WO2014046521A1 - Procédé de fabrication d'un séparateur pour batterie secondaire au lithium, séparateur fabriqué à l'aide dudit procédé et batterie secondaire au lithium comprenant ledit séparateur - Google Patents

Procédé de fabrication d'un séparateur pour batterie secondaire au lithium, séparateur fabriqué à l'aide dudit procédé et batterie secondaire au lithium comprenant ledit séparateur Download PDF

Info

Publication number
WO2014046521A1
WO2014046521A1 PCT/KR2013/008545 KR2013008545W WO2014046521A1 WO 2014046521 A1 WO2014046521 A1 WO 2014046521A1 KR 2013008545 W KR2013008545 W KR 2013008545W WO 2014046521 A1 WO2014046521 A1 WO 2014046521A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
secondary battery
lithium secondary
carbonate
coating layer
Prior art date
Application number
PCT/KR2013/008545
Other languages
English (en)
Korean (ko)
Inventor
이주성
김종훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13839054.7A priority Critical patent/EP2899776B1/fr
Priority to JP2014544692A priority patent/JP5971662B2/ja
Priority to CN201380004746.3A priority patent/CN104040756B/zh
Publication of WO2014046521A1 publication Critical patent/WO2014046521A1/fr
Priority to US14/296,745 priority patent/US10411234B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a separator for a lithium secondary battery, a separator produced by the method, and a lithium secondary battery including the same. More particularly, in forming a functional coating layer on the surface of a separator, a laser printing method is used.
  • the present invention relates to a method of manufacturing a separator for a lithium secondary battery, a separator manufactured by the method, and a lithium secondary battery including the same, by which a solvent is unnecessary, and thus there is no burden on handling and storage.
  • electrochemical device is the most attracting field in this respect, and the development of a secondary battery capable of charging and discharging has been the focus of attention, and in recent years in the development of such a battery in order to improve the capacity density and specific energy R & D on the design of electrodes and batteries is underway.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and a higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. It is used in various fields that require energy storage technology.
  • the lithium secondary battery generally includes an anode including an anode active material, a cathode including a cathode active material, a separator interposed between the anode and the cathode to electrically insulate them, and a nonaqueous electrolyte including an electrolyte salt and an organic solvent.
  • the separator should generally be stable and resistant to the components of the cell it is in contact with, exhibit high electroconductivity, and prevent the contact between the two electrodes when manufacturing and processing the separator or when used in batteries. It must be of sufficient strength to maintain its original shape. In view of such a necessity, a polyolefin-based porous substrate having a fine pore structure is generally used.
  • the separator may further include a functional coating layer on the surface of the separator because of improved adhesion to the electrode or prevention of melt shutdown during overcharging.
  • a separator incorporating a conventional functional coating layer was prepared by applying a polymer slurry containing a solvent to a porous substrate and then drying. The purpose of adding these solvents is to ensure fluidity, obtain proper dispersion and viscosity of the polymer particles.
  • the problem to be solved by the present invention is that the solvent is not necessary, there is little burden on handling and storage, there is no need for the drying step of the solvent after coating, cost-effectiveness is generated, efficient production is possible due to rapid coating treatment It is to provide a method for producing a separator for a lithium secondary battery, a separator produced by the method, and a lithium secondary battery including the same.
  • forming a porous coating layer containing inorganic particles on at least one surface of the porous substrate A charging step of charging the polymer particles to form charged polymer particles; Transferring the charged polymer particles to an upper surface of the porous coating layer to form a functional coating layer; And a fixing step of fixing the functional coating layer with heat and pressure.
  • a method of manufacturing a separator for a lithium secondary battery is provided.
  • the porous substrate high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, poly It may be formed of any one selected from the group consisting of ether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalene or a mixture of two or more thereof.
  • the inorganic particles may be selected from the group consisting of inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer ability, and mixtures thereof.
  • the inorganic particles having a dielectric constant of 5 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Al (OH ) 3 , TiO 2, SiC, BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1) and HfO 2 , or a mixture of two or more thereof.
  • the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium Aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), Lithium Nitride (Li x x
  • the average particle diameter of the inorganic particles may be 0.001 ⁇ m to 100 ⁇ m.
  • the thickness of the porous coating layer may be 1 ⁇ m to 100 ⁇ m.
  • the polymer particles may include polyvinylidene fluoride-hexafluorofluoropropylene (PVDF-HFP), polyvinylidene fluoride-chlorotrifluorofluoroethylene (polyvinylidene fluoride-co).
  • PVDF-HFP polyvinylidene fluoride-hexafluorofluoropropylene
  • PVDF-co polyvinylidene fluoride-chlorotrifluorofluoroethylene
  • the thickness of the functional coating layer may be 0.001 ⁇ m to 5 ⁇ m.
  • the functional coating layer may be formed of at least one pattern selected from the group consisting of a linear pattern, a wave pattern, a grid pattern, and an irregular pattern.
  • a lithium secondary battery comprising an anode, a cathode, a separator interposed between the anode and the cathode and the non-aqueous electrolyte, the separator is a lithium secondary battery which is the above-described separator for lithium secondary batteries Is provided.
  • the nonaqueous electrolyte may include an organic solvent and an electrolyte salt.
  • the organic solvent is ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2 3-pentylene carbonate, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate (FEC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), Methylpropyl carbonate, ethylpropyl carbonate, ethylpropyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ It may be any one selected from the group consisting of -valerolactone and ⁇ -caprolactone or a mixture of two or more thereof.
  • the electrolyte salt is an anion, F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH
  • the present invention is a method of manufacturing a separator for a lithium secondary battery in which a functional coating layer is introduced using static electricity, not by adding a solvent, and by applying polymer particles by laser printing, no solvent is required, and thus there is no burden for handling and storage. A saving effect occurs, and a drying step of the solvent is unnecessary, so that a separator for a lithium secondary battery can be manufactured quickly.
  • 1 is a SEM photograph showing the surface of the separator to which the polymer particles prepared according to the embodiment of the present invention are transferred.
  • Figure 2 is a SEM photograph showing the surface of the separator is a functional coating layer prepared according to an embodiment of the present invention.
  • a method of manufacturing a separator for a lithium secondary battery is as follows.
  • a porous coating layer including inorganic particles is formed on at least one surface of the porous substrate.
  • porous substrate that can be used in the present invention, any porous substrate commonly used in a lithium secondary battery may be used.
  • a polyolefin-based porous membrane or a nonwoven fabric may be used, but is not particularly limited thereto. .
  • polyolefin-based porous membrane examples include polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyethylene such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polypentene such as high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • the nonwoven fabric may be, for example, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, or polycarbonate. ), Polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalene, etc., alone or separately
  • the nonwoven fabric formed from the polymer which mixed these is mentioned.
  • the structure of the nonwoven can be a spunbond nonwoven or melt blown nonwoven composed of long fibers.
  • the thickness of the porous substrate is not particularly limited, but may be 5 to 50 ⁇ m
  • pore size and pore present in the porous substrate is also not particularly limited, but may be 0.01 to 50 ⁇ m and 10 to 95%, respectively.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt such as lithium salt in the liquid electrolyte.
  • the inorganic particles may include high dielectric constant inorganic particles having a dielectric constant of 5 or more, or 10 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
  • Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Al ( OH) 3 , TiO 2, SiC, BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1) and HfO 2, etc. may be used alone or in combination of two or more thereof.
  • the inorganic particles having a lithium ion transfer capacity refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and the inorganic particles having lithium ion transfer ability are present in the particle structure. Since the lithium ions can be transferred and moved due to a kind of defect, the lithium ion conductivity in the battery is improved, thereby improving battery performance.
  • Non-limiting examples of the inorganic particles having a lithium ion transfer capacity is lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) , Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 as such (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3 ), Li germanium thiophosphate such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S w
  • the average particle diameter of the inorganic particles may be, for example, 0.001 ⁇ m to 100 ⁇ m, and may also be 0.01 ⁇ m to 50 ⁇ m.
  • the average particle diameter of the inorganic particles satisfies this range, the specific surface area of the inorganic particles is rapidly increased to prevent the problem of excessive use of a binder for binding them, and at the same time, the thickness of the appropriate porous coating layer and the appropriate size between the inorganic particles are prevented.
  • the pore size and appropriate porosity are satisfied.
  • the thickness of the porous coating layer may be 1 ⁇ m to 100 ⁇ m, or 1 ⁇ m to 40 ⁇ m, or 2 ⁇ m to 15 ⁇ m.
  • the porous coating layer satisfies this thickness range, not only the performance of the battery may be improved by adding additional lithium ion migration paths and improving the electrolyte impregnation rate, but also the thermal safety may be improved.
  • the polymer particles are charged to form charged polymer particles (charge step).
  • the polymer particles are charged into a storage tank and charged with a negative charge or a positive charge, and the charges are exchanged when corona discharge, arc discharge, or other materials having different physical properties come into contact with each other to apply an electrostatic attraction to the polymer particles.
  • a triboelectric generating method using the ability to do so may be used, but is not limited thereto.
  • the purpose of this charging is to generate a driving force in the polymer particles so that the polymer particles can be instantaneously or continuously attached to the porous coating layer.
  • polymer particles polyvinylidene fluoride-hexafluorofluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene, PVDF-HFP), polyvinylidene fluoride-chlorotrifluorofluoroethylene (polyvinylidene fluoride-co -chlorotrifluoroethylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinyl Pyrrolidone (polyvinylpyrrolidone), polyvinylacetate, ethylene vinyl-co-vinyl acetate, polyethylene, polyethylene oxide, polyarylate, cellulose acetate ( cellulose acetate, cellulose acetate butyrate, cell Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol,
  • the charged polymer particles are transferred to an upper surface of the porous coating layer to form a functional coating layer (transfer step).
  • the porous coating layer may be negatively or positively charged, respectively. Therefore, when the porous coating layer is located around the charged polymer particles, electrostatic attraction acts to form the functional coating layer by attaching the charged polymer particles to the porous coating layer.
  • the functional coating layer may act as a transition metal scavenger layer, a shutdown prevention layer, an electrode adhesive layer, etc., which varies depending on the type of the polymer particles.
  • modified polyvinyl alcohol, alginate, or the like may be used for the functional coating layer to act as a transition metal scavenger layer
  • polyethylene or the like may be used to serve as a shutdown prevention layer
  • polyvinylidene paste to serve as an electrode adhesive layer.
  • Lauride-hexafuluropropylene and the like can be used.
  • the thickness of the functional coating layer may be 0.001 ⁇ m to 5 ⁇ m, but is not limited thereto. When the thickness is satisfied, the resistance inside the battery may be prevented from increasing, and at the same time, a role as each functional coating layer may be appropriately performed.
  • the functional coating layer may be formed in a pattern of the form of the lithium ion transfer is advantageous, at least any one selected from the group consisting of a linear pattern, a wave pattern, a grid pattern and an irregular pattern. It can be formed in a pattern of.
  • the functional coating layer coated on the porous coating layer is fixed with heat and pressure (fixing step).
  • the functional coating layer may be heated and pressed by passing through a heating and pressing roller.
  • a heating and pressing roller by heating and pressing at a temperature of 60 °C to 180 °C and a pressure of 1 kgf / cm 2 to 300 kgf / cm 2 to the functional coating layer, a more uniform coating is possible.
  • the lithium secondary battery according to an aspect of the present invention an anode, a cathode, a lithium secondary battery comprising a separator and a non-aqueous electrolyte interposed between the anode and the cathode, the separator is a manufacturing method of the present invention described above Are manufactured.
  • the electrode to be applied to the lithium secondary battery according to an embodiment of the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be manufactured in a form bound to the electrode current collector.
  • Non-limiting examples of the cathode active material of the electrode active material may be a conventional cathode active material that can be used in the cathode of the conventional lithium secondary battery, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a combination thereof
  • One lithium composite oxide can be used.
  • Non-limiting examples of the anode active material may be a conventional anode active material that can be used in the anode of a conventional lithium secondary battery, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
  • Non-limiting examples of the cathode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the anode current collector by copper, gold, nickel or a copper alloy or a combination thereof. Foils produced.
  • the nonaqueous electrolyte solution includes an organic solvent and an electrolyte salt, and the electrolyte salt is a lithium salt.
  • the lithium salt may be used without limitation those conventionally used in the lithium secondary battery electrolyte.
  • the anion of the lithium salt is F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO
  • organic solvent included in the aforementioned non-aqueous electrolyte those conventionally used in the lithium secondary battery electrolyte may be used without limitation, and for example, ethers, esters, amides, linear carbonates, and cyclic carbonates may be used alone or in combination of two or more. It can be mixed and used.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • linear carbonate compounds may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Mixtures of two or more of them may be representatively used, but are not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, so that they can dissociate lithium salts in the electrolyte better, and cyclic carbonates such as dimethyl carbonate and diethyl carbonate.
  • cyclic carbonates such as dimethyl carbonate and diethyl carbonate.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone may be used, but is not limited thereto.
  • the injection of the nonaqueous electrolyte may be performed at an appropriate step in the manufacturing process of the lithium secondary battery according to the manufacturing process and required physical properties of the final product. That is, the lithium secondary battery may be applied before or during the final assembly of the lithium secondary battery.
  • the lithium secondary battery according to the present invention may be a lamination (stack) and folding process of the separator and the electrode in addition to the winding (winding) which is a general process.
  • the external shape of the lithium secondary battery is not particularly limited, but may be cylindrical, square, pouch or coin type using a can.
  • the slurry was coated on both sides of a 312HT porous substrate manufactured by SK Co., Ltd., a polyolefin-based product, and dried to form a porous coating layer on the porous substrate.
  • silica nanoparticles (Degusa, Aerosil R805) based on 100 parts by weight of polyvinylidene fluoride-hexafuluropropylene particles (Arkema, Kynar 2751) having an average diameter of the primary particles as 0.2 ⁇ m
  • the parts were mixed, put into a laser printer (HP2605dn) cartridge, the polymer particles were charged, and then transferred to the porous substrate having the porous coating layer thereon, thereby printing the polymer particles.
  • 1 is an SEM photograph showing the surface of a separator to which polymer particles are transferred.
  • the functional coating layer formed on the upper surface of the porous coating layer was fixed at a temperature of 110 ° C. to prepare a separator equipped with an adhesive layer.
  • 2 is a SEM photograph showing the surface of the separator on which the functional coating layer is fixed.
  • a separator was prepared in the same manner as in Example, except that the polymer particles were not printed.
  • the separator and the electrode manufactured according to the Example and the separator and the electrode manufactured according to the comparative example were bonded at a temperature of 100 ° C. using a roll laminator, respectively.
  • the separator manufactured according to the embodiment and the electrode were bonded to each other, and as a result of measuring the bonding force while pulling in the longitudinal direction with respect to the bonded portion, an average value of 95 gf / 25 mm was measured.
  • the separator manufactured according to the comparative example and the electrode were not bonded to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un séparateur pour une batterie secondaire au lithium comprenant : une étape consistant à former une couche de revêtement poreuse comprenant des particules inorganiques sur au moins un côté d'un substrat poreux ; une étape de charge consistant à former des particules polymères chargées en chargeant les particules polymères ; une étape de transfert consistant à transférer les particules polymères chargées vers une surface supérieure de la couche de revêtement poreuse pour former une couche de revêtement fonctionnelle ; et une étape de fixation consistant à fixer la couche de revêtement fonctionnelle par chaleur et pression ; un séparateur fabriqué à l'aide dudit procédé et une batterie secondaire au lithium comprenant ledit séparateur. Selon un mode de réalisation de la présente invention, l'invention concerne un procédé de fabrication d'un séparateur pour une batterie secondaire au lithium consistant à introduire la couche de revêtement fonctionnelle, non pas en ajoutant une solution, mais en utilisant l'électricité statique. Étant donné que les particules polymères sont recouvertes par le biais d'un procédé d'impression laser, un solvant n'est pas nécessaire. Étant donné que la charge de traitement et de stockage du solvant n'est pas nécessaire, il est possible d'obtenir un effet de réduction des coûts. De plus, étant donné que l'étape de séchage du solvant n'est pas nécessaire, le séparateur pour la batterie secondaire au lithium peut être fabriqué rapidement.
PCT/KR2013/008545 2012-09-24 2013-09-24 Procédé de fabrication d'un séparateur pour batterie secondaire au lithium, séparateur fabriqué à l'aide dudit procédé et batterie secondaire au lithium comprenant ledit séparateur WO2014046521A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13839054.7A EP2899776B1 (fr) 2012-09-24 2013-09-24 Procédé de fabrication d'un séparateur pour batterie secondaire au lithium
JP2014544692A JP5971662B2 (ja) 2012-09-24 2013-09-24 リチウム二次電池用セパレータの製造方法、その方法で製造されたセパレータ、及びそれを含むリチウム二次電池
CN201380004746.3A CN104040756B (zh) 2012-09-24 2013-09-24 制备用于锂二次电池的隔膜的方法、通过该方法制备的隔膜以及包含其的锂二次电池
US14/296,745 US10411234B2 (en) 2012-09-24 2014-06-05 Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120105790 2012-09-24
KR10-2012-0105790 2012-09-24
KR10-2013-0113204 2013-09-24
KR1020130113204A KR101454830B1 (ko) 2012-09-24 2013-09-24 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/296,745 Continuation US10411234B2 (en) 2012-09-24 2014-06-05 Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2014046521A1 true WO2014046521A1 (fr) 2014-03-27

Family

ID=50650487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008545 WO2014046521A1 (fr) 2012-09-24 2013-09-24 Procédé de fabrication d'un séparateur pour batterie secondaire au lithium, séparateur fabriqué à l'aide dudit procédé et batterie secondaire au lithium comprenant ledit séparateur

Country Status (6)

Country Link
US (1) US10411234B2 (fr)
EP (1) EP2899776B1 (fr)
JP (1) JP5971662B2 (fr)
KR (1) KR101454830B1 (fr)
CN (1) CN104040756B (fr)
WO (1) WO2014046521A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046966A1 (fr) 2022-08-30 2024-03-07 Arlanxeo Deutschland Gmbh LIANTS DE CATHODE HNBR POUR CELLULES DE BATTERIE UTILISANT LA γ-VALÉROLACTONE COMME SOLVANT DE TRAITEMENT
WO2024052261A1 (fr) 2022-09-06 2024-03-14 Arlanxeo Deutschland Gmbh Liants à cathode evm pour cellules de batterie utilisant la gamma-valérolactone comme solvant de traitement

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532730B1 (ko) 2013-01-16 2015-06-30 주식회사 엘지화학 전극조립체의 제조장치
CN105322132A (zh) * 2014-07-31 2016-02-10 中国科学院上海硅酸盐研究所 一种具有多功能弹性保护层的锂硫电池正极
CN104466059A (zh) * 2014-11-27 2015-03-25 百顺松涛(天津)动力电池科技发展有限公司 一种锂离子电池隔膜及其制备方法
WO2016093589A1 (fr) * 2014-12-08 2016-06-16 주식회사 엘지화학 Ensemble d'électrodes à sécurité améliorée, son procédé de fabrication et élément électrochimique comprenant l'ensemble d'électrodes
PL3297063T3 (pl) * 2015-05-11 2020-12-28 Contemporary Amperex Technology Co., Limited Membrana złożona i bateria litowo-jonowa, w której się ją stosuje
KR101950703B1 (ko) * 2017-04-03 2019-02-22 한양대학교 산학협력단 단층의 고분자 입자 코팅층을 갖는 전지용 분리막 및 이의 제조방법
US10833296B2 (en) 2017-09-26 2020-11-10 International Business Machines Corporation Thin film solid-state microbattery packaging
EP3734698A4 (fr) 2017-12-27 2021-10-13 Teijin Limited Séparateur pour batteries secondaires non aqueuses et batterie secondaire non aqueuse
WO2020022851A1 (fr) * 2018-07-26 2020-01-30 주식회사 엘지화학 Séparateur et dispositif électrochimique le comprenant
KR102244917B1 (ko) 2018-07-30 2021-04-27 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차전지
KR102385925B1 (ko) * 2018-11-05 2022-04-11 주식회사 엘지에너지솔루션 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
US20220200098A1 (en) 2019-06-04 2022-06-23 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN112259901B (zh) * 2019-07-03 2022-03-18 比亚迪股份有限公司 锂离子电池用涂胶隔膜及其制备方法和应用
US20210218005A1 (en) * 2020-01-09 2021-07-15 StoreDot Ltd. Protected lithium coatings on separators for lithium ion batteries
CN114597590A (zh) * 2022-03-14 2022-06-07 华鼎国联四川动力电池有限公司 一种涂边特种隔膜及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071915A1 (en) * 1999-09-30 2002-06-13 Schubert Mark Alan Electrochemical cells having ultrathin separators and methods of making the same
KR20040005550A (ko) * 2002-07-08 2004-01-16 베스 주식회사 리튬이온 고분자 전해질 및 이를 포함하는 전지의 제조방법
JP2006527461A (ja) * 2004-05-17 2006-11-30 エルジー・ケム・リミテッド 電極及びその製造方法
KR20080042967A (ko) * 2006-11-13 2008-05-16 주식회사 엘지화학 정전기에 의해 전극과 분리막의 밀착력을 강화시킨젤리-롤형 전극조립체의 제조방법
US20120169297A1 (en) * 2009-07-07 2012-07-05 Li-Tec Battery Gmbh Secondary battery with a rapid charging capability

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573825A (en) * 1994-07-14 1996-11-12 Permar Systems, Inc. Laser imprintable data-tag system
JP3068483B2 (ja) * 1996-02-08 2000-07-24 株式会社東芝 パターン読み出し方法、および光学的信号読み取り装置
JP4454782B2 (ja) * 2000-04-19 2010-04-21 日本バイリーン株式会社 電池用セパレータの製造方法
DE10238945B4 (de) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator
US7517076B2 (en) * 2004-06-30 2009-04-14 Eastman Kodak Company Phase-change ink jet printing with electrostatic transfer
JP2006147210A (ja) * 2004-11-17 2006-06-08 Hitachi Ltd 二次電池及びその製造方法
KR100865035B1 (ko) * 2006-05-04 2008-10-23 주식회사 엘지화학 리튬 이차 전지 및 그 제조방법
KR100966024B1 (ko) * 2007-04-24 2010-06-24 주식회사 엘지화학 이종의 세퍼레이터를 구비한 전기화학소자
US8377583B2 (en) * 2008-01-30 2013-02-19 Lg Chem, Ltd. Separator for providing a uniting force to electrode and electrochemical cell containing the same
WO2011029070A1 (fr) * 2009-09-03 2011-03-10 Molecular Nanosystems, Inc. Procédés et systèmes de fabrication de séparateurs et dispositifs en résultant
JP5703306B2 (ja) * 2009-11-23 2015-04-15 エルジー・ケム・リミテッド 多孔性コーティング層を備えるセパレータの製造方法、その方法によって形成されたセパレータ、及びそれを備える電気化学素子
JP5509816B2 (ja) * 2009-11-30 2014-06-04 ソニー株式会社 セパレータ、これを用いた電池および微多孔膜
WO2012111956A2 (fr) * 2011-02-15 2012-08-23 주식회사 엘지화학 Séparateur, son procédé de préparation et dispositif électrochimique le comprenant
KR101254693B1 (ko) 2011-02-15 2013-04-15 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR101369326B1 (ko) * 2011-12-27 2014-03-04 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
US20140017571A1 (en) * 2012-07-16 2014-01-16 Nthdegree Technologies Worldwide Inc. Printable Ionic Gel Separation Layer for Energy Storage Devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071915A1 (en) * 1999-09-30 2002-06-13 Schubert Mark Alan Electrochemical cells having ultrathin separators and methods of making the same
KR20040005550A (ko) * 2002-07-08 2004-01-16 베스 주식회사 리튬이온 고분자 전해질 및 이를 포함하는 전지의 제조방법
JP2006527461A (ja) * 2004-05-17 2006-11-30 エルジー・ケム・リミテッド 電極及びその製造方法
KR20080042967A (ko) * 2006-11-13 2008-05-16 주식회사 엘지화학 정전기에 의해 전극과 분리막의 밀착력을 강화시킨젤리-롤형 전극조립체의 제조방법
US20120169297A1 (en) * 2009-07-07 2012-07-05 Li-Tec Battery Gmbh Secondary battery with a rapid charging capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899776A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046966A1 (fr) 2022-08-30 2024-03-07 Arlanxeo Deutschland Gmbh LIANTS DE CATHODE HNBR POUR CELLULES DE BATTERIE UTILISANT LA γ-VALÉROLACTONE COMME SOLVANT DE TRAITEMENT
WO2024052261A1 (fr) 2022-09-06 2024-03-14 Arlanxeo Deutschland Gmbh Liants à cathode evm pour cellules de batterie utilisant la gamma-valérolactone comme solvant de traitement

Also Published As

Publication number Publication date
EP2899776A4 (fr) 2016-04-27
US20140287294A1 (en) 2014-09-25
EP2899776B1 (fr) 2017-03-15
KR20140040043A (ko) 2014-04-02
EP2899776A1 (fr) 2015-07-29
KR101454830B1 (ko) 2014-10-28
US10411234B2 (en) 2019-09-10
CN104040756A (zh) 2014-09-10
CN104040756B (zh) 2016-04-13
JP2015506060A (ja) 2015-02-26
JP5971662B2 (ja) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2014046521A1 (fr) Procédé de fabrication d'un séparateur pour batterie secondaire au lithium, séparateur fabriqué à l'aide dudit procédé et batterie secondaire au lithium comprenant ledit séparateur
WO2015047034A1 (fr) Procédé de fabrication d'un séparateur pour une batterie secondaire au lithium, séparateur fabriqué par le procédé, et batterie secondaire au lithium le comprenant
WO2014112812A1 (fr) Appareil de fabrication d'un ensemble d'électrodes
WO2014073937A1 (fr) Procédé de fabrication de séparateur, séparateur fabriqué ainsi et dispositif électrochimique le comprenant
WO2009096671A2 (fr) Séparateur destiné à faire progresser une force unie à une électrode et dispositif électrochimique le contenant
WO2010076989A2 (fr) Séparateur doté d'une couche de revêtement poreuse, et dispositif électrochimique le comprenant
WO2011105866A2 (fr) Procédé de fabrication d'un séparateur, séparateur fabriqué à partir de ce procédé et procédé de fabrication d'un dispositif électrochimique comprenant ledit séparateur
WO2014182095A1 (fr) Structure-électrode recouverte d'une couche d'isolant, son procédé de fabrication, et élément électrochimique contenant la structure-électrode
WO2013100653A1 (fr) Batterie secondaire au lithium et son procédé de production
WO2012046966A2 (fr) Dispositif électrochimique à caractéristiques de cycle améliorées
WO2009110726A2 (fr) Séparateur à couche de revêtement poreux et dispositif électrochimique contenant ledit séparateur
WO2013070031A1 (fr) Séparateur et dispositif électrochimique comprenant ledit séparateur
WO2013157902A1 (fr) Procédé de fabrication de séparateur, séparateur formé ainsi, et dispositif électrochimique comprenant ledit séparateur
WO2012138039A1 (fr) Séparateur et dispositif électrochimique le comportant
WO2014084681A1 (fr) Membrane de séparation de batterie secondaire contenant des couches de revêtement à double porosité en particules inorganiques ayant différentes propriétés de surface, batterie secondaire l'intégrant et procédé de fabrication d'une membrane de séparation
WO2013100519A1 (fr) Procédé de fabrication de séparateur et dispositif électrochimique équipé du séparateur ainsi fabriqué
WO2012150838A2 (fr) Séparateur comprenant une couche de revêtement poreuse et dispositif électrochimique comprenant celui-ci
WO2011062460A2 (fr) Procédé de préparation de séparateur comportant une couche poreuse de revêtement, séparateur formé à partir de cette couche et dispositif électrochimique la contenant
WO2012128440A1 (fr) Ensemble d'électrodes et procédé pour le fabriquer
WO2010024559A2 (fr) Séparateur pourvu d'une couche de revêtement poreux, procédé de fabrication de ce séparateur et dispositif électrochimique pourvu de ce séparateur
WO2011040704A2 (fr) Procédé de fabrication de séparateur, séparateur ainsi fabriqué et procédé de fabrication de dispositif électrochimique comportant le séparateur
WO2013058421A1 (fr) Procédé de fabrication d'un séparateur, séparateur formé par ledit procédé et dispositif électrochimique présentant ledit séparateur
WO2014157955A1 (fr) Suspension épaisse de matériau actif d'anode, anode employant la suspension épaisse et dispositif électrochimique comprenant celle-ci
WO2011105865A2 (fr) Procédé de fabrication d'un séparateur, séparateur fabriqué à partir de ce procédé et procédé de fabrication d'un dispositif électrochimique comprenant ledit séparateur
WO2013066052A1 (fr) Séparateur et dispositif électrochimique le comportant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839054

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013839054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013839054

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014544692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE