびそれらの説明を省略する。
<4.1 休止駆動における動作>
 休止駆動期間の全体を通じて、液晶容量Cclの印加電圧の正極性と負極性のバランスを考慮しない場合には、液晶層に特定方向の電圧が印加される時間が長くなり、液晶層の劣化が進みやすくなる。そこで、本実施形態では、休止駆動中の残像を視認できなくすると共に、さらに液晶層の劣化を抑制する。
 本実施形態では、液晶層の劣化を抑制するために極性反転駆動(交流駆動)を行う。図14に示す各リフレッシュフレームおよびノンリフレッシュフレームの下部に、当該フレームで行うリフレッシュ時に印加される電圧の極性が示されている。具体的には、「+」は、画素電極112に印加される電圧が、共通電極113に印加される電圧よりも高いことを示す。「-」は、画素電極112に印加される電圧が、共通電極113に印加される電圧よりも低いことを示す。以下では、画素電極112に共通電極113よりも高い電圧を印加してリフレッシュを行うリフレッシュフレームのことを「正極性リフレッシュフレーム」といい、画素電極112に共通電極113よりも低い電圧を印加してリフレッシュを行うリフレッシュフレームのことを「負極性リフレッシュフレーム」という。
 図14に示すように、更新された画像データがホスト1から5Hzで送信されてくるとし、Ref_intは2であるとする。第1フレームにおいて、ホスト1から更新された画像データが送信されてくれば、1回目のリフレッシュを行う。このリフレッシュは正極性のリフレッシュであるため、第1フレームは正極性リフレッシュフレームになる。Ref_intを2に設定しているので、第2および第3フレームではリフレッシュを休止する。しかし、1回目のリフレッシュ時と同じ正極性の電圧が保持されるので、第2および第3フレームも正極性のノンリフレッシュフレームになる。第4フレームにおいて2回目のリフレッシュが行われる。極性はリフレッシュを行うごとに反転するので、このリフレッシュは負極性のリフレッシュである。さらに、第5フレームにおいて3回目のリフレッシュが行われる。このリフレッシュは正極性のリフレッシュである。その後、第6フレームから第12フレームまでの各フレームにおいてリフレッシュを休止する。このとき、3回目のリフレッシュ時と同じ正極性の電圧が保持されるので、第6から第12フレームも正極性のノンリフレッシュフレームになる。この場合、第1フレームから第12フレームまでの正極性フレームのフレーム数は11フレームであり、負極性フレームのフレーム数は1フレームである。
 第13フレームにおいて、ホスト1から更新された画像データが送信されてくれば、4回目のリフレッシュを行う。このリフレッシュは負極性のリフレッシュであるため、第13フレームは負極性リフレッシュフレームになる。Ref_intを2に設定しているので、第14および第15フレームではリフレッシュを休止する。しかし、1回目のリフレッシュ時と同じ負極性の電圧が保持されるので、第14および第15フレームも負極性のノンリフレッシュフレームになる。第16フレームにおいて5回目のリフレッシュが行われる。極性はリフレッシュを行うごとに反転するので、このリフレッシュは正極性のリフレッシュである。さらに、第17フレームにおいて6回目のリフレッシュが行われる。このリフレッシュは負極性のリフレッシュである。その後、第18フレームから第24フレームまでの各フレームにおいてリフレッシュを休止する。このとき、6回目のリフレッシュ時と同じ負極性の電圧が保持されるので、第18から第24フレームも負極性のノンリフレッシュフレームになる。この場合、第13フレームから第24フレームまでの正極性フレームのフレーム数は1フレームであり、負極性フレームのフレーム数は11フレームである。
 その結果、第1フレームから第24フレームまでの正極性フレームのフレーム数および負極性フレームのフレーム数はいずれも12フレームになる。このようにして、正極性フレームのフレーム数と負極性フレームのフレーム数とが同じ割合になるようなリフレッシュが行われる。
 なお、本実施形態では、リフレッシュレートが5Hzである場合について説明したが、第1および第2の実施形態およびそれらの変形例についても、正極性フレームのフレーム数と負極性フレームのフレーム数とが同じ割合になるようにリフレッシュを行うことができる。
<4.2 効果>
 本実施形態によれば、第1の実施形態の場合と同様の効果を奏し、さらに正極性フレームのフレーム数と負極性フレームのフレーム数とを同じ割合にすることができる。このように、液晶層を交流駆動することによって、特定方向の電圧が液晶層に印加される時間が長くなることがなくなり、液晶層の劣化を抑制することができる。
<4.3 第1の変形例>
 図15は、本実施形態の第1の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。ホスト1から送信された画像データが更新されていない場合、すなわち直前に送信された画像データと同じ画像データが送信されてきた場合、休止期間に残像が視認されるという問題は生じない。そこで、このような場合のリフレッシュについて説明する。
 第1フレームから第24フレームまでのリフレッシュおよびノンリフレッシュは、上述の図14の場合と同じであるので、その説明を省略する。なお、第1フレームにおいて、ホスト1から送信されてくる画像データは画像Aのデータであり、第13フレームにおいて送信されてくる画像データは画像Bのデータであるとする。
 次に、第25フレームにおいて、第13フレームで送信されてきた画像データと同じ画像Bのデータが送信されてくる。そこで、第25フレームでは、7回目のリフレッシュが行われる。このリフレッシュは正極性のリフレッシュであるため、第25フレームは正極性リフレッシュフレームになる。Ref_intを2に設定しているので、第26および第27フレームではリフレッシュを休止する。しかし、7回目のリフレッシュ時と同じ正極性の電圧が保持されるので、第26および第27フレームも正極性のノンリフレッシュフレームになる。
 第25フレームで送信されてきた画像データが、第13フレームで送信されてきた画像データと同じ画像Bのデータであったので、休止期間に残像が視認されることはない。このため、第28および第29フレームでも、リフレッシュを休止する。その結果、第26フレームから第36フレームまで、すべて正極性フレームになる。
 次に、第37フレームにおいて、第25フレームで送信されてきた画像データと異なり、画像Cのデータが送信されてくる。そこで、第37フレームから第48フレームまで、上述の第13フレームから第24フレームまでの場合と同様に、リフレッシュおよびノンリフレッシュが行われる。
 このように、直前に送信されてきた画像データと同じ画像データがホスト1から送信されてきた場合には、リフレッシュの回数を減らしても残像は視認されない。これにより、液晶表示装置2の消費電力を低減することができる。
<4.4 第2の変形例>
 図6に示すビデオモードRAMキャプチャーの表示制御回路200を備える液晶表示装置、または、図7に示すコマンドモードRAMライトの表示制御回路200を備える液晶表示装置は、ホスト1から送信されてきた画像データをフレームメモリ280に記憶させておくことができる。このため、ホスト1から画像データが送信されてこなくても、フレームメモリ280に記憶された画像データを読み出すことにより、リフレッシュを行うことができる。
 図16は、本実施形態の第2の変形例に係る液晶表示装置の休止駆動における動作を説明するための図である。図16に示すように、画像データが送信されてくるのは第1フレームだけである。しかし、第13フレーム、第25フレームおよび第37フレームでは、第1フレームでフレームメモリ280に記憶させた画像データを読み出してリフレッシュを行う。この場合、フレームメモリ280から読み出した画像データは、第1フレームで送信されてきた画像データと同じデータであるので、第13フレーム、第25フレームおよび第37フレームの各フレームでリフレッシュを行っても、残像が視認されることはない。このため、それぞれのフレームにおいてリフレッシュを行った後、さらに2回ずつリフレッシュを行う必要はない。したがって、第25フレームから第36フレームでは、図16に示す第25フレームから第36フレームの場合と同様に、正極性のリフレッシュを1回だけ行い、その後正極性のノンリフレッシュが11回続く。また、第13フレームから第24フレーム、および、第37フレームから第48フレームでは、それぞれ負極性のリフレッシュを1回だけ行い、その後負極性のノンリフレッシュが11回続く。
 このように、フレームメモリ280から読み出した画像データを用いてリフレッシュを行う場合には、リフレッシュの回数を減らしても残像は視認されない。これにより、液晶表示装置2の消費電力を低減することができる。
<5.その他>
 上記各実施形態および変形例では、1フレームごとに極性を反転させる場合について記載したが、極性反転のさせ方はこれに限定されず、例えば2フレームごと、3フレームごとに極性を反転さてもよい。
 本発明は、休止駆動によって画像を表示する液晶表示装置に適用することができる。
1…ホスト
2…液晶表示装置
100…表示部
110…画素形成部
111…TFT(薄膜トランジスタ)
200…表示制御回路
220…コマンドレジスタ
222…レジスタ
230…タイミングジェネレータ
240…ラッチ回路
280…フレームメモリ(RAM)
300…信号線駆動回路
400…走査線駆動回路
SL…信号線
GL…走査線

Claims (13)

  1.  所定のリフレッシュレートで休止駆動を行う液晶表示装置であって、
     複数の画素形成部を含む表示部と、
     前記表示部を駆動する駆動部と、
     外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、
     前記表示制御部は、前記データに含まれる画像データが更新されたとき、更新された画像データを用いてリフレッシュを1回行い、次に画像データのリフレッシュレートに応じて決まる休止期間だけリフレッシュを休止し、前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うことを特徴とする、液晶表示装置。
  2.  前記休止期間の終了後に行うリフレッシュの回数は2回であることを特徴とする、請求項1に記載の液晶表示装置。
  3.  前記休止期間の終了後に行う2回のリフレッシュは連続して行うことを特徴とする、請求項2に記載の液晶表示装置。
  4.  前記休止期間の経過後に行う2回のリフレッシュは、リフレッシュを休止する期間を間に挟んで行うことを特徴とする、請求項2に記載の液晶表示装置。
  5.  前記所定のリフレッシュレートは不定期で切り替えられ、前記リフレッシュレートが変更されれば、それに応じて前記休止期間の長さも変更されることを特徴とする、請求項1に記載の液晶表示装置。
  6.  前記所定のリフレッシュレートは不定期で切り替えられ、前記リフレッシュレートが変更されても前記休止期間の長さは一定であることを特徴とする、請求項1に記載の液晶表示装置。
  7.  前記表示制御部は、交流駆動のための制御を行い、
     正極性でリフレッシュを行うリフレッシュフレームおよび正極性を維持するノンリフレッシュフレームからなる複数の正極性フレームと、負極性でリフレッシュを行うリフレッシュフレームおよび負極性を維持するノンリフレッシュフレームからなる複数の負極性フレームとを略同じ割合で交互に設けることを特徴とする、請求項1に記載の液晶表示装置。
  8.  前記表示制御部は、リフレッシュを行っているときまたはリフレッシュを休止しているときに、前記表示部の画面を更新する画像データを含む新たなデータを外部から受け取れば、リフレッシュまたはリフレッシュの休止を中止し、前記新たなデータに含まれる画像データを用いたリフレッシュを1回行い、次に画像データのリフレッシュレートに応じて決まる前記休止期間だけリフレッシュを休止し、前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うことを特徴とする、請求項1に記載の液晶表示装置。
  9.  前記表示制御部は、外部から受け取った前記データに含まれる画像データが更新されていないとき、前記休止期間の終了後に行うリフレッシュを休止することを特徴とする、請求項8に記載の液晶表示装置。
  10.  前記表示制御部は、前記データに含まれる画像データを1フレーム分だけ記憶するフレームメモリを含み、
     前記表示制御部は、前記更新された画像データを外部から受け取らなかったとき、前記フレームメモリから読み出した画像データを用いてリフレッシュを1回行い、前記休止期間の終了後に行うリフレッシュを休止することを特徴とする、請求項8に記載の液晶表示装置。
  11.  前記画素形成部は、前記表示部内の走査線に制御端子が接続され、前記表示部内の信号線に第1導通端子が接続され、表示すべき画像に応じた電圧が印加されるべき、前記表示部内の画素電極に第2導通端子が接続され、酸化物半導体によりチャネル層が形成された薄膜トランジスタを含むことを特徴とする、請求項1に記載の液晶表示装置。
  12.  前記酸化物半導体は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)および酸素(О)を主成分とするInGaZnOxであることを特徴とする、請求項11に記載の液晶表示装置。
  13.  複数の画素形成部を含む表示部と、前記表示部を駆動する駆動部と、外部から受け取るデータに基づいて前記駆動部を制御する表示制御部とを備え、所定のリフレッシュレートで休止駆動を行う液晶表示装置の駆動方法であって、
     前記データに含まれる画像データが更新されたとき、更新された画像データを用いてリフレッシュを1回行うステップと、
     画像データのリフレッシュレートに応じて決まる休止期間だけリフレッシュを休止するステップと、
     前記休止期間の終了後に前記更新された画像データと同じ画像データを用いてリフレッシュを少なくとも1回以上行うステップとを備えることを特徴とする、液晶表示装置の駆動方法。
PCT/JP2013/071615 2012-09-28 2013-08-09 液晶表示装置およびその駆動方法 WO2014050327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014538264A JP6099659B2 (ja) 2012-09-28 2013-08-09 液晶表示装置およびその駆動方法
CN201380050235.5A CN104662596B (zh) 2012-09-28 2013-08-09 液晶显示装置及其驱动方法
US14/431,819 US9818375B2 (en) 2012-09-28 2013-08-09 Liquid-crystal display device and drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217381 2012-09-28
JP2012217381 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050327A1 true WO2014050327A1 (ja) 2014-04-03

Family

ID=50387741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071615 WO2014050327A1 (ja) 2012-09-28 2013-08-09 液晶表示装置およびその駆動方法

Country Status (4)

Country Link
US (1) US9818375B2 (ja)
JP (1) JP6099659B2 (ja)
CN (1) CN104662596B (ja)
WO (1) WO2014050327A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060312A1 (ja) * 2013-10-25 2015-04-30 シャープ株式会社 表示装置、電子機器、および表示装置の制御方法
JP2019191520A (ja) * 2018-04-27 2019-10-31 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP2021099488A (ja) * 2019-12-23 2021-07-01 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 画素走査駆動回路、アレイ基板及び表示端末

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094806A (ja) * 2013-11-11 2015-05-18 シナプティクス・ディスプレイ・デバイス株式会社 表示ドライバ、表示システム、及びマイクロコンピュータ
WO2015132833A1 (ja) * 2014-03-06 2015-09-11 株式会社Joled 半導体デバイスおよび表示装置
JP2016031464A (ja) * 2014-07-29 2016-03-07 株式会社ジャパンディスプレイ 液晶表示装置およびその駆動方法
US10032430B2 (en) 2014-09-17 2018-07-24 Mediatek Inc. Processor for use in dynamic refresh rate switching and related electronic device
US9905199B2 (en) * 2014-09-17 2018-02-27 Mediatek Inc. Processor for use in dynamic refresh rate switching and related electronic device and method
KR102305765B1 (ko) * 2015-03-27 2021-09-28 삼성전자주식회사 전자 장치 및 전자 장치에서의 디스플레이 제어 방법
US10339855B2 (en) 2016-08-30 2019-07-02 Apple, Inc. Device and method for improved LED driving
CN106710506B (zh) * 2017-01-18 2020-07-14 京东方科技集团股份有限公司 显示面板的驱动方法、驱动电路、显示面板及显示装置
US20180374416A1 (en) * 2017-06-21 2018-12-27 Raydium Semiconductor Corporation Display driving apparatus and operating method thereof
KR102462008B1 (ko) * 2017-09-22 2022-11-03 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102402766B1 (ko) * 2017-10-19 2022-05-26 엘지디스플레이 주식회사 저속 구동 모드로 영상을 출력하는 방법 및 이를 구현하는 표시장치
CN107610671A (zh) * 2017-11-07 2018-01-19 合肥京东方光电科技有限公司 控制时序的方法和装置、驱动电路、显示面板、电子设备
CN113160748B (zh) * 2020-01-22 2022-03-29 Oppo广东移动通信有限公司 显示屏变频方法、显示驱动集成电路芯片及应用处理器
CN113467900A (zh) * 2020-03-31 2021-10-01 北京小米移动软件有限公司 终端、信息处理方法、装置及存储介质
JP7123097B2 (ja) 2020-08-20 2022-08-22 シャープ株式会社 表示装置
CN116419452A (zh) * 2021-12-29 2023-07-11 合肥京东方光电科技有限公司 发光基板的驱动方法及装置、驱动芯片和时序控制板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116739A (ja) * 2000-10-06 2002-04-19 Sharp Corp アクティブマトリクス型表示装置およびその駆動方法
JP2002278523A (ja) * 2001-01-12 2002-09-27 Sharp Corp 表示装置の駆動方法および表示装置
JP2011191746A (ja) * 2010-02-19 2011-09-29 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191191A (ja) * 1996-12-26 1998-07-21 Hitachi Ltd 映像表示装置
CN1287341A (zh) * 1999-09-06 2001-03-14 胡凯 产品数码加密防伪系统和方法
JP3749147B2 (ja) * 2001-07-27 2006-02-22 シャープ株式会社 表示装置
JP4638117B2 (ja) 2002-08-22 2011-02-23 シャープ株式会社 表示装置およびその駆動方法
US7659876B2 (en) * 2004-07-29 2010-02-09 Koninklijke Philips Electronics N.V. Driving a display with a polarity inversion pattern
KR101887336B1 (ko) * 2010-04-23 2018-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 구동 방법
JP5848912B2 (ja) * 2010-08-16 2016-01-27 株式会社半導体エネルギー研究所 液晶表示装置の制御回路、液晶表示装置、及び当該液晶表示装置を具備する電子機器
US8749541B2 (en) * 2012-04-05 2014-06-10 Apple Inc. Decreasing power consumption in display devices
US8884977B2 (en) * 2012-08-24 2014-11-11 Analogix Semiconductor, Inc. Panel self refreshing with changing dynamic refresh rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116739A (ja) * 2000-10-06 2002-04-19 Sharp Corp アクティブマトリクス型表示装置およびその駆動方法
JP2002278523A (ja) * 2001-01-12 2002-09-27 Sharp Corp 表示装置の駆動方法および表示装置
JP2011191746A (ja) * 2010-02-19 2011-09-29 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060312A1 (ja) * 2013-10-25 2015-04-30 シャープ株式会社 表示装置、電子機器、および表示装置の制御方法
US9881566B2 (en) 2013-10-25 2018-01-30 Sharp Kabushiki Kaisha Display device, electronic apparatus, and control method for display device
JP2019191520A (ja) * 2018-04-27 2019-10-31 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP7101532B2 (ja) 2018-04-27 2022-07-15 シャープ株式会社 表示制御装置、表示装置及び表示制御方法
JP2021099488A (ja) * 2019-12-23 2021-07-01 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 画素走査駆動回路、アレイ基板及び表示端末

Also Published As

Publication number Publication date
JPWO2014050327A1 (ja) 2016-08-22
US20150243253A1 (en) 2015-08-27
JP6099659B2 (ja) 2017-03-22
US9818375B2 (en) 2017-11-14
CN104662596B (zh) 2017-05-17
CN104662596A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6099659B2 (ja) 液晶表示装置およびその駆動方法
JP5885760B2 (ja) 表示装置およびその駆動方法
US9607541B2 (en) Liquid crystal display device and method for driving same
US9761201B2 (en) Liquid-crystal display device and drive method thereof
JP5781215B2 (ja) 表示装置、それを備える電子機器、および表示装置の駆動方法
JP6153530B2 (ja) 液晶表示装置およびその駆動方法
TWI591612B (zh) Display device and method of driving the same
WO2014103912A1 (ja) 液晶表示装置およびその駆動方法
WO2016043112A1 (ja) 表示装置およびその駆動方法
JP6196319B2 (ja) 表示装置およびその駆動方法
TWI537926B (zh) 顯示裝置及其驅動方法
TWI553616B (zh) A display device and a driving method thereof
WO2013125459A1 (ja) 表示装置、それを備える電子機器、および表示装置の駆動方法
WO2013024776A1 (ja) 表示装置およびその駆動方法
WO2014208130A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842070

Country of ref document: EP

Kind code of ref document: A1