WO2014045692A1 - 太陽電池封止材シート、および、太陽電池モジュール - Google Patents

太陽電池封止材シート、および、太陽電池モジュール Download PDF

Info

Publication number
WO2014045692A1
WO2014045692A1 PCT/JP2013/069523 JP2013069523W WO2014045692A1 WO 2014045692 A1 WO2014045692 A1 WO 2014045692A1 JP 2013069523 W JP2013069523 W JP 2013069523W WO 2014045692 A1 WO2014045692 A1 WO 2014045692A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sheet
unevenness
sealing material
irregularities
Prior art date
Application number
PCT/JP2013/069523
Other languages
English (en)
French (fr)
Inventor
中原誠
岡善之
小林祥之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013535183A priority Critical patent/JPWO2014045692A1/ja
Priority to KR1020157005767A priority patent/KR20150059738A/ko
Priority to CN201380046506.XA priority patent/CN104619492B/zh
Publication of WO2014045692A1 publication Critical patent/WO2014045692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10587Surface roughness created by embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell encapsulant sheet.
  • a solar cell encapsulant sheet and a solar cell module using the same that can simultaneously suppress problems during blocking of the solar cell encapsulant and cell misalignment during lamination in the solar cell manufacturing process About.
  • a solar cell module is manufactured by sealing a cell with a sealing material resin.
  • the resin that is mainly used at present in the encapsulant sheet is an ethylene vinyl acetate copolymer (hereinafter, the ethylene vinyl acetate copolymer may be referred to as EVA).
  • EVA ethylene vinyl acetate copolymer
  • embossing is performed in the manufacturing process of the encapsulant sheet, unevenness is formed on the sheet surface, and adhesion between the encapsulant sheets during storage is improved by improving the blocking resistance between the sheets. While preventing, the countermeasure which reduces the friction coefficient of a sealing material sheet and a photovoltaic cell is taken.
  • Patent Documents 1 and 2 an encapsulant sheet in which a plurality of protrusions having a skirt portion having a cylindrical shape or a truncated cone shape and a convex curved top portion are formed, or an independent protrusion having a height of 0.05 to 0.5 mm.
  • a sealing material sheet having a portion has been proposed.
  • Patent Documents 3, 4, and 5 propose a sealing material sheet in which a concavity and convexity with Ra of about 1 to 20 ⁇ m is provided on the sealing material sheet.
  • Patent Documents 6 and 7 propose a sealing material sheet in which Ra has an unevenness of about 1 to 2 ⁇ m on the surface opposite to the embossed surface of the sealing material sheet.
  • the sealing material sheets described in Patent Documents 1 to 7 also have a certain effect in suppressing the positional deviation of the cells by reducing the blocking resistance and the friction coefficient, but can ensure sufficient workability and module yield. It was not a thing.
  • an object of the present invention is to provide a solar cell encapsulant sheet and the same sheet that can simultaneously suppress problems during blocking of the solar cell encapsulant and cell misalignment during lamination in the solar cell production process. It is in providing the used solar cell module.
  • the present invention has the following configuration. That is, (1) When one surface is an A surface and the other surface is a B surface, the A surface has irregularities (A1) with an average roughness Ra (A1) of 3 to 95 ⁇ m and an average roughness Ra (A2). Having a concavity and convexity (A2) of 0.3 to 2.5 ⁇ m. (2) The solar cell package according to (1), wherein the projections of the irregularities (A1) have irregularities (A3) having an average roughness Ra (A3) of 0.3 to 2.5 ⁇ m. Stop sheet. (3) The solar cell encapsulant sheet according to (1) or (2), wherein an average interval Sm (A1) of the irregularities (A1) is 100 to 2,000 ⁇ m.
  • the B surface has irregularities (B1) having an average roughness Ra (B1) of 0.5 to 4 ⁇ m, and an average interval Sm (B1) of the irregularities (B1) is 10 to 400 ⁇ m.
  • the solar cell module obtained by arrange
  • seat which can suppress simultaneously the malfunction at the time of the blocking in the storage of a solar cell sealing material and the cell position shift at the time of the lamination in the manufacturing process of a solar cell is used.
  • the solar cell module can be provided.
  • the resin used for the solar cell encapsulant sheet of the present invention is not particularly limited, but is preferably a thermoplastic resin that is transparent and melts at a hot plate temperature (130 to 160 ° C.) during vacuum lamination.
  • An ethylene vinyl acetate copolymer hereinafter referred to as “EVA”), modified polyethylene, ionomer, polyvinyl butyral, and the like are preferably used.
  • the solar cell encapsulant sheet of the present invention appropriately contains additives such as a cross-linking agent, a cross-linking aid, a coupling agent, an ultraviolet absorber, and a light stabilizer as necessary for improving the sealing properties. May be.
  • the A surface has irregularities (A1) having an average roughness Ra (A1) of 3 to 95 ⁇ m. And an unevenness (A2) having an average roughness Ra (A2) of 0.3 to 2.5 ⁇ m.
  • the average roughness Ra (A2) of the unevenness (A2) is particularly preferably 0.5 to 2.5 ⁇ m.
  • the average roughness Ra (A1) of the unevenness (A1) is less than 3 ⁇ m, or the average roughness Ra (A2) of the unevenness (A2) is less than 0.3 ⁇ m, the sealing material sheets and the sealing material sheet The contact area with the solar battery cell is increased, and there is a possibility that blocking or positional deviation of the solar battery cell may occur.
  • the average roughness Ra (A1) of the unevenness (A1) exceeds 95 ⁇ m, the gap of the encapsulant sheet becomes large, and bubbles remain between the encapsulant sheet and the solar battery cells during lamination, and the module appearance May worsen.
  • the average roughness Ra (A2) of the unevenness (A2) exceeds 2.5 ⁇ m, only the unevenness (A1) may be substantially obtained, and the required effect cannot be obtained.
  • the average roughness Ra (A1) of the unevenness (A1) is particularly preferably 3 to 45 ⁇ m, and more preferably 6 to 15 ⁇ m.
  • the solar cell encapsulant sheet of the present invention has irregularities (A1) with an average roughness Ra (A1) of 3 to 95 ⁇ m and irregularities (A2) with an average roughness Ra (A2) of 0.3 to 2.5 ⁇ m.
  • A1 average roughness Ra
  • A2 average roughness Ra
  • the solar cell encapsulant sheet of the present invention preferably has irregularities (A3) with an average roughness Ra (A3) of 0.3 to 2.5 ⁇ m on the irregularities (A1).
  • irregularities (A3) with an average roughness Ra (A3) of 0.3 to 2.5 ⁇ m on the irregularities (A1).
  • corrugation (A1) means the mountain (profile peak) as described in JIS B0601 (2001) 3.2.4 term. That is, as shown in FIG. 2, the portion above the average line (in the direction from the object to the space) among the curved portions sandwiched between two adjacent intersections when the contour curve is cut by the average line. .
  • the fact that the projections of the projections and depressions (A1) have projections and depressions (A3) means that Ra (A3) obtained for a region higher than the average line in the contour curve of the projections and depressions (A1) is 0.3 to 2.5 ⁇ m. Means that.
  • the solar cell encapsulant sheet of the present invention in order to obtain an A surface having irregularities (A3) having an average roughness Ra (A3) of 0.3 to 2.5 ⁇ m on the convexities of the irregularities (A1), As will be described later, in the manufacturing process of the solar cell encapsulant sheet, a method of transferring the shape of an embossing roller having irregularities of a shape to be imparted to the A surface to the A surface can be mentioned.
  • the average interval Sm (A1) of the irregularities (A1) is preferably 100 to 2,000 ⁇ m.
  • the contact area between the sealing material sheets and between the sealing material sheet and the solar battery cell is reduced, and the solar battery cell during blocking and laminating during storage. It is easy to obtain the effect of suppressing the positional deviation.
  • the average interval Sm (A1) of the unevenness (A1) is 100 ⁇ m or more, the gap of the encapsulant sheet is reduced, and bubbles remain between the encapsulant sheet and the solar battery cells during lamination. The risk of deteriorating the appearance of the module can be reduced.
  • the average interval Sm (A1) of the unevenness (A1) means the Sm value obtained in the measurement of Ra (A1).
  • the solar cell encapsulant sheet of the present invention in order to set the average interval Sm (A1) of the irregularities (A1) to 100 to 2,000 ⁇ m, as described later, in the production process of the solar cell encapsulant sheet,
  • corrugation to give to this A surface with respect to A surface can be mentioned.
  • the solar cell encapsulant sheet of the present invention preferably has an average interval Sm (A2) of the irregularities (A2) of 5 to 80 ⁇ m.
  • an average interval Sm (A2) of the irregularities (A2) of 5 to 80 ⁇ m.
  • the average interval Sm (A2) of the fine irregularities (A2) is set to 80 ⁇ m or less, it is easy to obtain the effect of blocking during storage and suppressing the positional deviation of the solar cells during lamination as described above.
  • the average interval Sm (A2) of the projections and depressions (A2) to 5 ⁇ m or more, it is possible to reduce the risk that bubbles remain and the appearance of the module is deteriorated as described above. If the average interval Sm (A2) of the irregularities (A2) is less than 5 ⁇ m, the risk that bubbles remain may increase.
  • corrugation (A2) means the Sm value obtained in the measurement of Ra (A2).
  • the average interval Sm (A2) of the unevenness (A2) in order to set the average interval Sm (A2) of the unevenness (A2) to 5 to 80 ⁇ m, as described later, in contrast, a method of transferring an embossing roller having an average interval Sm of unevenness to be imparted to the A surface can be mentioned.
  • the solar cell encapsulant sheet of the present invention has an average interval Sm (A-MD) [ ⁇ m] in the sheet flow direction and an average interval Sm (A-TD) in the direction perpendicular to the sheet flow direction with respect to the A surface.
  • [ ⁇ m] ratio (Sm (A-MD) / Sm (A-TD)) is preferably 1.1 to 5.
  • the solar cell encapsulant sheet of the present invention In order to set the ratio (Sm (A-MD) / Sm (A-TD)) to 1.1 to 5 for the solar cell encapsulant sheet of the present invention, as will be described later, the solar cell encapsulant sheet In the manufacturing process, the method of transferring the shape of the embossing roller having the ratio of the average distance Sm to be applied to the A surface to the A surface can be mentioned.
  • the B surface can also have an uneven shape similar to that of the A surface, but preferably the B surface has unevenness with an average roughness Ra (B1) of 0.5 to 4 ⁇ m ( B1) and the average interval Sm (B1) of the irregularities (B1) is 10 to 400 ⁇ m.
  • the sealing material sheet of the present invention is easily laminated and laminated, with the A-side facing the solar cell side, and the effect of suppressing the positional deviation of the solar cell as described above is easily obtained.
  • the B surface comes into contact with the glass or the back sheet, and the one having a larger friction coefficient with the glass or the back sheet is in close contact with the glass or the back sheet, and the sealing material sheet is fixed. Is less likely to occur, and the positional deviation of the cell is reduced. Therefore, it is preferable that the average roughness Ra (B1) of the unevenness (B1) is 0.5 to 4 ⁇ m, which is lower than the Ra (A1) of the A surface, and the friction system number is increased. By making Ra (B1) 0.5 ⁇ m or more, it is preferable in that blocking between the sealing material sheets can be suppressed, and by making it 4 ⁇ m or less, it is preferable that the positional deviation of the cells hardly occurs.
  • the average interval Sm (B1) of the unevenness (B1) means the Sm value obtained in the measurement of Ra (B1).
  • the solar cell encapsulant sheet of the present invention has irregularities (B1) with an average roughness Ra (B1) of 0.5 to 4 ⁇ m, and an average interval Sm (B1) between the irregularities (B1) of 10 to 400 ⁇ m.
  • the shape of the embossing roller having irregularities of the shape to be imparted to the B surface is transferred to the B surface. Can be mentioned.
  • Such a solar cell encapsulant sheet is cut into a cut sheet having a desired length and used for manufacturing a solar cell module.
  • the solar cell module of the present invention includes a light-receiving surface protective material, a solar cell encapsulant sheet of the present invention, a solar cell, a solar cell encapsulant sheet of the present invention, and a back surface protective material arranged in this order, and sealed. Obtained by stopping. Since the sealing material sheet of the present invention can suppress blocking at the time of storage of the solar cell sealing material, it is excellent in work efficiency when laminating the materials having the above-described structure, and the positional deviation of the cells when being integrated by laminating. Since defects can be suppressed, a solar cell module with excellent long-term durability is obtained.
  • the solar cell module of the present invention has a light receiving surface protective material, a solar cell encapsulant sheet of the present invention, a solar cell, a solar cell encapsulant sheet of the present invention, and a back surface protective material in this order, It is a module obtained by sealing. Furthermore, it is preferable that the said photovoltaic cell is obtained by arrange
  • the blocking resistance and the static friction coefficient of A surface which are each described in an Example are employ
  • the unevenness (unevenness (A1), unevenness (A2), unevenness (A3), unevenness (B1)) of the solar cell encapsulant sheet of the present invention is a metal embossing roller or rubber embossing having similar unevenness. It can be applied by transfer from a roller.
  • the process sheet in a high temperature state here, the process sheet is a sealing material sheet before forming the unevenness
  • two embossing rollers made of metal and rubber facing each other In other words, a method of introducing the sealing material sheet of the present invention by providing irregularities (A1) and irregularities (A2) to the process sheet can be mentioned.
  • a process sheet in a high temperature state is introduced into a metal embossing roller having the same unevenness as the rough A surface and a rubber embossing roller having the same unevenness as the facing relatively uneven fine B surface, and the above A surface , Unevenness on both sides B (unevenness (A1), unevenness (A2), unevenness (A3), unevenness (B1)) can be provided at a time.
  • the measurement method used in this example is shown below. Unless otherwise specified, the number of measurement n was 5, and the average value was adopted.
  • Ra (A1) of unevenness (A1) The surface A of the encapsulant sheet is photographed at a magnification of 100 using a shape measurement laser microscope VK-X100 (manufactured by Keyence Corporation) in accordance with JIS B0601 (2001). Using the obtained image, a contour curve is created so that the evaluation length is 2500 ⁇ m, and the Ra value when the cutoff value ( ⁇ c) is 8.0 mm and the cutoff value ( ⁇ s) is 0.25 ⁇ m Ra (A1). Arbitrary measurement was performed with n number of 10 in each of two orthogonal directions, and an average value in the two directions was adopted.
  • Sm (A1) of unevenness (A1) The Sm value (average value in two directions) obtained in the measurement of Ra (A1) was defined as Sm (A1).
  • Ra (A2) of unevenness (A2) For the A surface of the encapsulant sheet, the magnification was taken at 400, the evaluation length was changed to 100 ⁇ m to create a contour curve, the cut-off value ( ⁇ c) was changed to 0.080 mm, and the others were average roughness Ra Ra value (average value in two directions) when measured by the same method as (A1) was defined as Ra (A2).
  • Ra (A3) of unevenness (A3) About the image obtained by (1), the convex part of the unevenness
  • Ra (A3) was defined as the Ra value (average value in two directions) when the same portion as the average roughness Ra (A1) was measured by the method.
  • the length of all the convex portions of the unevenness (A1) in the image obtained in (1) is less than 40 ⁇ m, the convex length arbitrarily selected for the evaluation length of the arbitrarily selected convex portion The length of the part was set and measured.
  • Sm ratio ratio (Sm (A-MD) / Sm (A-TD) is hereinafter simply referred to as Sm ratio)
  • Sm ratio ratio (Sm (A-MD) / Sm (A-TD) is hereinafter simply referred to as Sm ratio)
  • the ratio (Sm (A-MD) / Sm (A-TD)) was determined from the obtained Sm (A-MD) and Sm (A-TD).
  • Ra (B1) When the B surface of the encapsulant sheet is measured by the same method as the average roughness Ra (A1) except that the magnification is 200, the evaluation length is 500 ⁇ m, and the cutoff value ( ⁇ c) is 0.8 mm. Ra value (average value in two directions) was defined as Ra (B1).
  • Sm (B1) The Sm value (average value in two directions) obtained in the measurement of Ra (B1) was defined as Sm (B1).
  • An area (50 mm ⁇ 50 mm) is sandwiched between two glass plates, and a weight is placed on the glass plate so that the load applied to the area is 5 kg.
  • the sample set as described above was treated in an oven at 40 ° C. for 24 hours, and then left in an atmosphere of 23 ° C. and 65% humidity for 30 minutes or more with the load removed. Then, the glass plate (2 sheets) was removed from the sample. Next, the two samples (that is, two sealing material sheets which are test pieces) are peeled by 180 °, and the peeling force is measured using a tensile testing machine (Autograph ASG-J, manufactured by Shimadzu Corporation). , Measured at 200 mm / min.
  • EVA resin (vinyl acetate content: 28% by mass, melt flow rate: 15 g / 10 min (190 ° C.), melting point: 71 ° C.) 100 parts by mass, t-butylperoxy-2-ethylhexyl monocarbonate (1 (Time half-life temperature: 119 ° C.) 0.7 parts by mass was supplied to a twin-screw extruder, melted and kneaded, and extruded from a T-die to obtain an EVA sheet having a thickness of 450 ⁇ m. This EVA sheet is heated to a sheet temperature of 70 ° C.
  • Example 2 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A1) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 3 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A1) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 4 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A1) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 5 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A2) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 6 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A2) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 7 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that the Sm (A1) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was slightly inferior in blocking resistance and static friction coefficient, but was an encapsulant sheet with little air biting into the embossing roller.
  • Example 8 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A3) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was slightly inferior in blocking resistance and static friction coefficient, but was an encapsulant sheet with little air biting into the embossing roller.
  • Example 9 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that the Sm (A2) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was slightly inferior in blocking resistance and static friction coefficient, but was an encapsulant sheet with little air biting into the embossing roller.
  • Example 10 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that the Sm ratio of the sheet was 1.0. As shown in Table 1, the obtained encapsulant sheet was confirmed to be air-engaged with the embossing roller, but was an encapsulant sheet excellent in blocking resistance and static friction coefficient.
  • Example 11 A sealing material sheet was prepared in the same manner as in Example 1 except that the silicon rubber embossing roller was changed so that Ra (B1) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was slightly inferior in blocking resistance, but it was an encapsulant sheet with little air biting into the embossing roller and excellent in the coefficient of static friction.
  • Example 12 A sealing material sheet was prepared in the same manner as in Example 1 except that the silicon rubber embossing roller was changed so that the Sm (B1) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was slightly inferior in blocking resistance, but it was an encapsulant sheet with little air biting into the embossing roller and excellent in the coefficient of static friction.
  • Example 13 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that the Sm (A2) of the sheet was increased. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with little air biting into the embossing roller and excellent in blocking resistance and static friction coefficient.
  • Example 1 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A1) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with less air biting into the embossing roller but inferior in blocking resistance and static friction coefficient.
  • Example 2 A sealing material sheet was prepared in the same manner as in Example 1 except that the SUS embossing roller was changed so that Ra (A2) of the sheet was small. As shown in Table 1, the obtained encapsulant sheet was an encapsulant sheet with less air biting into the embossing roller but inferior in blocking resistance and static friction coefficient.
  • the sealing material sheet of the present invention can simultaneously suppress problems of blocking during storage of the solar cell sealing material and positional displacement of the cells during lamination in the manufacturing process of the solar cell, as a sealing material sheet for solar cells Preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 太陽電池封止材の保管時におけるブロッキングと太陽電池の製造工程におけるラミネート時のセルの位置ズレの不具合を同時に抑制できる、太陽電池用の封止材シートを提供する。 【解決手段】 一方の面をA面、他方の面をB面とした時に、該A面が、平均粗さRa(A1)が3~95μmの凹凸(A1)と、平均粗さRa(A2)が0.3~2.5μmの凹凸(A2)とを有することを特徴とする太陽電池封止材シート。

Description

太陽電池封止材シート、および、太陽電池モジュール
 本発明は太陽電池封止材シートに関する。特に、太陽電池封止材の保管時におけるブロッキングと太陽電池の製造工程におけるラミネート時のセルの位置ズレの不具合を同時に抑制できる、太陽電池封止材シート、および、同シートを用いた太陽電池モジュールに関する。
 近年、資源の有効利用やCO排出量削減の観点から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、技術開発が進められている。
 現在主流である結晶シリコン系太陽電池では、ガラス、封止材シート、太陽電池セル、封止材シート、バックシートをこの順に積層し、該積層体を真空・加熱条件下でラミネートし、溶融した封止材樹脂でセルを封止して太陽電池モジュールを製造している。
 封止材シートにおいて現在主に用いられている樹脂は、エチレン酢酸ビニル共重合体(以降、エチレン酢酸ビニル共重合体をEVAと表すこともある)であるが、前記の樹脂は密着しやすい材料であり、封止材シートをロールや積層保管する場合に封止材シート同士が密着するブロッキングが発生し、上記の積層工程で作業性が大きく低下する課題がある。
 また、上記のラミネート工程では、太陽電池セルと封止材シートとが密着し、加熱条件下で封止材シートが収縮した際に、太陽電池セルの位置ズレによるセル同士の干渉が発生し、セルの破損によりモジュール収率を低下させる一因となっている。
 上記トラブルを回避するため、封止材シートの製造プロセスでエンボス加工を行い、シート表面に凹凸を形成し、シート同士の耐ブロッキング性を向上させることで保管時の封止材シート同士の密着を防止するとともに、封止材シートと太陽電池セルとの摩擦係数を低減する対策がとられている。
 特許文献1、2では、円柱または円錐台形からなる裾部と凸な曲面形状の頂部を有する突起が複数形成された封止材シートや、高さが0.05~0.5mmの独立した凸部を有する封止材シートが提案されている。
 一方、特許文献3、4、5では、封止材シートにRaが1~20μm程度の凹凸を設ける封止材シートが提案されている。
 また、特許文献6、7では封止材シートのエンボス面と逆の面にRaが1~2μm程度の凹凸を設ける封止材シートが提案されている。
特開2010-258123号公報 特開2010-232311号公報 特開2010-192804号公報 特開2012-7087号公報 特開2012-99713号公報 特開2010-269506号公報 特開2010-269507号公報
 しかしながら、前記特許文献1~7に記載の封止材シートでも、耐ブロッキング性や摩擦係数の低減によるセルの位置ズレ抑制に一定の効果を奏するが、十分な作業性やモジュール収率を確保できるものではなかった。
 そこで本発明の目的は、太陽電池封止材の保管時におけるブロッキングと太陽電池の製造工程におけるラミネート時のセルの位置ズレの不具合を同時に抑制できる、太陽電池封止材シート、および、同シートを用いた太陽電池モジュールを提供することにある。
 上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)一方の面をA面、他方の面をB面とした時に、該A面が、平均粗さRa(A1)が3~95μmの凹凸(A1)と、平均粗さRa(A2)が0.3~2.5μmの凹凸(A2)とを有することを特徴とする太陽電池封止材シート。
(2)前記凹凸(A1)の凸部に、平均粗さRa(A3)が0.3~2.5μmの凹凸(A3)を有することを特徴とする、(1)に記載の太陽電池封止材シート。
(3)前記凹凸(A1)の平均間隔Sm(A1)が、100~2,000μmであることを特徴とする、(1)または(2)に記載の太陽電池封止材シート。
(4)前記凹凸(A2)の平均間隔Sm(A2)が、5~80μmであることを特徴とする、(1)~(3)のいずれかに記載の太陽電池封止材シート。
(5)前記A面について、シート流れ方向の平均間隔Sm(A-MD)[μm]と、該シート流れ方向に直交する方向の平均間隔Sm(A-TD)[μm]の比(Sm(A-MD)/Sm(A-TD))が、1.1~5であることを特徴とする、(1)~(4)のいずれかに記載の太陽電池封止材シート。
(6)前記B面が、平均粗さRa(B1)が0.5~4μmの凹凸(B1)を有し、かつ該凹凸(B1)の平均間隔Sm(B1)が10~400μmであることを特徴とする、(1)~(5)のいずれかに記載の太陽電池封止材シート。
(7)受光面保護材、(1)~(6)のいずれかに記載の太陽電池封止材シート、太陽電池セル、(1)~(6)のいずれかに記載の太陽電池封止材シート、及び裏面保護材を、この順に配置して、封止することにより得られる太陽電池モジュール。
(8)前記太陽電池セルを、前記太陽電池封止材シートのA面側に接するように配置することを特徴とする、(7)に記載の太陽電池モジュール。
である。
 本発明によれば、太陽電池封止材の保管時におけるブロッキングと太陽電池の製造工程におけるラミネート時のセルの位置ズレの不具合を同時に抑制できる、太陽電池封止材シート、および、同シートを用いた太陽電池モジュールを提供できる。
封止材シートの輪郭曲線、凹凸(A1)、および凹凸(A2)を説明する図である。 平均線、および封止材シートの凹凸(A1)の凸部を説明する図である。
 以下、本発明の実施の形態を詳細に説明する。
 本発明の太陽電池封止材シートに用いられる樹脂は、特に限定されないが、透明性があり、真空ラミネート時の熱板温度(130~160℃)で溶融する熱可塑性樹脂であることが好ましく、エチレン酢酸ビニル共重合体(以下「EVA」と記載)、変性ポリエチレン、アイオノマー、ポリビニルブチラールなどが好適に使用される。
 また本発明の太陽電池封止材シートは、封止特性向上のために、必要に応じて架橋剤、架橋助剤、カップリング剤、紫外線吸収剤、光安定化剤などの添加剤を適宜含有してもよい。
 本発明の太陽電池封止材シートは、一方の面をA面、他方の面をB面とした時に、該A面が、平均粗さRa(A1)が3~95μmの凹凸(A1)と、平均粗さRa(A2)が0.3~2.5μmの凹凸(A2)とを有する。Raが3~95μmの比較的粗い凹凸(A1)と、Raが0.3~2.5μmの微細な凹凸(A2)を併せ持つことにより、封止材シート同士、及び封止材シートと太陽電池セルとの接触面積が低減され、何れかの凹凸のみを有する場合やいずれの凹凸も有さない場合に比して、保管時におけるブロッキングとラミネート時のセルの位置ズレを抑制することができる。なお、前記の観点から、特に好ましい凹凸(A2)の平均粗さRa(A2)は0.5~2.5μmである。凹凸(A1)の平均粗さRa(A1)が3μmを下回る、または凹凸(A2)の平均粗さRa(A2)が0.3μmを下回ると、封止材シート同士、及び封止材シートと太陽電池セルとの接触面積が増加し、ブロッキングや太陽電池セルの位置ズレが発生するおそれがある。凹凸(A1)の平均粗さRa(A1)が95μmを上回ると、封止材シートの空隙部が大きくなり、ラミネート時に封止材シートと太陽電池セルの間に気泡が残留し、モジュールの外観を悪化させることがある。また、凹凸(A2)の平均粗さRa(A2)が2.5μmを上回ると実質的に凹凸(A1)のみの状態となる場合があり、必要とする実効が得られない。前記の観点から、特に好ましい凹凸(A1)の平均粗さRa(A1)は3~45μm、更に好ましくは、6~15μmである。
 なお、A面の平均粗さRa(A1)及び平均粗さRa(A2)の測定方法は、後述する。
 本発明の太陽電池封止材シートについて、平均粗さRa(A1)が3~95μmの凹凸(A1)及び平均粗さRa(A2)が0.3~2.5μmの凹凸(A2)を有するA面とするためには、後述するように、太陽電池封止材シートの製造工程において、A面に対して、該A面に付与したい形状の凹凸を有するエンボスローラーの形状を転写させる方法を挙げることができる。
 本発明の太陽電池封止材シートは、凹凸(A1)の凸部に、平均粗さRa(A3)が0.3~2.5μmの凹凸(A3)を有することが好ましい。比較的粗い凹凸(A1)の凸部に微細な凹凸(A3)を有することにより、封止材シート同士、及び封止材シートと太陽電池セルとの接触面積が低減し、保管時におけるブロッキングとラミネート時の太陽電池セルの位置ズレ抑制の効果が得られやすい。
 なお、凹凸(A1)の凸部とは、JIS B0601(2001)3.2.4項に記載の山(profile peak)のことを言う。すなわち、図2の通り、前記の輪郭曲線を平均線により切断したときの隣り合う二つの交点に挟まれた曲線部分のうち、平均線より上側(物体から空間側への方向)の部分をいう。そして、凹凸(A1)の凸部に、凹凸(A3)を有するとは、凹凸(A1)の輪郭曲線における平均線より高い領域について求めたRa(A3)が0.3~2.5μmであることを意味する。
 本発明の太陽電池封止材シートについて、凹凸(A1)の凸部に、平均粗さRa(A3)が0.3~2.5μmの凹凸(A3)を有するA面とするためには、後述するように、太陽電池封止材シートの製造工程において、A面に対して、該A面に付与したい形状の凹凸を有するエンボスローラーの形状を転写させる方法を挙げることができる。
 本発明の太陽電池封止材シートは、前記凹凸(A1)の平均間隔Sm(A1)は、100~2,000μmであることが好ましい。平均間隔Sm(A1)を2,000μm以下とすることにより、封止材シート同士や、封止材シートと太陽電池セルとの接触面積が低減し、保管時におけるブロッキングとラミネート時の太陽電池セルの位置ズレ抑制の効果が得られやすい。一方、凹凸(A1)の平均間隔Sm(A1)を100μm以上とすることで、封止材シートの空隙部を低減させ、ラミネート時に封止材シートと太陽電池セルの間に気泡が残留し、モジュールの外観を悪化させるリスクを低減できる。
 なお、凹凸(A1)の平均間隔Sm(A1)とは、Ra(A1)の測定において得られたSm値を意味する。
 本発明の太陽電池封止材シートについて、凹凸(A1)の平均間隔Sm(A1)を100~2,000μmとするためには、後述するように、太陽電池封止材シートの製造工程において、A面に対して、該A面に付与したい凹凸の平均間隔Smを有するエンボスローラーの形状を転写させる方法を挙げることができる。
 本発明の太陽電池封止材シートは、前記凹凸(A2)の平均間隔Sm(A2)が、5~80μmであることが好ましい。微細な凹凸(A2)の平均間隔Sm(A2)を80μm以下とすることにより、上記同様に保管時におけるブロッキングとラミネート時の太陽電池セルの位置ズレ抑制の効果が得られやすい。一方、凹凸(A2)の平均間隔Sm(A2)を5μm以上とすることで、上記同様に気泡が残留し、モジュールの外観を悪化させるリスクを低減できる。凹凸(A2)の平均間隔Sm(A2)が5μmを下回ると、気泡が残留するリスクが増大することがある。
 なお、凹凸(A2)の平均間隔Sm(A2)は、Ra(A2)の測定において得られたSm値を意味する。
 本発明の太陽電池封止材シートについて、凹凸(A2)の平均間隔Sm(A2)を5~80μmとするためには、後述するように、太陽電池封止材シートの製造工程において、A面に対して、該A面に付与したい凹凸の平均間隔Smを有するエンボスローラーを転写させる方法を挙げることができる。
 本発明の太陽電池封止材シートは、前記A面について、シート流れ方向の平均間隔Sm(A-MD)[μm]と、該シート流れ方向に直交する方向の平均間隔Sm(A-TD)[μm]の比(Sm(A-MD)/Sm(A-TD))が、1.1~5であることが好ましい。シートの流れ方向の平均間隔Sm(A-MD)を大きくすることで、シートの流れ方向に沿って長い凹凸形状となり、後述する封止材シートの製造時において、エンボスローラーとシートとの間にエアが噛む量が少なくなり、エア噛みによる気泡欠点を低減することができる。上記の比(Sm(A-MD)/Sm(A-TD))を1.1以上とすることで、気泡欠点低減の効果が得られやすく、5以下とすることで、耐ブロッキング性の方向ムラを抑制できる。
 本発明の太陽電池封止材シートについて、比(Sm(A-MD)/Sm(A-TD))を1.1~5とするためには、後述するように、太陽電池封止材シートの製造工程において、A面に対して、該A面に付与したい平均間隔Smの比を有するエンボスローラーの形状を転写させる方法を挙げることができる。
 本発明の封止材シートは、B面についてもA面と同様の凹凸形状とすることもできるが、好ましくは前記B面が、平均粗さRa(B1)が0.5~4μmの凹凸(B1)を有し、かつ該凹凸(B1)の平均間隔Sm(B1)が10~400μmである。
 本発明の封止材シートは、A面を太陽電池セル側に向けて積層し、ラミネートすることで、上記のごとく太陽電池セルの位置ズレを抑制する効果が得られやすい。一方、B面は、ガラスやバックシートと接することとなり、ガラスやバックシートとの摩擦係数が大きい方が、ガラスやバックシートに密着し、封止材シートが固定されるためラミネート時の加熱収縮が起こりにくく、セルの位置ズレが小さくなる。従って、B面については、凹凸(B1)の平均粗さRa(B1)を0.5~4μmと、A面のRa(A1)に比べ低めにし、摩擦系数を高めにすることが好ましい。Ra(B1)を0.5μm以上とすることにより、封止材シート同士のブロッキングが抑制できる点で好ましく、4μm以下とすることで、セルの位置ズレが起こりにくく好ましい。
 また、凹凸(B1)の平均間隔Sm(B1)については、その範囲を400μm以下とすることで、封止材シート同士のブロッキングが抑制できる点で好ましく、10μm以上とすることにより、ラミネート時において、封止材シートとガラス、またはバックシートとの間に気泡が残留し、モジュールの外観を悪化させるリスクを低減できる。
 なお、B面の平均粗さRa(B1)の測定方法は後述する。
 また、凹凸(B1)の平均間隔Sm(B1)は、Ra(B1)の測定において得られたSm値を意味する。
 本発明の太陽電池封止材シートについて、平均粗さRa(B1)が0.5~4μmの凹凸(B1)を有し、かつ該凹凸(B1)の平均間隔Sm(B1)が10~400μmであるB面を形成するためには、後述するように、太陽電池封止材シートの製造工程において、B面に対して、該B面に付与したい形状の凹凸を有するエンボスローラーの形状を転写させる方法を挙げることができる。
 このような太陽電池封止材シートは、所望長さのカットシートに裁断され、太陽電池モジュールの製造に用いられる。
 本発明の太陽電池モジュールは、受光面保護材、本発明の太陽電池封止材シート、太陽電池セル、本発明の太陽電池封止材シート、及び裏面保護材を、この順に配置して、封止することにより得られる。本発明の封止材シートは、太陽電池封止材の保管時におけるブロッキングが抑制できるため、上記構成の材料を積層する際の作業効率に優れ、ラミネートにより一体化させる際のセルの位置ズレの不具合が抑制できるため、長期にわたる耐久性が優れた太陽電池モジュールとなる。
 さらに本発明の太陽電池モジュールは、受光面保護材、本発明の太陽電池封止材シート、太陽電池セル、本発明の太陽電池封止材シート、及び裏面保護材を、この順に配置して、封止することにより得られるモジュールである。さらに前記太陽電池セルは、前記太陽電池封止材シートのA面側に接するように配置することにより得られることが好ましい。このような配置の太陽電池モジュールとすることで、太陽電池セルの位置ズレを抑制する効果がより得られやすくなる点で好ましい。
 なお、本発明では、保管時のブロッキングと、ラミネート時の太陽電池セルの位置ズレを簡易的に評価する手法として、それぞれ実施例に記載の、耐ブロッキング性、A面の静摩擦係数を採用する。何れも値が小さい方が保管時のブロッキングと、セルの位置ズレのリスクが少なく、良好である。
 以下、本発明の封止材シートを得るための好ましい製造方法について説明する。
 本発明の太陽電池封止材シートの凹凸(凹凸(A1)、凹凸(A2)、凹凸(A3)、凹凸(B1))は、同様の凹凸を有する金属製のエンボスローラー、またはゴム製のエンボスローラーからの転写によって付与することができる。好ましくは凹凸の転写性を向上させる目的で、金属製とゴム製の対向する2本のエンボスローラーに、高温状態の工程シート(ここで工程シートとは、凹凸を形成する前の封止材シートを意味する。つまり工程シートに対して、凹凸(A1)、凹凸(A2)を付与することで、本発明の封止材シートとなる。)を導入する方法を挙げることができる。また、太陽電池封止材シート中に、A面とB面の凹凸(凹凸(A1)、凹凸(A2)、凹凸(A3)、凹凸(B1))を同時に付与したい場合は、比較的凹凸の粗いA面と同様の凹凸を有する金属エンボスローラー、および対向する比較的凹凸の微細なB面と同様の凹凸を有するゴム製のエンボスローラーに、高温状態の工程シートを導入し、上記のA面、B面双方の凹凸(凹凸(A1)、凹凸(A2)、凹凸(A3)、凹凸(B1))を一度に付与することができる。
 本実施例で用いた測定法を下記に示す。特に断らない限り、測定n数は5とし、平均値を採用した。
 (1)凹凸(A1)のRa(A1)
封止材シートのA面を、JIS B0601(2001)に準拠し、形状測定レーザーマイクロスコープVK―X100(キーエンス社製)を用いて、シート表面を倍率100で撮影する。得られた画像を用い、評価長さが2500μmとなる様に輪郭曲線を作成し、カットオフ値(λc)を8.0mm、カットオフ値(λs)を0.25μmとしたときのRa値をRa(A1)とする。なお、任意の測定は直交する2方向について、それぞれn数10で行い、2方向の平均値を採用した。
 (2)凹凸(A1)のSm(A1)
 Ra(A1)の測定において得られたSm値(2方向の平均値)をSm(A1)とした。
 (3)凹凸(A2)のRa(A2)
封止材シートのA面について、倍率を400で撮影し、評価長さを100μmに変更し輪郭曲線を作成、更にカットオフ値(λc)を0.080mmに変更し、他は平均粗さRa(A1)と同一の方法で測定したときのRa値(2方向の平均値)をRa(A2)とした。
 (4)凹凸(A2)のSm(A2)
 Ra(A2)の測定において得られたSm値(2方向の平均値)をSm(A2)とした。
 (5)凹凸(A3)のRa(A3)
(1)で得られた画像について、JIS B0601(2001)に従って、輪郭曲線と平均線を引くことで、凹凸(A1)の凸部を求めた。そして該凹凸(A1)中の任意に選択した凸部(なお、ここでいう任意に選択した凸部とは、凸部の長さが40μm以上のものの中で任意に選択した凸部とする。)について、倍率を400で撮影し、評価長さを40μmに変更し輪郭曲線を作成、更にカットオフ値(λc)を0.080mmに変更し、その他は平均粗さRa(A1)と同一の方法で、平均粗さRa(A1)を測定したのと同一の部分を測定したときのRa値(2方向の平均値)をRa(A3)とした。なお、(1)で得られた画像中の凹凸(A1)の全ての凸部の長さが40μm未満の場合には、任意に選択した凸部について、その評価長さを任意に選択した凸部の長さに設定して測定した。
 (6)Sm比(比(Sm(A-MD)/Sm(A-TD)を、以下、単にSm比という)
(1)に記載の条件で、シートのA面を、シート流れ方向に沿って測定して求めたSm値について、n数10の平均値をSm(A-MD)とした。
 同様にして、該シート流れ方向に直交する方向に沿って測定して得られたSm値の平均値をSm(A-TD)とした。
 得られたSm(A-MD)及びSm(A-TD)から、比(Sm(A-MD)/Sm(A-TD))を求めた。
 (7)Ra(B1)
封止材シートのB面を、倍率を200、評価長さを500μm、カットオフ値(λc)を0.8mmに変更し、他は平均粗さRa(A1)と同一の方法で測定したときのRa値(2方向の平均値)をRa(B1)とした。
 (8)Sm(B1)
Ra(B1)の測定において得られたSm値(2方向の平均値)をSm(B1)とした。
 (9)エンボスローラーへのエア噛み有無
封止材シートの製造時において、エンボスローラー通過後の、金属製のエンボスローラーと封止材シートの間のエアー有無を目視で観察した。
 (10)耐ブロッキング性
封止材シートから、シート流れ方向に100mm、幅方向に50mmの大きさの試験片を2枚切り出した。この試験片のA面とB面が接するように重ね合わせ、封止材シートの流れ方向の一端から2/3の面積(66mm×50mm)を、片面にシリコーン離型剤が塗布された2枚のPET(ポリエチレンテレフタレート)離型フィルムで、シリコーン塗布面と封止材シートが接するように挟み、さらに前記のPET離型フィルムの外側を、封止材シートの流れ方向の一端から1/2の面積(50mm×50mm)を、ガラス板2枚の間に挟み、該面積にかかる荷重が5kgとなるよう、ガラス板の上に重りを上載する。前記のようにセットしたサンプルを、40℃のオーブン内で24時間処理した後、荷重を取り外した状態で、23℃、湿度65%の雰囲気下に30分以上放置した。その後、サンプルからガラス板(2枚)を取り除いた。次いで、この試料2枚(つまり、試験片である2枚の封止材シート)を180゜剥離し、その剥離力を引張試験機((株)島津製作所製オートグラフASG-J)を用いて、200mm/分の条件で測定した。
 (11)A面の静摩擦係数
封止材シートのA面を摩擦計(新東科学(株)製 HEIDONトライボギア ミューズTYPE:94i)を用いて、スライダー(黄銅、ハードクロム処理、40g)と、封止材シートのA面との静摩擦係数を測定した。測定はn数20で行い、平均値を採用した。
 (実施例1)
EVA樹脂(酢酸ビニル含有量:28質量%、メルトフローレイト:15g/10分(190℃)、融点:71℃)100質量部、架橋剤としてt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(1時間半減期温度:119℃)0.7質量部を2軸押出機に供給して溶融混練し、Tダイから押出して厚み450μmのEVAシートを得た。このEVAシートを、セラミックヒータでシート温度70℃まで加熱し、前記加熱状態で、凹凸を有するSUS製(ステンレス製)のエンボスローラー(表面温度25℃)と、シリコンゴム製のエンボスローラー(表面温度25℃)との間(線圧:350N/cm)に通し、封止材シートを得た。
 得られたシートのRa(A1)、Sm(A1)、Ra(A2)、Sm(A2)、Ra(A3)、Sm比、Ra(B1)、Sm(B1)、及び、エンボスローラーへのエア噛み有無、耐ブロッキング性、A面の静摩擦係数を評価した。結果を表1に示す。表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例2)
シートのRa(A1)が小さくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例3)
シートのRa(A1)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例4)
シートのRa(A1)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例5)
シートのRa(A2)が小さくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例6)
シートのRa(A2)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例7)
シートのSm(A1)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、耐ブロッキング性、静摩擦係数にやや劣るが、エンボスローラーへのエア噛みが少ない封止材シートであった。
 (実施例8)
シートのRa(A3)が小さくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、耐ブロッキング性、静摩擦係数にやや劣るが、エンボスローラーへのエア噛みが少ない封止材シートであった。
 (実施例9)
シートのSm(A2)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、耐ブロッキング性、静摩擦係数にやや劣るが、エンボスローラーへのエア噛みが少ない封止材シートであった。
 (実施例10)
シートのSm比が1.0となるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが確認されるが、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (実施例11)
シートのRa(B1)が小さくなるようにシリコンゴム製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、耐ブロッキング性にやや劣るが、エンボスローラーへのエア噛みが少なく、静摩擦係数に優れる封止材シートであった。
 (実施例12)
シートのSm(B1)が大きくなるようにシリコンゴム製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、耐ブロッキング性にやや劣るが、エンボスローラーへのエア噛みが少なく、静摩擦係数に優れる封止材シートであった。
 (実施例13)
シートのSm(A2)が大きくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少なく、耐ブロッキング性、静摩擦係数に優れる封止材シートであった。
 (比較例1)
 シートのRa(A1)が小さくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少ないが、耐ブロッキング性、静摩擦係数に劣る封止材シートであった。
 (比較例2)
 シートのRa(A2)が小さくなるようにSUS製のエンボスローラーを変更した以外は、実施例1と同様の方法で封止材シートを作成した。得られた封止材シートは表1に示すとおり、エンボスローラーへのエア噛みが少ないが、耐ブロッキング性、静摩擦係数に劣る封止材シートであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表において「Sm比」とは、「Sm(A-MD)/Sm(A-TD)」を示す。
本発明の封止材シートは、太陽電池封止材の保管時におけるブロッキングと太陽電池の製造工程におけるラミネート時のセルの位置ズレの不具合を同時に抑制できるため、太陽電池用の封止材シートとして好適に用いられる。
A  : 輪郭曲線
B  : 凹凸(A1)
C  : 凹凸(A2)
D  : 平均線
E  : 凹凸(A1)の凸部(図においてハッチングされている部分が凹凸(A1)の凸部である)

Claims (8)

  1.  一方の面をA面、他方の面をB面とした時に、該A面が、平均粗さRa(A1)が3~95μmの凹凸(A1)と、平均粗さRa(A2)が0.3~2.5μmの凹凸(A2)とを有することを特徴とする太陽電池封止材シート。
  2.  前記凹凸(A1)の凸部に、平均粗さRa(A3)が0.3~2.5μmの凹凸(A3)を有することを特徴とする、請求項1に記載の太陽電池封止材シート。
  3.  前記凹凸(A1)の平均間隔Sm(A1)が、100~2,000μmであることを特徴とする、請求項1または2に記載の太陽電池封止材シート。
  4.  前記凹凸(A2)の平均間隔Sm(A2)が、5~80μmであることを特徴とする、請求項1~3のいずれかに記載の太陽電池封止材シート。
  5.  前記A面について、シート流れ方向の平均間隔Sm(A-MD)[μm]と、該シート流れ方向に直交する方向の平均間隔Sm(A-TD)[μm]の比(Sm(A-MD)/Sm(A-TD))が、1.1~5であることを特徴とする、請求項1~4のいずれかに記載の太陽電池封止材シート。
  6.  前記B面が、平均粗さRa(B1)が0.5~4μmの凹凸(B1)を有し、かつ該凹凸(B1)の平均間隔Sm(B1)が10~400μmであることを特徴とする、請求項1~5のいずれかに記載の太陽電池封止材シート。
  7.  受光面保護材、請求項1~6のいずれかに記載の太陽電池封止材シート、太陽電池セル、請求項1~6のいずれかに記載の太陽電池封止材シート、及び裏面保護材を、この順に配置して、封止することにより得られる太陽電池モジュール。
  8.  前記太陽電池セルを、前記太陽電池封止材シートのA面側に接するように配置することを特徴とする、請求項7に記載の太陽電池モジュール。
PCT/JP2013/069523 2012-09-20 2013-07-18 太陽電池封止材シート、および、太陽電池モジュール WO2014045692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013535183A JPWO2014045692A1 (ja) 2012-09-20 2013-07-18 太陽電池封止材シート、および、太陽電池モジュール
KR1020157005767A KR20150059738A (ko) 2012-09-20 2013-07-18 태양 전지 밀봉재 시트, 및 태양 전지 모듈
CN201380046506.XA CN104619492B (zh) 2012-09-20 2013-07-18 太阳能电池密封片材和太阳能电池模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012206735 2012-09-20
JP2012-206735 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045692A1 true WO2014045692A1 (ja) 2014-03-27

Family

ID=50341018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069523 WO2014045692A1 (ja) 2012-09-20 2013-07-18 太陽電池封止材シート、および、太陽電池モジュール

Country Status (5)

Country Link
JP (1) JPWO2014045692A1 (ja)
KR (1) KR20150059738A (ja)
CN (1) CN104619492B (ja)
TW (1) TW201413995A (ja)
WO (1) WO2014045692A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062074A1 (ja) * 2016-09-27 2018-04-05 東レフィルム加工株式会社 軟質樹脂層の転写用フィルム
WO2018083733A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法
CN111763017A (zh) * 2014-04-09 2020-10-13 积水化学工业株式会社 夹层玻璃用中间膜、辊状体、夹层玻璃及夹层玻璃的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020226978B1 (en) 2020-06-16 2021-07-29 Jinko Green Energy (shanghai) Management Co., Ltd. Functional part, photovoltaic module and method for manufacturing photovoltaic module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192804A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2012007087A (ja) * 2010-06-25 2012-01-12 Bridgestone Corp エチレン−酢酸ビニル共重合体フィルム、並びにそれを用いた合わせガラス及び太陽電池
JP2012099713A (ja) * 2010-11-04 2012-05-24 Achilles Corp 太陽電池封止材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192804A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2012007087A (ja) * 2010-06-25 2012-01-12 Bridgestone Corp エチレン−酢酸ビニル共重合体フィルム、並びにそれを用いた合わせガラス及び太陽電池
JP2012099713A (ja) * 2010-11-04 2012-05-24 Achilles Corp 太陽電池封止材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763017A (zh) * 2014-04-09 2020-10-13 积水化学工业株式会社 夹层玻璃用中间膜、辊状体、夹层玻璃及夹层玻璃的制造方法
US11565507B2 (en) 2014-04-09 2023-01-31 Sekisui Chemical Co., Ltd. Laminated-glass intermediate film, rolled body, laminated glass, and method for producing laminated glass
WO2018062074A1 (ja) * 2016-09-27 2018-04-05 東レフィルム加工株式会社 軟質樹脂層の転写用フィルム
JPWO2018062074A1 (ja) * 2016-09-27 2019-07-04 東レフィルム加工株式会社 軟質樹脂層の転写用フィルム
WO2018083733A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法
JPWO2018083733A1 (ja) * 2016-11-01 2019-01-17 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
CN104619492B (zh) 2016-08-24
CN104619492A (zh) 2015-05-13
JPWO2014045692A1 (ja) 2016-08-18
KR20150059738A (ko) 2015-06-02
TW201413995A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
EP1703570A1 (en) Method of manufacturing a solar cell module
JP5297249B2 (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール並びに太陽電池モジュールの製造方法
WO2014045692A1 (ja) 太陽電池封止材シート、および、太陽電池モジュール
KR101344569B1 (ko) 적층체 형성용 에틸렌-불포화 에스테르 공중합체 필름
TW201034216A (en) Mechanically reliable solar cell modules
WO2012133196A1 (ja) 太陽電池封止材シートの製造方法
JPWO2011016451A1 (ja) 太陽電池モジュールの製造方法、および、その製造方法で製造された太陽電池モジュール
JP2011049228A (ja) 太陽電池モジュール用裏面一体化シート
JP2002134768A (ja) 太陽電池モジュール及びその製造方法
TWI580571B (zh) 太陽能電池模塊用密封膜的製造方法及太陽能電池模塊的製造方法
JP2010238714A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール並びに太陽電池モジュールの製造方法
JP2015195338A (ja) 太陽電池モジュールのリワーク方法
JP2011519750A5 (ja)
JP2011077172A (ja) 封止材シート及び太陽電池モジュール
JP2011049227A (ja) 太陽電池モジュール用裏面一体化シートの製造方法
WO2009121708A2 (en) Continuous lamination of polymethylemethacrylate (pmma) film in the manufacture of a fresnel lens
WO2012111749A1 (ja) 太陽電池モジュール用裏面保護シート、その製造方法、および太陽電池モジュール
JP5928092B2 (ja) 太陽電池封止材シート、および、太陽電池モジュール
JP2016072540A (ja) 裏面保護シート及びそれを用いた太陽電池モジュール
JP2015073048A (ja) 太陽電池保護シート、及び、太陽電池モジュール
JP6232627B2 (ja) 太陽電池封止材シート、及び、太陽電池モジュール
JP5152986B2 (ja) 太陽電池用封止シート
JP2013256089A (ja) 表面保護部材およびその製造方法
JP2015023125A (ja) 太陽電池封止材シート、太陽電池封止材ロール、及び太陽電池モジュール
EP2383796A1 (en) Solar cell module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005767

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839593

Country of ref document: EP

Kind code of ref document: A1