WO2014046432A1 - 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법 - Google Patents

전기화학법을 이용하여 간수부터 리튬을 회수하는 방법 Download PDF

Info

Publication number
WO2014046432A1
WO2014046432A1 PCT/KR2013/008350 KR2013008350W WO2014046432A1 WO 2014046432 A1 WO2014046432 A1 WO 2014046432A1 KR 2013008350 W KR2013008350 W KR 2013008350W WO 2014046432 A1 WO2014046432 A1 WO 2014046432A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
brine
slurry
manganese oxide
recovering
Prior art date
Application number
PCT/KR2013/008350
Other languages
English (en)
French (fr)
Inventor
이상로
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2014046432A1 publication Critical patent/WO2014046432A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the present invention relates to a method for recovering lithium from the liver water using the electrochemical method, and more particularly, to a method for recovering lithium from the liver water using an electrochemical method with excellent lithium recovery as a new use of the liver water. .
  • Lithium is the lightest metal distributed in the world in small amounts. It is used in lithium secondary batteries, ceramic electronic materials, refrigerant adsorbents, and medicines using lithium isotopes. Due to power generation, the use of lithium secondary batteries has exploded. Currently, the lithium secondary battery industry is developing mainly in Korea, Japan, and China, and the consumption of lithium, which is a core raw material, is also rapidly increasing in accordance with the rapidly increasing demand for lithium secondary batteries. In addition, since lithium is used to multiply tritium in fusion power generation, which is expected to be the next generation energy source, the demand for lithium is further increased.
  • Lithium is recovered by ion exchange adsorption, solvent extraction, and coprecipitation using seawater. Among these trials, lithium ion recovery using manganese oxide-based inorganic adsorbents with ion exchange properties with very high selectivity This is mainly used.
  • the present inventors have developed a method of recovering lithium from water by using an electrochemical method having a simple process and excellent lithium recovery rate.
  • Another object of the present invention is to provide a method for recovering lithium from brine using an electrochemical method with excellent lithium recovery.
  • Method for recovering lithium from the liver water using the electrochemical method according to the present invention preparing the liver water (S10); Preparing a lithium manganese oxide by adding an adsorbent to the brine (S20); Injecting the lithium manganese oxide, the conductive material, the binder and the solvent in a stirrer to prepare a slurry (S30); Coating the prepared slurry on aluminum foil or copper foil, and drying the coated slurry (S40); Putting the slurry-coated aluminum foil or copper foil into an electrolytic cell equipped with an electrode plate and lithium metal (S50) to check the reaction potential by cyclic voltammetry; Maintaining an electrolytic cell at the identified reaction potential to deposit lithium on the surface of the electrode plate (S60); And separating the lithium deposited on the surface of the electrode plate (S70).
  • the lithium manganese oxide of step S20 is characterized in that represented by the formula (1).
  • M Ge, Al, B, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg or Zn, 1 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 0.5 And 1 ⁇ z ⁇ 2)
  • the lithium manganese oxide is characterized in that it has a spinel (Spinel) type or spine type (Pseudo spinel) structure.
  • the lithium manganese oxide is Li 1.6 Mn 1.6 O 4 , Li 1.33 Mn 1.67 O 4 , Li 2 MnO 3 , Li 1.6 Al 0.08 Mn 1.52 O 4 , Li 1.6 Co 0.08 Mn 1.52 O 4 , Li 1.6 Ti 0.08 Mn 1.52 O 4 , Li 1.6 B 0.08 Mn 1.52 O 4 , Li 1.6 Ge 0.08 Mn 1.52 O 4 , Li 1.6 V 0.08 Mn 1.52 O 4 , or Li 1.6 Si 0.08 Mn 1.52 O 4 .
  • the step S30 is characterized in that 25 to 35 parts by weight of the conductive material, and 10 to 20 parts by weight of the binder to 100 parts by weight of the lithium manganese oxide in a stirrer.
  • step S30 is characterized in that the lithium manganese oxide, the conductive material, the binder and the solvent is stirred for 3 hours using a mixer to prepare a slurry.
  • the conductive material is characterized in that the carbon black.
  • the binder is characterized in that the polyvinylidene fluoride or carboxymethyl cellulose.
  • the solvent is characterized by consisting of N-methyl-2-pyrrolidone or water.
  • the step S40 is characterized in that for drying the coated slurry for 20 to 40 minutes at 60 ⁇ 5 °C using a dry oven, and further drying for 12 to 20 hours at a temperature of 80 ⁇ 5 °C in a vacuum oven.
  • the steps S50, S60 and S70 are characterized in that the dry box or the glove box filled with argon gas.
  • the electrolytic cell of step S50 is characterized by being filled with a non-aqueous electrolyte in which lithium salt is dissolved.
  • the electrode plate of step S60 is formed of a nickel plate or a copper plate, it characterized in that the form of a grid.
  • the present invention is a novel use of the brine containing more lithium than seawater, and has the effect of providing the method for recovering lithium from the brine using an electrochemical method with a simple process and excellent lithium recovery.
  • 1 is a flow chart schematically showing a method for recovering lithium from the brine using the electrochemical method according to the present invention.
  • FIG. 2 is a copper plate when a copper plate grid is used as an electrode plate using Li 1.33 Mn 1.67 O 4 as a lithium manganese oxide in a method of recovering lithium from brine using an electrochemical method according to the present invention.
  • the picture of lithium deposited on the grid was taken (250 times) by scanning microscope (FE-SEM, Hitachi S-4800).
  • FIG. 3 is a copper plate when Li 1.6 Mn 1.6 O 4 is used as a lithium manganese oxide in a method of recovering lithium from brine using an electrochemical method according to the present invention, and a copper plate grid is used as an electrode plate in a lithium precipitation step.
  • the picture of lithium deposited on the grid was taken (500 times) by scanning microscope (FE-SEM, Hitachi S-4800).
  • Li 1.6 Al 0.08 Mn 1.52 O 4 as a lithium manganese oxide in the method of recovering lithium from the brine using the electrochemical method according to the invention, when using a copper plate grid as an electrode plate in the lithium deposition step, It is a photograph taken with a scanning microscope (FE-SEM, Hitachi S-4800) (250 times) showing the lithium deposited on the copper plate grid.
  • Li 1.6 Co 0.08 Mn 1.52 O 4 as a lithium manganese oxide in the method of recovering lithium from the brine using the electrochemical method according to the invention, when using a copper plate grid as an electrode plate in the lithium deposition step, It is a photograph taken by a scanning microscope (FE-SEM, Hitachi S-4800) (1000 times) showing the lithium deposited on the copper plate grid.
  • 1 is a flow chart schematically showing a method for recovering lithium from the brine using the electrochemical method according to the present invention.
  • a method for recovering lithium from the liver water using the electrochemical method according to the present invention preparing the liver water (step S10), to prepare a lithium manganese oxide by adding an adsorbent to the liver water Step (S20), the step of adding the lithium manganese oxide, conductive material, binder and solvent to a stirrer and stirring to prepare a slurry (step S30), coating the prepared slurry on aluminum foil or copper foil, the coating Drying the slurry (step S40), putting the slurry-coated aluminum foil or copper foil into an electrolytic cell equipped with an electrode plate and a lithium metal, and checking the reaction potential by cyclic voltammetry (step S50), Maintaining the electrolytic cell at the identified reaction potential, the step of depositing lithium on the surface of the electrode plate (step S60) and the step of separating the lithium deposited on the surface of the electrode plate (S70) Is configured to include a system).
  • S10 step is to prepare a guard.
  • the brine is also called a hydrate, and is not particularly limited as a by-product during salt preparation.
  • Step S20 is a step of preparing a lithium manganese oxide by adding an adsorbent to the prepared brine, the prepared lithium manganese oxide is represented by the following formula (1).
  • M Ge, Al, B, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg or Zn, 1 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 0.5 And 1 ⁇ z ⁇ 2)
  • the lithium manganese oxide is Li 1.6 Mn 1.6 O 4 , Li 1.33 Mn 1.67 O 4 , Li 2 MnO 3 , Li 1.6 Al 0.08 Mn 1.52 O 4 , Li 1.6 Co 0.08 Mn 1.52 O 4 , Li 1.6 Ti 0.08 Mn Either 1.52 O 4 , Li 1.6 B 0.08 Mn 1.52 O 4 , Li 1.6 Ge 0.08 Mn 1.52 O 4 , Li 1.6 V 0.08 Mn 1.52 O 4 , or Li 1.6 Si 0.08 Mn 1.52 O 4 is used.
  • the adsorbent used in the present invention uses a material from which lithium is desorbed from the lithium manganese oxide according to Chemical Formula 1.
  • the lithium adsorption amount of lithium 1.6 from 0.06 Mn 1.52 O 4 in lithium manganese oxide was added to the adsorbent desorbed from lithium manganese oxide. It could be confirmed (see Table 1 below).
  • the preparation of lithium manganese oxide according to the addition of the adsorbent may be performed for a predetermined time, for example, 1 month or less, preferably 4 It is preferably one to four weeks, more preferably five to three weeks, even more preferably five to two weeks.
  • step S30 lithium manganese oxide, a conductive material, a binder, and a solvent are added to a stirrer and stirred to prepare a slurry.
  • the amount of the lithium manganese oxide, the conductive material, and the binder is 25 parts by weight of 35 to 35 parts by weight of the lithium manganese oxide. It is preferable to add 10-20 parts by weight of the binder and the binder to the stirrer. Accordingly, the lithium manganese oxide, the conductive material, the binder and the solvent, N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone) or water is added to the stirrer to prepare a slurry.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • the reason for slurrying using the solvent is to make it easy to fix the slurryed material to aluminum foil or copper foil, and the solvent may be smoothly operated by the blade of the mixer used in the stirring process of step S30. It is added slowly until it has a viscosity of about, it is preferable to proceed for 3 hours.
  • Step S40 is to coat the prepared slurry on aluminum foil or copper foil, and to dry the coated slurry, coating the prepared slurry on aluminum foil or copper foil using a doctor blade, and drying oven After 20 to 40 minutes at 60 ⁇ 5 °C using, it is preferable that the drying is carried out for 12 to 20 hours at a temperature of 80 ⁇ 5 °C in a vacuum oven.
  • the reason for drying the prepared slurry is that the lithium manganese oxide in the slurry state significantly reduces the reactivity in the electrolytic cell, and is intended to dry and remove impurities such as a solvent contained in the slurry.
  • the reason why the drying step is carried out in two steps is that when the drying process is first performed using a dry oven, the liquid component contained in the slurry is removed to a certain degree, and when put into the vacuum oven, aluminum foil and This is because the copper foil is prevented from flowing down, and the slurry dried primarily in the dry oven is completely dried in the vacuum oven.
  • step S50 the slurry coated aluminum foil or copper foil is placed in an electrolytic cell equipped with an electrode plate and lithium metal, and the reaction potential is confirmed by cyclic voltammetry.
  • the dried slurry coated aluminum foil or copper foil is electrode Put the plate and lithium metal into the electrolytic cell and check the reaction potential by cyclic voltammetry (CV).
  • the step S50 is preferably performed in a state in which the electrolytic cell is filled with a non-aqueous electrolyte in which 1 mol of lithium salt is dissolved.
  • cyclic voltammetry is performed using the aluminum foil coated with the slurry as the working electrode, the electrode plate as the counter electrode, and the lithium metal as the reference electrode. As described above, the slurry is coated.
  • the electrode plate is formed of a nickel plate or a copper plate, preferably in the form of a grid.
  • Step S60 is a step of maintaining the electrolytic cell at the identified reaction potential, and depositing lithium on the surface of the electrode plate. After a predetermined time has passed after the reaction potential identified by the step S50 is applied to the electrolytic cell, the aluminum foil or copper The lithium component contained in the dry slurry coated on the foil is ionized and moved to the surface of the electrode plate, and then deposited on the surface of the electrode plate.
  • Step S70 is a step of separating the lithium deposited on the surface of the electrode plate, if the lithium is deposited to a certain degree on the surface of the electrode plate to separate the electrode plate from the electrolytic cell and scrape off the lithium deposited on the surface of the electrode plate.
  • the steps S50, S60 and S70 are preferably performed in a dry room or a glove box filled with argon gas, and the above process is performed in a dry room or a glove box filled with argon gas. In this case, high purity lithium can be obtained.
  • FIG. 2 is a copper plate when a copper plate grid is used as an electrode plate using Li 1.33 Mn 1.67 O 4 as a lithium manganese oxide in a method of recovering lithium from brine using an electrochemical method according to the present invention.
  • Lithium deposited on the grid was taken (250 times) by a scanning microscope (FE-SEM, Hitachi S-4800)
  • Figure 3 is a recovery of lithium from the water by using the electrochemical method according to the present invention
  • the lithium deposited on the copper plate grid was scanned by a scanning microscope (FE-SEM, Hitachi S-4800). This is a picture taken by 500 times.
  • Figure 4 uses Li 1.6 Al 0.08 Mn 1.52 O 4 as a lithium manganese oxide in the method of recovering lithium from the brine using the electrochemical method according to the present invention, using a copper plate grid as an electrode plate in the lithium deposition step
  • a scanning microscope FE-SEM, Hitachi S-4800
  • Figure 5 is a lithium from the guard using the electrochemical method according to the invention Among them, Li 1.6 Co 0.08 Mn 1.52 O 4 was used as the lithium manganese oxide, and when the copper plate grid was used as the electrode plate in the lithium deposition step, the lithium precipitated on the copper plate grid was scanned by a scanning microscope (FE-SEM). , Hitachi S-4800).
  • the electrochemical method according to the invention when using the electrochemical method according to the invention it is possible to recover the lithium in the copper plate grid.
  • the method of recovering lithium from the brine using the electrochemical method according to the present invention has the advantage that the recovery of lithium is excellent and the process is simple.
  • the consumption of chemicals used for lithium recovery is low, thereby improving process efficiency and reducing process costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)

Abstract

본 발명은, 간수를 준비하는 단계(S10); 상기 간수에 흡착제를 투입하여 리튬망간산화물을 제조하는 단계(S20); 상기 리튬망간산화물, 도전재, 바인더 및 용매를 교반기에 투입하고 교반하여 슬러리로 제조하는 단계(S30); 상기 제조된 슬러리를 알루미늄 호일 또는 구리 호일에 코팅하고, 상기 코팅된 슬러리를 건조하는 단계(S40); 상기 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법으로 반응전위를 확인하는 단계(S50); 상기 확인된 반응전위로 전해조를 유지하여, 전극판의 표면에 리튬을 석출시키는 단계(S60); 및 상기 전극판의 표면에 석출된 리튬을 분리하는 단계(S70)를 포함하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 제공한다.

Description

전기화학법을 이용하여 간수부터 리튬을 회수하는 방법
본 발명은 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법에 관한 것으로, 더욱 상세하게는, 간수의 새로운 용도로서 리튬 회수율이 우수한 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법에 관한 것이다.
간수(Bittern)는 소금을 석출할 때 남는 모액(母液)으로 무색의 결정체로서 유리 같은 광택이 있고 습기를 흡수하면 용해되는 성질이 있다. 간수는 예로부터 두부를 만들 때 응고제로 이용되었으며 현재는 무기약품의 중요한 자원으로 이용되기도 한다. 이러한 간수는 소금을 제조할 때 부산물로서 얻을 수 있고, 또 조염(粗鹽)을 저장할 때 그 조해작용(潮解作用)을 이용하여 얻을 수 있다.
한편, 해수에는 약 2천 5백억 톤의 리튬 이온이 용해되어 있는 것으로 추정되고 있으며 중요한 리튬 공급원으로 인식되기 시작하였다. 그러나 그 농도가 해수 1리터당 0.17 mg으로 매우 낮아 리튬 이온 회수에 대한 경제성을 고려할 때 리튬 이온을 선택적이며 저비용으로 회수하는 시스템이 필요하다. 이에 반하여 간수에는 다양한 무기성분을 포함하고 있고, 특히 리튬의 농도가 간수 1리터당 약 0.59mg으로 해수에 비하여 상당히 많은 양을 포함하고 있다. 따라서, 해수로부터 리튬을 회수하는 경우보다 간수로부터 리튬을 해수하는 경우에는 보다 경제적일 수 있다.
리튬(Lithium)은 지구에 소량으로 분포하는 가장 가벼운 금속으로, 리튬2차전지, 세라믹 전자재료, 냉매흡착제, 리튬 동위원소를 이용하는 의약품 등에 이용되고 있고, 특히 최근 휴대폰, 노트북 및 전기자동차 산업의 급속한 발전으로 인하여 리튬 이차전지의 활용이 폭발적으로 증대되고 있다. 현재 리튬 이차전지 산업은 한국, 일본, 중국을 중심으로 전개되고 있으며 급증하는 리튬 이차전지의 수요에 따라 핵심원료인 리튬의 소모량도 급증하고 있는 실정이다. 또한 리튬은 차세대 에너지원으로 기대되는 핵융합 발전에서 삼중수소를 증식하기 위해 사용되기 때문에, 리튬에 대한 수요는 더욱더 증대되고 있다.
리튬은 해수를 이용한 이온교환 흡착법, 용매추출법, 공침법에 의해 회수방법이 연구되고 있고, 이러한 시도들 중에서 매우 높은 선택도를 가진 이온교환 특성을 지닌 망간 산화물계 무기물 흡착체를 이용한 리튬 이온 회수 방법이 주로 이용되고 있다.
그러나, 상기 리튬이 흡착된 망간 산화물로부터 리튬을 회수하는 과정에서 종래에는 리튬 이온이 흡착된 흡착제를 산 수용액으로 처리하여 리튬 이온을 탈착시켜 리튬을 회수하는 방법을 사용하였다. 이러한 종래 리튬 회수 방법은 리튬 이온의 탈착 공정 이후에 수득된 액체의 분리 및 건조 공정이 추가되어 공정이 복잡하고, 리튬 회수 시간이 오래 걸리며, 리튬 회수율이 낮다는 문제점이 있었다.
이에 본 발명자는 상기 종래 기술의 문제점을 해결하기 위하여 공정이 단순하고, 리튬 회수율이 우수한 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 개발하기에 이르렀다.
본 발명의 목적은 해수에 비하여 리튬의 함유량이 높은 간수의 새로운 용도로서, 공정이 단순한 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 리튬 회수율이 우수한 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 제공하기 위한 것이다.
본 발명의 상기 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법은, 간수를 준비하는 단계(S10); 상기 간수에 흡착제를 투입하여 리튬망간산화물을 제조하는 단계(S20); 상기 리튬망간산화물, 도전재, 바인더 및 용매를 교반기에 투입하고 교반하여 슬러리로 제조하는 단계(S30); 상기 제조된 슬러리를 알루미늄 호일 또는 구리 호일에 코팅하고, 상기 코팅된 슬러리를 건조하는 단계(S40); 상기 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법으로 반응전위를 확인하는 단계(S50); 상기 확인된 반응전위로 전해조를 유지하여, 전극판의 표면에 리튬을 석출시키는 단계(S60); 및 상기 전극판의 표면에 석출된 리튬을 분리하는 단계(S70)를 포함하는 것을 특징으로 한다.
여기서, 상기 S20단계의 리튬망간산화물은 하기 화학식 1로 표시되는 것을 특징으로 한다.
[화학식 1]
LixMyMnzO4
(상기 식에서, M=Ge, Al, B, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg 또는 Zn이고, 1≤x≤2, 0≤y≤0.5 및 1≤z≤2이다)
상기 리튬망간산화물은 스피넬(Spinel)형 또는 응스피넬형(Pseudo spinel) 구조를 가지는 것을 특징으로 한다.
상기 리튬망간산화물은 Li1.6Mn1.6O4, Li1.33Mn1.67O4, Li2MnO3, Li1.6Al0.08Mn1.52O4, Li1.6Co0.08Mn1.52O4, Li1.6Ti0.08Mn1.52O4, Li1.6B0.08Mn1.52O4, Li1.6Ge0.08Mn1.52O4, Li1.6V0.08Mn1.52O4, 또는 Li1.6Si0.08Mn1.52O4 중에서 선택된 어느 하나인 것을 특징으로 한다.
상기 S30 단계는 리튬망간산화물 100 중량부에 도전재 25 내지 35 중량부, 및 바인더 10 내지 20 중량부를 교반기에 투입하는 것을 특징으로 한다.
또한, 상기 S30 단계는 투입된 리튬망간산화물, 도전재, 바인더 및 용매를 믹서를 이용하여 3시간 동안 교반하여 슬러리로 제조하는 것을 특징으로 한다.
상기 도전재는 카본블랙인 것을 특징으로 한다.
상기 바인더는 폴리불화비닐리덴 또는 카르복시메틸셀룰로오스인 것을 특징으로 한다.
상기 용매는 N-메틸-2-피롤리돈 또는 물로 이루어지는 것을 특징으로 한다.
상기 S40 단계는 코팅된 슬러리를 드라이오븐을 이용하여 60±5℃에서 20분 내지 40분 동안 건조한 후, 진공오븐에서 80±5℃의 온도로 12 내지 20시간 동안 추가적으로 건조하는 것을 특징으로 한다.
상기 S50, S60 및 S70 단계는 드라이룸 또는 아르곤가스가 충전된 글로브박스에서 이루어지는 것을 특징으로 한다.
상기 S50 단계의 전해조는 리튬염이 용해된 비수용액 전해질로 채워진 것을 특징으로 한다.
상기 S60 단계의 전극판은 니켈판 또는 구리판으로 형성되며, 그리드의 형태로 이루어지는 것을 특징으로 한다.
본 발명은 해수보다 리튬의 함유량이 많은 간수의 새로운 용도로서, 공정이 단순하고, 리튬 회수율이 우수한 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 제공하는 발명의 효과를 가진다.
도 1은 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 개략적으로 나타낸 순서도이다.
도 2는 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.33Mn1.67O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(250배)하여 나타낸 사진이다.
도 3은 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Mn1.6O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(500배)하여 나타낸 사진이다.
도 4는 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Al0.08Mn1.52O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(250배)하여 나타낸 사진이다.
도 5는 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Co0.08Mn1.52O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(1000배)하여 나타낸 사진이다.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명함으로써 더욱 명백해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 상세히 설명한다.
도 1은 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법을 개략적으로 나타낸 순서도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법은, 간수를 준비하는 단계(S10 단계), 상기 간수에 흡착제를 투입하여 리튬망간산화물을 제조하는 단계(S20 단계), 상기 리튬망간산화물, 도전재, 바인더 및 용매를 교반기에 투입하고 교반하여 슬러리로 제조하는 단계(S30 단계), 상기 제조된 슬러리를 알루미늄 호일 또는 구리 호일에 코팅하고, 상기 코팅된 슬러리를 건조하는 단계(S40 단계), 상기 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법으로 반응전위를 확인하는 단계(S50 단계), 상기 확인된 반응전위로 전해조를 유지하여, 전극판의 표면에 리튬을 석출시키는 단계(S60 단계) 및 상기 전극판의 표면에 석출된 리튬을 분리하는 단계(S70 단계)를 포함하여 구성된다.
S10 단계는 간수를 준비하는 단계이다. 상기 간수는 함수라고도 하는데, 소금을 제조하는 과정 중의 부산물로서 특별히 제한되지 않는다.
S20 단계는 준비된 간수에 흡착제를 투입하여 리튬망간산화물을 제조하는 단계로, 제조되는 리튬망간산화물은 하기 화학식 1로 표시된다.
[화학식 1]
LixMyMnzO4
(상기 식에서, M=Ge, Al, B, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg 또는 Zn이고, 1≤x≤2, 0≤y≤0.5 및 1≤z≤2이다)
바람직하게는, 리튬망간산화물은 Li1.6Mn1.6O4, Li1.33Mn1.67O4, Li2MnO3, Li1.6Al0.08Mn1.52O4, Li1.6Co0.08Mn1.52O4, Li1.6Ti0.08Mn1.52O4, Li1.6B0.08Mn1.52O4, Li1.6Ge0.08Mn1.52O4, Li1.6V0.08Mn1.52O4, 또는 Li1.6Si0.08Mn1.52O4 중에서 어느 하나를 사용한다.
따라서, 본 발명에서 사용하는 흡착제는 상기 화학식 1에 따른 리튬망간산화물에서 리튬을 탈리시킨 물질을 사용한다.
하나의 일 실시예로서, 간수에 Li1.6Al0.08Mn1.52O4의 구조를 가지는 리튬망간산화물에서 리튬이 탈리된 흡착제를 투입하여 리튬의 흡착량 변화를 조사한 결과 시간이 경과함으로써 리튬 흡착량이 증가한 것을 확인할 수 있었다(하기 표 1 참조). 다만, 일정 시간이 경과한 이후에는 리튬 흡착량의 증가 정도가 크지 않으므로 상기 흡착제의 투입에 따른 리튬망간산화물의 제조는 간수에 흡착제를 넣은 후 일정 시간, 예를 들어 1개월 이하, 바람직하게는 4일 내지 4주, 보다 바람직하게는 5일 내지 3주, 보다 더 바람직하게는 5일 내지 2주 동안 이루어지는 것이 바람직하다.
표 1
시험 조건 Li 흡착후 농도 Li 흡착량
간수 원액 3.19
1일 0.08 3.11
2일 0.06 3.13
3일 0.05 3.14
4일 0.05 3.14
5일 0.04 3.15
6일 0.04 3.15
7일 0.04 3.15
S30 단계는 리튬망간산화물, 도전재, 바인더 및 용매를 교반기에 투입하고 교반하여 슬러리로 제조하는 단계로, 리튬망간산화물, 도전재 및 바인더의 양은 리튬망간산화물 100 중량부에 도전재 25 내지 35 중량부 및 바인더 10 내지 20 중량부를 교반기에 투입하는 것이 바람직하다. 따라서, 상기 리튬망간산화물, 도전재 및 바인더와 용매인 N-메틸-2-피롤리돈(N-methyl-2-Pyrrolidone) 또는 물을 교반기에 투입하여 슬러리로 제조한다. 상기 용매를 이용하여 슬러리화하는 이유는 상기 슬러리화된 물질을 알루미늄호일 또는 구리호일에 고정하기 쉽도록 하기 위한 것이고, 상기 용매는 S30 단계의 교반 과정에서 사용되는 믹서의 날이 원활하게 돌아갈 수 있을 정도의 점도를 가질 때까지 서서히 투입하고, 3시간 동안 진행되는 것이 바람직하다.
S40 단계는 제조된 슬러리를 알루미늄 호일 또는 구리 호일에 코팅하고, 상기 코팅된 슬러리를 건조하는 단계로, 제조된 슬러리를 코팅기(Doctor Blade)를 이용하여 알루미늄 호일 또는 구리 호일에 코팅하고, 드라이오븐을 이용하여 60±5℃에서 20분 내지 40분 동안 진행된 후에, 진공오븐에서 80±5℃의 온도로 12 내지 20시간 동안 건조가 이루어지는 것이 바람직하다. 제조된 슬러리를 건조하는 이유는 슬러리 상태의 리튬망간산화물은 전해조에서 반응성이 현저하게 저하되기 때문에, 슬러리에 함유된 용매 등과 같은 불순물을 건조하여 제거하기 위함이다. 또한, 건조 단계를 2단계로 진행하는 이유는 드라이오븐을 이용하여 1차적으로 건조과정을 진행하게 되면, 슬러리에 함유된 액체성분이 일정 정도 제거되어, 상기 진공오븐에 투입하였을 때, 알루미늄 호일 및 구리 호일에서 흘러내리는 것이 방지되기 때문이며, 드라이오븐에서 1차적으로 건조된 슬러리는 2차적으로 진공오븐에서 완전하게 건조된다.
S50 단계는 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법으로 반응전위를 확인하는 단계로, 건조된 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법(CV, Cyclic Voltammetry)으로 반응전위를 확인한다. 상기 S50 단계는 전해조를 1몰의 리튬염이 용해된 비수용액 전해질이 채운 상태에서 진행하는 것이 바람직하다. 전해조가 구비되면, 상기 슬러리가 코팅된 알루미늄호일을 작업전극으로 하고, 상기 전극판을 상대전극으로 하며, 상기 리튬금속을 기준전극으로 하여 순환전압전류법을 시행하는데, 상기와 같이, 슬러리가 코팅된 알루미늄호일 또는 구리호일, 전극판 및 리튬금속으로 이루어진 삼전극 셀이 구비된 전해조에 3 내지 4.3볼트(V) 범위의 전위를 걸어주면서, 1mVs-1의 주사속도로 순환전압전류법을 진행하여 반응전위를 확인한다.이때, 상기 전극판은 니켈판 또는 구리판으로 형성되며, 그리드(copper grid)의 형태로 이루어지는 것이 바람직하다.
S60 단계는 확인된 반응전위로 전해조를 유지하여, 전극판의 표면에 리튬을 석출시키는 단계로, 상기 S50 단계에 의하여 확인된 반응전위를 상기 전해조에 가한 후에 일정시간이 경과하면 상기 알루미늄 호일 또는 구리 호일에 코팅된 건조 슬러리에 함유되어 있던 리튬성분이 이온화되어 전극판의 표면으로 이동한 후에 전극판의 표면으로 석출된다.
S70 단계는 전극판의 표면에 석출된 리튬을 분리하는 단계로, 전극판의 표면에 리튬이 일정정도 석출되면 전극판을 전해조로부터 분리한 후에 전극판의 표면에 석출된 리튬을 긁어내어 분리한다. 이때, 상기 S50, S60 및 S70 단계는 드라이룸 또는 아르곤가스가 충전된 글로브박스(Grove Box) 내에서 진행되는 것이 바람직한데, 드라이 룸 또는 아르곤 가스가 충전된 글로브박스 또는 내에서 상기의 과정을 진행하게 되면, 순도가 높은 리튬을 얻을 수 있다.
도 2는 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.33Mn1.67O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(250배)하여 나타낸 사진이고, 도 3은 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Mn1.6O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(500배)하여 나타낸 사진이다. 또한, 도 4는 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Al0.08Mn1.52O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(250배)하여 나타낸 사진이고, 도 5는 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법 중 리튬망간산화물로 Li1.6Co0.08Mn1.52O4를 사용하고, 리튬석출 단계에서 구리판 그리드를 전극판으로 사용했을 때, 구리판 그리드에 리튬이 석출된 모습을 주사현미경(FE-SEM, Hitachi S-4800)으로 촬영(1000배)하여 나타낸 사진이다.
도 2 내지 5에 도시된 바와 같이, 본 발명에 따른 전기화학법을 이용하는 경우 구리판 그리드에 리튬을 회수할 수 있다. 본 발명에 따른 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법은 리튬의 회수율이 우수하고, 공정이 간단하다는 이점을 갖는다. 또한, 전기화학법을 이용하기 때문에 리튬 회수를 위해 사용되는 화학물질의 소모량이 적어 공정 효율성을 제고할 수 있고, 공정 비용을 절감할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명은 상술한 특정 실시예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경, 수정 및 균등물들은 모두 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.

Claims (13)

  1. 간수를 준비하는 단계(S10);
    상기 간수에 흡착제를 투입하여 리튬망간산화물을 제조하는 단계(S20);
    상기 리튬망간산화물, 도전재, 바인더 및 용매를 교반기에 투입하고 교반하여 슬러리로 제조하는 단계(S30);
    상기 제조된 슬러리를 알루미늄 호일 또는 구리 호일에 코팅하고, 상기 코팅된 슬러리를 건조하는 단계(S40);
    상기 슬러리가 코팅된 알루미늄 호일 또는 구리 호일을 전극판과 리튬금속이 구비된 전해조에 넣고 순환전압전류법으로 반응전위를 확인하는 단계(S50);
    상기 확인된 반응전위로 전해조를 유지하여, 전극판의 표면에 리튬을 석출시키는 단계(S60); 및
    상기 전극판의 표면에 석출된 리튬을 분리하는 단계(S70);
    를 포함하는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  2. 제1항에 있어서,
    상기 S30 단계는 리튬망간산화물 100 중량부에 도전재 25 내지 35 중량부, 및 바인더 10 내지 20 중량부를 교반기에 투입하는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  3. 제1항에 있어서,
    상기 리튬망간산화물은 하기 화학식 1로 표시되는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법:
    [화학식 1]
    LixMyMnzO4
    (상기 식에서, M=Ge, Al, B, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg 또는 Zn이고, 1≤x≤2, 0≤y≤0.5 및 1≤z≤2이다)
  4. 제3항에 있어서,
    상기 리튬망간산화물은 스피넬(Spinel)형 또는 응스피넬(Pseudo spinel)형 구조를 가지는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  5. 제3항에 있어서,
    상기 리튬망간산화물은 Li1.6Mn1.6O4, Li1.33Mn1.67O4, Li2MnO3, Li1.6Al0.08Mn1.52O4, Li1.6Co0.08Mn1.52O4, Li1.6Ti0.08Mn1.52O4, Li1.6B0.08Mn1.52O4, Li1.6Ge0.08Mn1.52O4, Li1.6V0.08Mn1.52O4, 또는 Li1.6Si0.08Mn1.52O4 중에서 어느 하나인 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  6. 제1항에 있어서,
    상기 도전재는 카본블랙인 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  7. 제1항에 있어서,
    상기 바인더는 폴리불화비닐리덴 또는 카르복시메틸셀룰로오스인 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  8. 제1항에 있어서,
    상기 용매는 N-메틸-2-피롤리돈 또는 물로 이루어지는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  9. 제1항에 있어서,
    상기 S30 단계는 믹서를 이용하여 3시간 동안 교반하여 슬러리로 제조하는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  10. 제1항에 있어서,
    상기 S40 단계는 코팅된 슬러리를 드라이오븐을 이용하여 60±5℃에서 20분 내지 40분 동안 건조한 후, 진공오븐에서 80±5℃의 온도로 12 내지 20시간 동안 추가적으로 건조하는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  11. 제1항에 있어서,
    상기 S50, S60 및 S70 단계는 드라이룸 또는 아르곤가스가 충전된 글로브박스에서 이루어지는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  12. 제1항에 있어서,
    상기 S50 단계의 전해조는 리튬염이 용해된 비수용액 전해질로 채워진 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
  13. 제1항에 있어서,
    상기 S60 단계의 전극판은 니켈판 또는 구리판으로 형성되며, 그리드의 형태로 이루어지는 것을 특징으로 하는 전기화학법을 이용하여 간수로부터 리튬을 회수하는 방법.
PCT/KR2013/008350 2012-09-24 2013-09-16 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법 WO2014046432A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120105599 2012-09-24
KR10-2012-0105599 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014046432A1 true WO2014046432A1 (ko) 2014-03-27

Family

ID=50341672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008350 WO2014046432A1 (ko) 2012-09-24 2013-09-16 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법

Country Status (2)

Country Link
KR (1) KR101536054B1 (ko)
WO (1) WO2014046432A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543516A (zh) * 2018-03-31 2018-09-18 毛强平 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN115094247A (zh) * 2022-07-07 2022-09-23 辽宁石油化工大学 盐湖卤水提取锂的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019055B1 (ko) * 2017-12-12 2019-09-06 주식회사 셀젠 리튬이온 흡착 및 탈착용 전극모듈의 제조방법
KR102133790B1 (ko) * 2018-08-13 2020-07-21 명지대학교 산학협력단 니켈코발트망간산화물을 이용한 리튬회수방법
KR102129313B1 (ko) * 2018-08-13 2020-07-08 명지대학교 산학협력단 니켈망간산화물을 이용한 리튬회수방법
CN109179589A (zh) * 2018-09-20 2019-01-11 同济大学 碳包覆磷酸钒钠电极材料的制备方法及其在杂化电容去离子技术中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688277A (ja) * 1991-03-04 1994-03-29 Agency Of Ind Science & Technol リチウム回収方法及びそれに用いる電極
KR19990084563A (ko) * 1998-05-08 1999-12-06 손욱 이차전지의 활물질 슬러리 제조방법
JP2005011698A (ja) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd リチウム二次電池電極材のリサイクル処理方法及び装置
KR20090052538A (ko) * 2007-11-21 2009-05-26 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
KR20120015658A (ko) * 2010-08-12 2012-02-22 재단법인 포항산업과학연구원 해수로부터 리튬, 탄산리튬 및 수산화 리튬을 고순도로 회수하는 방법과, 리튬 2차전지 양극재 및 리튬 2차전지용 LiFePO₄양극재의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688277A (ja) * 1991-03-04 1994-03-29 Agency Of Ind Science & Technol リチウム回収方法及びそれに用いる電極
KR19990084563A (ko) * 1998-05-08 1999-12-06 손욱 이차전지의 활물질 슬러리 제조방법
JP2005011698A (ja) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd リチウム二次電池電極材のリサイクル処理方法及び装置
KR20090052538A (ko) * 2007-11-21 2009-05-26 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
KR20120015658A (ko) * 2010-08-12 2012-02-22 재단법인 포항산업과학연구원 해수로부터 리튬, 탄산리튬 및 수산화 리튬을 고순도로 회수하는 방법과, 리튬 2차전지 양극재 및 리튬 2차전지용 LiFePO₄양극재의 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543516A (zh) * 2018-03-31 2018-09-18 毛强平 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN108543516B (zh) * 2018-03-31 2020-12-18 青海跨界分离技术有限公司 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN115094247A (zh) * 2022-07-07 2022-09-23 辽宁石油化工大学 盐湖卤水提取锂的方法
CN115094247B (zh) * 2022-07-07 2023-10-20 辽宁石油化工大学 盐湖卤水提取锂的方法

Also Published As

Publication number Publication date
KR20140040007A (ko) 2014-04-02
KR101536054B1 (ko) 2015-07-13

Similar Documents

Publication Publication Date Title
WO2014046432A1 (ko) 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법
Zhao et al. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method
Choubey et al. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)
US11524901B2 (en) Method for efficiently separating magnesium and lithium from salt lake brine and simultaneously preparing high-purity magnesium oxide and battery-grade lithium carbonate
WO2013094917A1 (ko) 전기화학법을 이용한 리튬의 회수방법
WO2012067348A2 (ko) 염수로부터 고순도 탄산리튬을 제조하는 방법
CN102651490B (zh) 一种废旧锂电池正极活性材料的再生方法
CN109609977B (zh) 提取锂的电极结构及其制造方法和应用
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
CN106591584A (zh) 一种从失效钴酸锂电池正极材料中回收钴和锂的方法
CN103272554B (zh) 锂锰氧化物型锂吸附剂的制备方法
WO2013172533A1 (ko) 용액으로부터 금속을 회수하기 위한 방법, 용액으로부터 금속을 회수하기 위한 시스템 및 염수로부터 리튬을 회수하기 위한 시스템
CN101812591A (zh) 废电路板的金、铜、硫酸铜、氯化铜废液回收方法
Woo et al. Ion-exchangeable functional binders and separator for high temperature performance of Li1. 1Mn1. 86Mg0. 04O4 spinel electrodes in lithium ion batteries
CN114272914B (zh) 一种锂吸附剂、膜元件、其制备方法及锂提取方法与装置
WO2014010947A1 (ko) 전기화학법을 이용하여 석탄회 또는 리튬이차전지용 활물질의 생산 공정에서 발생하는 폐수로부터 리튬을 회수하는 방법
WO2021134515A1 (zh) 一种电池级Ni-Co-Mn混合液和电池级Mn溶液的制备方法
Zhang et al. Constructing MIL-101 (Cr) membranes on carbon nanotube films as ion-selective interlayers for lithium–sulfur batteries
CN114317977A (zh) 从废旧钴酸锂电池中回收金属的方法
CN101654741B (zh) 一种从锂离子电池中分离回收锂和钴的方法
CN112795940B (zh) 一种盐水电化学提锂抑制共存阳离子干扰的方法
CN103221557B (zh) 含镍酸性溶液的制造方法
WO2014084445A1 (ko) 인듐함유 용액 또는 혼합물으로부터의 인듐의 회수 방법
CN112481492A (zh) 一种从废旧锂电池钴酸锂正极材料中回收有价金属的方法
CN111484046A (zh) 一种高镁锂比盐湖卤水提锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838246

Country of ref document: EP

Kind code of ref document: A1